
CLASE 2005 Preliminary Version

Constructing Induction Rules for Deductive
Synthesis Proofs

Alan Bundy† 1,2 Lucas Dixon† 3 Jeremy Gow‡ 4

Jacques Fleuriot† 5

† Informatics
University of Edinburgh

Edinburgh, UK
‡ UCL Interaction Centre
University College London

London, UK

Abstract

We describe novel computational techniques for constructing induction rules for de-
ductive synthesis proofs. Deductive synthesis holds out the promise of automated
construction of correct computer programs from specifications of their desired be-
haviour. Synthesis of programs with iteration or recursion requires inductive proof,
but standard techniques for the construction of appropriate induction rules are re-
stricted to recycling the recursive structure of the specifications. What is needed
is induction rule construction techniques that can introduce novel recursive struc-
tures. We show that a combination of rippling and the use of meta-variables as a
least-commitment device can provide such novelty.

Key words: deductive synthesis, proof planning, induction,
theorem proving, middle-out reasoning.

1 Introduction

One of the most under-exploited techniques in the arsenal of formal methods
of system development is the deductive synthesis of programs from a construc-
tive proof of their specifications. Deductive synthesis presents many difficult

1 The research reported in this paper was supported by EPSRC grant GR/S01771 for the
first and third author and an EPSRC studentship to the second author. We are grateful
for feedback from Andy Fugard.
2 Email: bundy@inf.ed.ac.uk
3 Email: ldixon@inf.ed.ac.uk
4 Email: j.gow@ucl.ac.uk
5 Email: jdf@inf.ed.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bundy

Specification— ∀ i. ∃ o. Spec(i, o)

w
w
w
w
Ä

Constructive Theorem Proving

Proof

w
w
w
w
Ä

Program Extraction

Program — Functional program prog(i)

meeting specification ∀ i. Spec(i, prog(i))

Spec(i, o) is a logical specification of the relationship between the inputs i to the required
program and its output o. The conjecture to be proved is that whatever the input there is
a always an output that meets this specification. Constructive proof is used to ensure that
a suitable output, prog(i) is constructed as a side effect of the proof. This output provides
the definition of the required program. By construction, this program is known to meet
its specification. Some steps of the proof provide program operations. For instance, case
splits provide conditional branches and induction steps provide recursive definitions.

Fig. 1. Deductive Synthesis from Constructive Proof

technical challenges, and this may be one reason for its relative neglect. In
this paper we address one such challenge: the choice of induction rules in the
presence of existential quantifiers. We describe some new techniques for the
automatic construction of induction rules that provide an approach to this
problem.

2 Deductive Synthesis

For expository purposes, we will adopt an especially simple version of deduc-
tive synthesis. This is illustrated in Figure 1. Programs will be represented
as recursive functions and specifications as formulae within the same higher-
order, typed, constructive logic. This will enable us to finesse issues of pro-
gram semantics and to turn synthesis conjectures into verification conjectures
by substituting synthesised programs for existential variables, as in Figure 1.

To illustrate the process, consider the task of synthesising a sorting algo-
rithm sort : list(N) 7→ list(N), i.e. a function whose input is a list of natural
numbers and whose output is an ordered permutation of the input list. The
synthesis conjecture might be:

∀l:list(N).∃m:list(N). ord(m) ∧ perm(l,m)

where ord : list(N) 7→ bool is a predicate for testing whether a list is ordered

2

Bundy

and perm : list(N)× list(N) 7→ bool is a predicate for testing whether one list
is a permutation of another. We adopt the convention that lower-case roman
letters stand for object-level variables or constants, whereas upper-case roman
letters stand for meta-variables that range over object-level expressions.

The proof will construct a witness for the existential variable m. This
witness will be a function of l, which we will call sort(l). Since the logic is
constructive, sort will be (recursively) defined in terms of previously defined
functions. The proof will have verified that sort(l) meets its specification,
i.e. that:

∀l:list(N). ord(sort(l)) ∧ perm(l, sort(l)).

The kind of sorting algorithm that is synthesised will depend on the details
of the proof [Darlington, 1978].

3 Induction Rules

Figure 1 notes the correspondence between the steps of a synthesis proof
and the steps of the program they synthesise. In particular, applications
of induction rules in the proof insert recursion in the synthesised program.
Moreover, the kind of induction rule determines the kind of recursion. In
imperative programs, inductive steps will create iteration or loops. More
generally, induction is needed whenever some form of repetition is required in
the synthesised object. Repetition arises in recursive data-structures, recursive
or iterative programs, temporal change, parameterized hardware, etc., i.e. in
nearly all non-trivial systems. Induction is, thus, of central importance in
deductive synthesis.

There are many familiar recursive data-types: natural numbers, integers,
rationals, lists, trees, sets, etc. For each recursive data-types there are in-
finitely many induction rules. They can all be derived from the general schema
of noetherian induction (also known as well-founded induction):

∀x:τ. (∀y:τ. y ≺ x→ φ(y))→ φ(x)

∀x:τ. φ(x) (1)

where ≺ is some well-founded relation on the type τ . By well-founded we mean
that there are no infinite, descending chains of the form . . . ≺ a3 ≺ a2 ≺ a1.
The infinitely many possible well-founded relations≺ for each non-trivial data-
type τ give infinitely many possible instantiations of this noetherian schema.
Since it is not possible to pre-store all well-founded relations ≺ on all types
τ , most inductive theorem provers construct induction rules on demand. The
universally quantified variable x is called the induction variable. It is also
possible to simultaneously induce on more than one variable, but in the inter-
ests of simplicity we omit this additional complexity here, but will return to
it below.

The practical situation is more complex than this. The noetherian schema

3

Bundy

is rarely used directly. Usually, we use an induction rule derived from it, such
as the following rule for the type list(τ).

φ([]) ∀l:list(τ). l 6= [] ∧ φ(tl(l))→ φ(l)

∀l:list(τ). φ(l) (2)

where [] is the empty list and tl(l) is the tail of the list l. This induction
rule is based on some well-founded relation ≺ under which tl(l) ≺ l. Many
such relations, prec, will suffice, for instance, one based on the size of the list.
The first premise of this rule, φ([]), is an example of a base case; the second
premise, ∀l : list(τ). l 6= [] ∧ φ(tl(l)) → φ(l), is an example of a step case.
The antecedent of the step case, φ(tl(l)), is the induction hypothesis and the
consequent, φ(l), is the induction conclusion. The function tl(l) is an exam-
ple of a destructor function, as it destructs the recursive data-type. When a
destructor function surrounds the induction variable in the induction hypoth-
esis, we say that the induction rule is in the destructor-style. To formulate
a destructor-style induction rule it is necessary to identify the base and step
cases, of which there may be several, and to find a well-founded relation under
which the destructor functions output strictly smaller terms than their inputs.

An alternative to destructor-style induction rules is constructor-style. In
constructor-style rules the destructor function in the induction hypothesis is
replaced by a constructor function in the induction conclusion. A constructor

function constructs new elements of the recursive data-type from old. For
instance, the constructor function [h|t] constructs a new member of the type
list(τ) from a list t:list(τ) and an element h:τ . The constructor-style induc-
tion rule corresponding to the destructor induction (2) is:

φ([]) ∀h:τ.∀t:list(τ). φ(t)→ φ([h|t])

∀l:list(τ). φ(l) (3)

where [] is the empty list and [h|t] is the list constructed by putting h at the
head of the list t. The base case of this rule is also φ([]) and the step case is
∀h:τ.∀t:list(τ). φ(t)→ φ([h|t]).

As we will see below, it is also possible to have hybrid destructor/constructor-
style induction rules. It is also possible to have rules with multiple induction
hypothesis, such as the following constructor-style rule for the data-type of
binary trees.

φ(leaf(e)) ∀l:tree(τ).∀r:tree(τ). φ(l) ∧ φ(r)→ φ(node(l, r))

∀t:tree(τ). φ(t)

where leaf(e) constructs a leaf of the tree with label e and node(l, r) constructs
a new binary tree from the left and right subtrees l and r.

The rules above are all, so called, structural induction rules, i.e. they have
used the destructor and constructor functions from the recursive definition of

4

Bundy

the data-type. Non-structural rules are also possible, for instance,

φ([]) ∀l:list(τ). φ(butlast(l))→ φ(l)

∀l:list(τ). φ(l) (4)

where butlast(l) outputs the list l with the last element deleted. For a further
discussion on induction rules [Gow, 2004].

4 Synthesising Recursive Programs

Suppose induction is used to prove a synthesis conjecture, such as

∀l:list(τ).∃m:list(τ). spec(l,m)

A program synthesised using the destructor-style, induction rule (2), with l

as the induction variable, will have the following recursive form.

prog(l) ::= if l = [] then b

else f(l, prog(tl(l)))

where b and f do not contain prog. On the other hand, a program synthesised
using the constructor-style, induction rule (3) will have the following recursive
form.

prog([]) ::= b

prog([h|t]) ::= f(h, t, prog(t))

And a program synthesised using the non-structural, induction rule (4) will
have the following recursive form.

prog(l) ::= if l = [] then b

else f(l, prog(butlast(l)))

To synthesise a pair of mutually recursive programs, we would have two
existential variables:

∀l:list(τ).∃m1 :list(τ),∃m1 :list(τ). spec(l,m1,m2)

from which we would extract prog1 and prog2 as the existential witnesses ofm1

andm2, respectively. If constructor-style, induction rule (3) were used to prove
this synthesis conjecture, then the following mutually recursive definitions
would be synthesised.

prog1([]) ::= b1

prog1([h|t]) ::= f1(h, t, prog1(t), prog2(t))

prog2([]) ::= b2

prog2([h|t]) ::= f2(h, t, prog1(t), prog2(t))

5

Bundy

Conjecture: ∀l:list(τ).∃m:list(τ). perm(l,m)

Recursive Definition:

perm(l,m) ::= if l = [] then m = []

else perm(tl(l), del(hd(l),m))

where del(e, l) deletes the element e from the list l.

Constructed Induction Rule:

φ([]) ∀l:list(τ). l 6= [] ∧ φ(tl(l))→ φ(l)

∀l:list(τ). φ(l)

perm is the only recursively defined function that appears in the conjecture. Its recursive
definition is on l, the first argument of perm, and the recursive call on this argument is
tl(l). This suggests constructing a one-step, destructor-style induction in which l is the
induction variable and the induction hypothesis is applied to tl(l). When this induction
rule is applied, the induction term, φ(l), will be instantiated to ∃m:list(τ). perm(l,m).

Fig. 2. An Example of Recursion Analysis

5 Constructing Induction Rules

Recursion analysis is the most well known technique for constructing cus-
tomised induction rules for specific conjectures. It is due to Boyer and Moore
and was implemented in their Nqthm prover [Boyer & Moore, 1979]. The es-
sential idea is to identify recursively defined functions in the conjecture and
then convert these into the corresponding induction rules. For instance, if
the conjecture contained a function g whose recursive definition was g(k, l) =
f(k, l, g(k, tl(l))), then the destructor induction rule (2) with induction vari-
able l would be suggested. Boyer and Moore developed techniques for merging
and generalising the suggestions from the different recursive function into one
induction rule that subsumed them all. Walther later suggested a variation of
recursion analysis that uses a different technique for merging induction rules
[Walther, 1993]. The heuristic underlying recursion analysis is that by choos-
ing an induction hypothesis containing the same destructor functions as the
recursive definitions, we maximise the chances that these definitions will be
able to manipulate the hypothesis. Recursion analysis can also be adapted to
constructor style definitions and induction rules. Recursion analysis is illus-
trated in Figure 2.

Recursion analysis was developed for purely universally quantified conjec-
tures. When it comes to conjectures containing existential quantifiers, es-
pecially the conjectures used in deductive synthesis, it suffers from a major
drawback: the induction rule used in the proof will determine the recursive
structure of the synthesised program, i.e. its fundamental algorithmic nature,
including its complexity. Recursion analysis will choose this induction rule us-
ing the forms of recursion it finds in the conjecture, i.e. the algorithmic nature
of the specification. Thus the programs constructed by deductive synthesis are
algorithmically similar to their specifications. This is not a desirable state of

6

Bundy

affairs. For instance, it means that recursion analysis is unable to construct
the induction rule needed for the synthesis of quicksort, because its recursive
structure is radically different from that of either ord or perm. We will use
the definition of perm in Figure 2 and the following definition of ord:

ord(l)↔ if l = [] then >

elseif l = [h] then >

elseif hd(l) ≤ hd(tl(l)) then ord(tl(l))

else ⊥

Whereas the usual definition of quick-sort is:

qsort([]) ::= []

qsort([h|t]) ::= qsort(less(h, t)) <> [h] <> qsort(more(h, t))

where less(h, t) is a list of members of t less than or equal to h, more(h, t)
is a list of members of t strictly more than h and <> is the infix list append
function. Recursion analysis would use the definitions of ord and perm to con-
struct induction rule (2) or (3), whereas to synthesis qsort we need something
like the following hybrid destructor/constructor style induction rule.

φ([]) ∀h:τ.∀t:list(τ). φ(less(h, t)) ∧ φ(more(h, t))→ φ([h|t])

∀l:list(τ). φ(l) (5)

6 Rippling and Ripple Analysis

Rippling is a heuristic technique for controlling the proof of the induction
conclusion with the aid of the induction hypothesis [Bundy et al, 2005]. It
works by annotating the differences between the conclusion and hypothesis,
and then trying to reduce them using annotated rewrite rules called wave-

rules. Figures 5 and 6 illustrate the process and give examples of annotation
and wave-rules.

Rippling suggests an alternative to recursion analysis for the construction
of an appropriate induction rule. Instead of using recursive definitions to
suggest induction terms and variables, we can use wave-rules. We call this
technique ripple analysis. Ripple analysis conducts a one-step look-ahead into
the rippling process and suggests an induction rule that would facilitate rip-
pling by providing an induction term that will match the left-hand-side of the
wave-rule. Ripple analysis is illustrated in Figure 4, using the same example
that we used for recursion analysis, in order to emphasise the difference. In
particular, ripple analysis is able to break-out of the recycling of recursive
definitional structure by suggesting induction rules based on derived lemmas
rather than recursive definitions.

Unfortunately, ripple analysis does not always suggest the optimal induc-
tion rule. The main problem is that it conducts only a one-step look-ahead
into the rippling process. Later rippling steps may put additional require-
ments on the induction term that are not apparent at the first step. Figure 6

7

Bundy

Wave Rules:

qsort([H|T]
↑

) ⇒ qsort(less(H, T)) <> [H] <> qsort(more(H, T))

↑

(6)

ord(L <> [X] <> M

↑

) ⇒ ord(L) ∧ ord(M) ∧ L¿ [X] ∧ [X]¿M

↑

(7)

Wave-rules are rewrite rules annotated with wave-fronts, which mark the similarities and
differences between the left- and right-hand sides of the rules. When applying wave-rules,
the wave-annotation must match. Wave-rule (6) arises from the recursive definition of qsort
and is applied at step (9). Wave-rule (7) is a lemma about ord and is applied at step (11).

Fig. 3. Wave rules used in Figure 5

Conjecture: ∀l:list(τ).∃m:list(τ). perm(l,m)

Wave-Rule:

perm(L <> L′

↑

, M <> M ′

↑

) ⇒ perm(L,M) ∧ perm(L′,M ′)

↑

Constructed Induction Rule:

∀m:list(τ).φ([],m) ∀h:τ.∀t:list(τ). φ([h|t], [])

∀l, l′,m,m′:list(τ). φ(l,m) ∧ φ(l′,m′) → φ(l <> m

↑

, l′ <> m′

↑

)

∀l,m:list(τ). φ(l,m) (8)

Suppose induction were applied to the conjecture with induction variable l, which, as the
only universally quantified variable, is the only induction variable candidate. The above
wave-rule would apply to the induction conclusion if it contains a subterm of the form

l <> m

↑

. The above induction rule has thus been constructed to provide just such

an induction term. Note that the wave-rule is based on a distributive-law lemma about
perm, rather than its recursive definition. Of course, other wave-rules will make other
induction rule suggestions, including the wave-rule based on the recursive definition of
perm, as in recursion analysis.

Fig. 4. An Example of Ripple Analysis

gives an example of the failure of ripple analysis.

7 Middle-Out Reasoning

In §5 we described the problem of constructing induction rules to prove syn-
thesis theorems. In this section we propose the following solution to this

8

Bundy

Givens: Initially Neutralised

ord(qsort(less(h, t))) ord(qsort(less(h, t)))

ord(qsort(more(h, t))) ord(qsort(more(h, t)))

Goal and Ripple:

ord(qsort([h|t]
↑

))

ord(qsort(less(h, t)) <> [h] <> qsort(more(h, t))

↑

) (9)

ord(qsort(less(h, t)) <> [h] <> qsort(more(h, t))

↑

) (10)

ord(qsort(less(h, t))) ∧ ord(qsort(more(h, t))) · · ·

· · · ∧ ord(qsort(less(h, t)))¿ [h] ∧ [h]¿ ord(qsort(more(h, t)))
↑

(11)

ord(qsort(less(h, t))) ∧ ord(qsort(more(h, t)))

↑

(12)

> ∧> (13)

This example is taken from the step case of a verification proof of ord(qsort(l)) using
induction rule (5). The two induction hypotheses, in the cases where l = less(h, t) and
l = more(h, t), provide the givens. The induction conclusion is the goal to be proved by
rippling. Both the givens and the goal are annotated to indicate where they are similar
and where they differ. The annotation consists of hollow grey boxes called wave-fronts;
the holes in these wave-fronts are called wave-holes. The expressions in the wave-holes
are shared by a given and the goal and the expressions in the grey areas are where they
differ. At step (10) it becomes possible to increase the size of the two wave-holes by
dropping the wave-fronts in the givens and the innermost wave-fronts in the goal. This
is because the similarities between the goal and the givens has increased. We call this
process neutralisation.
Rippling proceeds by rewriting the goal with the wave-rules shown in Figure 3. Notice

that the effect of applying the wave-rules is that the content of the wave-holes increases
in size until a copy of a given appears inside them. These givens may then be used to
replace the copies with > in step (13). Note that L¿M means that every element of list
L is less than every element of list M and L ¿ M that every element L is less than or
equal to every element M . At step (12) the wave-front is simplified by applying the two
lemmas qsort(less(h, t))¿ [h] and [h]¿ qsort(more(h, t)).

Fig. 5. An Example of Rippling

9

Bundy

Conjecture:
∀x, y, z:N. even(x+ y) ∧ even(y + z) → even(x+ z)

Wave-Rules:

s(M)
↑

+N ⇒ s(M +N)
↑

(14)

even(s(s(X))
↑

) ⇒ even(X) (15)

Goal and Ripple:

even(s(x)
↑

+ y) ∧ even(y + z)→ even(s(x)
↑

+ z)

even(s(x + y)
↑

)

︸ ︷︷ ︸

blocked

∧even(y + z)→ even(s(x + z)
↑

)

︸ ︷︷ ︸

blocked

One-Step Induction Rule Constructed by Ripple Analysis:

φ(0) ∀n:N. φ(n)→ φ(s(n)
↑

)

∀n:N. φ(n) (16)

A Better, Two-Step Induction Rule:

φ(0) φ(s(0)) ∀n:N. φ(n)→ φ(s(s(n))
↑

)

∀n:N. φ(n) (17)

The rippling analysis one-step look-ahead uses wave-rule (14) to construct the one-step
induction rule (16), with x as induction variable. x is preferred to y and z because wave-
rule (14) will be able to ripple both occurrences of s(x). If y were chosen, only the second
occurrence of s(y) could be rippled and if z were chosen, neither occurrence of s(z) could
be rippled. Rippling proceeds in the induction conclusion using the above wave-rule (14)
on both sides of the implication, but then gets blocked on both sides of the implication.
Ideally, wave-rule (15) would now be applied on both sides, but it requires a wave-front
containing two nested occurrences of s, rather than just one. We should have used the
two-step induction rule (17), instead of (16).

Fig. 6. An Example of a Ripple Analysis Failure

problem. We will use higher-order meta-variables as a least-commitment de-
vice to postpone the construction of the induction rule. In particular, we will
assume that we have a recursive definition for the synthesised program, but
use meta-variables to stand for the constructor and destructor functions in its
definition. We will then proceed with the synthesis proof. Just as in ripple
analysis, we will construct an induction rule that allows rippling to proceed,
but this rule will contain meta-variables, so will only be partially defined. Dur-

10

Bundy

ing the course of the synthesis proof, higher-order unification will instantiate
the meta-variables, firming up both the induction rule and the synthesised
program’s definition. This will allow not just the first but all the ripple steps
in the proof to affect the construction of the induction rule. This increased
flexibility comes at a price: a larger search space. Applying higher-order unifi-
cation to meta-variables in the goals, increases the branching rate of rippling.
Fortunately, the additional rippling requirement that wave annotation in goal
and wave-rule must match, dramatically decreases what would otherwise by an
unacceptable combinatorial explosion. We will have a proof obligation to show
that the constructed induction rule is valid, i.e. well-founded and covering all
terms of the datatype.

We call this technique middle-out reasoning, since it postpones the early
proof-search decisions, allowing these to be decided as a side-effect of the
proof process in the middle of the proof. Middle-out reasoning is illustrated
in Figure 7.

Middle-out reasoning is a simple idea, but has proven to be surprisingly
difficult to implement. Accordingly, our first attempt addressed a simplified
version of the problem. Instead of dynamically constructing induction rules
using a middle-out version of ripple analysis, we merely selected them from a
pre-verified store. This work was conducted as a PhD project by Ina Kraan
[Kraan et al, 1996,Kraan, 1994]. It was implemented in the Periwinkle sys-
tem and applied to the successful synthesis of a number of logic programs.
More recently, we have tackled the full problem of middle-out construction
of induction rules via the PhD project of Jeremy Gow [Gow, 2004] which is
implemented in the Dynamis system.

Note that middle-out ripple-analysis suggests candidate induction terms
as a side-effect of rippling. These must then be turned into a valid induction
rule. This may require combining several distinct induction term suggestions
into complementary step cases of the same induction rule. It may also require
the construction of the corresponding base cases. The induction rule must
then be proved to be valid. This involves showing that it is based on a well-
founded order and that the base and step cases cover the data-structure. To
simplify the well-foundedness proofs, we restricted the well-found measures to
those arising in Walther’s estimation calculus [Walther, 1994,Gow et al, 1999].
This provides a simple family of well-found measures, but with wide coverage,
including most practical algorithms.

In practice, the construction of the base and step cases is interleaved with
the proofs of coverage and well-foundedness, i.e. base and step cases are in-
vented to fill gaps in the coverage proof, and a well-founded order is evolved
to include all these step cases. It is this interaction between the different proof
processes that makes middle-out induction-rule construction such a challeng-
ing task. The resulting proof obligations are illustrated in Figure 9.

11

Bundy

Givens:

Initially Neutralised Instantiated

ord(D(qsort , T)) ord(FA(qsort, T)) ord(qsort(less(h, t)))

ord(FB(qsort, T)) ord(qsort(more(h, t)))

Goal and Ripple:

ord(qsort(C(T)))

ord(F (qsort , T)) (18)

ord(FA(qsort , T)) ∧ ord(FB(qsort , T)) ∧ FA ¿ [H] ∧ [H]¿ FB

↑

(19)

ord(FA(qsort, T)) ∧ ord(FB(qsort, T)) ∧ FA ¿ [H] ∧ [H]¿ FB

↑

(20)

ord(qsort(less(H,FA2))) ∧ ord(qsort(more(H,FB2)))

↑

(21)

ord(qsort(less(h, t))) ∧ ord(qsort(more(h, t)))

↑

(22)

> ∧>

This synthesis proof fragment follows the same pattern as the verification proof in Figure 5
except that meta-variables are used to represent unknown structure. Just as before, ripple
analysis constructs an induction rule based on the available definitional wave-rules. For
deductive synthesis the schematic definition of quicksort (23) shown in Figure 8 is consid-
ered. This produces a schematic given with a potential wave front around the destructor
meta-variable D. The dotted boxes around these meta-variables represent potential wave-
fronts — since we are not yet sure which of them will be non trivial, I.e. more than a
projection onto one of the arguments. Wave rule 23 is then used to ripple the goal (step
(18)). At step (19) wave-rule (24) applies. This application uses higher-order unification
to instantiate F to “λq t. FA(q, t) <> H(q, t) <> FB(q, t)”. For the sake of readability,
we write meta-variables without arguments when they are not annotated by wave fronts.
In the above proof, such meta-variables have implicit parameters qsort and T . The po-
tential wave-front around the destructor function D in the given and FA and FB in the
goal are then neutralised and the annotation is removed (step (20)). This introduces FA

and FB into the given. At step (21) the resulting wave-front is simplified away with
the lemmas “qsort(less(X,Y))¿ [X]” and “[X]¿ qsort(more(X,Y))” that come from
the permutation branch of the proof. This time, the higher-order unification instantiates
FA(qsort, T) to “less(FA2(qsort, T))” and FB(qsort, T) to “more(FB2(qsort, T))”. The
final instantiation of of FA2, FB2 and H are made in the coverage checking branch of the
proof. This allows the goal to then be solved by fertilisation in step (22).

Fig. 7. Middle-Out Synthesis

12

Bundy

Wave Rules:

qsort(C(T)) ⇒ F (qsort , T) (23)

ord(L <> [X] <> M

↑

) ⇒ ord(L) ∧ ord(M) ∧ L¿ [X] ∧ [X]¿M

↑

(24)

Wave-rule (23) is derived from the initially unknown, schematic definition of qsort. In
this schematic definition, we use the higher-order meta-variable C to represent the ini-
tially unknown constructor functions, and F to represent the body including the possible
destructors. The aim of the synthesis proof is to instantiate these meta-variables and,
hence, to construct the definition of qsort. This instantiation will turn wave-rule (23)
into wave-rule (6).

Fig. 8. Initial Wave Rules used for Middle-Out Synthesis in Figure 7

Theorem InductionRule

∀x, y, z:N.

even(x+ y) ∧ even(y + z)

→ even(x+ z)

φ(0) φ(s(0)) ∀n:N. φ(n) → φ(s(s(n))
↑

)

∀n:N. φ(n)

∀◦ : N× N 7→ N. ∀x:N. ∀l:list(N).

foldleft tr(◦, x, l) = foldleft(◦, x, rev(l))

φ([]) ∀e:τ. ∀f :list(τ). φ(f) → φ(f <> [e]
↑

)

∀l:list(τ). φ(l)

The first example is similar to that in Figure 6. Middle-out reasoning removes the restric-
tion to just a one-level look-ahead. When the ripple gets to the point where the definition
of even should be applied, there is still an uninstantiated meta-variable that can be used to
influence the induction term and produce the two-step induction rule required. The second
example is explained in more detail in Figure 9. It shows that the middle-out reasoning
can be applied to higher-order theorems and can construct quite ad hoc induction rules.

Table 1
Selected Experimental Results of the Dynamis System

8 Related Work

The standard technique for choosing induction rules in explicit-induction the-
orem provers is recursion analysis. We have already compared this to ripple
analysis in §6. Many people have investigated the synthesis of programs from
specifications of their required behaviour. Some approaches have used con-
structive type theory and some have used classical logics. There have been
varying degrees of automation, including the use of rippling. However, the
discussion below will focus only on mechanisms for the construction of non-
standard induction rules and their use of least-commitment mechanisms. For
a more detailed discussion see [Gow, 2004].

13

Bundy

Conjecture:

∀◦ : N× N 7→ N.∀x:N.∀l:list(N). foldleft tr(◦, x, l) = foldleft(◦, x, rev(l))

foldleft and foldleft tr are second-order functions that repeatedly apply their first
argument to the elements of the list in their third argument, starting with their second
argument. foldleft deals with the elements of the list in first to last order, but foldleft tr
deals with them in reverse order, i.e.

foldleft(◦, x, [e1, . . . , en]) = (en ◦ (. . . (e1 ◦ x) . . .)) = foldleft tr(◦, x, [en, . . . , e1])

Schematic step case proof:

foldleft tr(◦, x, C) = foldleft(◦, x, rev(C))

C ′′ ◦ foldright tr(◦, x, C′)

↑

= foldleft(◦, x, rev(C ′ <> [C ′′]

↑

D))

We show how the induction rule from the foldleft example from figure 1 is constructed.
Since l is the only universal variable with a recursively defined type, it is chosen as
induction variable and is replaced by a second-order meta-variable C in the induction
conclusion. An attempt to ripple foldleft tr with its definition fails. After backtracking
through this failed ripple, it is rippled instead with the following wave-rule:

foldleft tr(F,X, L <> [Y]
↑

) ⇒ F (Y, foldright tr(F,X,L))

↑

which is based on a lemma. This ripple instantiates C to C ′ <> [C ′′] and so introduces
the essential structure of the induction term. We can now prove this step case of the
induction well-founded. The ripple also turns the potential wave-fronts into concrete
wave-fronts. Rippling continues to successful fertilization.

Show step case well-founded: C ′ ≺ C ′ <> [C ′′]
The estimation calculus is given the task of finding a well-founded measure ≺ to show

that the induction term C ′ <> [C ′′], suggested by this ripple, is strictly greater than the
corresponding term, C ′, in the induction hypothesis. It succeeds with a measure based on
the length of the list.

Discover missing cases: ∀l:list(N).A ∨ ∃e:N, f :list(N). l = f <> [e]
We know one case of the induction rule and need to discover any others. In this

case, the meta-variable A will be instantiated to l = [], i.e. one base case is discovered.
In general, any number of base or step cases might be needed.

Prove new cases: foldleft tr(◦, x, []) = foldleft(◦, x, rev([]))
We now need to prove the theorem for the newly discovered base case.

Constructed induction rule:

φ([]) ∀e:τ.∀f :list(τ). φ(f) → φ(f <> [e]
↑

)

∀l:list(τ). φ(l)

Fig. 9. Proof Obligations in Middle-Out, Induction-Rule Construction

14

Bundy

8.1 Protzen’s Lazy Induction

Apart from the work of Kraan and Gow, described above, we are aware of one
other attempt to use least commitment devices to postpone the choice of in-
duction rule and then incrementally build an appropriate induction rule during
proof search. This is the work of Protzen on Lazy Induction [Protzen, 1995].
It uses a copy of the conjecture as the induction conclusion, unfolds definitions
to create wave-fronts, then removes them using rippling. The induction rule
is created implicitly during the proof: case splits correspond to rule cases,
while induction hypotheses are invented as needed for fertilisation. Rippling
is restricted so that the rule is well-founded by construction.

Lazy Induction has three disadvantages compared to middle-out induction
rule construction and no advantages of which we are aware.

(i) It is restricted to destructor-style, whereas Dynamis and more generally
middle-out reasoning can use destructor, constructor and hybrid styles.

(ii) It lacks search control mechanisms to deal with the inherent threat of non-
termination when potential wave-fronts are used (see Figure 9), whereas
Dynamis has mechanisms for preventing non-termination.

(iii) It does not explicitly represent the generated induction rule, leading to
wastful exploration of proof branches in which different instances of a
induction variable are implicitly assigned incompatible terms. Dynamis
avoids this problem by explicitly representing these terms with meta-
variables. For instance, suppose two different induction rules each have
two step cases. Lazy Induction will explore all four combinations of step
case. Dynamis uses shared meta-variables to restrict the search to the
two compatible combinations. When a meta-variable is instantiated by
proof search in one case it is automatically instantiated to the same value
in the other case, which will rule out incompatible combinations.

8.2 Hutter’s Labelled Fragments

Hutter has also used rippling as the basis of an attempt to construct induction
rules for synthesis conjectures [Hutter, 1994]. His approach is also based on
rippling and proof planning. Before attempted the concrete proof, his inka

system first builds an abstract plan of the inductive step cases. The induction
rule is constructed from this plan. To form the plan, he uses abstractions of
wave-rules, in which the details of the wave-fronts are removed, leaving only
the information that it is possible to ripple past skeleton fragments. The in-
duction rule is then constructed by recovering and combining the abstracted
wave-fronts. Although Hutter’s technique does not use higher-order unifica-
tion on meta-variables, as Kraan’s and Gow’s do, it has a similar effect. He
has successfully applied it to the synthesis of the inverses of standard func-
tions, using these functions as the specifications, i.e. proving ∀i.∃o. f(o) = i to
synthesise an inverse of f . Amongst the functions synthesised are log, half ,

15

Bundy

quotient and rev. The synthesis of rev, for instance, constructs induction rule
(4).

8.3 Narrowing

Narrowing [Hanus, 1994] is the extension of rewriting to allow the unification
of the rewrite rule with the goal, rather than just matching, i.e. the goal
can contain meta-variables, which may be instantiated during rewriting. Our
middle-out reasoning is essentially the extension of rippling to narrowing. The
main role of narrowing has been to the construction of existential witnesses.
On negation of the conjecture and skolemization 6 , existential witness become
meta-variables. Narrowing will instantiate these meta-variables as a side-effect
of rewriting, incrementally constructing the existential witness.

The main difference between Dynamis and previous work on narrowing
is that we are using meta-variables to stand for unknown induction terms as
well as existential variables. In other work we have also used meta-variables to
stand for unknown structure in generalised conjectures and in missing lemmas
[Ireland & Bundy, 1996].

9 Conclusion

In this paper we have discussed the issue of constructing an appropriate induc-
tion rule for the automated synthesis of computer programs by constructive
proof. Induction is a vital ingredient of any synthesis proof of a program con-
taining iteration or recursion. There are an infinite number of induction rules
for each non-trivial data-type, so induction rules need to constructed to order
rather than pre-stored. However, recursion analysis, the standard technique
for induction rule construction, was developed for purely universally quan-
tified theorems. Synthesis conjectures always contain existential quantifiers.
Applied to synthesis theorems, recursion analysis merely adapts the recursions
in the specification of a program. It would be incapable of suggesting a novel
recursive structure, such as that used in the quick-sort algorithm, for instance.

We have developed a series of techniques for induction-rule construction
that are not limited to recycling the recursions in the original conjecture.
These are based on a combination of ripple analysis and middle-out reasoning.
They have been successfully used to construct novel induction rules automat-
ically. Two principles are at work.

(i) Induction terms and hence induction rules are suggested by applying
lemmas and not just recursive definitions.

(ii) Constructing the induction term, and hence the induction rule, is post-
poned by the use of meta-variables. These are incrementally instantiated
during the course of the proof, so that the requirements of several differ-

6 Or, equivalently, dual-skolemization of the goal.

16

Bundy

ent proof steps can be taken into account in the shape of the constructed
induction rule.

The least commitment mechanisms used in middle-out induction-rule con-
struction lead to a complex juggling of proof obligations. Not only must the
original theorem be proved, but the induction rule must be shown both to be
well-founded and to cover the data-type. As a side effect of these proof obliga-
tions, the following objects are constructed: induction terms, a well-founded
measure, missing base and step cases and an induction rule. Each proof obli-
gation is sharing and instantiating a set of meta-variables. It is desirable to
co-routine between these proofs: as the instantiation of a meta-variable in
one proof obligation sufficiently restricts proof search in another, temporarily
frozen, proof obligation to allow it to restart safely.

Initial experiments with middle-out induction-rule construction have been
limited to purely universal theorems, such as may arise in verification proofs.
We are now turning our attention to theorems containing existential quanti-
fiers, as required in synthesis proofs. The Dynamis system is being ported to
the IsaPlanner proof planner and applied to the synthesis of programs from
their specifications. Proof planning has played an essential role in this work,
for instance, enabling the flexible construction of proofs using middle-out rea-
soning and providing the powerful rippling method.

In addition to applying our techniques to a growing corpus of synthesis
conjectures, we plan to extend our approach to cope with having an unknown
number of recursive calls in a schematic, recursive definition. We also want
to allow more flexible co-routining between different proof obligations. For
instance, we want to be able to freeze partial proofs that have too high a
branching rate and to unfreeze partial proofs whose branching rates have been
significantly reduced as a side-effect of shared meta-variable instantiation in
other proofs since they were previously frozen.

References

[Boyer & Moore, 1979] Boyer, R. S. and Moore, J S. (1979). A Computational
Logic. Academic Press, ACM monograph series.

[Bundy et al, 2005] Bundy, A., Basin, D., Hutter, D. and Ireland, A.
(2005). Rippling: Meta-level Guidance for Mathematical
Reasoning. Cambridge University Press.

[Darlington, 1978] Darlington, J. (1978). A synthesis of several sorting
algorithms. Acta Informatica, 11:1–30.

[Gow, 2004] Gow, Jeremy. (2004). The Dynamic Creation of Induction
Rules Using Proof Planning. Unpublished Ph.D. thesis,
School of Informatics, University of Edinburgh.

17

Bundy

[Gow et al, 1999] Gow, J., Bundy, A. and Green, I. (1999). Extensions to the
estimation calculus. In Ganzinger, H., McAllester, D. and
Voronkov, A., (eds.), Proceedings of the 6th International
Conference on Logic for Programming and Automated
Reasoning (LPAR’99), pages 258–272, Tblisi, Georgia.
Springer–Verlag. LNAI 1705.

[Hanus, 1994] Hanus, M. (1994). The integration of functions into
logic programming: from theory to practice. J. Logic
Programming, 19 & 20:583–628.

[Hutter, 1994] Hutter, D. (1994). Synthesis of induction orderings for
existence proofs. In Bundy, Alan, (ed.), 12th International
Conference on Automated Deduction, Lecture Notes in
Artificial Intelligence, Vol. 814, pages 29–41, Nancy,
France. Springer-Verlag.

[Ireland & Bundy, 1996] Ireland, A. and Bundy, A. (1996). Productive use of failure
in inductive proof. Journal of Automated Reasoning, 16(1–
2):79–111. Also available from Edinburgh as DAI Research
Paper No 716.

[Kraan, 1994] Kraan, I. (1994). Proof Planning for Logic Program
Synthesis. Unpublished Ph.D. thesis, Department of
Artificial Intelligence, University of Edinburgh.

[Kraan et al, 1996] Kraan, I., Basin, D. and Bundy, A. (1996). Middle-
out reasoning for synthesis and induction. Journal of
Automated Reasoning, 16(1–2):113–145. Also available
from Edinburgh as DAI Research Paper 729.

[Protzen, 1995] Protzen, M. (February 1995).
Lazy Generation of Induction Hypotheses and Patching
Faulty Conjectures. Unpublished Ph.D. thesis, Technische
Hochschule Darmstadt, Darmstadt, Germany.

[Walther, 1993] Walther, C. (1993). Combining induction axioms by
machine. In Proceedings of IJCAI-93, pages 95–101.
International Joint Conference on Artificial Intelligence.

[Walther, 1994] Walther, C. (1994). On proving termination of algorithms
by machine. Artificial Intelligence, 71(1):101–157.

18

	Introduction
	Deductive Synthesis
	Induction Rules
	Synthesising Recursive Programs
	Constructing Induction Rules
	Rippling and Ripple Analysis
	Middle-Out Reasoning
	Related Work
	Protzen's Lazy Induction
	Hutter's Labelled Fragments
	Narrowing

	Conclusion
	References

