
Automatic critiques of interface modes

Jeremy Gow1, Harold Thimbleby2 and Paul Cairns1

1 UCL Interaction Centre (UCLIC), University College London, 31-32 Alfred Place,
London, WC1E 7DP, United Kingdom {j.gow, p.cairns}@ucl.ac.uk

2 Department of Computer Science, University of Wales Swansea, Singleton Park,
Swansea, SA2 8PP, United Kingdom h.thimbleby@swan.ac.uk

Abstract. We introduce a formal model of inconsistency-related mode
confusion. This forms the basis of a heuristic methodology for critiquing
user interfaces, using a matrix algebra approach to interface specifica-
tion [11]. We also present a novel algorithm for automatically identifying
modes in state-based interface designs, allowing a significant level of au-
tomated tool support for our methodology. The present paper extends
and generalises our previous work on improving state-based interface
designs [4].

Keywords: Mode, consistency, finite state machines, matrix algebra

Category: Formal methods in HCI.

1 Introduction

Modes are an integral part of user interface design — only the simplest of inter-
faces may be entirely ‘modeless’. But modes are often the focus of criticism for
interface evaluations, and in the wider HCI literature. A key question for inter-
face designers is: how can we distinguish between good and bad modes during
the design process?

The concept of mode is extremely general, and the term ‘mode confusion’
covers a variety of interface problems. A general definition by Leveson [8] is that
“a mode is a set of mutually exclusive system behaviours” — the system behaves
a particular way in one mode, but not in another — and that mode confusion
arises from divergent user and system models. Much of the mode literature has
addressed the problems caused by abstraction of system details in the interface,
or the presence of automation, e.g. in autopilots [2, 9], and classically in text-
editing [10]. However, in this paper we address what Leveson calls inconsistent
behaviour: users may expect an action to have a consistent effect within a given
mode, and any exceptions to this may be a source of user error. Consistency is
important for users to correctly learn how an interface works by generalisation,
and inconsistent behaviour is harder to learn.

Consistency is a commonly cited principle of interface design, but a some-
what nebulous one. We have previously proposed the identification and redesign

of partial behaviours as a formal approach to consistent design [4], an approach
that can be semi-automated to support the human designer/analyst. In this pa-
per we generalise this work to a process of identifying action modes and ensuring
consistent relationships between them. Our specific contributions are a new for-
mal model of consistency-related mode confusion (Section 3), a methodology
for identifying modes and potential mode confusions (Section 4), and a novel
algorithm that automates this process (Section 5).

2 Modes and Consistency

We can see the relationship between consistency and modes more clearly if we
take a state-based view, which is compatible with Leveson’s general definition
given above: a mode is defined as a set of states in which a user interface behaves
in a particular way. Clearly, it follows that we may be in several modes at once,
depending upon which behaviour we are considering.

Now suppose in mode M an action A typically exhibits a behaviour B. Fol-
lowing our definition, we can say there is another mode M ′ which is defined as
‘the states in which A exhibits B’. The principle of consistency says that if we’re
in mode M then we should always be in mode M ′, that is, M should be subset
of M ′. If there are a few exceptional states of mode M that are not in mode M ′,
then the interface behaves inconsistently.

Partial behaviours [4] give a formal description of a related consistency phe-
nomena: an algebra of events (such as user actions) is used to specify behaviours
that hold throughout an interface or in its specific modes. Partial behaviours are
those algebraic properties that are usually true in a given mode, and indicate
inconsistencies that may cause mode confusions. Recast in the mode terminol-
ogy above, we can say that there is a given mode M , and another mode M ′ in
which the ‘partial’ behaviour is true. The principle of consistency says that these
modes should be equal, rather than almost equal.

Building on these ideas, we can characterise an ‘interesting’ (from a user’s or
designer’s point of view) mode inconsistency as any relationship between modes
that almost holds, and that the user is likely to perceive. That is, a simple rela-
tionship that holds for most states, but with a few exceptional states for which
it does not. Clearly if it is true for only a few states then it is unlikely to be
perceived; and if it is true for all states, there is no inconsistency. Provided the
relation almost holds, experience is likely to lead the user to learn the relation-
ship but not the exceptions, and their divergent user model can cause mode
confusion. Moreover, a redesign of the user interface could make the relationship
consistent and remove the source of errors. Figure 1 illustrates some inconsistent
relationships between modes, and redesigns that enforce consistency.

3 A Model of Mode Inconsistency

As we only need consider mode relationships that the user is likely to (mis-)learn,
we restrict ourselves to basic set theory. We have already discussed cases where

Fig. 1. Making mode relationships consistent. For two modes, represented by
the ellipse (E) and the rectangle (R), four examples of inconsistent relationships are
shown: (A) mode E is almost a subset of R; (B) mode R is almost a subset of E, and
E is a subset of R; (C) modes E and R are almost subsets of each other; (D) E and
R almost completely separate modes. In each case, the transformation to a consistent
relationship is shown.

one mode is a subset of, or equal to, another. Other relationships may also be
mislearnt, but in our experience they can be explained in terms of subsets (⊆),
providing we use simple unions and complements of modes. For example:

– A = B is equivalent to A ⊆ B and B ⊆ A.
– A not intersecting with B is equivalent to A ⊆ BC .
– A1, . . . , An partitioning B is equivalent to Ai ⊆ AC

j for each i 6= j and
A1 ∪ . . . ∪ An = B.

In order to provide a model of mode inconsistency, we need to formalise the
almost subset relation between sets of states.

3.1 Approximate and Near Subsets

In [4] we defined a partial behaviour as one that was true for a high proportion
(called ρ below) of states within a mode. We take a similar, but more general,
approach here. First, we define the the relation approximate subset ⊂

≈
:

A⊂
≈

B ↔
|A ∩ B|

|A|
≥ ρ

This says that A is an approximate subset of B if the proportion of states in A

that are also in B is at least ρ, where 0 � ρ < 1, i.e. ρ is near 1. If the proportion
is 1 then A ⊆ B exactly.

The nearly subset relation ⊂
∼

is defined as an approximate subset excluding

equality and actual subsets. Two modes A and B can be said to be inconsistent
if and only if A⊂

∼
B or B⊂

∼
A, where:

A⊂
∼

B ↔
(

A⊂
≈

B ∧ A * B
)

The definition of ⊂
≈

(and hence also ⊂
∼

) is parameterised by the value ρ. Low-

ering ρ will increase the number of subsets which are classified as near subsets.
In this paper, we take ρ to be a criterion, imposed by the designer. Instead, a
design tool might determine a suitable ρ itself, or allow ρ to be dynamically ad-
justed by the designer; and, for example, sort near subsets by ρ for the attention
of the designer. This practical question, while interesting for the design process,
is irrelevant to our formal discussion.

3.2 Types of Mode

So far we have assumed that the user learns by experience the various interface
modes and (possibly mislearns) the relationships between them. Our definition
of mode — a set of states in which an interface behaves in a particular way — is
deliberately general. However, the specific nature of the modes involved is likely
to affect which modes and relationships are learnt by the user. In this paper we
refine our model by distinguishing action modes and indicator modes.

Action modes are sets of states in which a particular combinations of user
actions, or other events, have a consistent effect. Some of the action modes of a
mobile phone might be the sets of states in which a cancel button returns the
user to an initial state, or in which a combination of two buttons work as a toggle
for a keypad lock, or in which a specific protocol is used to enter text. The mode
is determined by the state transitions for the given events. A specific action
mode is something the user believes, but cannot directly observe. That is, given
the history of user actions up to this moment, the user believes (from experience
or training) that the system is in an action mode. Note that each action mode
is defined in terms of the system, not the user: a user may not understand the
mode precisely, or even notice it exists! The aim here is to design systems that
do not frustrate users that do notice them.

Indicator modes are sets of states in which the interface sends or displays
consistent feedback to the user. For instance, the set of states for which a partic-
ular LED is lit, or for which music is played (e.g., this could be the ‘play mode’
on a MP3 player). The user can (in principle) see that the system is in a given
indicator mode.

When defining compound modes using the union and complements of other
modes, we make the simplifying assumption that modes are only combined with

Mode A Mode B Potential Error Mode Error Type

Action Action Yes In B when in A
Indicator Action Yes In B when A observed
Action Indicator Yes Not in A when B not observed

Indicator Indicator No —

Table 1. Errors attributable to mode inconsistency A⊂
∼

B.

others of the same type. We assume that the user is unlikely to reason about
modes defined as a combination of event behaviours and indicators.

Considering action and indicator modes, the effects of mode inconsistency
A⊂
∼

B depends on the combination of mode types involved. In general, it may

be mislearnt as A ⊆ B. If the near-supermode B is an action mode, then the
user may incorrectly believe that the action/effect association known to work in
B will always work in mode A. In this case, the type of the near-submode A

determines when this incorrect belief may be acted upon: if A is an indicator
mode then this is whenever the given indicator is seen by the user; if A is an
action mode then this will be whenever the user believes they are in A.

If B is an indicator mode then errors may be caused when the indicator
is absent: when A is an action mode the user may assume that the absence
means the interface is not in mode A. This error is only made in the exceptional
states which are the cause of the mode inconsistency. No errors are caused by
an inconsistency in which both A and B are indicator modes.

Table 1 shows a summary of the combinations of inconsistent modes that can
mislead the user, and the type of mode errors in each case.

3.3 Using the Model

The model of mode inconsistency presented above is heuristic, because it does
not suggest a specific consistent redesign, only a performance characteristic,
namely the values of ρ and the counts of inconsistent modes. Furthermore, a
more consistent redesign (i.e., fewer inconsistent modes or a larger ρ with the
same modes) is not guaranteed to improve the interface: other design constraints
may be violated — for example, redesign might replace three benevolently in-
consistent modes with two atrociously inconsistent modes. However, redesign to
reduce inconsistent modes has an underlying rationale, and there is an expecta-

tion that it will tend to improve the interface design other things being equal.
Using a design tool, a designer could easily experiment with redesigns and the
trade offs they represent, once problems are indicated.

4 A Method for Mode Analysis

Analysis requires the designer to already know which modes to look at. Indicator
modes are part of the interface design, and hence need to be provided, at least

implicitly, by the designer. Action modes are intrinsic to and implicit in the
interface design and are therefore more difficult to find. In this section we provide
a methodology for finding action modes. The process we describe here can be
automated, and in the next section we provide an algorithm to do this.

Our approach is based on an algebraic specification of the interaction of
states and user actions, as described in [11, 3]. Here we formally define an action
mode as the largest set of states for which one of these algebraic properties is
true. We also assume that the interface design is formally described as a finite
state machine (FSM). Alternatively, it could be described in some higher-level
formalism that can be translated into an FSM for the purposes of the mode
analysis, such as OCDs [7], Promela [6] or Statecharts [5].

4.1 An Algebraic Model

We start with an FSM model of the user interface design, from which we generate
a specification algebra. The FSM is defined as:

– A set of states S.

– A set of events E, including the actions available to the user.
– A transition relation trans : S × E × S.

An equivalent alternative formulation is to use a transition function S → powerset(S)
instead. Also, we optionally have a set of indicator modes MI .

A familiar FSM concept is the Boolean transition matrix , which defines all
the transitions from every state to every other state. Instead, we define the
button matrix for each event e as the transition matrix of the finite state machine
restricted to transitions of event e. This is the basis of a very productive approach
for a variety of user interface issues [11].

States are represented as row vectors, with each element corresponding to
an individual state that the interface could be in. Hence, each particular state
corresponds to a vector with a single non-zero entry, whereas groups of states
— such as modes — may be represented as arbitrary vectors.

Formally, we use ||.|| to denote the mapping from elements of the FSM to
matrix algebra. So we distinguish between a state s ∈ S and its vector ||s||
and between an event e ∈ E and its matrix ||E||. Also, for any indicator mode
m ∈ MI there is a vector ||m||. Note that simulating the FSM corresponds to
matrix multiplication: trans(s, e, s′) if and only if ||s||.||e|| = ||s′||.

4.2 Specifying Modes

Figure 2 shows a BNF description of the full specification language for defining
event/state properties. The simple semantics of the language is defined using
matrix algebra: states (S) evaluate to vectors, events (E) evaluate to matrices,
and there are simple calculable propositions (P) about them. We briefly and
informally describe the features of the language here:

P ::= E ≡ E | S ≡ S | not(P) | undo(E)

E ::= Nothing | e | E.E | ¬E | E ∨ E | E ∧ E | go(S)

S ::= All | None | s | S.E | ¬S | S ∨ S | S ∧ S

Fig. 2. BNF grammar for algebraic specification of event/state properties P. Non-
terminal E and terminal e are events, whereas S and s are states.

– Equivalence (≡) between either states or events. Defined as entry-wise equal-
ity between the corresponding vectors or matrices. undo(E) holds if the ma-
trix ||E|| is invertible.

– Nothing is an event which does nothing, which evaluates to the identity
matrix.

– All and None are the set of all states and no states, which evaluate to the
vector with all non-zero elements and with all zero elements respectively.

– E1.E2 is the event E1 followed by E2. S.E is the set of states reached from
S via E. Both are evaluated by matrix multiplication.

– go(S) is the event which goes from any state to the set of states S.
– ¬S are the states not in S. Event ¬E makes the transitions not taken by E.
– S1 ∨ S2 are the states in S1 and S2. E1 ∨E2 is the event where either E1 or

E2 occurs.
– S1∧S2 are the states in S1 and S2. E1∧E2 is an event which can be achieved

by both E1 and E2.

The specification language is of limited expressiveness. In themselves these
algebraic properties are not a sufficient basis for all the kinds of usability analysis
we may want to do. However, they can be used to state and calculate simple
behaviours of events and states. Moreover, the simplicity of the language allows
us to easily construct properties in order to define action modes.

4.3 Mode Analysis

Mode analysis using the algebraic properties described above is a three stage
process. Firstly, the interface designer must formulate properties that correspond
to intended features of specific parts of the design. For example, they could
specify that a cancel button returns the user to initial menu state MainMenu

and that along with the ∗ button it toggles the keypad lock:

Cancel ≡ go(MainMenu) Cancel.Star.Cancel.Star ≡ Nothing

For another device they might specify that a play button starts music playing,
i.e. enters one of the set of states Music, and that the play and volume functions
work independently:

P lay ≡ go(Music) P lay.(+V ol ∨ −V ol) ≡ (+V ol ∨ −V ol).P lay

Each of these properties defines an action mode, i.e. the set of states in which
the property is true. Although formulating them is a skilled task they are essen-
tially quite simple, and within the capabilities of many interface designers given
appropriate tool support. Indeed, they can also generated automatically for the
designer to review using the algorithm described in the following section.

Secondly, given a set MA of action modes, each defined by an algebraic
property, a revised set of modes M ′

A is formed by taking complements, unions and
intersections of the modes in MA. The same process is repeated for the indicator
modes MI , to give a set M ′

I . Finally, pairs of modes from M ′

A∪M ′

I are compared
using the ⊂

∼
relation, avoiding pairs of indicator modes. Any inconsistent pairs

should be considered by the designer as candidates for redesign.

5 Automating the Method

To support the designer in applying our mode consistency methodology, we now
present a novel algorithm that can automatically find algebraic properties/action
modes to ‘feed into’ the analysis. The algorithm can also be used to generate
action specifications as part of a more general design methodology [11]. We
have developed MAUI, a Java/XML-based prototype design tool that supports
specification with, and automatic generation of, such properties [3]. A prototype
implementation of this mode analysis technique has been made in MAUI, which
we intend to use for an evaluation of this methodology. Early results suggest it
can handle realistic interface designs.

The algorithm produces a restricted subset of specification properties which
are useful for defining action modes. Specifically, those of the forms:

A1.An = B1.Bm C1.Cp = go(s)

for Ai, Bi, Ci ∈ E and s ∈ S. It generates these properties up to a bound N

on the maximum product length (i.e. on n, m and p), which is set by the de-
signer. The algorithm is exponential in N , but we have found practical examples
can easily be computed. It would be possible to implement this process using
more sophisticated techniques, e.g. [1], should computational resources become
a problem.

5.1 Constructing Equivalence Classes

Given the set of events E we want to combine individual events into composite
actions, represented by the set of terms TE formed by matrix multiplication.
This is an infinite set, and we limit ourselves to investigating a finite subset T N

E

(for some N > 0), defined inductively as:

e ∈ E

e ∈ T 1
E

t ∈ T k
E e ∈ E

t.e ∈ T k+1

E

The first step is to partition T N
E into a set of equivalence classes CN

E , defined by
equivalence between events. Formally CN

E = {C1, . . . , Cm} such that
⋃

Ci = T N
E

classify(term t) {

if (exists c in EQC and matrix(rep(c)) = matrix(t))

put t in c;

else

new class c’;

put c’ in EQC;

if (matrix(t) = matrix(go(s)) for state set s)

put go(s) in c’;

r = go(s);

else

r = t;

fi

put t in c’;

extend rep so that rep(c’) = r;

put r in Novel;

fi

}

Fig. 3. The classify function.

redundant(term t):bool {

red = false;

for (c in EQC)

for (q in c)

if (not(q == rep(c)) and t == pq) red = true;

return red;

}

Fig. 4. The redundant function.

and for a ∈ Ci and b ∈ Cj , ||a|| = ||b|| iff i = j. There is also a representative

function φ : CN
E → T N

E which selects a distinguished element from an equivalence
class, i.e. φ(C) ∈ C.

Computing the equivalence classes involves the gradual construction of CN
E

and φ, a process we describe here in pseudo-code, to give an clear description
of the algorithm. An actual implementation will be able to make numerous effi-
ciency savings over the ‘code’ here (at the expense of being more obscure). The
computation uses various global data structures: As inputs, the set of events
E and a function matrix from terms to matrices; used during the computation
are the set of novel terms Novel and the set of unique events Unique; As out-
puts, the set of equivalence classes EQC and the function rep which returns the
representative element φ(C) for each class C.

The main algorithm depends on three functions: classify is used to place
a new term in an appropriate equivalence class (see Figure 3); redundant tests
whether a term has a subterm that has already been computed (see Figure 4);
and newTerms computes the new terms introduced to CN

E when n is increased
by one (see Figure 5). The algorithm that computes CN

E for N > 1 is shown in
Figure 6. It calls newterms for successive values of n, until the bound is reached

newTerms(int n) {

Seeds = Novel;

Novel = {};

for (t in Seeds)

for (e in Unique)

if (not(redundant(t.e))) classify(t.e);

}

Fig. 5. The newTerms function.

computeEquivClasses(int n) {

C = {Id};

r(C) = Id;

EQC = {C};

Novel = {};

for (e in E)

classify(e);

Unique = Novel;

if (n > 1)

i = 1;

do

newTerms(i);

i++;

until

(i > n) or Novel = {};

}

Fig. 6. The main algorithm for computing equivalence classes.

or until no new novel terms are introduced by this cycle. In the latter case we
say the equivalence classes are saturated : the classification for any larger term
can be computed algebraically from the existing classification, and so further
classification is pointless. Note that the algorithm is presented in a simple form,
and considerable efficiency savings could be made, e.g. by using a dynamic pro-
gramming approach to build up terms during the classification.

5.2 Identifying modes

Having computed the equivalence classes CN
E for the set of terms T N

E , we can
generate algebraic properties that define action modes. Global properties of the
interface can be found be equating a term with its class representative, but here
we are interested in the non-global properties which define modes. Formally,
pairs of equivalence classes C1, C2 are compared to see if there is a set of states
m such that

go(m).φ(C1) ≡ go(m).φ(C2)

i.e. that matrices for C1 and C2 are equivalent for the rows corresponding to
the states of m. If this holds, then m is an action mode defined by the property
φ(C1) ≡ φ(C2).

This process may return unmanageably many modes for any non-trivial in-
terface, and the potential modes must be pruned in some way: a minimum mode
size for m can be enforced, or a bound on size of property (we treat repetitions of
the same event as a single event, e.g. e.e is e2.) Another technique is to generalise
a set of similar modes into a single mode, e.g. e ≡ f for mode m1, e.e ≡ f for m2

and e.e.e ≡ f for m3 can be generalised to ∃N. eN ≡ f for mode m1 ∧m2 ∧m3.
Finally, the designer may review the generated modes to select those they judge
useful for further analysis.

6 Further Work

Our priority for further research is the evaluation of the methodology described
here, using the prototype implementation in MAUI. This is initially being done
by testing MAUI on a corpus of interface designs, which will lead on to further
experiments with non-expert designers. We would also like to refine our model
of mode inconsistency to e.g. account for more specific mode types. There are
other areas of mode confusion which might benefit from more formal models
that complement existing heuristic approaches, such as [8].

Modifying a design is a rather open-ended activity and is of course best
suited to human designers. A tool can however still make very useful suggestions
for reducing mode inconsistencies. We intend to extend our techniques to sug-
gest possible mode redesigns as well as improving the identification of existing
mode inconsistencies. A design tool can establish or check many other sorts of
property. Our tool, for example, checks states are strongly connected — since
any state in another component is unusable and merely represents unnecessary
implementation complexity. There are some devices (e.g., a single use fire extin-
guisher) where strong connectivity is unwanted, at least for certain states. There
are many other interesting kinds of property, and currently our tool can only
specify a limited range. Further work should explore convenient ways to express
a large class of such properties — and in a way that is ‘designer friendly’ rather
than logic-driven.

We have various parameters to our methodology as constants: the minimum
bound for inconsistency ρ, the maximum product size N , and the minimum
mode size. These could, instead, be ‘sliders’ on the design tool: the designer
could adjust the slider to get the level of detail (pedantry?) that they want to
work with. Perhaps — and we look forward to trying this — it would be insightful
to visualise the effects of these parameters by drawing graphs. Further research
may develop ways to automatically determine values that give a ‘reasonable’
description of the interface design.

Our notion of inconsistency could be refined by measuring near-subsets based
on a weighting of interface states. As users will spend more time in some states,
these will bias their perception of interface behaviour, and therefore their learn-
ing (and mislearning) of mode relationships.

7 Conclusions

We have presented a general, formal model of inconsistency-related mode confu-
sion, and an accompanying methodology for mode analysis, a significant amount
of which can be automated. The model is general enough to provide a framework
for further study into consistency and mode confusion.

We have argued here that inconsistent modes are an important user inter-
face feature that are likely to cause users problems. Generally, they should best
be avoided unless there are contra-indications due to the nature of the user’s
task. Unfortunately inconsistent modes are a non-trivial implicit feature of user
interfaces, and therefore not easily avoided by diligent designers; fortunately, as
this paper showed, they can be enumerated automatically by appropriate tools,
such as the MAUI system, which we are in the process of evaluating.

A huge advantage of our approach is that it gives the ordinary designer
useful usability insights easily; a simple specification language is used, and with
appropriate tool support we anticipate that little training required to use the
approach — most of which is fully automated.

Acknowledgements Jeremy Gow is funded by EPSRC grant GR/S73723/01.
Harold Thimbleby is a Royal Society Wolfson Research Merit Award Holder.

References

1. E. M. Clarke, E. A. Emmerson & A. P. Sistla (1999), Model Checking. MIT Press.
2. A. Degani (1996), “Modelling human-machine systems: On modes, error and pat-

terns of interaction.” PhD thesis, Georgia Institute of Technology.
3. J. Gow & H. Thimbleby (2004), “MAUI: An interface design tool based on matrix

algebra.” In R. Jacob, Q. Limbourg & J. Vanderdonckt (eds), Proc. 4th Interna-
tional Conference on Computer-Aided Design of User Interfaces. Kluwer.

4. J. Gow, H. Thimbleby & P. Cairns (2004), “Misleading behaviour in interactive
systems,” In A. Dearden & L. Watts (eds), Proceedings of the 18th British HCI
Group Annual Conference (HCI 2004), Volume 2.

5. D. Harel & A. Naamad (1996), “The STATEMATE semantics of Statecharts,”
ACM Transactions on Software Engineering and Methodology, 5(4):293-333.

6. G. J. Holzmann (2003), “The SPIN model checker,” Addison-Wesley.
7. D.-S. Lee & W. C. Yoon (2004), “Coupling structural & functional models for

interaction design,” Interacting with Computers, 16:133–161.
8. N. G. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga & J. D. Reese (1997), “Analyz-

ing software specifications for mode confusion potential.” In C. W. Johnson (ed.)
Proc. Workshop on Human Error and System Development, Glasgow, Scotland,
pp132–146.

9. J. Rushby (2002), “Using model checking to help discover mode confusions & other
automation surprises,” Reliability Engineering & System Safety, 75(2):167–177.

10. H. Thimbleby (1982), “Character level ambiguity: Consequences for user interface
design,” International Journal of Man-Machine Studies, 16:211–225.

11. H. Thimbleby (2004), “User interface design with matrix algebra,” ACM Transac-
tions on Computer-Human Interaction, 11(2):181–236.

