Chapter 2

Defining the Problem

Chapter objectives:

Interactive system design is concerned with solving problems, and before we proceed any distance into design we need to know what the problem is. This chapter explains:

•	the nature of the design problems we’re likely to encounter

•	the range of tasks and processes that interactive systems can support

•	the importance of usability in measuring how well a system supports te user’s activity

•	how we focus on a particular form of solution

•	how to write a one-sentence problem statement

2.1.	Introduction.1.	Introduction�tc \l 12 ".1.	Introduction"�

Designing an interactive system leads us into many challenging areas of work. There’s a need—as later chapters in this book will explain—to perform studies and analyses, define requirements, design user interfaces, build prototypes and conduct evaluations, to name just a few activities. Each one plays a crucial part in the overall design of the system.

To make sure that all of this effort is well spent, we must state quite clearly what problem we are trying to solve. We must define the objectives of the design project. Then, with a clear problem statement to guide us, we can keep track of progress as we home in on a satisfactory solution. When we lack such a problem statement, our project can drift dangerously off-course, leaving us perhaps with a solution to the wrong problem or, worse still, with no solution at all.

This chapter provides an introduction to the task of preparing a problem statement—a definition of design objectives. The topic of “defining the problem” brings us face to face with four fundamental issues in interactive system design:

•	Identifying the human activity that the proposed interactive system will support

•	Identifying the people, or users, who will perform the activity

•	Setting the levels of support that the system will provide, otherwise known as the system’s usability

•	Selecting the basic form of solution to the design problem.

Of course, by defining these four aspects of the problem we don’t settle them once and for all. On the contrary, each issue evolves into a major area of design work. The human activity supported by the system becomes a focus of study and a target for change; so does the person performing it. Levels of support are defined with increasing precision so as to provide yardsticks for evaluation. And the form of solution, initially described in just a few words, gradually expands into a statement of requirements, which in turn leads to a specification of the design and, ultimately, to a working interactive system.

2.2.	The Problem Statement.2.	The Problem Statement�tc \l 12 ".2.	The Problem Statement"�

The problem statement defines the objectives of design. It may be as short as a single sentence, e.g., “Design a cash-operated machine for quick, easy purchase of railway tickets by passengers.” A design problem such as this will usually arise out of a situation that needs changing, e.g., lines of passengers at ticket counters are getting too long. We call this the situation of concern, and the purpose of the interactive system is to resolve it (Checkland and Scholes, 1990). In order to define the design problem we must identify a human activity or activities that the system can support (in this instance, ticket purchase by passengers). We will also want to specify what it means to achieve an adequate level of support, e.g., ticket purchase must be rapid and easy. Finally, we must ensure that there is a means of providing an interactive solution to the design problem.

2.2.1.	The one-sentence problem statement.2.1.	The one-sentence problem statement�tc \l 12 ".2.1.	The one-sentence problem statement"�

Problem statements vary in length and detail. Sometimes they run to half a page or so, perhaps identifying each of the separate activities that the system must support. In this chapter we will use a concise, one-sentence form of statement that provides a place for each of the essential components. This form is shown in Figure 2-1.

�

	Figure 2-1. The one-sentence form of the problem statement, showing the four essential components defining the supported activity, the user, the level of support and the form of solution.

2.2.2.	Whose problem are we solving?.2.2.	Whose problem are we solving?�tc \l 12 ".2.2.	Whose problem are we solving?"�

The design problems we tackle may arise out of situations that are themselves problems. Thus the problem of designing a ticket machine arises out of the problem of long lines at ticket counters. Another design problem we’ll discuss in this chapter is the provision of interactive workstations to support telephone assistance operators (the people who answer when we dial 0). This design problem arises out of the phone company’s problem of rising operating costs. In each case there’s a causal link between the overall situation of concern—long lines, rising operating costs—and the design problem we tackle.

A major purpose of problem definition is to transform the situation of concern into a design problem, i.e., to find the causal link between one problem and the other. In this way we can focus on the kind of problem we designers are equipped to solve, a problem in interactive system design. It is this design problem that we attempt to solve. If we can identify the design problem correctly at the outset, then designing and building the system should enable someone to resolve the situation of concern. It’s important to recognise that this “someone” may not be a member of the design team. Often it’s more appropriate to regard this person or organization as the client for the design—a point to which we’ll return at the end of this chapter.

In the next section we’ll look more closely at how the situation of concern gives rise to a definition of the problem. Later sections discuss each of the four main components of the problem statement.

2.3.	The situation of concern and the course of action.3.	The situation of concern and the course of action�tc \l 12 ".3.	The situation of concern and the course of action"�

As we’ve seen, design problem arise out of situations of concern. Within such a situation there are things that aren’t quite right. Perhaps there’s a problem that must be sorted out or things that people need, or perhaps there’s an opportunity that will be lost unless it is seized without delay. Whatever the source of concern, it needs to be resolved, i.e., something about the situation needs to be changed. This will involve an appropriate course of action, applied to particular components of the situation (Figure 2-2).

�

	Figure 2-2. How a situation of concern is resolved, by applying a course of action to one or more components of the situation. Based on Checkland and Scholes, 1990.

We’ve already seen an example of a situation of concern, in the form of long lines of railway passengers at ticket counters. The course of action adopted here is the provision of ticket machines. It applies to a particular component of the situation, i.e., passengers’ purchase of tickets.

The other example given of a situation of concern related to controlling operating costs in a phone company. Many factors contribute to these costs, including employee salaries, capital investment in switching and transmission equipment, interest on borrowing, employee travel expenses, and so forth. We could tackle the situation of concern in a wide variety of ways. For example, we could look for ways to reduce borrowing by selling off some of the company’s assets. We could explore ways to cut the cost of employee travel. Neither of these is likely to involve the use of interactive systems. But if we were to look at the company’s salary bill, and were to find that the cost of assistance operators’ wages had been rising sharply, we might consider the use of interactive technology to bring this cost down.

An important point is emerging here: problems in interactive system design arise when we see ways to resolve a situation of concern through the use of interactive technology. The design problem becomes one of changing particular components of the situation so that the desired overall change is achieved. There’s a causal link between altering the component and altering the situation as a whole—changing one will lead to changing the other. Problem definition involves identifying this causal link.

2.3.1.	Human activity as the causal link.3.1.	Human activity as the causal link�tc \l 12 ".3.1.	Human activity as the causal link"�

As we saw in Chapter 1, interactive systems support human activity directly; they are able to provide this support as the activity is being carried out. Hence if we want to find a way to use interactive technology to resolve a situation of concern, we look for activities that the technology can support. These activities provide the causal link.

�

	Figure 2-3. Changing the means of support produces the improvements in activities’ performance that address the situation of concern.

Figure 2-3 shows how interactive systems achieve the changes we seek. They replace or augment existing support systems, which themselves may or may not be interactive. In this way, an interactive system can improve the performance of certain human activities that are affecting the situation of concern. As a result, the situation itself improves.

In order to define the design problem, therefore, we must identify the activity or activities to support. There may be many activities affecting the situation of concern, and the choice may not be an easy one. Even in the simple case of railway ticket purchase there’s a choice of at least four activities to support:

•	ticket purchase by passengers

•	ticket preparation by clerks

•	payment handling by clerks

•	record keeping by clerks

Whatever the range of activities, we need to study each activity in turn, with a view to applying interactive technology so as to bring about the necessary overall changes.

2.4.	The activity to be supported.4.	The activity to be supported�tc \l 12 ".4.	The activity to be supported"�

We make a crucial step towards defining the problem when we select the activity or activities to be supported. Our aim here is to identify people’s activities whose performance we can improve so as to resolve the situation of concern. There are two basic approaches; we may focus our attention on individual tasks, or look more broadly at linked sets of tasks representing processes.

In this section we’ll discuss tasks and processes, viewing them from two angles each. First, we’ll look at how we identify the activity in question—how we discover it amongst the complex, infinitely varying activities that we see people performing. Second, we’ll discuss what it means to support the activity. By treating these two aspects of tasks and processes we’ll be in a position to discuss, in the following sections, how we assess the level of support that the system needs to provide, and what we should say about the form of solution.

2.4.1.	Tasks units of goal-directed activity.4.1.	Tasks units of goal-directed activity�tc \l 12 ".4.1.	Tasks: units of goal-directed activity"�

A task is a unit of human activity, carried out in order to achieve a specific goal. The performance of a task usually involves a sequence of steps, each step contributing in some way towards achieving the task’s goal (Diaper, 1989b). The fact that tasks have separate goals helps us to distinguish between one task and the next.

An example of a task, illustrating how each step contributes towards achieving a common goal, is the purchase of a railway ticket. The following list shows a sequence of steps that a railway traveler might carry out; the steps in the ticket-purchase task are shown emphasized:

•	study list of train departures

•	mentally note time and platform number of next train

•	stand in line at ticket counter

•	on reaching counter, state destination and journey type

•	receive quote for price of ticket

•	pay money

•	receive ticket and change

•	walk over to drinks machine

•	insert money

•	press button for black coffee

•	wait for cup to drop and contents to be poured

•	remove cup from machine.

When we study people’s activities we can often separate one task from another by looking for changes of goal. During a task’s performance, each step will tend to contribute in some way towards achieving the task’s goal. Steps that don’t appear to contribute are likely to represent parts of other tasks.

In the above list, we can see that each of the emphasized steps contributes in some way to the goal of purchasing the ticket. The preceding two steps can’t be linked directly to the ticket-purchase goal, and we conclude that they belong to another task whose goal is to find the next train. Likewise the last five steps contribute to the goal of obtaining a cup of coffee.

We can describe tasks in terms of the goals they achieve and the steps they involve. One way to do this is to write a list of steps under the heading of the task goal, as shown in Figure 2-4a; a second method is to use a graphical notation such as that of Figure 2-4b. Both of these are examples of hierarchic task description that show each step as a contributor to a “parent” goal.

�

1.	Find time of next train

	1.1	study list of train departures

	1.2	mentally note time and platform number of next train

2.	Purchase ticket

	2.1	stand in line at ticket counter

	2.2	on reaching counter, state destination and journey type

	2.3	receive quote for price of ticket

	2.4	pay money

	2.5	receive ticket and change

3.	Obtain cup of coffee

	3.1	walk over to drinks machine

	3.2	insert money

	3.3	press button for black coffee

	3.4	wait for cup to drop and contents to be poured

	3.5	remove cup from machine.

					(a)

�

					(b)

	Figure 2-4. Hierarchic task descriptions, (a) using a text notation, (b) using a diagrammatic notation.

It’s important to realise that the sequences of steps we observe are only instances of the many different sequences that people may follow in performing tasks. During the task’s performance, all sorts of situations can arise, e.g., the previous user of the drinks machine may have run off leaving money in it, or the cup may tip over while it is being filled. These situations will affect the sequence of steps. Suchman has used the term situated action to draw attention to the way in which the surrounding circumstances affect the course of action (Suchman, 1987).

The circumstances at the outset of the task are particularly important, because there’s often a choice of methods for performing the task (e.g., using the drinks machine versus going to the snack bar). We need to understand what causes people to choose one method rather than another, because we’re aiming to design a means of support that people will prefer to the means they already have.

2.4.2.	Designing a tool to support the task.4.2.	Designing a tool to support the task�tc \l 12 ".4.2.	Designing a tool to support the task"�

Many of the individual tasks that people perform can be supported with the aid of interactive technology. We could probably think up an interactive solution to assist each of the tasks shown in Figures 2-4a and 2-4b. However, every task we observe already has its existing means of “support”, even if this is as simple as a printed list of train departures. An interactive solution should be demonstrably better than available means of support, otherwise people won’t use it.

Designing a means of support for an individual task is a matter of designing a tool for use in the task’s performance. We’re designing something that people can pick up or switch on, and then later put down or turn off, just like a hammer or a vacuum cleaner. The tool’s design should reflect this. The person performing the task should be able to access the tool, turn it on and use it, all within the time-frame of the task’s performance.

Since people are often free to choose which tools they use, there’s no guarantee they will accept a new interactive tool when it is offered to them. Instead, the new tool will have to compete with the tools already available. If people perceive the new tool as inferior to those already available, they probably won’t use it. But if the tool enables tasks to be performed better or faster, people who use it once will probably use it again—at least, until someone comes up with an even better design!

2.4.3.	Processes linking tasks to achieve longer-term goals.4.3.	Processes linking tasks to achieve longer-term goals�tc \l 12 ".4.3.	Processes: linking tasks to achieve longer-term goals"�

In a great many of the situations of concern we encounter, we don’t find individual tasks that need support. Rather, we find people performing tasks that are part of a linked series, distributed over time and possibly involving a number of other people. These linked tasks represent a process, sometimes called a business process in organizational settings. Like single tasks, entire processes can be supported by technology, and this is often an effective way of resolving situations of concern.

Processes are performed with a view to achieving goals, sometimes very similar to the goals of individual tasks. For example, when a mail-order company receives an order, it sets in motion a process whose goal—delivering the product in return for the customer’s money—is basically the same as the goal of the clerk who sells a railway ticket. Unlike selling tickets, however, handling mail orders involves a number of separate tasks, carried out at different times and often by different people. If we ignore for the moment the tasks that arise in exceptional conditions (e.g., cancellation of orders), we’ll find that the main tasks are:

Task 1:	checking the customer’s credit status

Task 2:	checking the availability of the product

Task 3:	accepting the order, provided it checks out

Task 4:	shipping the product

Task 5:	invoicing the customer

Task 6:	filing paperwork in readiness for arrival of payment

Task 7:	checking the amount on the filed invoice when payment is received, and marking the invoice paid

Task 8:	issuing a receipt to the customer

Task 9:	filing paperwork for the completed transaction

Task 10:	banking the payment

Once the final set of paperwork has been filed and the money banked, the mail-order process has achieved its goal and can be terminated. Figure 2-5 shows how the ten tasks might be performed in simple sequential order.

2.4.4.	Formation of processes the effect of multiple dependencies.4.4.	Formation of processes the effect of multiple dependencies�tc \l 12 ".4.4.	Formation of processes: the effect of multiple dependencies"�

Why do processes like this exist? Why is a whole series of tasks sometimes needed to achieve virtually the same result as a single task? If we want to apply interactive technology to the support of processes, we should understand how they are formed in the first place.

When we look at the individual tasks that make up a process, we’ll see that each one depends in some fashion on a crucial resource, sometimes known as the task object (Carey et al., 1989). This dependency places constraints on the performance of the tasks—on when they can be performed, by whom, in what sequence. A familiar example is our dependence, when we telephone somebody, on that person’s availability at the other end. Here the person is the crucial resource; if he or she isn’t available we must leave a message or try again later, and thus we enter into the process of playing “telephone tag.” The more an activity depends on resources in this way, the more difficult it is to perform as a simple task, and the more likely it is to break up into several linked tasks and thus transform into a process.

�

	

	Figure 2-5. The mail-order process, shown as a simple sequence of tasks.

Tasks depend on resources of several different kinds. There are those lying within the domain of information systems and those that lie outside (Carey et al., 1989). Those outside include inanimate objects such as machinery (Moray, 1992); they also include people (Suchman, 1987). It may be helpful therefore to distinguish between task resources of three main kinds:

•	Files, lists and databases that provide permanent storage for the information involved in task performance;

•	People with specific skills or responsibilities;

•	Other ongoing processes including physical processes in the real world, functioning of machinery and plants, etc.

Dependency on one such resource doesn’t necessarily make a task into a process. Indeed it’s common for individual tasks to have such a dependency, or focus. The three railway-station tasks of Figure 2-4 focus respectively on a list (of departures), a person (the ticket clerk) and a machine (dispensing drinks). Once this resource has been “captured”, the task can be carried out without interruption.

Processes are likely to form when the activity has multiple dependencies—when the focus of attention shifts from one resource to another. If the next resource isn’t immediately available, the activity must suspend. The person performing the activity must either sit and do nothing, or leave the activity in suspense and return to it later when the resource is available.

How the mail-order process is formed

The mail-order activity shows a number of dependencies that might cause suspension, and these are what lead to the formation of a process. Here are the main dependencies:

Task 1:	checking the customer’s credit status depends on access to the accounts-payable file showing invoices not yet paid

Task 2:	checking the availability of the product depends on access to the inventory of goods in stock

Task 4:	shipping the product depends again on access to the inventory in order to update it

Task 6:	filing paperwork, to be checked when payment is received, depends on access to the accounts-payable file.

Task 7:	checking the amount on the filed invoice, when payment is received, and marking the invoice paid, depends first on the customer’s response to the invoice, and then on access to the accounts-payable file.

Task 9:	filing paperwork for the completed transaction depends on access to the completed-sales file.

A common technique for reducing the delays caused by multiple dependencies is to have different people perform tasks in parallel. Thus Task 1 might be performed by a credit assistant and Task 2 by the stores clerk. But this would introduce another dependency:

Task 3:	accepting the order, provided it checks out, will depend on receiving responses from the credit assistant and stores clerk.

Ultimately the mail-order process may come to depend on three or four different people, and on three or more files or databases. A chart of the process is shown in Figure 2-6.

�

	Figure 2-6. Process flow chart for mail-order, drawn using the notation of a Data Flow Diagram.

2.4.5.	How we discover processes.4.5.	How we discover processes�tc \l 12 ".4.5.	How we discover processes"�

If we study people in organizations and look at the tasks they perform, we’ll find that many of the the tasks are parts of processes. We’ll see the various tell-tale features of process performance that arise from task dependencies:

•	Use of files and databases, some of them shared between people;

•	Communication between people, including indirect communication by means of forms, messages, voice-mail and other documents;

•	Synchronization with real-world physical and mechanical processes;

•	Suspension while waiting for information to become available, for people to respond, or for real-world processes to reach the appropriate state.

As an illustration, Figure 2-7 shows a sequence of tasks performed by a detective, as observed by a research team (Thornton and Harper, 1991). All of the tasks, except phoning home at 11:13 and taking lunch at 12:05, have the marks of tasks forming parts of processes. Some of the tasks are performed in support of other officers’ work processes, e.g., the messages takes at 11:03 and 11:40. One particular process, the investigation of a fraud case, shows up several times.

10:35	Make telephone inquiries about a fraud case.

10:47	Visit the communications room to make sure a message has been passed on to a uniformed colleague.

10:54	Make a telephone inquiry about a rape case, trying to contact a doctor.

11:03	Answer telephone for colleague, take details to pass on.

11:05	Another officer asks the detective to accompany him in making an arrest; they discuss the case but decide not to proceed with the arrest.

11:13	More telephone enquiries regarding fraud case; phone home.

11:40	Answer phone to take details for an�other officer.

11:45	Another uniformed officer comes in to discuss a case.

11:50	Telephone inquiry regarding fraud case.

12:05	Lunch.

Figure 2-7. Observations of detective’s work over a 90-minute period, based on (Thornton and Harper, 1991). Times are in hours:minutes.

Building a complete picture of a process involves lengthy investigations, possibly relying on observations as in this example, from which the connections between tasks are gradually pieced together. This is itself a kind of detective work. Methods for studying and modelling processes will be described in Chapter 5.

2.4.6.	Designing systems to support processes.4.6.	Designing systems to support processes�tc \l 12 ".4.6.	Designing systems to support processes"�

Much of the computer industry’s business lies in developing systems to support work processes. The effectiveness of these systems lies not only in their provision of tools to perform tasks faster and better, but also in their support for the links between tasks and for the information resources that the tasks share. The tasks are supported in a systematic way, rather than piecemeal, by technology that truly represents a system.

When we set out to design a system to support a process, therefore, we look beyond merely improving the performance of tasks. One option we may have is to automate tasks, i.e., replace them by software that performs the task automatically. This is an effective technique for saving labour costs, and thus for addressing situations of financial concern. Flight-deck automation has been very successful in this respect, automating many of the flight engineer’s tasks and thus permitting the reduction of flight crews from three people to two.

A more general approach to process support is to reduce dependencies. This may not necessarily reduce the number of steps performed, but it may enable them to be linked more closely, and the whole process may be faster and more streamlined as a result.

It is feasible, for example, to support the mail-order process interactively so that it can be performed by just one person. If the customer provides a credit-card number, this can be checked on-line by the mail-order clerk, and so can the inventory, so that the order can be accepted on the spot. If the stock of products is kept close by, the same clerk can go and fetch the product, pack it in an envelope, affix a label printed by the system and put it in a mailbag. Meanwhile the system can debit the customer’s credit-card account, and log the transaction. The process has been reduced, in effect, to the single task shown in Figure 2-8.

�

	Figure 2-8. Reducing mail-order to a simple task.

Many of the interactive systems now in current use have succeeded in making processes simpler; some of them have even reduced processes to single tasks. Starting a car, for example, is simply a matter of turning a key, thanks to electronic ignition. In the days of vintage cars it was a true process, involving a series of steps such as retarding the ignition, adjusting the mixture, pumping fuel into the induction manifold, cranking the engine, etc., with suitable pauses between steps (Wheatley and Morgan, 1964). Other examples of processes that have been simplified by interactive technology include:

•	word processing, which enables the writer of a report to prepare a succession of drafts without the need to suspend while the report is retyped in the typing pool;

•	software development, which once involved batch processing—submitting a program to the computer center on punched cards to be run as part of the next batch—but which now permits a complete cycle of testing, debugging, source editing, recompiling, loading and running to be performed interactively as an uninterrupted sequence;

•	international telephone dialing, which still occasionally involves the process of “booking” a call via the operator, but which can increasingly be performed as a single task by the caller;

•	on-line airline and hotel reservation systems, which enable us to book a flight or a vacation in minutes; these are tasks that once involved processes lasting days or weeks;

•	paging devices, which allow telephone calls to be routed directly to the nearest phone, thus avoiding telephone tag.

2.5.	The User.5.	The User�tc \l 12 ".5.	The User"�

In conjunction with identifying the supported activity, we need to give thought to who will perform it. In other words, we need to identify the user of the proposed interactive system. By bringing the user into the design problem, we are able to focus properly on the user’s needs, both general and specific.

2.5.1.	Addressing the general needs of the human user.5.1.	Addressing the general needs of the human user�tc \l 12 ".5.1.	Addressing the general needs of the human user"�

What does it mean to address the needs of the user? To a large extent, the answer lies in supporting the activity or activities they perform. We must not forget, however, that using an interactive system is a human activity. When we come to define how the system will be used, we need to make sure that this usage is consistent with the human user’s physical and cognitive abilities, and with the social environment they inhabit. Otherwise we may make unreasonable demands on the user, and create a system that is intrinsically unusable.

A first step towards understanding how to address the user’s needs is to take account of human performance and behaviour in general. This means looking at what is known about humans as physical, cognitive and social performers. Psychological research can tell us a great deal about the limits of human performance, and sociological and anthropological research can supplement this with observations about human behaviour in social settings. Out of this research has emerged models of human behaviour that can be useful in testing ideas for systemd designs. The next chapter is devoted to looking at general models of human behaviour, suitable for use in interactive system design.

2.5.2.	Addressing specific user needs.5.2.	Addressing specific user needs�tc \l 12 ".5.2.	Addressing specific user needs"�

Human beings also make specific demands and bring specific capabilities as potential users of new systems. They may have acquired particular skills and expertise, and the system’s design should recognise this; it should use the terminology they know, and enable them to be creative and apply problem-solving or analytical skills. In a work environment, people have responsibilities, and need systems that help them to meet these responsibilities. A system that fails in this respect may not get used. In some situations people will undergo training to use the systems, while in other cases they will receive no prior training and must be able to operate it in a “walk-up-and-use” fashion.

The reason for identifying specific users at the time of problem definition is to ensure that adequate attention is paid to their particular skills, expertise, responsibilities, training, and working environment. We group these aspects of the user under the heading of “user needs.” By pointing out, in the problem statement, that the system is to support “purchase of tickets by passengers” or “handling of collect calls by telephone assistance operators,” we draw attention to the requirement to study and analyse user needs. In Chapters 5 and 6 we’ll look in detail at how this is done.

2.6.	Usability.6.	Usability�tc \l 12 ".6.	Usability"�

Designing an interactive tool or system is not just a matter of supporting a chosen activity. There’s a need to achieve an improvement in the activity’s performance, sufficient to resolve the situation of concern. Throughout design, therefore, we pay close attention to the system’s likely influence on performance of tasks and processes. We start paying attention to this right at the outset, making sure that the problem statement makes due mention of targets for activity performance.

The central issue here is the system’s usability. This is a collective term for all aspects of an activity’s performance that can be affected by the use of technology (Whiteside et al., 1988). The individual aspects are known as usability factors. Each one provides a measure of a particular aspect of the performance of activities when supported by the system.

2.6.1.	Usability factors.6.1.	Usability factors�tc \l 12 ".6.1.	Usability factors"�

What sorts of factors are we concerned with under the heading of usability? To answer this question, we need to consider which aspects of activity performance are affected by the introduction of systems. A list of the main usability factors will normally include the following:

•	The speed of performance of the activity, which affects how many people are needed to perform it

•	The incidence of errors while performing the activity

•	The user’s ability to recovery from errors that occur

•	The magnitude of the user’s task in learning to use the system

•	The user’s retention of learned skills

•	The user’s ability to customize the system to suit their way of working or the situation of use

•	The ease with which people can reorganize activities supported by the system—their own activities and other people’s

•	Users’ satisfaction with the system.

Most usability measures depend on the activity performed. This is especially true of factors such as speed of performance and ease of learning. The only effective way of specifying a system’s speed of use is to define the activity to be performed and the speed of completing it. Likewise, setting targets for ease of learning makes a lot more sense if we specify what we want the user to learn to do. Learning to use a word processor, for example, varies in difficulty depending on whether you just want to type simple letters or you want to prepare complex, multi-column documents with illustrations.

2.6.2.	Our choice of usability targets.6.2.	Our choice of usability targets�tc \l 12 ".6.2.	Our choice of usability targets"�

In defining the design problem we will usually identify the principal usability factors we’re concerned with. We will specify, for example, that purchase of railway tickets is to be faster than before, or that there will be fewer cases of people buying the wrong kind of ticket. We may set specific levels of performance to be achieved (e.g., ticket purchase time) or we may leave these to be determined at a later stage in the design. The important question during problem definition is, what are the key factors? What aspects of activity performance are affecting the situation of concern?

In many cases, speed of performance is the key usability factor. There’s a need to get the activity done faster or with fewer people. Incidence of errors is also likely to be of importance, because of the tradeoffs with performance speed. Under pressure to increase speed, users may make more errors (Mayhew, 1992); and if they detect the errors they make, they will lose time in correcting them.

Ease of learning is sometimes a key factor because of the time and money involved in training. Consider the cost of training a thousand employees of an organization to use a new word processor. A two-day training course will cost 2,000 days lost from work; that’s ten working years!

In setting usability targets, it helps to consider whether we’re supporting tasks or processes. Are we concerned, for example, with the time users devote to performing the activity, or the total elapsed time the activity takes? In the case of a simple task, such as buying a railway ticket, the two times are much the same. In the case of a process, e.g., mail order, the times are likely to be quite different, because several people may be involved and there will be lengthy periods of process suspension.

2.6.3.	Improving levels of performance.6.3.	Improving levels of performance�tc \l 12 ".6.3.	Improving levels of performance"�

We’re usually concerned with improving the performance of activities, for this is how we hope to resolve the situation of concern. We can’t set targets for usability levels, therefore, unless we know what levels are already being achieved. Nor can we set targets unless we know what levels of improved performance are achievable.

There’s a need to understand how tasks and processes are being performed at present, in order to assess the usability of the current support system. Of course, we may find ourselves trying to measure the “usability” of low-tech or even non-tech systems, such as pen and paper or face-to-face conversation. This should not make any difference; we can measure speed of performance, errors, etc., whether or not the activity is computer-supported.

There’s also a need to set realistic targets for the levels of performance we can achieve with the new system. Defining the design problem is not just a matter of deciding how big an improvement is necessary in order to resolve the situation of concern. Suppose we can’t achieve it? Suppose, for example, we need to reduce training time to half a day, but the training course ends up taking a full day after all? These kinds of mistakes cause one situation of concern to be replaced with another.

Setting realistic targets is largely a matter of familiarity with the problem. When we tackle a new and unfamiliar problem, we may not know what levels of performance are easily achieved. It’s all too easy to accept the challenge of meeting a target, and then find that it’s impossible to meet. A lot depends on the form of solution we adopt. This brings us to the final topic in problem definition.

2.7.	The Form of the Solution.7.	The Form of the Solution�tc \l 12 ".7.	The Form of the Solution"�

By choosing interactive technology as a means of alleviating the situation of concern, we have already begun to focus on a form of solution. In effect, we’ve chosen the first four words of the problem statement to be, “Design an interactive system...” or “Design an interactive tool...” Often the problem statement will say no more than this about the form of solution; after all, to say more would be to commence the design activity itself. There are circumstances, however, in which the problem statement needs to say more about the solution. We’ll look at some of the reasons in this final section.

2.7.1.	Describing the form of solution.7.1.	Describing the form of solution�tc \l 12 ".7.1.	Describing the form of solution"�

What would it mean, anyway, to say more about the form of solution? What sorts of details would we add? We’ve been talking throughout this chapter about the support that the interactive system will provide to people’s activities. To define the form of solution means to specify how this support is to be made available.

Provision of interactive support involves numerous layers of technology and resources, including:

•	The user interface with which the user interacts directly

•	The application software that supports the user interface

•	The operating system that provides standard services to both the user interface and its supporting software

•	System resources accessed via the user interface and supporting software: information storage, communication, printing, etc.

•	The hardware that supports all of these resources.

In the course of solving the design problem we will specify every layer of the design in sufficient detail for implementation to be carried out. We’ll probably pay most attention to the user interface, because this has a particularly direct impact on interactive support. We’ll need to pay attention also to the design of the interactive software. As regards the remaining layers, we’re likely to look for existing solutions—existing operating system, file systems, networks, workstations, etc.—so that we don’t have to design these too.

2.7.2.	What we define in the problem statement, and why.7.2.	What we define in the problem statement, and why�tc \l 12 ".7.2.	What we define in the problem statement, and why"�

At the problem definition stage, it’s necessary only to define the constraints that apply to the choice of solution. These constraints may arise for various reasons, including market pressures, opportunities to exploit available technology or expertise, or the need for compatibility with specific software or hardware. They may apply to any layer of the solution, leading us to specify, for example,

•	an interactive tool that adheres to Apple Macintosh user interface standards

•	a system that makes use of proprietary speech-recognition software (an example we discuss further below)

•	a system that runs in the Microsoft Windows NT operating system environment

•	a tool that can be run in the Windows NT, Apple Macintosh or X Windows environments

•	a system that can be linked to other applications currently in use within the user organization

•	a system for monitoring the status of a particular process plant

•	a system for linking together a particular people at three specific sites

•	a system to run on a particular “palmtop” computer with 2 megabytes of memory.

Constraints on the form of solution sometimes arise out of the situation of concern. Thus if the current version of a product is losing market share because of incompatibility with standard hardware or software, this may lead to setting up a project to develop a compatible version.

2.7.3.	Exploiting in-house expertise or technology.7.3.	Exploiting in-house expertise or technology�tc \l 12 ".7.3.	Exploiting in-house expertise or technology"�

A common reason for choosing a particular form of solution is to exploit intellectual property—to make use of technology that is “owned” by the system developers, or to which they have preferential access rights. Intellectual property rights come about in various ways, e.g., through in-house research and development or through licensing agreements. When investments of this kind have been made, there may be a need to exploit them commercially. Again, this can become a cause for concern all of its own.

To take an example, let’s look in more detail at the particular case of speech recognition mentioned in the above list of constraints. Suppose a consumer-products company has bought a license to use some powerful software for storing and matching recorded voice records. A situation of concern is thus created—the company needs to find a way of exploiting its newly-acquired technology. How should it go about defining the design problem? One approach might be to make a list of all of the human activities in which speech plays a key role, just as we listed all of the activities involved in railway ticket purchase; but this list would be immensely long, covering activities all the way from answering the telephone to negotiating a corporate takeover.

�

	Figure 2-9. The first stage in defining the problem in a case where the nature of the solution is constrained.

There’s an opportunity here to take a more direct route towards defining the problem, as shown diagrammatically in Figure 2-9. The designed artefact needs to take advantage of the company’s expertise in consumer products and access to speech-recognition software; this much can be taken for granted. The form of the solution can thus be narrowed to “a consumer product incorporating speech-recognition software.” This in turn has the effect of narrowing the range of human activities worth considering. The eventual choice might be to support the recording and playback of voice notes, i.e., to solve the following problem:

Design an interactive hand-held consumer product to support the quick and easy storage and retrieval of voice notes.

Figure 2-10 shows a device designed to solve this particular problem, from (Stifelman et al., 1993). It allows voice notes such as “call Tom” to be recorded, and includes the capability to organize notes into categories. For example, the user can speak into the device as follows: “Calls ... record ... call Tom.” This will store the note in the “Calls” category. Later when he says “Calls”, the device will play back the notes in this category, including “call Tom.”

Figure 2-10. Hand-held voice-note recorder, from (Stifelman et al., 1993).

2.7.4.	Innovative forms of solution.7.4.	Innovative forms of solution�tc \l 12 ".7.4.	Innovative forms of solution"�

Novel forms of solution, like the device shown in Figure 2-10, are often discovered in the course of trying to fit technologies to activities. This is one way in which innovation can occur, i.e., in which ideas can be transformed into artefacts and processes of practical use in society. It’s common to take an innovative approach to the design of interactive systems, i.e., to try a new form of solution rather than enhance one that is already in established use. In the computer business, with technology advancing rapidly and with hardware still falling in cost, existing forms of solution can become obsolete in a year or two. Designers often choose an innovative approach for this reason.

It’s important to recognise that there is often a choice between trying something new and enhancing something that already exists. Innovation, although often the more attractive choice, often is also the most expensive, risky and time-consuming. The initial idea or invention doesn’t become a working product overnight; it involves many stages of investigation, prototyping, testing, redesign, field trial, etc., before it is safe to place in the hands of users. We may wish to take a position, when defining the design problem, on whether it should be solved by enhancing an existing form of solution or trying a new one. We’ll look briefly at the points in favour of each.

When it’s enough to enhance an existing form of solution

Generally speaking, solving the problem with an existing form of solution is preferable to solving it by inventing a new one, if an existing solution can be found that will do the job. With an existing solution as a starting point, many of the design decisions are easier, the outcome is easier to predict, and thus the degree of risk is less. In an engineering sense, we’re choosing to use the “normal technology” that has been proven to work in the past, abandoning it in favour of new “radical technology” only if we must (Kuhn, 1962; Constant, 1980).

An example of a situation that has favoured the enhancement of existing solutions is the support of telephone assistance operators, mentioned already several times in this chapter. It’s common for these operators to use interactive workstations to control the switching of calls and to retrieve essential information, e.g., about billing rates (Gray et al., 1992). Enhancements to workstation software are often required in order to achieve improvements in productivity and to extend the range of services supported. However, it’s preferable to find a solution similar to the system currently in place, if at all possible. In this way, operators require less re-training, and use can be made of existing system components, such as billing-rate databases and digital switching systems.

If we were to tackle this situation, we would need to say little or nothing about the form of solution, because we could assume that it would be based on existing designs. We could simply state that the solution should take the form of an “enhanced workstation”:

Design an enhanced workstation that enables a skilled operator to handle a full range of telephone-assistance calls, in an average of 5 percent less time than at present.

Case Study A tells the story of how such a design problem was tackled.

When innovation is needed

Innovation in system design often becomes necessary when existing solution strategies begin to run out of steam. Every form of solution has its limits, and as it approaches these limits it demands more and more design effort to wring out each improvement in performance. Eventually the payoff from enhancement is so little that it’s better to invest the effort in trying something new.

An example of applying innovation to overcome inherent performance limits can be seen in the design of tollbooths for bridges and toll roads. How do we increase the flow of traffic through the tolls without installing more booths and toll collectors? One solution is to provide unmanned exact-change lanes with chutes to collect coins thrown by drivers. However, there’s a limit to the speed at which drivers can deposit coins while passing through an exact-change lane, and this sets an upper limit to possible enhancements. Hence the introduction of the infrared pass card which enables drivers to pass through tolls at up to 100 kph.

When there’s a need to take a radical approach to solving a design problem, we may decide to identify the approach in the problem statement:

Design a tollbooth for road traffic based on smart cards and remote sensing techniques, to enable passage by drivers through the tollbooth at speeds of up to 100 kph.

2.8.	Conclusion what follows after problem definition?.8.	Conclusion what follows after problem definition?�tc \l 12 ".8.	Conclusion: what follows after problem definition?"�

In this chapter we’ve focused on the various aspects of drawing up a problem statement. We’ve seen how this starts with the identification of a situation of concern, and the discovery of a causal link connecting the situation to a human activity that can be enhanced by the use of interactive technology, thus addressing the situation of concern. We’ve seen how the definition of the problem divides into specifying four components: the supported activity, the user, the level of support provided, and the form of solution.

What follows next? Clearly, the next stage is to design the solution, with a view to implementing and installing it. A design project therefore gets under way, with the ultimate goal of seeing an interactive system installed, and the situation of concern thus addressed. In this way the project serves those who must deal directly with the situation of concern; they become the client for the system that will ultimately be delivered.

During design, each of the four parts of the problem statement needs to be expanded and reformulated. The supported activity needs to be defined and understood well enough to know how the interactive system will support it. In conjunction with this, the levels of support will need to be defined more precisely. This should help the client to see that the situation of concern will indeed be resolved.

The primary focus of the ensuing design work will be on the solution itself—on the user interface and the underlying layers of supporting technology. The next step will normally be to specify the solution more fully, so that it’s possible to see just how it will address the situation of concern, and at the same time to see that a solution is technically feasible. This step represents only the first step towards completing the design of the system, but it’s an important one because it specifies the requirements that the design must meet, making it clear to both client and designer that these requirements are a valid restatement of the original problem. The topic of requirements definition is taken up in Chapter 7.

Exercises:

1.	What are the three kinds of resource on which tasks depend? Think of examples of systems in which these dependencies can be seen.

2.	What distinguishes tasks from processes? What causes processes to form in place of simple tasks? How can we reverse this, and turn processes back into tasks?

3.	What are the four essential components of a problem statement?

4.	What is wrong with each of the following problem statements?

	(a) Find a way to help delivery drivers to reach their destinations without getting lost so often.

	(b) Design an interactive system for genealogical researchers.

	(a) Design a system to support concert pianists in giving recitals.

5.	Figure 5-7, on page nnn, shows the full day’s transcript from which the excerpt in Figure 2-7 was taken. Find other examples of tasks and processes in Figure 5-7.

6.	Make a list of as many usability factors as you can. How many of these could you measure quantitatively?

7.	Write problem statements for the design of a mail-order system in the following situations of concern: (a) sales volume has grown to a point where one person can no longer handle orders; (b) sales volume has fallen, and the company can afford to employ only one person in its mail-order department. Base your answers on Figure 2-6 and Figure 2-8 respectively.

8.	Think of three systems that don’t work well for you (e.g., fax machines, automated tellers) and write problem statements to define redesign tasks.

9.	Suppose you have identified a need to support the activity of rapid translation of unknown words while reading a foreign language document. How many possible forms of solution can you think of? How would you choose between them? What other aspects of the problem definition would contribute to making the choice?

10.	“If the design problem can’t be described in a single sentence, it isn’t worth solving.” Discuss.

Further readingFurther reading�tc \l 1 "Further reading"�

Checkland, P., and Scholes, J. (1990) Soft Systems Methodology in Action. Chichester: John Wiley.

	Valuable for its explanation of how systems problems arise from situations of concern, and for its broad coverage of problem-solving strategies. Most of the material is not specific to computer-based solutions, but an appendix discusses IT system design.

Woodmansee, G.H. (1984). “The Visi On™ Experience—From Concept to Marketplace” In Shackel, B., ed. Human Computer Interaction—Interact ’84. Amsterdam: North Holland, pp. 871-875.

	A rare example of an account of a design project that went wrong. Soon after this paper was written the Visi On product was abandoned, and this paper provides interesting glimpses of some of the contributing problems.

� Defining the Problem printed �date�02/08/97�

Defining the Problem printed �date�02/08/97� �

