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Abstract. The role of body posture in affect recognition, and the im-
portance of emotion in the development and support of intelligent and
social behavior have been accepted and researched within several fields.
While posture is considered important, much research has focused on ex-
tracting emotion information from dance sequences. Instead, our focus
is on creating an affective posture recognition system that incrementally
learns to recognize and react to people’s affective behaviors. In this pa-
per, we examine a set of requirements for creating this system, and our
proposed solutions. The first requirement is that the system is general
and non-situation specific. Secondly, it should be able to handle explicit
and implicit feedback. Finally, it must be able to incrementally learn the
emotion categories without predefining them. We tested and compared
the performance of our system using 182 standing postures described
as a combination of form features and motion flow features, across sev-
eral emotion categories, with a typical algorithm used for recognition,
back-propagation, and with human observers in an aim to show the gen-
eralizability of the system. This initial testing showed positive results.
Keywords: Emotion recognition, affective posture, incremental lexicon,
incremental learning, explicit feedback, implicit feedback

1 INTRODUCTION

According to Mehrabian and Friar [15], changes in a person’s affective state
(used as a general term for discussing mood, emotion, and feeling) are reflected
by changes in her/his posture. The role of body posture in affect recognition,
and the importance of emotion in the development and support of intelligent and
social behavior have been accepted and researched within several fields including
psychology, neurology, and biology.

In psychology, while there has been much research on understanding the
importance of affective posture, there has been little research in the area of
computer science to quantitatively model affective posture [4] [3]. In fact, as of
yet there are no formal models for classifying affective whole body postures from
low-level general features, as there are for classifying affective facial expressions
(i.e., Facial Action Coding System (FACS) [6]).

Instead, computer scientists have mainly focused on endowing systems with
the ability either to express affective behavior (e.g., Sony’s Aibo [19]), or to use



physiological methods (i.e., galvanic skin response, blood pressure, heart rate,
etc.), e.g., Toyota’s Pod car [17], to recognize affect. Moreover, within the field of
affective computing, giving systems the ability to convey emotion through pos-
ture has progressed rapidly, while endowing systems with the ability to recognize
the affective gestures of its user in varying forms such as body postures and mo-
tions, is quite original. While posture is considered important, much research
has focused on extracting emotion information from dance sequences [21] [10].
Other affective research has concentrated on using information from facial and
vocal expressions [18] [14].

Our focus in this paper is to present a discussion on the necessary require-
ments for creating an affectively aware, interactive system, along with our pro-
posed method for satisfying each requirement. The complete architecture of our
incremental affective posture recognition system is composed of several mod-
ules. In this paper we present the recognition part of the system, seen in Figure
1, which is composed of 3 modules: i) the posture description module; ii) the
recognition module; and iii) the feedback module.
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Fig. 1. This figure shows our affective posture recognition system. Motion capture
information of a human is input to the posture description module, which computes
the 25 features. The computed vector is then sent to the recognition module which
categorizes the posture. The output is an affective label which is sent to the feedback
module. Feedback is used to trigger the adaptation process of the recognition module.

The remainder of the paper is organized as follows: We identify context gen-
eralization as the first requirement. At a basic level, to create a general, non
situation-specific posture recognition system, the postures need to be described
according to low-level posture features. Section 3 examines explicit and implicit
feedback, and incremental learning. Section 4 evaluates the testing of our sys-
tem’s performance. The final requirement, discussed in Section 5, is the need for
an incremental lexicon. The system must be able to self-determine the number
of categories to learn, thus eliminating a need for predefinition.



2 REQUIREMENT 1: CONTEXT GENERALIZATION

Research by Kapoor et al.[11] attempts to recognize a child’s level of interest
according to 3 categories (high interest, low interest, and “refreshing” (a short
break)) from postures detected through the implementation of a chair embedded
with pressure sensors while the child uses a computer to solve a puzzle. Their
postures are defined by a set of 8 high-level (coarse-grained) posture features
(i.e., leaning forward, slumping back, sitting on the edge), dependent on a com-
puter task situation and the set of interest-level categories. While the work is
interesting and recognition rates are positive, the generalization of their method
to other emotions and contexts may be limited, since new high level postural
descriptors may need to be added. In order to generalize the recognition proce-
dure, we need a posture description framework that allows for the emergence of
high-level postural features instead of defining it from the beginning.

A recent psychological study by Coulson [4] attempts to ground emotions into
low-level static posture features. He uses computer generated avatars expressing
6 emotions (angry, fear, happy, sad, surprise, and disgust to examine the para-
meters necessary for attributing a specific emotional state to body posture. His
proposed body description comprises 6 joint rotations (head bend, chest bend,
abdomen twist, shoulder forward/backward, shoulder swing, and elbow bend).
While the overall results were positive, it is interesting to note that the low
recognition of some emotions such as fear indicate that features for describing
motion, i.e., direction, velocity, and amplitude, also may be necessary.

2.1 Solution: A posture description module

As a solution for this requirement, we have extended our previous work [2] by
combining a set of form features (a static instance of a posture) with a set of mo-
tion flow features (indicating direction of motion) to create a posture description
module for our system.

In [2], we proposed a set of kinematic features for describing human pos-
ture suggested by Laban’s [20] “sphere of movement” used to convey emotion.
We focused mainly on global and upper body features as determined by our
preliminary results indicating that the upper body is used most for displaying
emotion. These features were computed in the frontal view by projecting 3D mo-
tion captured data on the 3 orthogonal planes to measure direction and volume
of the body according to the lateral, frontal, and vertical extensions of the body,
and body orientation. Refer to the top portion of Table 1 for a listing of these
features.

The motion flow posture description features, listed in the lower portion of
Table 1, were computed by measuring motion differences between 2 frames of
motion capture data within a predetermined interval to show direction of motion.
For example, the vertical motion of the right hand was computed by the ratio
of the distance of the maximum vertical extension of the right hand along the
zaxis. The forward and backward motions of the head and shoulders separately
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Table 1. The table lists the set of form posture features and the set of motion flow
features.

Form features H Motion features

Orientationxy: B.Head - F.Head axis|| MotionAmplitude,: Right hand
Orientationy z: B.Head - F.Head axis|| MotionAmplitude,: Right hand
Distance.: R.Hand - R.Shoulder Motion Amplitude,: Left hand
Distance,: L.Hand - L.Shoulder MotionAmplitude.: Left hand
Distancey: R.Hand - R.Shoulder || MotionAmplitude,: Right shoulder
Distancey:L.Hand - L.Shoulder Motion Amplitude.: Right shoulder
Distance;:R.Hand - L.Shoulder Motion Amplitude,: Left shoulder
Distance,:L.Hand - R.Shoulder Motion Amplitude,: Left shoulder
Distance,:R.Hand - R.Elbow Motion Amplitude,: Head
Distance:L.Hand - L.Elbow
Distances: R.Elbow - L.Shoulder
Distances: L.Elbow - R.Shoulder
Distance,: R.Hand - R.Elbow
Distance,:L.Hand - L.Elbow
Distancey: R.Hand - R.Elbow
Distance,:L.Hand - L.Elbow

were computed by the ratio of the distance of the maximum frontal extension of
these body parts along the y-axis.

The output of this module is a pair of vectors that are sent to the recognition
module (described in the following section) for determining the affective state of
the person being monitored.

3 REQUIREMENT 2: FEEDBACK HANDLING

A system that can learn over time, or incrementally can be considered more
human-like in its interaction, as humans also adapt to each other over time,
through continued social interaction. Furthermore, a system that is incremental
eliminates the need for, and difficulty of, creating a training set that covers the
complete range of possible motions and the complete set of possible emotions
that could occur. This requirement can be satisfied by using feedback to adapt
the recognition model to each new user.

Explicit feedback may come directly from a student or a teacher, explicitly
stating the student’s emotion.

As we cannot expect the user to continuously give feedback to the system,
the system should also be able to handle implicit feedback. By implicit feedback
we mean an affective label or a set of affective labels indicating the most prob-
able affective state of the user. This feedback could be inferred on the basis of



contextual information such as the state of a game or of an e-learning session.
Explicit feedback is generally more reliable, while implicit feedback may carry
more uncertainty. Thus, this uncertainty should be taken into account in the
adaptation process.

The incremental process should be considered also at the level of the cat-
egories to be learned. Refer to Section 5 for a discussion on implementing an
incremental lexicon.

3.1 Solution: An adaptive posture recognition module

We see the mapping of posture description features into emotional labels as a
categorization problem. We use a CALM [16] network, that can self-organize in-
put into categories. A CALM network consists of several CALM modules, thus
incorporating brain-like structural and functional constraints such as modularity
and organization with excitatory and inhibitory connections. Figure 2(a) repre-
sents a single CALM module. Each module is a complex structure made up of
different nodes, and is based on a competition mechanism. Competition is trig-
gered by 2 external nodes that measure the novelty of the input pattern, and
accordingly, generate more or less noise to maintain competition until one of the
nodes wins. While the topology of a CALM architecture is fixed, connections
between the modules (shown in Figure 2(b)), are learned. Novel input samples
presented trigger the adaptation of the network by exploiting the unsupervised
learning mechanism. The reader is directed to [16] for a complete discussion of
a typical CALM network.

CALM module

(b)

Fig. 2. (a) shows the architecture of a basic CALM module. (b) shows the intercon-
nectivity between R-nodes of connected modules.




We extended our CALM network topology proposed in [2] to handle two types
of input. Shown in Figure 3, our topology consists of three layers. We use one
input layer divided into 2 modules. The first module consists of the original 16
form features, and the second module is comprised of the 9 motion flow features.
The division of information was determined based on a neurological study by
Giese and Poggio [9] which provides evidence to show that two separate neural
pathways in the brain are used for the recognition of biological motion, one for
form information and one for motion information. Furthermore, integration of
the feature information occurs between the modules at the intermediate layer
through a horizontal connection. This is also a reflection of neurological studies
stating that in the brain, information is integrated not at the input level, but at
a higher level.

Feedback
Output (8) i ¢ |

Input (16)

Fig. 3. The topology of our system consists of 3 layers. One input layer with 2 modules,
one intermediate layer with 5 modules, and one output layer with 1 module. The
number of nodes is shown in brackets.

While originally CALM uses unsupervised learning, we use a novel version of
CALM that integrates both unsupervised and supervised learning mechanisms
[1]. The downward arrows in Figure 3 represent incoming feedback that was sent
to the recognition module from the user/teacher and that flows from the output
module, down to the intermediate layer. This feedback is used for triggering a
supervised adaptation.

Our system utilizes 2 forms of feedback, explicit and implicit. The learning
within the module is based on a competitive mechanism and only one R-node
finally wins. To implement explicit feedback, when a wrong affective label is
output, pulse information is sent back to the recognition module to reactivate
competition. Explicit feedback (correct answer is known) triggers the competi-
tion module to favor the correct R-node. As we use a low amount of feedback,
the output selection is not forced, but instead biases the self-organizing process.



To handle implicit feedback (correct answer is not known, but instead is a
ranking of possible answers with an associated probability), we modified the
feedback mechanism in order to weight the (biasing) pulse information that
is sent to the R-node, thus reactivating competition. The weights reflect the
probability of correctness of each emotion label. The probability of each emotion
(R-node) could be derived from the context, e.g., state of the game, etc. While
implicit and explicit feedback have been implemented, the implicit feedback
mechanism has not yet been tested. Therefore, in this paper, we report on testing
only with explicit feedback.

4 PERFORMANCE TESTING

We tested the performance of our affective posture recognition system on stand-
ing postures and four emotion categories: angry, fear, happy, and sad. 182 af-
fective postures were collected using a motion capture system. Each subject,
wearing the same motion capture suit, was asked to perform postures expressing
each of the 4 emotions. No constraints were placed on the subjects, thus allowing
them to express the emotion postures in their own, individual way. For a more
detailed description of the data collection techniques, please refer to [12][5].

50 learning trials were conducted. The learning process was stopped when
the percentage of error ceased to decrease. Typically, this occurred at approx-
imately 200 epochs. The high classification rates were positive at 79% for 4
emotion categories, versus 71% when employing a single input module (our pre-
vious implementation) containing the form features and motion flow features
combined, thus providing further evidence to support dividing the 2 forms of
input information. Categorization rates further declined to 65% when only the
16 form features were used for input.

Next, we tested the ability of our system to generalize by adding noise to the
training set to create 15 testing sets. In looking at the results shown in Figure
4, we can clearly see that our new system, comprised of two input modules to
separate form features from motion flow features, outperforms our previous im-
plementation consisting of a single input module combining both feature types.
Recognition rates at 10% variance (significant noise) were 60%. When doubling
the amount of noise (20% variance), the success rate remained nearly the same.

For further testing, our categorization system was compared with a back-
propagation algorithm [7], one of the most typical neural networks used for
recognition tasks. To do so, we repeated the training on the 182 postures 10
times for each method. On average, there was an 80% classification rate for
back-propagation; almost the same as with our system (79%). Next, we created
35 testing sets by adding noise to the training set to examine the generalization
capabilities of back-propagation. However, while the training results of the 2
methods were quite similar, again referring to Figure 4, we can see that dur-
ing testing the recognition rate using the back-propagation algorithm falls to
approximately 56% by adding only 5% variance, whereas the recognition rate
for our system is almost 73%. While these results are clearly positive, further
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Fig. 4. Correct categorization percentages for comparing back-propagation, our affec-
tive posture recognition system, and our former system with only one input module,
using a training set of 182 affective postures. The horizontal axis denotes the variance
for the testing set. The vertical axis denotes the correct percentage of categorization.

analysis using a variety of back-propagation topologies is necessary to defini-
tively conclude these results. However, it is our belief that in our recognition
system, since the supervised mechanism is used only to bias the learning, the
generalization capability appears to be more significant. This is quite important
due to the intrinsic variability present in emotion expression.

4.1 Comparison with human performance

In order to evaluate our system, we compared its performance with human dis-
criminative performance by conducting a series of psychological experiments.
The same 182 postures used in the previous experiments were used to build a
set of avatars from the original motion capture data. For each posture, a single
frame was chosen that the actor evaluated to be the most affectively expressive
instant. Viewing a series of single posture webpages, subjects were asked to eval-
uate each posture by choosing from a list of 4 emotion categories, angry, fear,
happy, and sad. 143 Japanese university students participated.

After determining the most frequent label associated to each posture by the
observers, we see that the recognition rate for observers is significantly lower
(69%) than the recognition rate of our system (79%) for 4 affective categories.
Reasons for these misclassifications by the human observers could be due to
several factors.

For example, the results of a study by Feldman Barrett et al [8] state that
people tend to differ in their ability to differentiate between the specific emotions



they experience. Instead, they may be able to indicate only whether or not the
emotion is “good” or “bad”, or they may group together emotions according to
other distinguishing factors such as arousal or action tendency. In fact, an ex-
aminination of our data shows that all of the misclassifications can be accounted
for when considering 3 typical dimensions used to evaluate emotion: arousal,
valence, and action tendency.

Another factor may be that some features appear to still be missing. Specifi-
cally, we are missing a more complete description of the hands and fingers due to
the inability to capture positions of such detailed information with our current
motion capture system. Another factor appears to be due to posture ambiguity,
indicating that more clues, e.g., facial expression and voice, may be necessary.
Furthermore, recognition of some affective states may require knowledge about
the relation between the hands and eyes as well as the inclination of the body.

In evaluating the various trainings we performed, we identified the postures
that were consistently misclassified by our affective posture recognition system.
A total of 25 postures were identified. For these misclassifications, we compared
the evaluations of the system with the evaluations of the observers and observed
3 distinct cases. One, the system agreed with the most frequent label assigned by
the observers (25% of misclassifications). Two, our system agreed with the ob-
servers’ second most frequently chosen label (37% of misclassifications). Three,
our system disagreed with either the actor or the observer, meaning that the sys-
tem completely failed (37% of misclassifications). The general conclusion here is
that when the system makes a mistake in the recognition of an affective posture,
it may act as an observer.

5 REQUIREMENT 3: AN INCREMENTAL LEXICON

Ultimately, an affectively aware system should have the ability to incrementally
learn to recognize and react to (interact with) the affective behaviors of people,
detected through posture, as one of several modalities. Therefore, the system
should be able to be used in an interactive and continuous learning situation
where new emotion categories (or nuances) could appear. Each individual has
her/his own way to interpret and express each type of emotion. According to
this reasoning, the emotion lexicon of the system should not be defined a priori
but instead should emerge through interaction with the environment.

5.1 Solution: Emotion category emergence

Our recognition module allows for the emergence of the lexicon. An incremental
process of the topology of the output module of the CALM network occurs when
new emotion concepts are encountered. The R-nodes of the output module are
named through the use of explicit feedback. Specifically, each time a new label
is given through explicit feedback by the user, it is used to name one of the
R-nodes (shown in (a) and (b) of Figure 2) that has not yet been named. Later,
the name of that R-node is used to compare the output of the network with the
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feedback of the users. If all the existing R-nodes are already named, a new pair
of R- and V-nodes is created, and eventually named if the new label is available.
Indeed, the number of output nodes is not decided a priori, but instead new
nodes are added when new emotions are encountered.

6 DISCUSSION

To explore the emergence of the lexicon and how the emotion categories inter-
act, we simulated a real-time situation in which the system learns while being
presented with new postures to recognize. In this situation, the system begins
without knowing any words. Postures are presented in a random order from a
database of postures, and periodically, explicit feedback is sent to the system
to give the correct name to an emotion. The system uses this feedback to name
a node whenever the emotion label given is new. This feedback also triggers
adaptation. Moreover, postures representing one of the emotion labels may not
appear for a prolonged period of time. This is different from a normal training
session in which the system is presented with a predefined and well organized
(and balanced) set of postures, etc.

In total, 212 postures were used (the 182 standing postures discussed in
the previous section, plus 30 new sitting postures, as this is the direction of our
research), across 9 affective categories (angry, confused, fear, happy, interest, re-
lazed, sad, startled, and surprised) chosen to represent different types of emotion
situations. For this case, we attained recognition rates of at least 70% correct.

The competitive nature of the self-organizing process of our system can be
seen by looking at the emergence of the affective concepts of the above simu-
lation, represented in Figure 5. This figure shows the cumulated ratio, i.e., the
cumulated number of correct classifications over the total number of presenta-
tions per category, during learning. What is important here is not the percentage
value reached by each curve, but the trend of each curve. In fact, the percentage
of correct classification for each emotion category depends on the number of
presentations of postures for that emotion. If few postures for an emotion have
been presented, the percentage for that curve will remain low.

More important than the percentage is the trend of the curve. If the curve
continues to climb, it means that overall, the postures for that emotion are recog-
nized and hence, that that category is well learned. If the curve is flat, it means
that no postures for that emotion have been presented. However, if the curve
descends, it means that overall, the postures for that emotion are not recognized,
i.e., the concept is not well learned. We can see from Figure 5 that the first emo-
tion category to emerge is surprised. While new words are used as feedback and
learning for those categories begins, new curves start to emerge. When a curve
emerges, generally the previously learned category shows a decrease as confusion
occurs between the learned categories and the new category.

Little by little, all the trends should begin to climb unless the set of postures
within one of the categories are not completely separable. For example, we can see
that the curve for surprised starts to decrease as soon as the happy category starts
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Fig. 6. Examples of affective avatars expressing (a) happy and (b) surprise.
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to appear. In fact, surprised and happy share many postural features (shown in
Figure 6(a) and (b)), i.e. arms up above the shoulders and head straight up [5].
Moreover, according to Coulson’s study [4], the postures generated for happy
and surprise were visually similar. As a future step, this trend could be used
to automatically identify difficulties in the discrimination of emotions, and to
indicate a need for refining the description process.

7
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