
Automated Deduction Systems for Real

Mathematicians

Paul Cairns and Jeremy Gow1

UCL Interaction Centre, University College London,
26, Bedford Way, London WC1H 0AP, UK

{p.cairns, j.gow}@ucl.ac.uk
WWW home page: www.uclic.ucl.ac.uk

Abstract. Automated deduction systems currently have a low uptake
(or even recognition) amongst mathematicians. This paper takes a hu-
man computer interaction perspective on the role of automated deduc-
tion in mathematics. We first dismiss the fallacy that making systems
easy to use will make them used by heuristically comparing Microsoft
Word and LATEX systems in mathematical authoring. Through consider-
ing the goals of mathematicians, we propose ways to develop automated
deduction systems that mathematicians actually want. There are clearly
considerable technological and even philosophical barriers but it is hoped
that these can be surmounted in time.

1 Introduction

Computer algebra systems have made considerable impact on the working prac-
tices of mathematicians, particularly applied mathematicians. Using systems
such as Mathematica, a mathematician can perform many symbolic manipula-
tions on complicated models and at the right moment convert these to numerical
results for a concrete problem. This has radically changed not only the working
practices of mathematicians but also those of physicists and engineers who no
longer need rely on expert mathematicians to help them with their problems.

Given the wide variety of mature automated deduction systems (ADS), it
would be hoped that at least one system might have already had a comparable
impact on the working practices of mathematicians. Yet, with one or two notable
exceptions [16], mathematicians have barely even heard of automated deduction
systems let alone used them. This is not that the ADS developers have not tried
to make such systems available to mathematicians: the UITP conference [2] was
expressly concerned with producing good user interfaces to theorem provers; the
proof transformation and presentation workshop has similar goals [21]; and this
workshop too is clearly hoping to make in-roads in this area. There is clearly
then some greater gap between mathematicians and ADS than can be explained
by difficult user interfaces.

In this paper, we take a human-computer interaction perspective on the role
of automated deduction in mathematics. Rather than considering ADS as the

solutions to mathematicians’ problems, we consider what problems mathemati-
cians might currently have and whether ADS can help out. First, we discuss
why making systems easy to use does not make them fit for use by comparing
the easy to use word processor Microsoft Word with the document preparation
system LATEX [14]. Next, we take a high-level look at the needs of mathemati-
cians as individuals and as a community and see how ADS might meet those
needs. Finally, the paper proposes some ways forward to bring a user-oriented
perspective to the development of ADS for mathematicians.

2 Easy to use 6⇒ Useful

It is a common selling point of many software systems that they are easy to use.
This is all well and good but ease of use in itself does not constitute a useful
system. If the software is not useful in the sense of helping users to achieve their
goals then no amount of easy to use interfaces is going to make users want to use
the system. With mathematicians, this can be seen most clearly in the uptake
of LATEX above other easy to use systems such as Microsoft Word.

LATEX is a document preparation system, that is, it allows the user to type in
the content of the document and LATEX will format it, typeset it and generally
make a good attempt to make it look good on the printed page. The user must
enter content made up of the words that the user wishes to convey together with
instructions for displaying symbolic equations and further instructions for the
usual typographical aids such as section headings, paragraphs, footnotes, lists,
references and the like. The content is then processed separately to produce a
printable version of the document.

This contrasts markedly with the WYSIWYG (“What You See Is What You
Get”) approach of most popular word processors. With these, the user types the
words and they appear on the screen as they would on the printed document
— content and presentation are inextricably linked. Toolbars and menu allow
the user to change the formatting of the document and those changes appear
immediately on the screen. This means the user never needs to stop entering
content in order to process the document to see what it looks like and thus their
work has a seamless flow from starting entering content to printing out the final
document.

In terms of ease of use, WYSIWYG systems, as epitomised by Microsoft
Word, are the most easy to use. The user starts the application and is immedi-
ately producing the document in its final form. LATEX is far from easy to use:
the user must not only enter the content but must instruct the system on how
to present equations, what sort of document is being produced and what pre-
sentational features to include. None of these instructions are made available to
the user via the system as LATEX is separate from any text editor that might
be used to prepare the documents. Novice users must type with the manual to
hand and even expert users consult the manual to achieve difficult or unusual
typesetting effects.

At face value then mathematicians, like many other professionals, should
prefer using Word over LATEX. But this is clearly not the case. Many journals
are produced exclusively in LATEX to the point that they even produce style
sheets so that the authors can achieve the journal style on their submissions
[24]. Publishing companies, such as Springer, produce their mathematical texts
entirely in LATEX. And the mathematical community produces most of its work
using LATEX to the point that in talks, when introducing a new symbol, the
speaker will sometimes give the LATEX code for the symbol so that the listeners
know what it is.

The reason for this apparent irrationality in an otherwise logical community
must be that whilst Word is easy to use it is not easy to do what mathematicians
want to do. For instance, consider the following anecdotal evidence.

Mathematicians commonly want to put equations into their text so, for ex-
ample, to include the following sort of a equation (taken from [6]) should be a
routine task.

C =
⋃

f∈2ω

⋂

n∈ω

Uf |n

In LATEX, this is done with the somewhat complicated instructions:

$C = \bigcup_{f\in 2^{\omega}} \bigcap _{n\in \omega}

\overline{U_{f|_{n}}$

Only an expert user or a novice user sitting with the manual would know
how to do this. In Word, though, it is enough to go to the menu Insert|Object
and select the equation editor. The user is then taken from the Word document
into the special editor and presented with a palette of buttons. The icons on
the buttons clearly correspond to different types of symbol that could be used
in equations and it is fairly easy to find the exact symbol that is required and
so build up the equation. However, already the WYSIWYG paradigm has been
broken, the user has been taken from the flow of producing a document to go to
a special new process for equations. Whereas, in LATEX, typing the equation was
done in the same way that other typesetting is set up — by typing instructions.
Even so, for the novice, the task was reasonably painless in Word and probably
a lot less difficult than LATEX.

However, the important point in this scenario is that this is what math-
ematicians commonly do. Very quickly, whichever system is being used, the
mathematician user is going to get used to entering equations and producing
certain symbols that they use frequently. Yet with Word, the only way to enter
equations is through the editor and the only way to produce symbols is through
the palette of buttons. There are no shortcuts to getting to, say,

⋃

quickly. Ex-
pert users must go at the same pace as novices, violating a well-known usability
principle that there must be ways for experts to improve their performance [18].
And for every equation, the user must interrupt their current mode of use to
enter the special editor but, for mathematicians, entering equations should be
the normal mode of use. In LATEX, there is a single mode of use and the codes

for symbols become quicker to recall with practice. As time goes by, expert users
will automatically speed up and come to write equations as rapidly as they write
ordinary sentences.

This is only one aspect of preparing mathematical documents and the anal-
ysis is only heuristic rather than empirically demonstrated. However, LATEX is
undoubtedly the most successful tool in this area. There may be many reasons
why this is so, including historical serendipity, but the lesson stands that ease
of use in itself will not persuade mathematicians to use a tool. With regards
to the role of ADS in mathematics, simply making ADS easier to use will not
necessarily change their current value to mathematicians nor will it suddenly
make mathematicians realise what they are missing out on. Either ADS must
offer something new that mathematicians really want or they must support what
mathematicians currently do with tangible benefits over the existing ways of do-
ing things. In both cases, this requires a deep understanding of the activities and
needs of mathematicians.

3 What do mathematicians want?

It is impossible to define what mathematicians want without extensive research
into a broad cross-section of the mathematical community. And even then, it
may be impossible to come up with general indications that do not exclude the
majority of mathematicians. However, there are some broad, high-level goals that
it is easy to assert that mathematicians really do want to achieve. Additionally,
it is worth making a distinction between what individuals want and what the
community as a whole wants.

As individuals, some simple goals of mathematicians are:

– Do (good) maths
– Publish results/achieve recognition
– Don’t feel stupid

Mathematicians by definition want to do maths. It is not even clear that they
want to do maths that would be recognised universally as good maths but at
the very least they want to do maths that is good for them. Also, at some point,
the majority of mathematicians want to receive recognition for their work. The
usual channel for this is the traditional academic route of papers in journals or
conferences but other approaches will do.

The third goal of not feeling stupid is one made emphatically by Cooper,
and it is not particular to mathematicians but to everyone [8]. None of us want
to look stupid and this is such a personal goal that it is almost never made
explicit. Yet it can greatly clarify and motivate a lot of human activity. For
mathematicians, not feeling stupid could mean producing correct proofs, or at
least not obviously wrong ones, having mastery of a discipline or even just being
able to ask interesting questions.

Notice that there is no high-level goal of mathematicians that they want to
learn about automated deduction or that they want to use ADS. In fact, giving

mathematicians a complicated system that they find difficult to understand and
cannot see the benefit of will almost certainly make them feel stupid [8].

As a community, mathematicians also have high-level goals:

– Disseminate results
– Ensure the quality of published work
– Find existing results

These goals can be seen in the activity of most of the mathematical societies
[15, 1]. They provide edited journals which ensure that good quality results are
disseminated. Also, the American Mathematical Society publishes the Mathe-
matical Reviews, synopses of every paper published in a mathematical journal
in paper, CD ROM and web-based versions. These are so that there is a single
resource for mathematicians to consult when they want to find existing mathe-
matics. Again, ADS do not feature explicitly.

To bring automated deduction into mathematics is going to require more
than just producing good ADS. Killer applications will be ones that meet at
least one goal of a significant number of mathematicians.

3.1 Automated deduction in education

We have deliberately avoided the issue of mathematics education. This is mainly
because it is not obviously a goal of individual mathematicians. However, it al-
most certainly is a goal of a large group of mathematicians or even the mathe-
maticial community. Melis has has some success in using proof planning methods
to teach mathematicians generic proving skills [17]. Once the educational value
of ADS has been recognised, it may be that mathematicians will be more gen-
erally open to ADS and their goals might begin to include specific aspects of
ADS.

4 Ways Forward

The two sets of goals outlined above are very general. It may be that in analysing
these goals in more depth it will become apparent how ADS could fit in.

In addressing the mathematicians’ goal to do mathematics, it is not clear
how ADS could best offer support. This is mostly because there is no real un-
derstanding of where mathematicians could use support and whether ADS are
the right tools to provide it. We are about to start a project to investigate
how computer-based tools might support mathematicians. The first step is to
examine thoroughly what it is that mathematicians actually do when they do
maths. The investigation will not only interview and observe mathematicians
about their work but also look at the products of mathematical work such as
text books, journals, talks and classes to understand how mathematicians com-
municate their ideas to each other. Also, the project will look at what sorts of
interactions might support mathematicians. For example, would a tool that helps

mathematicians correct proofs as they work be useful? Currently with ADS we
seem to be a long way from this goal however it would be easy to simulate such
a system using a “Wizard of Oz” type set up [20]. Users may think that they are
interacting with a piece of software where in reality they are interacting with a
human across a network in a constrained manner. Simply performing this simu-
lation will offer valuable insights into whether such software would be useful or
degenerate into the merely irritating as with the Microsoft Word “Paper Clip”.
Additionaly, such simulations could suggest other ways in which ADS could be
used that have not been fully explored.

As well as, going to the target users, we can consider psychological models of
how people reason. There are some well-established models with good empirical
evidence [12, 22]. These models are able to specify the kinds of mistake that
people make generally when performing reasoning tasks. This could add to the
user experience if, when working with software, the system not only affirmed
correct proofs but identified and corrected common mistakes.

And there could be other auxiliary systems which would make a proof sup-
port tool more attractive such as support for finding particular results. These
functions not traditionally considered an important part of automated deduc-
tion but could feasibly complement it well when integrated as part of a general
support tool. Indeed, once thinking along these lines, it may be possible to come
up with a myriad different tools that mathematicians might find useful. Which is
why resorting back to an empirical knowledge of what mathematicians actually
need is essential.

Within computer science, there is a growing recognition that mathematics is
a burgeoning discipline with no real standards for communication and exploita-
tion of results. This has lead to the area of mathematical knowledge management
that aims to investigate ways in which mathematics can be organised for better
retrieval [5]. This will require setting standards for the representation of mathe-
matics and applications that can convert the standard representations into forms
suitable for mathematicians to use. In addition, ensuring the quality of all of this
new mathematics is difficult. Here then is an ideal area in which ADS could offer
support — they could help mathematicians to check existing mathematics and
to ensure that conversions between different representations do not introduce
errors.

Though the issues of mathematicial knowledge management are not being
driven by mathematicians, they address two of the goals identified earlier, namely
that of disseminating results and achieving recognition for them. As such, math-
ematical knowledge management holds promise for developing new tools that
mathematicians will want to use.

Just as mathematicians goal is to do maths, the goal of a researcher in auto-
mated deduction is to advance knowledge of automated deduction. Our sort of
user investigation requires stepping back from the systems and becoming more
of an HCI researcher. Is there something more immediate that HCI can offer for
developers of ADS? We propose that Cooper’s notion of personas (personæ) may
have potential. He advocates not designing a system for a generic user, in this

case a generic mathematician, but rather to develop an idealised but realistic
mathematician persona. By targeting this persona, you are likely to produce a
system that this sort of mathematician will definitely want rather than a generic
system that no particular mathematician wants.

Personæ could be developed based on only a few interviews with mathemati-
cians — Beyer and Holtzblatt [3] advocate that only fifteen users are sufficient
to identify the major user activities. The key thing is to keep the persona real-
istic (even idiosyncratic) so that the system is more likely to address real goals
of mathematicians rather than amorphous goals of an idealised user. Indeed, it
may be possible to include personal anecdotes or even characteristics of famous
mathematicians in the personæ. User goals are then implicitly embodied and
whilst the resultant system may not suit all, or even the majority, of potential
users,it has a high chance of being exactly right for some users.

5 Barriers between Mathematicians and ADS

Promoting the role of automated deduction in mathematics is not without barri-
ers. A commonly occurring concern is that of formalisation. ADS naturally work
at a very formal level of logic with manipulations at a symbolic level. This is
undoubtedly a strength of ADS because it means that there can be a great deal
of confidence in a proof that can be checked (albeit not generated) by a sim-
ple mechanistic system. Mathematicians though work at a very informal level
which facilitates communication between humans but is very prone to errors. An
analysis of journal articles reveals numerous small errors and even some quite
substantial ones [11]. Similarly, standard textbooks suffer from mistakes [13], or
if not actual mistakes, such large leaps of logic that it is almost impossible to
reconstruct the original thinking [19].

To get humans and ADS to work together will requiring translating (and
possibly correcting) the informal proofs of humans into the formal language of
ADS and filling in the logical gaps. If this fails, the ADS will have to communicate
back a breakdown in logic that the user may not even be aware of as relevant.
There are some systems [26, 9] that propose ways of making the translation to
formal proofs and others which offer ways of translating back [10, 25]. But it
remains to be seen if they can be combined into a single system that can help a
user correct a proof as they write it.

Formalisation, as currently done by ADS, may not be rich enough to meet
the needs of mathematicians. From our own work in presenting mathematical
proofs, there is also the issue of the role of examples in formal mathematics [7].
Like many formalisations of mathematics, our Polya-Lamport framework divides
mathematical statements into definitions and theorems. However, examples do
not fall so simply into these categories. In some sense, examples can be irrel-
evant to the development of a theory — illustrative but simply instantiations
of existing results. In other situations, examples are crucial as providing stereo-
typical exemplars. They provide instances of theorems and motivations for new
definitions. And in themselves they need to be defined but often have things

proven about them so do not fall naturally into either definition or theorem.
Dismissing them as irrelevant to theory completely overlooks their central role
to mathematicians.

The simple solution to the formal/informal mismatch would be to exhort
mathematicians to become more formal [4]. But this is not the goal of math-
ematicians so is unlikely to happen. It may be that by revealing some of the
benefits of mathematical knowledge management, mathematicians might decide
it is in their interest to become more formal (much as it is in their interest to
learn LATEX). But for the moment, any system which aims to bridge the gap be-
tween mathematicians and machines must make some attempt to bridge between
the formal and the informal.

A further issue with bringing computer-based support to mathematicians is
that of creativity. Mathematicians, like all researchers, are involved in a creative
process. Sometimes that process feels instantaneous, “a flash of inspiration,”
and no amount of structured support is going to be available in all such circum-
stances. However, a lot of creativity arises a result of sustained, intentional effort
and hence computers could feasibly be useful. Even in this case, a traditional
HCI view of developing software to support user tasks does not really apply —
there is no clear task involved in being creative, at least not one that HCI is
currently able to address.

Shneiderman has developed the Genex framework that describes how com-
puter systems might support creativity [23]. However, at the actual create step
of the framework, the particular systems that might promote innovation need
to be tailored for the type of creativity. It may be that ADS could play a useful
role here, say, supporting the “what if” possibilities around a proof or a defini-
tion. The Genex framework does not point to ways forward in this area so, once
again, it will be essential to rely on empirical investigations to find out what
really supports creating new mathematics.

Even allowing for the almost philosophical issues raised by bringing auto-
mated deduction into mainstream mathematics, there are more mundane prob-
lems such as: many systems are not easily ported to a new platform; there is
not a great deal of technical support for some of the systems; and there is no
standard way to communicate between systems. There is going to have to be
a lot of routine standardisation and development before automated deduction
systems are made available to ordinary mathematicians.

6 Conclusions

We have considered how making mathematicians use automated deduction sys-
tems is far more than just making the systems easier to use. ADS must support
mathematicians’ goals, be they personal or communal goals, if ADS are to have
a broad-based uptake in the mathematical community. Mathematical knowledge
management seems to be employing ADS in a goal-directed way and so has a
lot of promise. However, helping mathematicians to do mathematics requires a
deeper understanding of what mathematicians do than is currently available.

Also, ADS may be more be appropriate support tools only as part of a larger
system that can identify mistakes or find existing results. This broader sort of
proof support can only be justified through a real understanding of what math-
ematicians would actually want from such a system.

7 Acknowledgments

Many thanks to Prof. Harold Thimbleby for his comments on this paper. This
work was supported through EPSRC grant GR/N29280.

References

1. American Mathematical Society, www.ams.org
2. R. Backhouse (ed.), Proceedings of User Interfaces for Theorem Provers, Technical

University of Eindhoven Computer Science Report 98/08, 1998
3. H. Beyer & K. Holtzblatt, Contextual Design: Defining Customer-centered Systems,

Morgan Kaufmann, 1998
4. B. Buchberger, ‘Mathematical knowledge management in Theorema,’ First Inter-

national Conference on Mathematical Knowledge Management, 2001
5. B. Buchberger & O. Caprotti, First International Workshop on Mathematical

Knowledge Management, 2001
www.risc.uni-linz.ac.at/institute/conferences/MKM2001

6. P. A. Cairns, Boundary Properties and Construction Techniques in General Topol-
ogy, DPhil Thesis, University of Oxford, 1995

7. P. A. Cairns & J. Gow, ‘On Dynamically Presenting a Topology Course,’ First
International Conference on Mathematical Knowledge Management, 2001

8. A. Cooper, The Inmates are Running the Asylum, SAMS, 1999
9. I. Dahn & G. Schwabe, ‘Personalizing Textbooks with Slicing Technologies —

Concept, Tools, Architecture, Collaborative Use’, HICSS, 2001
10. A. Fiedler, ‘P. rex: An Interactive Proof Explainer,’ in R. Goré, A. Leitsch & T.

Nipkow (eds.) Automated Reasoning – 1st International Joint Conference, LNAI
2083, Springer Verlag, p416-420, 2001

11. J. Harrison, ‘Formalized Mathematics,’ Math. Universalis, 2, 1996
12. P. Johnson-Laird & R. Byrne, Deduction, Psychology Press, 1991
13. L. Lamport, ‘How to write a proof,’ American Mathematical Monthly, 102(7) p600-

608, 1994
14. L. Lamport, LATEX: A Document Preparation System, 2nd edn, Addison-Wesley,

1994
15. London Mathematical Society, www.lms.ac.uk
16. W. McCune, ‘Solution of the Robbins problem,’ J. Automated Reasoning, 19(3)

p263-276, 1997
17. E. Melis, C. Glasmacher, C. Ullrich & P. Gerjets, ‘Automated Proof Planning

for instructional design,’ in Annual Conference of the Cognitive Science Society,
p633-638, 2001

18. J. Nielsen, Usability Engineering, Morgan Kaufmann, 1993
19. L. C. Paulson & K. Grabczewski, ‘Mechanizing Set Theory,’ J. of Automated Rea-

soning, 17 p291-323, 1996
20. J. Preece, Y. Rogers & H. Sharp, Interaction Design, John Wiley & Sons, 2002

21. Proof Transformation & Presentation, PTP-01, IJCAR, 2001,
www.ags.uni-sb.de/~ptp-01

22. L. J. Rips, The Psychology of Proof, MIT Press, 1994
23. B. Shneiderman, “Creating creativity: user interfaces for supporting innovation,”

in J. M. Carrol (ed.) Human-Computer Interaction in the New Millenium, Addison
Wesley, 2002

24. Topology & Its Applications, www.elsevier.com/locate/latex
25. M. Wenzel, ‘Isar — a Generic Interpretative Approach to Readable Formal Proof

Documents,’ in Proceedings of TPHOLs’99, Springer, 1999
26. C. Zinn, ‘Towards the Mechanical Verification of Textbook Proofs,’ 7th Workshop

on Logic, Language, Information and Computation (WOLLIC-2000), 2000

