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Preface

The workshop on Challenges and Novel Applications for Automated Reasoning
was held in Miami, USA on July 28, 2003 in conjunction with the 19th Interna-
tional Conference on Automated Deduction (CADE-19).

The aim of the workshop was to identify challenges for automated reasoning
that will fire both the imaginations of new researchers and those long established
in the field. The workshop encompassed two distinct kinds of challenge: Grand
Challenges propose inspirational projects that could take the efforts of many
researchers over a decade or more to achieve; Novel Applications describe, in
detail, new and relatively unexplored areas where automated reasoning can be
employed right now.

Grand Challenges have recently been the focus of an initiative by the UK
Computing Research Committee, whose published criteria are given after this
preface. Examples of Grand Challenges from computer science include: to prove
whether P = NP (open), to develop a world class chess program (completed,
1990s), or to automatically translate Russian into English (failed, 1960s).

A huge range of challenges are represented in this workshop. Several suggest
a change of emphasis in the tasks performed by automated reasoners. Sutcliffe,
Gao and Colton suggest developing systems that discover and prove new and
interesting theorems, rather than just the ones we supply. Walther argues for
lemma speculation that invents new concepts. Schultz proposes bridging the gap
between formal systems and informal users.

Both McCasland and Sorge’s and Calmet’s challenges suggest attacking com-
putationally intensive problems in mathematics. Tinelli sets the challenge of
integrating ground satisfiability into first-order reasoning without losing com-
pleteness. In contrast, other authors envisage reasoning within large knowledge
systems: Andrews with a universal formalisation for science; Walsh with a math-
ematical assistant that has a broad and flexible expertise.

The Novel Applications papers describe works in progress that apply au-
tomated reasoning to new problem areas. Currently, the most well-known ap-
plication is reasoning about computer systems — in particular, software and
hardware verification. Although we applaud this success, we believe a diversity
of applications helps researchers to more thoroughly test techniques, explore new
issues and problems, and so prevent the field becoming too narrowly defined.

The applications here are very diverse: Monroy proposes to formally model,
and then verify properties of, the human immune system; Baumgartner et al. de-
scribe their KRHyper system, and its application to a range of tasks, including
electronic publishing; Katsiri and Mycroft discuss real-time reasoning about a
rapidly changing environment.

The range of challenges and applications presented at this workshop suggests
that the future of automated reasoning will be extremely interesting.

Simon Colton, Jeremy Gow, Volker Sorge and Toby Walsh
July 2003



UKCRC Grand Challenge Criteria

The UK Computing Research Committee has proposed a set of criteria for as-
sessing grand challenges in computing1, which can be applied to our own subfield
of automated reasoning. There is no expectation that a grand challenge will meet
all of these criteria, but it should meet some of them:

– It arises from scientific curiosity about the foundation, the nature or the
limits of the discipline.

– It gives scope for engineering ambition to build something that has never
been seen before.

– It will be obvious how far and when the challenge has been met (or not).
– It has enthusiastic support from (almost) the entire research community,

even those who do not participate and do not benefit from it.
– It has international scope: participation would increase the research profile

of a nation.
– It is generally comprehensible, and captures the imagination of the general

public, as well as the esteem of scientists in other disciplines.
– It was formulated long ago, and still stands.
– It promises to go beyond what is initially possible, and requires development

of understanding, techniques and tools unknown at the start of the project.
– It calls for planned co-operation among identified research teams and com-

munities.
– It encourages and benefits from competition among individuals and teams,

with clear criteria on who is winning, or who has won.
– It decomposes into identified intermediate research goals, whose achievement

brings scientific or economic benefit, even if the project as a whole fails.
– It will lead to radical paradigm shift, breaking free from the dead hand of

legacy.
– It is not likely to be met simply from commercially motivated evolutionary

advance.

1 http://www.nesc.ac.uk/esi/events/Grand_Challenges
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A Grand Challenge of Theorem Discovery
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Abstract. A primary mode of operation of ATP systems is to supply
the system with axioms and a conjecture, and to then ask the system
to produce a proof (or at least an assurance that there is a proof) that
the conjecture is a theorem of the axioms. This paper challenges ATP to
a new mode of operation, by which interesting theorems are generated
from a set of axioms. The challenge requires solutions to both theoretical
and computational issues.

1 Introduction

Automated Theorem Proving (ATP) deals with the development of computer
programs that show that some statement (the conjecture) is a logical conse-
quence of a set of statements (the axioms). ATP systems are used in a wide
variety of domains: many problems in mathematics have been tackled with ATP
techniques, software and hardware have been designed and verified using ATP
systems, and applications to the WWW seem possible. In all of these applica-
tions, a primary mode of operation is to supply an ATP system with the axioms
and a conjecture, and to ask the system to produce a proof (or at least an assur-
ance that there is a proof) that the conjecture is a theorem of the axioms. Full
automation of this task has been highly successful when the problem is expressed
in classical 1st order logic, so that a proof by refutation of the clause normal form
of the problem can be obtained. There are some well known high performance
ATP systems that search for a refutation of a set of clauses, e.g., Gandalf [Tam],
SPASS [WBH+02], E [Sch02a], Vampire [RV02]. The Grand Challenge presented
in this paper is suitable for ATP systems for any formal system, but will be pre-
sented in terms of ATP systems for classical 1st order logic, and henceforth all
discussion is in that context.

ATP systems have made some noteworthy contributions to mathematics
[SFS95,McC97], are used in real-world applications [Sti94,Sch02b,CHM02], and
there is empirical evidence of progress in ATP [SFS01]. Successes of ATP sys-
tems have to be viewed in the context of the super-exponential growth of the

search space of ATP systems, which is O(NumberOfFormulae2searchdepth

). The
successes are testiment to the heuristics that guide the search towards a proof
(in refutation based systems, towards the derivation of a contradiction). With-
out such targeted search, one might suspect that ATP systems would be of little
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use to man or beast. Some might even claim that current state-of-the-art ATP
systems are capable of proving only an exceptional few interesting theorems.
While the huge search space of ATP systems is part of their challenge, it is also
the source of the Grand Challenge presented in this paper.

The logical consequences of a set of (non-contradictory) axioms form the
theory of those axioms. In such a theory there are many boring theorems, and
scattered amoung them there are a few interesting ones. The few interesting ones
include those that are singled out as theorems by human experts in the domain.
Although humans identify many interesting theorems (of a given set of axioms),
it seems inevitable that there are more out there. Our Grand Challenge is to use
ATP to generate and identify these unnoticed interesting theorems.

If an ATP system is given a set of axioms (and infinite resources) it may
generate (all) the theorems of the axioms. In order to output only interesting
theorems, modifications will be necessary. The modifications may be in the form
of internal guidance to prevent or reduce the generation of boring theorems, or in
the form of post-processing filters that identify interesting theorems in the output
stream. If such modifications can be designed and implemented, the resultant
tool may be able to discover new interesting theorems of a set of axioms. Such a
system will be proactive in the theorem discovery and proof process, rather than
reactive, as ATP systems are now. They will, it might be said, become part of
the problem rather than part of the solution.

The notion and a drive for automated discovery in science, including the use
of ATP systems, is not new [Lan98,Col01]. Newell and Simon predicted [SN58]
that a computer would discover and prove an important maths theorem, Alan
Bundy placed discovery in his “DReaM” (the acronym for his research group,
“Discovery and Reasoning inMathematics”), and Bob Kowalski has expressed
the opinion that it is “more important to discover the right theorems than to
prove unimportant ones” [Kow]. ATP systems have been used, e.g., to discover
proofs of open conjectures [McC97,Sla02], to discover new axiomatizations of
theories [Hod98,Wos01,MVF+02], to investigate plane geometry [BSZC93], and
to test automatically generated conjectures in mathematics [Zha99,Col02]. In
all these applications the ATP systems have been used as assistants to prove
conjectures that are generated using other techniques. That contrasts with the
approach proposed in this Grand Challenge, in which the ATP systems will them-
selves discover new theorems, and other techniques may be used to determine
whether or not the theorems are interesting.

This Grand Challenge of discovering new interesting theorems is not one
that can be easily met (see Section 3). However, any short term successes can
make an immediate contribution to the advancement of ATP: The development
and testing of ATP systems is somewhat dependent on the availability of test
problems that are somehow representative of applications. At present the TPTP
problem library [SS98] is a de facto standard for testing ATP systems (it in-
cludes, amoung others, many theorems that have been idenitifed as interesting
by humans). In order for the TPTP to continue to be effective it is necessary
to regularly add new problems to the TPTP, so that systems do not become
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over-tuned to solving problems in the TPTP. Since the first release of the TPTP
in 1993 it has grown from 2295 problems in 23 domains, to the current 6672
problems in 30 domains. Despite this reasonable long-term growth, some years
have been leaner than others, and consistent significant growth would make the
TPTP a more valuable resource. Any new theorems produced in partial answer
to this Grand Challenge can be added to the TPTP, which will be of immediate
benefit to ATP system developers. It is necessary that the theorems be difficult
(in the TPTP sense [SS01]) for state-of-the-art ATP systems.

2 Automatic Conjecture and Theorem Creation

There are at least four ways in which new conjectures and theorems can be
created, including the approach proposed in Section 1.

The first approach, the inductive approach, is often used by humans. Upon
observing many similar events, people often induce a general conjecture. For
example, noting that the prime numbers 5, 7, 11, 13 are all odd, the general
conjecture that all prime numbers are odd may be made. An attempt is then
made to prove (or disprove) the conjecture, and if disproved, modifications may
be made, e.g., that all prime numbers greater than 2 are odd. Such reparation of
faulty conjectures is described in [Lak76], and a project to automate such tasks
is described in [PCSL01]. The inductive approach has the advantage of being
stimulated by observations in reality, but has the disadvantage that the rule
used to produce the conjectures, induction, is unsound. As a result, many of the
conjectures produced are non-theorems, and effort is expended finding disproofs.
In some cases a disproof many be hard to find, and a conjecture remains open,
possibly considered in folklore to be a theorem, for a considerable period. An
example is the conjecture that P 6= NP .1

The second approach, the generative approach, is an extension of the induc-
tive approach. There are various ways in which the generative approach can
proceed. The simplest form of generation is syntactic, in which conjectures are
created by mechanical manipulation of symbols, e.g., [Pla94]. The MCS system
[Zha99] generates conjectures syntactically and filters them against models of
the domain. A more intelligent, semantically based, approach is taken by the
HR system [Col02]. HR starts with an initial set of concepts – supplied with
both a set of examples and a definition – and some axioms that relate the con-
cepts. It then iteratively invents new concepts based on previous ones, and uses
the examples of concepts to check for empirical relationships between the con-
cepts. Such relationships are stated as conjectures and are passed along with
the axioms to an ATP system to test for theoremhood. Conjectures that pass
the filtering are sent to an ATP system to test for theoremhood. Like induction,
generation is unsound. However, if the rules by which the generation is per-
formed are sufficiently conservative then this approach may generate a higher
fraction of theorems than the inductive approach. The effectiveness of just the

1 One could argue that unproved conjectures found inductively, such as Goldbach’s
conjecture and Fermat’s last theorem, are very advantageous to mathematics.
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generation functions used in HR is illustrated by an empirical study in which
all 46186 group theory conjectures generated were proved to be theorems, and
of those 184 were added to the TPTP [CS02]. Note that this was just an initial
study of HR’s ability to find conjectures of difficulty for theorem provers, and no
measures were used to filter the conjectures. A more sophisticated application
of HR to conjecture generation is described in [ZFCS02].

The third approach, the manipulative approach, generates conjectures from
existing theorems. An existing theorem is modified by operations such as gener-
alization, specialization, combination, etc. This approach is used in abstraction
mapping, which converts a problem to a simpler problem, and uses a solution
to the simpler problem to help find a solution of the original problem [Pla80].
Manipulation of ATP problems has also been used to produce new problems
for testing the robustness of ATP systems’ performances [Vor00]. An advan-
tage of the manipulative approach is that if the manipulations are satisfiability
preserving, then theorems, rather than conjectures, are produced from existing
theorems. However, the conjectures produced by the manipulative approach are
typically artificial in nature, and therefore uninteresting.

The fourth approach, the deductive approach, is that proposed in this paper.
It generates only theorems consequences, and may or may not use internal mech-
anisms to guide the generation towards interesting theorems. The advantage of
this approach is that every output is known to be a theorem. The disadvantage
is that many boring theorems will be generated. A major part of the challenge
is to overcome this tedium, so that boring theorems are either not generated or
are discarded internally. The deductive approach, like many functions performed
by computers, is one that cannot be realistically adopted by humans. The large
number of logical consequences that need to be considered would swamp the
ponderous human brain. It is only the capability of high-speed computing that
makes this approach viable. To paraphrase Emma Lazarus’ words [Laz83], com-
puters happily accept “your boring, your trivial, your huddled theorems who
yearn TPTP”.

3 Attacking the Challenge

Using the deductive approach to discover new interesting theorems is a significant
computational challenge. Goal directed theorem proving, e.g., the search for the
empty clause in CNF refuation based ATP, provides some obvious opportunities
for pruning and ordering the search space. In contrast, pruning and ordering so
as to ignore boring theorems and to discover interesting theorems early in the
search, seems to be a more difficult task - if ATP systems have any difficulty
with deducing a target formula, removing the target is going to make things
worse. Interesting theorems may be widely distributed in the space of logical
consequences of a set of axioms, and a search through a larger fragment of that
space seems likely to be necessary.

As a basis for a first attack on this challenge, a filtering approach is being
implemented. It is already possible to have a CNF based ATP system generate
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a stream of logical consequences, filtered so that no generated formula is sub-
sumed by an earlier one. These logical consequences can then be assessed for
interestingness. Several filters are being considered:

Non-obviousness requires a theorem to be reasonably difficult to prove. This
can be measured from the size of its proof tree, or the time taken for its proof.
It may be the case that the derivation that created a theorem is significantly
non-minimal. A directed search for a smaller derivation may lead to a theorem
being given a higher measure of obviousness than it initially received.

Novelty requires that a theorem is non-tautologous and non-redundant with
respect to other theorems and the axioms. This includes subsumption checking,
and ensuring that a theorem is not easily proved from the axioms and any of its
descendants.

Surprisingness measures new relationships between concepts. In the logic for-
malism, one way to measure is to examine the extent to which new combinations
of predicate and functions symbols occur in a theorem.

Intensity measures the extent to which a theorem summarizes the informa-
tion contained in the axioms from which it is deduced. A naive possibility is
to consider the ratio of the symbol count of the theorem and the symbol count
of the axioms (symbol counting is a common heuristic used for evaluating the
quality of a clause in ATP systems [SM96]). More complex measures involve con-
sideration of the structure of the proof tree leading to the logical consequence.
One idea which seems to warrant further attention is to rate a formula by the
average branching factor of the formula’s proof tree. This measures “bushiness”
of the proof tree. Initial empirical tests of this measure against the instincts of a
mathematician seems to correlate bushiness with interestingness. A related no-
tion is the axiom dependency of a theorem, which measures the number of axioms
required to prove the theorem. Given a set of axioms for a domain, a particular
theorem may be provable using only a subset of those axioms. For instance, in
group theory, various theorems are provable using only the identity axiom. One
could argue that such theorems are more general, hence more interesting. How-
ever, it seems more likely that if you were using a theorem generation program
to discover theorems in group theory, then the theorems which are not true of a
more general algebra would be more interesting. A good example of a theorem
in group theory requiring all the axioms to prove it is: ∀ a (a ∗ a = a↔ a = id).

Usefulness measures how much a theorem may contribute to the proof of fur-
ther theorems, i.e, its usefulness as a lemma. There have been several efforts to
identify relevant lemmas produced by ATP systems, especially for model elmi-
nation based systems, e.g., [Fuc00,DS01]. The focus of those efforts is different
from that here, their aim being to identify lemmas that will contribute to the
completion of a search for a refutation. Despite this difference, it may be possible
to adapt the underlying ideas to identifying interesting theorems. The identifi-
cation of interesting lemmas has also been investigated for proof presentation
purposes [DS96]. Another way to measure usefulness of implications may be to
generate a suite of models of the axioms, and determine the fraction of models
that make the antecedent true.
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Comprehensibility estimates the effort required for a user to understand the
theorem. Theorems with many or deeply nested structures may be considered
incomprehensible.

Applicability measures the number of objects of interest to which a theorem
applies. For instance, suppose we have this number theory theorem:

∀X (iseven(X) ∧ isprime(X)→ isodd(sum of divisors of(X)))

The left hand side of this theorem states that X is an even prime, which is only
true of the number 2. Hence this theorem scores low for applicability because it
boils down to saying that the number 3 (the sum of divisors of 2) is odd.

Interestingness in theorem discovery is a highly subjective thing. The final
arbitration as to the interestingness of a theorem must be left to human experts.
It will be necessary to be very selective about which theorems are presented
for consideration, as a stream of boring theorems will soon leave the arbitrators
disillusioned, and will leave the generator without arbitrators. The difficulty
will include predicting whether a theorem will turn out to be interesting. The
worth of a theorem may not become obvious for some time, perhaps even years,
and theorem generation programs have to predict this worth. Such prediction is
notoriously difficult.2

Most of the above measures of interestingness apply as much to open con-
jectures as to proved theorems. Moreover, measures such as novelty, surpris-
ingness, usefulness, comprehensibility, axiom dependency and applicability have
been identified elsewhere in the literature (in particular [CBW00]). Indeed, these
measures have been implemented in the HR system, as described in chapter 10
of [Col02].

Given the above considerations, Figure 1 shows a reasonable architecture for
a system that discovers interesting theorems. The logical consequences generated
by the ATP system are filtered at runtime to reduce the number to a manageable
level. Techniques used here have to be very quick so as to cope with the stream of
production. They include requiring a minimal proof tree size (an aspect of non-
obviousness), minimal intensity, and exclusion of easily identified tautologies (an
aspect of novelty). The results are stored in secondary storage. When sufficient
logical consequences have been stored the ATP system is stopped, and static
filters are used to reduce the number of stored formulae. Techniques used here
include further non-obviousness, applicability, and novelty checks. Once filtered
the logical consequences are ranked in order of interestingness for presentation to
the user. Measures used here include intensity, suprisingness, comprehensibility,
and usefulness.

4 Conclusion

A Grand Challenge for ATP has been described: Use ATP systems to discover
interesting theorems of the axioms of a domain. Additionally, for theorems to be

2 Would Diophantine equations have been so studied if Fermat had left a proof of his
so-called “Last Theorem” in the margin of his book?
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Fig. 1. System Architecture
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added to the TPTP, they should be difficult for ATP systems. This challenge
can be approached incrementally:

– Generate theorems.
– Generate theorems that are difficult for ATP systems to prove.
– Generate theorems that are interesting to humans.
– Generate theorems that are interesting to humans and difficult for ATP

systems to prove.
– Generate theorems that are interesting to humans and difficult for humans

and ATP systems to prove.

Progress past the first of these is certainly possible, and progress to the last will
be a wonderful success.

The UK Computing Research Committee has proposed a set of criteria for
assessing grand challenges in computing [GC-], which can be applied to grand
challenges in automated reasoning. Does this Grand Challenge meet these?

1. It arises from scientific curiosity about the foundation, the nature or the
limits of the discipline.
Although some theorems are proved out of commercial or other mundane
need, the search for interesting theorems is largely a scientific endeavour.
The theorems that may be generated by ATP in response to this challenge
are not specifically of interest to ATP research. Rather, it is a challenge to
see whether or not such theorems can be generated automatically.

2. It gives scope for engineering ambition to build something that has never
been seen before.
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The development of ATP systems is not new, and some of the techniques
proposed for filtering out boring theorems have been tried and tested. The
use of these in combination to find interesting theorems is new. Further, the
development of techniques that will internally guide ATP systems towards
interesting theorems will be a new feature of ATP systems.

3. It will be obvious how far and when the challenge has been met (or not).
Human arbitration of the interestingness of the theorems produced will mea-
sure progress and success.

4. It has enthusiastic support from (almost) the entire research community,
even those who do not participate and do not benefit from it.
Not yet ... in fact, only a tiny proportion of automated reasoning researchers
have addressed the question of discovering theorems, rather than proving
known theorems.

5. It has international scope: participation would increase the research profile
of a nation.
Not yet ...

6. It is generally comprehensible, and captures the imagination of the general
public, as well as the esteem of scientists in other disciplines.
The idea is simple, and comprehensible to anyone who has ever had to prove a
high school geometry theorem. The possibility of a computer inventing some-
thing new has long been a matter of debate between proponents and critics of
artificial intelligence [Dre79]. Success here would weigh heavily in that de-
bate, and would be of direct interest to the AI community and to those from
the domain of the theorems.

7. It was formulated long ago, and still stands.
Automated discovery in science is not a new idea (although I came up with
this specific instance in the shower last week), and the challenge of generating
theorems has been identified previously, most notably in [Col01].

8. It promises to go beyond what is initially possible, and requires development
of understanding, techniques and tools unknown at the start of the project.
At this stage only the first level of challenge (as itemized above) can be met.
Current understanding of what makes a theorem interesting, rather than sim-
ply true, will be extended and refined. Effective implmentations of filtering
and search techniques will have to be developed. Appropriate interfaces be-
tween ATP systems, filtering systems, and human arbitrators, will have to
be designed.

9. It calls for planned co-operation among identified research teams and com-
munities.
There is scope and necessity for cooperation between the ATP community
and experts from the domains of application.

10. It encourages and benefits from competition among individuals and teams,
with clear criteria on who is winning, or who has won.
The organizers of the annual CADE ATP System Competition [Nie02] have
discussed the design of a competition for the submission of the “most in-
teresting ATP problem”. Some of the adjudication would be subjective, and
done by human experts, while some would be based on empirical testing of the
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problems on ATP systems. These ideas may be further developed to evaluate
success in meeting this challenge.

11. It decomposes into identified intermediate research goals, whose achievement
brings scientific or economic benefit, even if the project as a whole fails.
The application of existing criteria, and the development of new criteria,
for recognizing a theorem as “interesting” will be interesting in their own
right, even if they cannot be used successfully to filter the output of ATP
systems. A deeper understanding of the structure of ATP systems’ search
spaces, resulting from attempts to guide ATP systems towards generating
interesting theorems, would be valuable to ATP in general.

12. It will lead to radical paradigm shift, breaking free from the dead hand of
legacy.
Using ATP systems to generate theorems, rather than find proofs for theo-
rems, is a departure from their common usage.

13. It is not likely to be met simply from commercially motivated evolutionary
advance.
Current commercial applications of ATP aim to find proofs and models. At
this point in time there is no apparent commercial demand for the generation
of interesting theorems.

Working on this challenge will be a pleasure and a virtue, because, as Bob
Boyer remarked about working on open problems, it is impossible to cheat.
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Abstract. It may be centuries before there is a well developed Universal
Automated Information System for Science and Technology, but such a
system is starting to grow even now. We consider various aspects of such
a system.

Let us try to look ahead a few hundred years and imagine what we may find.
Surely there will be computer-based information sources which can be used as
aids in answering questions from all realms of mathematics, science, applied sci-
ence, and technology. Just as those searching for information on the web today
tend to regard ”the web” as one monolithic information source, those who use
these information sources of the future are likely to think of them as comprising
a Universal Automated Information System for Science and Technology. What
will this system be like? One possibility is that it will be a huge kluge of sys-
tems designed by specialists from various fields using whatever techniques and
programming methodologies they found most immediately convenient. Another
possibility is that it will be a well organized union of information systems in
which formal logic and techniques of automated deduction play significant roles.

When one uses an information system, one may be seeking information which
is not explicitly in the system, but which can be derived from information which
is there. Thus, it is desirable that information systems be organized so that one
can apply logical inferences to them. This is particularly important if it is a
computer, rather than a person, that is looking for the information. People of-
ten make inferences almost subconsciously, but reasoning by computers must be
explicit. The need to derive consequences of information suggests that the infor-
mation should be represented in a form which can at least be readily translated
into a formal language for which there are well known rules of logical inference,
i.e., a formal logical language.

The Automated Information System of the future will undoubtedly have
many components which have been contributed by many different people and
projects at many different times. It seems desirable that the content of infor-
mation in the system be separated from mechanisms for retrieving and deriving
information, so that improvements in the retrieval and inference mechanisms

0 This work was supported by NSF grant CCR-0097179.
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can be made in a modular way which will benefit users of all components of the
system.

Sometimes one asks a question which can be answered only by using knowl-
edge from several disciplines. Thus, it is highly desirable that the Automated
Information System be well integrated to facilitate dealing with such questions.

Let us consider as a very grand challenge the design and development of a
Universal Automated Information System for Science and Technology having at
least the following features:

• There are formal logical systems (formal languages with rules of reasoning)
in which one can represent, in useful and natural ways, all the statements
which might be made in the fields of mathematics, computer science, physics,
chemistry, biology, engineering, medicine, and other physical sciences and
applications of physical science. In particular, all information which is used
in these fields is representable in these logical systems.

• There are good interfaces for these logical systems. There are algorithms
for translating statements between different formal languages, and between
formal languages and natural languages.

• Virtually all of the knowledge which constitutes the fields mentioned above
is expressed in these formal systems. This includes not only factual data,
but also definitions and fundamental principles which one may regard as
axioms, hypotheses, or theorems. This knowledge, as so represented, is stored
in computerized information libraries.

• The system grows continually as new knowledge is made available to it.
• There are Automated Reasoning Systems which can access this knowledge

and apply logical inferences to derive answers to a great variety of ques-
tions. Calculations, algorithms, decision procedures, and special techniques
for special problems are applied appropriately. These Automated Reason-
ing Systems can be applied to work automatically, semi-automatically, or
interactively.

Of course, many people have been thinking about such a system, in at least a
casual way, for many years. Indeed, the QED project [7] is concerned with build-
ing such a system for mathematics, and many of the same considerations apply
to both. A system having all the features described above may take centuries to
develop, but the Automated Information System of the future is growing right
now, and it is important to encourage growth in the right directions. Good plans
about how such a system should grow could have enormous future benefits. Let’s
think about the design of such a system.

It is not easy to make good plans about complex projects, and people will dis-
agree about many details. One should try to reach as much consensus as possible
on basic ideas and principles underlying the project, and explicitly plan for ways
of handling disagreements. For example, different choices of formal languages
may be accommodated by suitable interfaces and translation mechanisms. In
the long run, the system will evolve in ways that no one can foresee or control.

Most information is written in a natural language (such as English or French),
but to obtain the benefits of automated deduction one needs (some of) this
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information to be expressed in a formal logical language. Enormous progress
could be made in developing automated information systems if suitable portions
of natural language could be translated automatically into symbolic logic. For
example, if one could translate all the theorems and definitions in Bourbaki’s
Elements of mathematics [4] into machine-readable formulas of symbolic logic,
one would have a very impressive mathematical library for automated reasoning
systems to use.

Formalization of the knowledge in any intellectual discipline is an enormous
task. However, handling the details involved in such a task and testing various
aspects of the formalization are greatly facilitated by using a general-purpose
theorem-proving system (such as TPS [10]) which can be used in a mixture of
automatic and interactive modes and has suitable library facilities. Automated
deduction makes formalization much more tractable than it has ever been, and
formalization will continue to become more tractable as theorem-proving systems
improve.

Mathematics, which is often referred to as the language of science, plays
a role in all technical disciplines, so a language which is used to formalize a
technical discipline should at least be adequate for formalizing mathematics.
Type Theory [1] and axiomatic set theory [9] have been studied extensively as
general purpose languages for expressing mathematics. If one has an information
system which is based on first-order logic, one can simply regard it as being
based on type theory, which includes first-order logic. If one uses some extension
of axiomatic set theory, it must be an extension of a formulation such as [9]
which accommodates entities which are not sets.

As far as formalization is concerned, mathematics has received much more at-
tention than other disciplines. Still richer languages than those needed for math-
ematics may be needed to formalize certain disciplines in suitably natural ways.
For example, it may be desirable to incorporate into the formal language of sci-
ence some representation of the diagrams of molecular structure which chemists
use. Actually, diagrams are used in mathematical reasoning too1, and the rel-
evant theory for Venn diagrams is well developed [6][8]. However, at present,
facilities for using Venn diagrams are not integrated into most general-purpose
automated theorem proving systems.

Answering a question or solving a problem involves much more than deriving
a statement which expresses the answer from relevant information. One must
find the answer as well as prove that it is correct. This may involve search,
logical deduction, and a variety of special techniques. We mention [5] and [11] as
examples of research in this area. One way of testing problem-solving techniques
is to formalize the information in relevant textbooks, and see if the problem-
solving techniques are adequate for automatically doing the exercises in those
textbooks.

1 See [3] for persuasive arguments about using diagrams in mathematical proofs in
ways that involve no compromise with complete rigor.
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Finding relevant information becomes an increasingly serious problem as the
amount of available information increases. There will be an ongoing need for
research on this problem.

One well known method of finding relevant information is to classify items of
information, and retrieve items with relevant classifications. Existing classifica-
tion systems need to be extended so that (in mathematics, for example) one can
classify not only books and articles, but also theorems, definitions, and examples.
Current classification systems leave much to be desired, at least in mathemat-
ics. Mathematicians sometimes have trouble finding out whether a theorem they
have proven has been proven before. The most practical method of answering
this question is usually to rely on the the memories of experts in the field.

One would hope to at least have effective ways of determining whether a
specified theorem is already in the Automated Information System. This can
be a nontrivial problem, since there are many ways of expressing mathematical
theorems. For example, the statements “Every function which has an inverse is
bijective” and “A function which is not bijective cannot have an inverse” are
clearly two ways of expressing the same theorem. One can think of a variety
of ways to make trivial changes in the ways theorems are expressed without
changing the essential mathematical content of the statements. Can we find
some natural equivalence relation on the set of statements of a formal language
for expressing mathematical theorems such that equivalent statements should
be regarded as expressing the same theorem? Clearly logical equivalence is much
too broad for this purpose, since all provable statements are logically equivalent
to each other.

A classification scheme for mathematics should be robust. Different ways of
expressing a theorem should not lead to different classifications for it.

One would like to have a classification scheme for mathematics which is based
on some fundamental understanding of the structure of the field of mathematics,
and which is objective. We don’t want to have to convene a committee of math-
ematicians to decide how a new theorem should be classified. Unfortunately, we
don’t yet have any such fundamental understanding of the structure of mathe-
matics.

Of course, classification is another area where there can be disagreements.
Different classification schemes may be most appropriate for different purposes,
or simply preferred by different people. One solution to such disagreements is to
permit many classification schemes to be available simultaneously, and permit
users to decide which classification to use at any particular time. Such a multiple
classification system has been implemented for the TPS library by Chad Brown;
it is described briefly in [2]. It remains to be seen whether complications arise
when one tries to establish multiple classification schemes for enormous amounts
of information.

Since the information in the Automated Information System will be con-
tributed by many people and processes at many different times, some of it is
likely to be unreliable or obsolete. Systems which provide some degree of au-
thentication for certain components of the entire information system will be
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needed, and automated reasoning systems will need to keep track of the sources
of information they use.

The development of an Automated Information System such as we have been
discussing is indeed a very grand challenge. Developing such a system would not
only provide an intellectual tool which would elevate our ability to reason reliably
about complex technical questions to a new level, it would also lead to a deeper
understanding of the nature and structure of our knowledge. Developing such
a system involves working on a number of tasks which are themselves grand
challenges. We close by summarizing some of these:

• Develop general standards which would permit the many components of the
Automated Information System to be used together in a harmonious and
efficient way.

• Promote widespread discussion and adoption of these standards.
• Study what extensions of existing formal languages may be needed for the

formalization of various scientific and technical disciplines. Investigate
whether various formal languages satisfying these requirements may be re-
garded as specializations of a single more general formal language.

• Formalize the knowledge in all scientific and technical disciplines.
• Develop automated systems for translating between various formal and nat-

ural languages.
• Develop improved methods of retrieving relevant knowledge.
• Develop good classification schemes for knowledge in all technical disciplines.
• Improve theorem-proving systems.
• Improve and extend question-answering and problem-solving systems which

are based on automated deduction.
• Develop mechanisms for safeguarding, verifying, monitoring, and assessing

the reliability of information obtained from the Automated Information Sys-
tem.

• Find ways to influence the education of students in scientific disciplines so
that eventually workers in these fields will be familiar with formal logic and
automated reasoning tools, and will be able to effectively use and contribute
to those components of the Automated Information System which are rele-
vant to their special interests.
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Abstract. Grand mathematical challenges do exist in pure mathemat-
ics. Are some of the acute mathematical problems that we face when
mechanizing mathematics true challenges? This short paper tries to as-
sess through a few examples that they are indeed so.

1 Introduction

The quest for mathematically challenging problem is present in any field of
science. A very recent example is from material science (Taylor [1]). However, the
most famous challenges concern Mathematics itself. A puzzling one was the proof
of Fermat’s theorem. It is barely necessary to cite the landmark presentation of
David Hilbert at the 1900 Paris Conference. His list of problems for the 20th
century was then extended to the well-known set of the 21 Hilbert’s problems.
On the eve of the 21th century, the International Mathematical Union asked
a selected number of top mathematicians to contribute a similar list for the
coming century. The contribution of Steve Smale has been widely distributed. It
appeared first in the Mathematical Intelligencer (Smale [2]). Two years later a
version in French (Smale [3]) appeared in the January issue of the Bulletin of the
French Mathematical Society. It looks like Smale’s list got a wide agreement and
no other list of challenge problems has, apparently, been published. The three
greatest open problems of mathematics are: the Riemann Hypothesis (Hilberth’s
16th), Poincaré conjecture and ”Does P=NP?”. The latter is already tightly
linked to our domain. One of the remaining challenging mathematical problems
is very relevant to this community. It amounts to answer the question ”What
are the limits of (artificial or natural) intelligence?”. This simple, apparently
philosophical question leads in fact to very difficult mathematical problems such
as the decidability of the Mandelbrot set. Besides, it is not obvious whether or
not there is a link to the implications of the Gödel incompleteness theorem.

To propose a definition of a mathematical challenge in theorem proving or
in computer algebra that can be acknowledged by mathematicians is always
touchy and sometimes impossible. However, if we introduce either of the words

? Work partially supported by the Calculemus Reserach Training Network, HPRN-
CT-2000-00102
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”mechanized” or ”constructible” to qualify the part of Mathematics we deal
with, we can then open a few tracks along the following directions.

(i) Mechanize new areas of Mathematics such as algebraic topology or better
Grothendieck’s theory when also including geometry. Indefinite symbolic inte-
gration is a well-known example where a problem in analysis was turned into an
algebraic problem. The methodology is constructive since Risch’s algorithm de-
cides whether or not integrability exists. It is also mechanized since the solution,
when it does exist is constructed,

(ii) Identify and master new representations of mathematical objects. This
is well understood when designing algebraic algorithms for computer algebra
systems. A certainly challenging task is to investigate how algebraic fields (Lau-
mon [4]) could be introduced in mechanizing algebraic geometry problems. Also
relevant are proof techniques in algebraic topology. This is a domain where the
infinity plays a very special part compared to algebra, analysis, geometry of al-
gebraic geometry. In these domains, the infinity is not really a challenge since
proofs do not have to namely address this concept. In algebraic topology, the
concept of infinity is very important when designing proofs,

(iii) Devise new proof techniques for domains where the amount of compu-
tation, not the theoretical difficulties is the challenge. An example is to prove
some theorems on p-groups that would take a lifetime by hand calculation,

(iv) Space and time complexity issues when designing proofs and algorithms.
Besides the ”P=NP ?” problem already quoted, a prototypical example is the
factorization of integer numbers. More practical examples arise when trying to
improve doubly exponential algorithms such as the Gröbner bases algorithm,
which play an important part in theorem proving in geometry, or when dealing
with parameters as in constraint programming, which concerns any computing
problem

(v) What means to prove? This looks like a silly question but a domain
as demanding and ”theoretical” as provable security sheds some light on this
question.

The remaining part of this abstract is devoted to the presentation of some
specific problems.

2 Provable security and proofs

The deduction community is much concerned by designing proof techniques for
security protocols and there are many publications in this domain. It may be
worthwhile to restrict the question to the simpler one ”what is provable secu-
rity?” and then to assess the part played by proofs in the answer. This is a
domain of standard cryptography and a very nice state of the art is available
in (Stern [7]). Provable cryptography is an attempt to mathematically establish
security. This is indeed very difficult and as a result, what is available is a form
of ”practical” provable security. It is possible to decompose provable security
into 5 steps:

1. define the goal of the adversary,
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2. define a security model,

3. provide a proof by reduction,

4. check the proof,

5. interpret the proof.

A first remark is that we are in engineering, not in mathematics but concepts
are expressed mathematically. A second one is that provable security does not
necessary yield proofs that are sound. What really matters, is that public key
encryption cannot be broken. As a consequence it is not that surprising to notice
that the 4th point on checking proofs may assert that a proof for an encryption
mechanism is false. In fact ”this does not matter so much”. Indeed, there is
usually enough time left, before the encryption is broken, to come out with a
right proof.

An open but difficult problem is to extend provable security to security proto-
cols. One may guess that this task implies to introduce a concept of randomness
in the date structures and of probability in the proof techniques.

3 Involutive bases

Systems of polynomial equations are solved using Gröbner bases and the re-
lated Buchberger’s algorithm. A Gröbner basis is simply a basis with ”good”
properties in a given ideal. Involutive bases are a very special kind of Gröbner
bases with additional combinatorial properties that make them very useful for
many applications (Calmet [5]). They were first introduced by Janet a very long
time ago and almost forgotten for many years.They exist in many polynomial
algebras (also non-commutative ones) including ordinary polynomials and linear
differential or difference operators. They are thus a possible approach to inves-
tigate symbolic solutions to system of (partial) differential equations. This is a
domain where we need to find a suitable representation for differential objects.
An overview is given in the final report of an INTAS project (Calmet [6]).

On the theoretical side, numerous results on the relationships between dif-
ferent kinds of involutive bases, Gröbner bases and characteristic sets have been
obtained both for ordinary and for differential ideals. Several characterisation
theorems for involutive bases have been proven and the computation of (differ-
ential) dimension polynomials has been studied. We have thoroughly investigated
the homological approach to involution via Spencer cohomology. An algebraic
algorithm for the geometric completion to involution was developed (including
a constructive solution of the problem of the so-called delta-regularity).

Although we label these results ”theoretical”, they are in fact pretty techni-
cal. Any of them require to establish existence and validity proofs. The leading
idea is that when we identify the right representation, then proofs and thus the
algorithms that are images of such proofs are much easier to discover. A much
more challenging facet of what involutive bases are leading to is subsumed by
the concept of global integrability.
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4 Global integrability

Given a system of non-linear partial differential equations, can we decide of its
integrability? A first answer is that we have tools, such as the Cartan-Kuranishi
theorem, to decide of the local integrability but none to assess the global integra-
bility. Physicists and mathematicians are investigating this problem for around
50 and 100 years respectively and no satisfactory solution is yet found.

A possible approach is to investigate the impact of involutive techniques
outlined in the previous section in field theory, a domain of Physics. Most, if
not all, physical models are represented by systems of partial differential equa-
tions. Among such systems are the well-known Yang-Mills or Einstein equations
for instance. Without aiming at doing better than what the very many expert
physicists of string theory are doing, it is possible to study whether some sys-
tems are integrable or not. What is challenging is to solve symbolically over- or
under-determined systems of polynomial or differential equations or in simpler
terms to extend the concept of Gröbner bases to such systems. This is again
an old, well-known problem that was much earlier investigated by Cartan and
his co-workers before being put aside. The need to design constructive methods
in mechanized mathematics was at the origin of a revival. But, we still need to
find out the proper representations in which to better formulate involutive bases.
Again in very simple words, we are in a situation where we can get some infor-
mation on local solutions of non-linear systems and we aim at extending them
to some kind of non-local neighborhood. At this stage it is worthwhile to assess
whether algebraic topology can be the key tool leading to a breakthrough in this
domain. Physics texbooks such as (Weinberg [8]) report that algebraic topology
is already playing a role in obtaining approximate solutions to physical systems.
This is a truly challenging problem where the challenge is to design constructive
proofs and decision methods. This is a task better suited for computer scientists.

5 An example in group theory

This is a prototypical domain where problems are more tedious and repetitive
than dificult. Some open proof problems could take a lifetime to be completed by
hand calculation. This area reminds of the beginning of computer algebra. The
first successes that established the field were obtained in high energy particle
physics, celestial mechanics or general relativity where repetitive, very long and
tedious computations were required. Besides exceeding the human capability,
they were also error prone when done on paper.

A test problem is as follows, where the word suitable is used to avoid a too
long presentation of the problem:

Given a “suitable” infinite collection of p-groups, give a formula for the
least n such that the i-th group in the collection can be embedded in Sn,
not in Sn−1.

This is, according to the experts, a very long term project even when coupling
DSs and CASs. However, when analyzing the problem, it is possible to identify
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sub-problems. Many of them are purely computational ones. For instance, one
must compute determinants of matrices. Depending on the size of these matrices,
a very thorough management of the computation is required. There are deduction
problems as well. One of them is supposed to be simple and can be seen as a
test of feasibility.

Can we prove, by machine, that every subgroup of Qn2 , the quaternion
group of order 2n, is normal?

Solving such problems would bring fame in the group theory community.

6 Conclusion

This selection of a few computational domains where a need for new proof tech-
niques looks pretty obvious shows, hopefully, that we are facing some very chal-
lenging mathematical problems. Some may be qualified to be grand. The list
here, as said by Smale in his paper, is only taken from problems where the
author has some experience. This is a further proof that it ought to be easely
enlarged. It is not explicitely mentioned in the section on global integrability
that the required tools belong to algebraic topology. This is a domain where
contacts to computer science are rather limited. Two pieces of works are worth
citing. A first one is by Jesus Aransay at the University of La Rioja in Spain. It is
on progress and performed within Calculemus. It deals with proving theorems in
algebraic topology. A second one is the KENZO computer algebra system of F.
Sergeraert at the Fourier Institute in Grenoble. It is the only computer algebra
system enabling to perform computations in algebraic topology.

A last word is that a true grand mathematical challenge means to solve
a problem leading to fame in either Mathematics or Physics rather than in
Computer Science.
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Concept Formation

Christoph Walther ?
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1 Introduction

The frequent need of user interaction is commonly considered as one of the
main obstacles for accepting theorem proving technology in applications, like
e.g. program verification. User interaction is often needed to support a system
in the construction of a proof. This requires a certain competence in logic and
in proof engineering, a competence non-expert users neither possess nor are
willing to acquire. Therefore many efforts in the community aim to improve the
inference machinery of a system in order to relieve a user from the burden of
proof construction as far as possible.

But user interaction is also needed to provide a system with useful lemmas
and concepts which are necessary to prove a certain theorem. These kind of in-
teractions often requires a deep insight into the domain of discourse, and working
out the missing notions can be a tedious and frustrating effort, even for users
well familiar with theorem proving.

In this note, we focus on the latter problem and illustrate the need of machine
support for concept formation by four examples. By “concept formation” we
understand the invention of mathematical notions which are not provided by a
given formal presentation, i.e. an axiomatization of some theory, but are needed
to formulate a required generalization of a statement or to speculate a required
lemma.

2 Generalization and Lemma Speculation

When proving theorems by induction, often lemmas are required to complete
the proofs of the induction formulas representing the base and the step cases
of the induction. For a statement to be verified, a system creates the induction
formulas and then calls a first-order theorem prover to compute the proofs for
these formulas. However, quite often an induction formula is not valid because
some lemma is missing, and then the theorem prover gets stuck. Now to continue,
such a lemma has to be provided and verified, and then the failed proof attempt
is resumed having the new lemma available now.

Sometimes the required lemma evolves by a generalization from the proof-
goal under consideration, e.g. by replacing terms with (universally quantified)

? Chr.Walther@informatik.tu-darmstadt.de
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variables, dropping disjunctive parts of a formula, strengthening the proof-goal
by adding a conjunctive part etc., cf. e.g. [10].

For instance, when proving the ordering property of Insertion Sort, a prover
may get stuck with the proof obligation

∀k:list. k 6= ε ∧ ord(isort(tl(k)) y ord(insert(hd(k), isort(tl(k)))) (1)

from which the missing lemma

∀k:list, n:nat. ord(k) y ord(insert(n, k)) (2)

is easily spotted by a generalization.1

In other cases, properties of the functions involved with a statement have to
be speculated and formulated as a lemma. E.g. when verifying the correctness
of a Byte Adder, a theorem prover may get stuck with the proof obligation2

∀c:bit, x:byte. c 6= O ∧ lsb(x) 6= O y
dbl(byte2nat(byte-inc(rshift(x)))) = succ(succ(dbl(byte2nat(rshift(x)))))

(3)
a proof of which requires a lemma about byte-inc, viz.

∀x:byte. byte2nat(byte-inc(x)) = succ(byte2nat(x)) . (4)

These problems are a bit harder than the generalization problems, because the
missing lemmas do not evolve directly from the proof goal on which the theorem
prover failed.

The generalization problem is a special case of the lemma speculation prob-
lem. Both problems are well recognized in the theorem proving community, and
several proposals exist to spot the missing lemma by machine, cf. e.g. [2], [3],
[4], [5], [6], [7], [8], [9], [11], [12].

3 Cases for Concept Formation

Matters become more complicated, if additional notions are required to for-
mulate the missing lemma. Here a new concept has to be invented, i.e. some
mathematical notion which is not directly available from the given presentation.
We illustrate some cases for concept formation by four examples.

Example 1 In the first example, we consider the permutation property of
Mergesort. When proving the step case, a theorem prover may get stuck with

1 Throughout this note, linear lists list over natural numbers nat are defined by
the data structures structure nat <= 0, succ(pred:nat) and structure list

<= ε, add(hd:nat,tl:list).
2 Bits and bytes are defined here by the data structures structure bit <= O, I and
structure byte <= null, mkbyte(rshift:byte,lsb:bit).
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the proof obligation

∀k:list, n:nat. k 6= ε ∧ tl(k) 6= ε ∧ n = hd(k) ∧ n = hd(tl(k)) ∧
∀n′:nat. occurs(n′, dis.ev(k)) = occurs(n′,msort(dis.ev(k))) ∧
∀n′′:nat. occurs(n′′, dis.odd(k)) = occurs(n′′,msort(dis.odd(k)))

y occurs(n,merge(msort(dis.ev(k)),msort(dis.odd(k))))
= succ(succ(occurs(n, tl(tl(k))))) .

(5)

Here the problem is, that the induction hypotheses cannot be applied by the
presence of merge in the (simplified) induction conclusion.3 Now, being familiar
with the meaning of the procedures in (5), it is obvious that the lemma

∀k, l:list, n:nat. occurs(n,merge(k, l)) = plus(occurs(n, k), occurs(n, l)) (6)

will help, because it removes merge from the goal-equation in (5), thus making
the induction hypotheses applicable. To complete the proof, further lemmas, and
in particular the commutativity of plus, are required.

However, the definition of plus is not provided with the original problem,
which means that the concept of addition has to be invented before starting to
speculate lemma (6). To solve the problem by machine, a system may use an
undefined procedure

function F(x:nat, y:nat):nat <= ? ,

start an induction proof of

∀k, l:list, n:nat. occurs(n,merge(k, l)) = F (occurs(n, k), occurs(n, l)) (7)

and retrieve the definition of F from the unsolved proof obligations in this in-
duction proof. But unfortunately this approach fails, because F had to be syn-
thesized as a commutative definition of addition.

Example 2 Sometimes, there is not an unique concept to invent (as in the
Mergesort case), but alternatives exist. This introduces the risk to do more work
than required, simply because one failed to discover are more superiour concept.
We illustrate this problem by an example from the verification of Quicksort.

When verifying the ordering property of this algorithm, a theorem prover
may get stuck (in the step case) with the proof obligation4

∀k:list. k 6= ε ∧
ord(qsort(sm(hd(k), tl(k)))) ∧ ord(qsort(lg(hd(k), tl(k))))

y ord(app(qsort(sm(hd(k), tl(k))), add(hd(k), qsort(lg(hd(k), tl(k)))))) .
(8)

3 The procedure dis.ev computes a sublist of its argument list by disregarding all list
elements on odd argument positions, and dis.odd performs a similar computation
by disregarding all list elements on even positions.

4 A procedure call sm(n,k) computes a sublist of k by disregarding all list elements
which are larger than n, and lg(n,k) performs a similar computation by disregard-
ing all list elements which are smaller than or equal to n.
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Being familiar with the “idea” of Quicksort, it is rather obvious what is missing
here: If l and k are ordered lists, then app(k, l) is also ordered, provided the last
element of k is less than or equal to the first element of l. To formulate this
observation, the concept of the last list element is needed, and one obtains

∀k, l:list. ord(k) ∧ last(k) ≤ hd(l) ∧ ord(l) y ord(app(k, l)) (9)

as one of the key-lemmas for this verification problem. In course of the proof,
another concept, viz. list membership, is also required to state, e.g., that sm(n, k)
and qsort(k) both compute a sublist of k.

When proving (8) with the XeriFun system, cf. [1], [13], 9 auxiliary lemmas
have to be formulated, all of which have an automated proof.5 However, the
proof of (8) requires 7 user interactions to tell the system which of the auxiliary
lemmas has to be applied next.

As this is an unusual bad performance of the system, we looked for an al-
ternative for proving (8). To this effect, the concepts of a lower and an upper
bound of a list are invented, and using these notions, one of the key-lemmas for
proving (8) is formulated as

∀k, l:list. ord(k) ∧ upper.bound(k, hd(l)) ∧ ord(l) y ord(app(k, l)) . (10)

This time, 13 auxiliary lemmas about upper and lower bounds are needed, stating
e.g. that an upper bound of k also is an upper bound of sm(n, k) and of qsort(k).
All these lemmas have an automated proof too, but now the proof of (8) requires
only one user interaction. Moreover, this interaction is not needed, if the system
is given more resources for search, whereas with the former attempt, the need
for all interactions persists.

As the auxiliary lemmas in both attempts do not express deep thoughts and
are rather obvious to spot, the concepts of an upper and an lower bound are
obviously more useful here than the concepts of the last list element and list
membership. Hence this example rises the question, how to find a good concept
a priori, i.e. without exploring several alternatives.

Example 3 Having an idea for a good concept sometimes is not enough. Also a
good representation matters, in particular when the domain of discourse is not
so simple as for the sorting algorithms. To illustrate this point, let us consider
an example from the verification of Binary Search. Imagine a procedure

function find(key:nat, a:list, i:nat, j:nat):bool <= ...

which decides whether a key is stored between the indices i and j in an ar-
ray a with dimension 0.. |a|-1 (represented by a linear list). The procedure find
operates according to the binary search method: If i > j, then false is re-
turned, and the result is a [i] = key if i = j. In the remaining case i < j holds,
and find(key, a, i, i+ b j−i

2
c − 1) is recursively computed if key < a

[

i+ b j−i
2
c
]

,

5 The statements about system performance refer to system version 2.6.1.
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find(key, a, i+ b j−i
2
c+ 1, j) is recursively computed if a

[

i+ b j−i
2
c
]

< key, and
otherwise true is returned as result.

The completeness property of find is stated as

∀a:list, key:nat. ord(a) ∧ key ∈ a y find(key, a, 0, |a|-1) (11)

where key ∈ a is computed by searching key in a step by step. The difficulty
in proving (11) is typical for a statement involving a tail-recursive procedure
like find stemming from the body of a loop: The variables which vary in a
procedure (or in the loop-body respectively), viz. i and j in the present case, are
replaced in the statement with non-variable terms representing the initialization
of the loop-variables, viz. 0 and |a|-1 here, thus preventing an induction upon
these variables. So to enable an induction, (11) has to be generalized, and to
formulate the required generalization a new concept, viz. the partition a [i..j] of
an array has to be invented. This concept allows to formulate the generalization

∀a:list, key, i, j:nat.
j < |a| ∧ ord(a) ∧ key ∈ a [i..j] y find(key, a, i, j)

(12)

from which a proof of (11) immediately is obtained, by using a further lemma,
viz.

∀a:list, key:nat. key ∈ a y key ∈ a [0.. |a| -1] . (13)

Having spotted the missing concept, a representation has to be developed for
it such that subsequent proofs are supported. A straightforward representation
of key ∈ a [i..j] is obtained by defining a procedure

function partition(a:list,i:nat,j:nat):list <= ...

representing a [i..j] by computing the sublist of a between the indices i and j.
Now the lemmas

∀a:list, key, i, j:nat.
j < |a| ∧ ord(a) ∧ key ∈ partition(a, i, j) y find(key, a, i, j)

(14)

and

∀a:list, key:nat. key ∈ a y key ∈ partition(a, 0, |a|-1) (15)

have to be proved. However, we failed in proving (14) when following this idea.
New subgoals were created involving the creation of new lemmas, which in turn
raised new subgoals etc., until we gave up. An analysis of this tedious and frus-
trating effort revealed that the problem is the use of partition. Roughly speaking,
this procedure (using tl) strips of the list elements in a between positions 0 and
i−1 from the beginning of a and cuts of (using a procedure butlast) the list ele-
ments between |a|-1 and j+1 working from the end of a towards the beginning.
The problem caused by this approach is that by the presence of butlast, the use
of the induction hypotheses and auxiliary lemmas is spoiled so that the proofs
do not get through, cf. [15] for details.
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But fortunately, this problem immediately disappears if key ∈ a [i..j] is im-
plemented directly, i.e. by using a procedure

function in.partition(key:nat, a:list, i:nat, j:nat):bool <= ...

instead of partition as the new concept. Now the required generalization (and
the auxiliary lemma) are expressed as

∀a:list, key, i, j:nat.
j < |a| ∧ ord(a) ∧ in.partition(key, a, i, j) y find(key, a, i, j)

(16)

and
∀a:list, key:nat. key ∈ a y in.partition(key, a, 0, |a|-1) . (17)

Both lemmas are easily proved, because the definition of in.partition is less
complicated than the definition of partition. This example illustrates the general
problem to distinguish a good representation of a new concept from a bad one
a priori.

Example 4 In the final example, we consider the verification of a code gen-
erator, computing machine code from WHILE-programs. The language of WHILE-
programs consists of conditional statements, while-loops, assignments, compound
statements and a statement for doing nothing. WHILE-programs are defined by
a data structure wprog and represent abstract syntax trees which e.g. are com-
puted by a compiler from a program conforming to the concrete syntax of a
programming language to be available for subsequent code generation.

An operational semantics for WHILE-programs is given by an interpreter

function eval(r:state, wp:wprog):state <= ...

which maps a program state and a WHILE-program to a program state. Instead
of interpreting a WHILE-program wp by the interpreter eval, wp can be compiled
into a machine program by some procedure

function code(wp:wprog):mprog <= ...

in order to execute the generated code by some target machine. Machine pro-
grams are defined by some data structure mprog, and the operation of the target
machine is defined by another procedure, viz.

function exec(r:state, pc:nat, mp:mprog):state <= ... .

This procedure defines an operational semantics for machine programs, which
are executed step-by-step by fetching and executing the instruction to which the
program counter pc actually points in the machine program mp.

The correctness property for the code generator code is formally stated by

∀wp:wprog, r:state. eval(r, wp) = exec(r, 0, code(wp)) . (18)
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The induction proof of (18) develops into 3 base and 3 step cases. The base cases
are easily proved, but the step cases require lemmas which are not that easy to
spot. In the first step case, for instance, in which wp is a compound statement
of the form wp1;wp2, the proof obligation

∀wp1, wp2:wprog, r:state.

r 6=⊥ y
exec(exec(r, 0, code(wp1)), 0, code(wp2))
= exec(r, 0, app(code(wp1), code(wp2)))

(19)

is obtained after simplifying the induction conclusion. This proof obligation can
be straightforwardly generalized to

∀mp1,mp2:mprog, r:state, pc:nat.
exec(exec(r, pc,mp1), 0,mp2) = exec(r, pc, app(mp1,mp2))

(20)

in order to prove (19) with this equation. However, the generalization (20) does
not hold. The “debugged” version of (20) reads as

∀mp1,mp2:mprog, r:state, pc:nat.
pc < |mp1| ∧HALT.free(mp1) ∧
closed+(mp1) ∧ closed−(mp1) ∧ closed−(mp2)
y exec(exec(r, pc,mp1), 0,mp2) = exec(r, pc, app(mp1,mp2))

(21)

where the new concepts of a HALT.free, a closed+ and a closed− machine
program had to be invented in order to formulate (21). Here a machine program
mp is HALT.free iff mp is free of HALT instructions, mp is closed+ iff mp has
no JUMP- or BRANCH-instructions moving the pc beyond the last instruction of
mp, and mp is closed− iff mp has no JUMP- or BRANCH-instructions moving the
pc before the first instruction of mp. Without demanding HALT.free, closed+

and closed− for the machine programs in (21), counterexamples for (20) exist,
see [14] for details.

The new concepts are also required to formulate auxiliary lemmas similar to
(21), which are needed for the remaining step cases. This example illustrates,
that sometimes a deep insight into the domain of discourse is required in order
to develop the necessary concepts.

4 Summary

We have demonstrated the need of concept formation by four examples with in-
creasing difficulty in the concept formation task. Computer support for problems
of the kind given in Example 1 seem not that difficult to obtain, and examples
of this kind provide a good starting point to analyze and tackle the problem.
However, problems like in the remaining examples seem to be much harder to
solve by machine, as they require much more insight into the domain of discourse
than problems like in the first example.

It is our strong believe that the acceptance of theorem proving technology
will grow significantly, if reasoning systems are able to solve concept formation
problems of the kind illustrated by the examples of this note.
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A Grand Challenge for Computing Research:

A Mathematical Assistant
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The mathematical assistant

Scientists, engineers and students would all benefit greatly from the help of a
mathematical assistant. Such an assistant should be rigorous and indefatigable,
and have vast amounts of mathematical knowledge at her fingertips. Since these
are precisely the qualities we appreciate most in computers, computers ought
to make excellent mathematical assistants. Indeed, in specialized domains, com-
puters already are useful mathematical assistants. For example:

– Computer algebra systems can compute complex indefinite integrals and
solve difficult algebraic equations;

– Matrix packages can perform large and tedious matrix computations.

However, we lack systems that have the breadth as well as the depth of knowledge
of a working mathematician. Systems typically do not reason at the meta-level
about how they solve problems. They are unable therefore to explain their an-
swers, to apply their expertise to new domains, or to reason about the quality
of their answers. In addition, systems are neither pro-active nor adaptive. They
do not leap in and offer the user help. They require the user to know when and
how to call them.

The challenge then is to develop an automated mathematical assistant with
both breadth and depth of mathematical expertise. The assistant should coop-
eratively help users solve their mathematical problems, adapting and learning
over time. Such an assistant would be able to:

– Prove that a complicated series diverges;
– Identify parameters for which an indefinite integration is “dangerous”;
– Construct a counter-example to the security of the user’s cryptographic

scheme, and suggest how to modify it;
– Explain an integral over the real line by identifying a suitable contour in the

complex plane and locating all the poles;
– Find a large combinatorial object like a projective plane of order 10;
– Prove the uniqueness of a solution to Laplace’s equation by appealing to a

general purpose uniqueness proof method.

A mathematical assistant will have skills across a wide range of topics, from the
very formal and axiomatic (e.g. constructing theories, identifying inconsistencies,
proving meta-theoretic results) to the very applied (e.g. numerically solving a
set of partial differential equations).
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Is this research?

Such an assistant will require research in a wide number of areas. These include:

Knowledge representation: a mathematical assistant will need a large ontol-
ogy of mathematical information at both the object and the meta level;

Automated reasoning: a mathematical assistant will need rich and complex
inference mechanisms;

Learning: a mathematical assistant will need to learn new mathematics;
User modelling: a mathematical assistant will need to infer the user’s goals

and intentions from their actions;
Databases: a mathematical assistant will need to access vast mathematical

databases in complex ways (e.g. search a database for a balanced incomplete
block designs with some given properties)

Distributed computation: a mathematical assistant will need to know how
to break large computations down to tap into the GRID;

Is it a grand challenge?

It is certainly a challenge since we could fail. AI has had success in narrow do-
mains (witness expert systems) but broad expertise, like that proposed here,
is a much more challenging and uncertain goal. What about the other criteria
identified in the call for submissions to the workshop? This challenge arises from
curiosity about the limits of how much mathematics we can automate. It aims
to build something never seen before. It ought to be obvious when the challenge
is met since we will stop asking our mathematical colleagues for help. It will be
useful to the whole scientific community so should gain their support. It is of a
scale that will require international participation. It will be comprehensible to
the general public. It was formulated long ago (at least as far back as Leibnitz’s
desire to reduce all mathematics to calculation). It will take us way beyond the
domain specific mathematical tools available today. It will require planned co-
operation between many different research projects. Even partial success will
improve the mathematical tools available. Finally, given the scale and ambi-
tion of the challenge, it is unlikely to happen through the evolution of existing
commercial products.
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While there are many challenges and open questions in automated reasoning,
there are two I consider to be particularly interesting (for me) and pressing (for
the community).

1 Understanding the Search Space

Nearly 40 years have passed since Robinson’s ground-breaking paper on resolu-
tion and unification, and Otter, the earliest and probably still most prominent
of modern theorem provers, is about 15 years old. In this time, hardware per-
formance has increased by an incredible factor. However, we are still performing
proof search in essentially the same way we did 15 or 20 years ago – by locally
evaluating simple search alternatives. While refined calculi and better implemen-
tations allow us to penetrate deeper, the basic problem of good search strategies
in an exponentially growing search space has not been solved.

It is my belief that search strategies that offer more than a slow, gradual
improvement will need to be based on introspection, either via the analysis of
successful previous searches, or on the analysis of certain global properties of the
search state.

2 Breaking out of the Ghetto

Despite the many open research questions, automated reasoning systems today
are powerful enough for many interesting application. However, there are two
significant barriers for new users. First, users don’t know how to formalize their
problems. Secondly, they don’t know if the effort of learning how to do it will
pay off. Improving the power of reasoning systems will increase the lure, but will
still leave the high initial outlay on the part of the user.

I believe another way of winning more application is the lowering of the initial
cost for potential users. There are large systems that already are specified in a
more or less formal way: Hare ware designs in languages like Verilog and VHDL,
and, of course, computer programs in various programming languages. The AR
community should work on tools that allow us to automatically translate such
specifications into forms that make the application of automated reasoning tools
to prove relevant properties of designs and programs possible.
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1 Problem

We present classification of (finite) algebraic structures as a possible challenge
for automated reasoning systems.

Classification of algebraic entities is one of the more difficult problems in
algebra. Nevertheless, it is rarely attempted by working mathematicians. Not
only is it a relatively tedious task, but also it is often nearly impossible for a
human since the number of structures and therefore the number of possible
cases that have to be considered is generally quite large. Still, classification
problems can provide interesting results or information; the most prominent
example is of course the complete classification of finite simple groups by Feit
and Thompson [1].

Some examples of algebraic constructs for which relatively little classification
has been done so far are:

– Simple non-associative structures such as quasigroups or loops (for some
classification results in this area see [7])

– Direct-sum decompositions (apart from a few cases such as finite Abelian
groups and free modules, for example)

– Prime submodules for a given module
– Lattices of radical submodules

While the most obvious classification is of course to distinguish different among
isomorphism classes, structures can also be classified with respect to other cri-
teria. For instance, quasigroups and loops can be grouped into isotopy classes,
and modules can be distinguished with respect to their uniform dimensions. In
fact, any equivalence relation on a class of structures can be exploited for clas-
sification purposes, and indeed the more aspects that are investigated, the more
information can be gained about the structures under consideration. The results
can not only prove interesting for mathematicians working in the particular field,
but also for possible applications — for instance, non-associative algebras have
applications in circuit algebra. Moreover, classification is not only interesting in
algebra but could also be applied in other mathematical domains such as analysis
or differential geometry.
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For some of the structures mentioned above there already exist techniques
to count the number of elements for separate classes. For example, the number
of isotopy and isomorphism classes for quasigroups and loops can be counted
up to at least order 9, and in some cases representatives for each class can be
generated [5]. However, a particularly interesting question to ask is whether, for a
given type of structure, one can identify non-trivial properties which discriminate
among the different classes. This is usually a much more difficult problem to solve
than simply determining the numbers of classes, or even finding a representative
for each class.

Although there have been some promising results, particularly the discovery
of some previously unknown examples [8, 9], exhaustive classification by auto-
mated reasoning systems has never been seriously attempted. In the following
we shall present some ideas on how to handle classification problems, and what
would be required from reasoning systems.

2 Bootstrapping

Classification problems can often be simplified by decomposing the structures,
and thereby reducing the problem to entities of smaller size. For example, if a
given group can be decomposed into a direct sum of proper subgroups, then
a great deal can be learnt about the given group, simply by examining the
summands. In particular, if one has already classified all groups (relative to some
equivalence relation) of order less than the order of the given group, then one
can hopefully use this knowledge in classifying the given group. The classification
process itself should therefore be designed in such a way that it is possible to
reuse knowledge gained from previous classifications. Therefore, we argue for
flexible classification process that allows for bootstrapping.

Additionally, knowledge from experts should be taken into account. Ideally,
results of classification runs would be examined by mathematicians, who then
might be able to generalise these results, and thereby identify (or perhaps dis-
cover) theorems that could significantly facilitate and improve the overall clas-
sification process. Naturally, we want to be able to incorporate this knowledge
into our system, and to exploit it for classification purposes, without having to
redesign or restart the overall process.

3 Grid Computing

Even if we consider algebraic structures of relatively small size, there will often
be a large number of these objects. There is generally too much data for a single
reasoning system to deal with effectively. Moreover, the necessary computation
time could be astronomical. On the other hand, it has been shown by other
projects which involve vast amounts of data, that breaking the task down into
manageable pieces and using distribution and grid technology can not only sig-
nificantly speed up the process, but can make the endeavour feasible in the first
place.
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The SETI project (http://setiathome.ssl.berkeley.edu/) is successfully
examining hundred of millions of radio signals from space to search for extrater-
restrial life, using grid-like technology. Therefore, we believe that grid computing
is the predestined tool for examining billions of algebraic structures.

4 The Tools

There already exist tools that aid with the detection and examination of differ-
ent classes of algebraic structures. For instance, there exist programs that can be
used for counting isomorphism classes [5] or for isomorph-free exhaustive gener-
ation [4]. Moreover, model generators, constraint solvers, theorem provers, and
computer algebra systems have already helped to answer certain open problems,
and to determine the structure of specific algebraic entities [3, 2]. There have also
been experiments with machine learning to construct discriminating properties
for non-isomorphic algebraic structures [6].

However, none of these tools alone can be expected to have the necessary
strength for successful classification in various algebraic domains. Instead we
need a range of techniques and state-of-the-art systems that implement these
techniques, combined in a dynamic and flexible framework, which allows for the
described bootstrapping. A proof planning approach could be a first attempt at
such a framework. Additionally, it should contain elements of machine learning,
both to discover discriminating properties, and to enhance the desired boot-
strapping effect.

Moreover, we will need tools that can organise distributed reasoning in a Grid
environment. This goes far beyond the current means for distributing reasoning
in agent-based scenarios, for instance, since we will need far more sophisticated
techniques to separate and collate reasoning processes, disseminate and collect
data, and to organise and reuse results.
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It has been argued in many places and by several researchers (see [6] for
a recent account) that the key to scaling Automated Reasoning to real world
applications lies into the effective integration of special-purpose reasoners into
general-purpose reasoning framework. In this respect, I think that one of the
main challenges for the field in the next years will be:

efficiently integrating, without loss of completeness, ground satisfiability
procedures into first-order reasoning systems.

By ground satisfiability procedure I mean the following. Given a logical the-
ory T , a ground satisfiability procedure for T is a procedure that decides the
satisfiability in T of conjunctions of literals. More precisely, it is a procedure
that, for all conjunctions ϕ of literals in the signature of T , is always able to
determine whether there is a model of T that satisfies (the existential closure of)
ϕ. Ground satisfiability procedures have been discovered for many theories of
interests in computer science. Moreover, several of them are also quite efficient
in practice, if not in theory.

By integrating a ground satisfiability procedure for a theory T into first-order
reasoning system, I mean modularly incorporating the procedure into a more
general mechanism, such as for instance a first-order calculus, so as to obtain
a system for the satisfiability in T of arbitrary first-order formulas. Because of
basic undecidability results, we know that such a system will not be terminating
in general. The challenge however requires that it be complete, that is, able to
recognize all first-order formulas unsatisfiable in T .

In addition to completeness, the key requirements in this challenge are the
time/space efficiency of the integrated system and the limitation to ground sat-
isfiability procedures, as opposed to non-ground satisfiability procedures. The
challenge truly consists in satisfying all of these desiderata at the same time,
because without one or more of them the challenge can be considered as already
met. In the following I argue why this is the case, and why it is important to
achieve all of the challenge’s requirements.

Efficiency. I realize that efficiency is not an objective requirement unless it is
defined in quantitative terms. Therefore some reasonable and measurable
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notion of efficiency must be discussed and established before this challenge
can be even considered. Assuming, however, that this has been done and
appealing an intuitive appreciation of what an efficient system should be, let
me comment on why efficiency is part of the challenge.
If one does not care about efficiency, the challenge is easily achievable by
ground instantiation, at least for “Herbrand theories” T .1 Given a formula
to be checked for satisfiability, one can Skolemize it, enumerate its ground
instances, and check the satisfiability of each of them in T until an unsatis-
fiable one is found.2

Since improving the efficiency of automated reasoning is the very reason for
using special-purpose reasoners such as ground satisfiability procedures in
the first place, the efficiency requirement is one that we certainly cannot lift.

Completeness. At least at the theoretical level, forgoing completeness almost
trivializes the challenge. In fact, using past results on theory reasoning calculi
(see [1, 2] for an overview), a ground satisfiability procedure for a theory T

can be easily integrated into a general first-order calculus to obtain a sound
and complete system for the satisfiability in T of quantifier-free formulas.
The integrated system, however, cannot deal with (universally) quantified
formulas, and as a consequence it is incomplete with respect to the class of
all first-order formulas.
The difficulty lies exactly in dealing with quantifiers in a complete way. The-
ory reasoning calculi are indeed complete, but at the cost of requiring more
than a mere ground satisfiability procedure (see later). Some existing theo-
rem provers embedding ground satisfiability procedures3 do provide a limited
treatment quantifiers. They use simple but incomplete heuristics to eliminate
quantifiers by guessing “right” instantiations. The challenge is in going be-
yond these heuristics and devise complete ways to deal with quantifiers while
at the same time using decision procedure that accept only quantifier-free
formulas.

Ground satisfiability. In a sense, having decision procedures for the satisfia-
bility of sets of literals is not so much a desideratum as a necessity. Designing
and implementing efficient decision procedures for non-ground satisfiability
in a theory T is extremely hard, when possible at all. There is quite a large
and ever increasing number of efficient ground satisfiability procedures in
the literature, and for more and more theories of practical interest in AR
applications. On the other hand, one is hard pressed to find efficient decision

1 By Herbrand theory I mean a theory T such that a formula is satisfiable in T iff it is
satisfiable in a term-generated model of T . For instance all, but not only, universal
theories are Herbrand in this sense.

2 Note that this requires the ground satisfiability procedure for T to accept formulas
containing arbitrary Skolem symbols in addition to the symbols of T . Recent results,
however, show that any ground satisfiability procedure can be modularly extended
to do that [7].

3 Step [3], Simplify [4], and PVS [5] come to mind.
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(or even semi-decision) procedures for non-ground satisfiability. This is pos-
sibly the leading reason the theory reasoning paradigm has not fulfilled so
far its promise of improving the efficiency of automated reasoning. The basic
research in theory reasoning has succeeded in integrating in a complete way
theory-specific background reasoners into general-purpose calculi. But it has
done so by requirinig a background reasoners to answer more general satisfi-
ability problems than groung satisfiability. In basically all theory reasoning
calculi, the background reasoner for a theory T is given a conjunction ϕ of
literals and is asked for a refuter, a substitution σ that makes the existential
closure of ϕσ unsatisfiable in T . Implementing efficiently background rea-
soners of this sort has proven very challenging except for a few very simple
background theories. The implementation task is a lot simpler, as proven by
the many ground satisfiability procedures in circulation, if the background
reasoner is just required to find out whether the existential closure of ϕ itself
is satisfiable in the theory.
At an abstract level then, we could perhaps say that the challenge consists
in moving the computation of refuters from the background reasoner into
the main calculus, while still achieving completeness overall.
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Abstract. Problem solving strategies, borrowing ideas from the im-
mune system analogy, have been successfully applied to challenging prob-
lems of modern computing. However, no formal model of an immune sys-
tem has so far been proposed. This paper discusses what one should con-
sider if embarked in such an enterprise. We envisage a model where each
individual component is specified in terms of its observable behaviour.
We then discuss how to use the model in order to formalise important
properties of immune systems and then outline the sort of mechanisms
that are required to formally verify them.

1 Introduction

The human immune system has recently captured increasing interest in the com-
puting community. It portrays properties that are highly desirable in computer
systems, for example effectiveness, robustness and reliability. Interestingly, im-
mune systems are made out of a number of simple components, each of which
carries out a small, specific task. This simplicity of the individual, together with
the striking effect of the collection, has driven scientist to use the immune sys-
tem as a model for building computer systems. Their hypothesis is that artificial
immune systems will resemble the natural ones. Yet, research seems to proceed
without a formal model of an immune system.

This paper discusses what aspects need to be considered in building a com-
puter model of the immune system. The model we have in mind is intended to
be employed both by biologists, as a controlled laboratory, and by computer sci-
entists, as a reference for hopefully discovering new problem solving strategies.
The model is not concerned with the nature of the interactions amongst compo-
nents.1 It comprehends only aspects of behaviour and so is based on a suitable
process algebra.

Process algebras are suitable for modelling, building and analysing complex
systems out of simpler ones. They provide a mathematical model to reason
about the structure and behaviour of a communicating system in terms of a
few primitive ideas. Example basic process algebras are CCS [15], CSP [11] and

1 If interested in this topic, the reader is referred to [19].
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ACP [2]. Process algebras are well-established in both industry and academy
and have quickly evolved into an international standard, LOTOS [13]. Current
research has yielded a great variety of successful extensions, including message
passing [9], mobility [16, 17, 20], performance evaluation [10] and probabilistic
quantification for non-determinism [10, 25].

We shall argue that for a model to be faithful to immune system behaviour, it
must portray issues about mobility, action duration, probabilistic quantification
for non-determinism and multiple communication. We shall motivate the sort of
process algebra required to do this task and show how to formalise interesting
properties of the immune system within such a framework. Finally, we will out-
line directions as to how to build the sort of toolbox required to formally analyse
the intended model.

2 Modelling an Immune System

This section aims to motivate the sort of formalism required to model a system
as complex as the immune one. We first highlight the features of the immune
system that are relevant to our enterprise and then we discuss the formalism we
suggest to embrace it.

2.1 Immune Systems: General Features

The immune system consists of a number of components, including cells, anti-
gens, the blood stream, etc. Each component plays a simple, specific role. The
behaviour of each element is simple and so in principle amenable to modelling
and verification. Components are all independent but they coordinate one an-
other, overcoming individual limitations. Hence, the immune system is highly
distributed. Its overall behaviour is assumed to be the product of the number
and kind of interactions that happen amongst its individual components.

The immune system is diverse: cells of the same kind vary from one to other.
This involves a cell’s ability to non-self detection. What is distinguishable to one
cell may go unnoticed to others [24]. Despite cell diversity, the immune system
is highly robust. This is because, in order to maximise the chance for successful
detection, components, such as lymphocytes, complement their recognition abil-
ities by travelling the body through the blood stream. Mobility is hence crucial
to immune system performance.

An immune system is highly dynamic. The population size of each type of
component, called the configuration of the immune system, changes with time
and according to circumstances. Some cells last a few days but some others last
years. Cells therefore obey to a sort of universal clock, they are programmed to
die—apoptosis [14]. Non-living components, such as antigens, last as long as the
body does.

To compensate for short-lived cells, the body is continuously producing cells
and so are some cells of the immune system itself. Yet the population self-
stabilises, it does not grow boundlessly. Population increase amounts to detection
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of invading microorganisms. It is followed by the corresponding decrease when
the disease is eliminated [21].

Learning and memory are key to body protection. If the immune system
detects an intruder it has not seen before, not only will it battle the intruder,
but it will also learn the intruder structure [21]. As a result of this learning
process, the immune system will evolve a collection of lymphocytes, specially
designed to and designated for detecting and protecting the body against this
invader.

While travelling through the blood stream, a group of immune system’s com-
ponents may coincide and form a chain, clustering. Together, the chain is able
to provide a sophisticated defense, stronger than that given by each component
in isolation, emergent behaviour.

Other features, such as the selection of a target interlocutor or the secondary
effects of an interaction, should also be considered. Indeed, there are too many
issues regarding immune system behaviour, that we are bound to leave neces-
sarily some of them out. In what follows, we discuss how process algebras is an
adequate means to approach modelling immune system behaviour.

2.2 Process Calculi: General Features

Basic Process calculi, such as CCS [15] CSP [11] or ACP [2], provide a means
suitable for modelling and analysing complex communicating systems. They are
well-established both in industry and in academia and have evolved into an in-
ternational standard, LOTOS [13]. Here, we aim to show that process algebras
is a suitable means to express immune system behaviour. We shall argue that
for that purpose, the selected process algebra should be equipped with mobil-
ity, message-passing, action duration, multiple communication and probabilistic
quantification for non-determinism.

In a process algebra, terms represent processes. Processes have their own
identity, characterised by their entire capabilities of interaction. Interactions oc-
cur either between two agents, or between an agent and its environment. They
are communicating activities and referred to as actions. An action is said to be
observable, if it denotes an interaction between an agent and its environment,
otherwise it is said to be unobservable. This interpretation of observation un-
derlies a precise and amenable theory of behaviour: whatever is observable is
regarded as the behaviour of a system. Two agents are considered equivalent if
their behaviour is indistinguishable to an external observer.

Message-passing process algebras [9] extend basic ones by giving actions a
structure so as to represent the sending or reception of values of any kind on
communication channels. They are suitable to explain some aspects of immune
system behaviour. Cell diversity, for example, can be properly modelled by asso-
ciating the model of each cell with a parameter, so-called an affinity set. With it,
an agent cell will be capable of recognising others if, through interaction, it gets
a datum belonging to this set. Not only are message-passing process algebras
suitable to express cell diversity but also memory, involved in learning.
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Immune system choices cannot be assumed to be non-deterministic. While
interacting with others, an immune system component may show specific prefer-
ences to do one thing over another. For example, a lymphocyte is more reactive
to the presence of cytosine in the blood stream than to the presence of an anti-
gen presenting cell. Probabilistic process calculi extend classical ones by adding
a probabilistic quantification for non-determinism. Probabilistic processes are
realised as Markov, stochastic process and, hence, existing theories within such
frameworks can be used to prove properties about them. WSCCS [25] is an ex-
ample probabilistic process algebra, where choices are quantified with weights.
Thus, probabilistic specification amounts to relative frequency : the heavier an
action’s weight the more chances for it to happen.

Similarly, immune system actions cannot be assumed to be instantaneous.
While specifying action duration may be burdensome, it is useful for performance
analysis. Markovian process algebras, such as PEPA [10, 5], extend classical ones
to deal with performance modelling and evaluation by quantifying time and
uncertainty. Unlike Petri nets, Markovian process algebras do not provide true
concurrency models. Instead they capture the uncertainty of both how long an
action will take and what action will happen next. In PEPA, this is achieved
by associating a random variable with each action, representing its duration,
and so yielding a Markov process. The delay inherent in each action yields a
race condition determining a probabilistic branching. Under certain conditions,
a PEPA model can be transformed into a Markov process, which may then be
used to compute performance measures.

WSCCS and PEPA are different in many ways. WSCCS is a synchronous
calculus, while PEPA is an asynchronous one. Asynchrony is the assumption that
concurrent agents run at different speeds, while synchrony is the assumption that
they run in lockstep [15]. So far nothing suggests the preservation of synchrony
in modelling immune system behaviour.

Upon reaction to a given stimulous, a cell may aim to interact with a specific
target interlocutor. The messages exchanged can be simultaneously received by
other components, causing secondary, side reactions. The message content is the
same, but the intensity of it, the cytosine dose, is lower. Thus modelling immune
system behaviour involves multiple process communication. Most asynchronous
process algebras support this feature or can be easily extended to do so. Including
it within synchronous process algebras is awkward though, since agent inaction
may cause the entire system to deadlock.

Mobility and distributivity can be captured using a higher-order process cal-
culus, such as the π-calculus [16, 17] or fusion [20]. For example, in the π calculus,
action names, as well as processes themselves, are communicated allowing the
specification of dynamic reconfiguration of the process linkage. Thus an agent’s
capabilities of interaction evolve through time, implicitly modelled via transition.
These changes in process structure express mobility: process behaviour depends
upon ubiquity. A mobile process calculus is indeed required for producing a pre-
cise account for an immune system. However, the model is far more complex and
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so here we constrain ourselves to a more modest, limited but intuitive model,
which involves only a single site.

Given that we constrain ourselves to a singled-site system, our model does
not include clustering either. Clustering requires specifying coordination and
competence protocols, which increases the complexity of the model.

We have taken a few steps towards verifying if we can build a process algebra
from the union of the ones above mentioned [22]. A preliminary model of the
immune system is available upon electronic request to the author.

3 Immune System Analysis

The immune system protects the body against invading organisms. It has a
number of properties computer scientist aim to reify in contemporary computer
systems. Example of these properties are effectiveness, reliability, robustness,
adaptability and self-stabilisation—to mention a few—. In this section, we aim
to show how some of these properties can be expressed and then analysed. Our
formalism relies on the notion of immune system configuration.

The configuration of a system, as defined in §2.1, is the size of each com-
ponent’s population, including the link structure. Upon action execution, the
system configuration changes. Thus, we can take action execution to be a lan-
guage generation process: the output language being the set that contains all
possible configurations. This approach is often used in the analysis of infinite-
state systems [18].

Effectiveness means that the immune system often gets rid of both all anti-
gens and all infected cells. Thus, it can be modelled as follows: Given an initial
configuration with a non-empty population of invaders, the system will eventu-
ally become idle, getting rid of the non-self. Effectiveness can be formally verified
using methods borrowed from probabilistic process calculi: A system is effective
if the expected value of non-self population tends to zero.

Using the notion of configuration, we can model other properties.
Self-stabilisation is achieved if, after activity, the immune system goes back

to a configuration similar to the initial one. Put differently, an idle system does
not evolve. Thus, the expected size of the configuration of an infected immune
system should tend to the size of that configuration after eliminating the non-self.

Robustness is achieved if, no matter the population of a particular compo-
nent, the system does not loose effectiveness. Thus, the expected value of non-self
population should tend to zero, even though we omit part of the immune system
population from the initial configuration.

There are of course properties, such as adaptability, that cannot be even
specified within our model. That would take giving a full account of learning.

To formally analyse our system, we only need existing proof methods. How-
ever, these methods ought to be re-implemented so that they can be used to
analyse partial system behaviour. This is because, prior to verification, existing
methods first compute the entire system behaviour but this is not always possi-
ble, especially when the system space is infinite. The space associated with our
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immune system is essentially infinite and so is the language it generates. This is
because, the configuration evolves dynamically. Accordingly, we need to do our
observations along a predefined number of transitions.

4 Related Work

Hofmeyr and Forrest have invented ARTIS, an architecture for immune computer
systems [12]. While ARTIS involves the basic ingredients of an immune system,
the authors do not develop the underlying model. Rather they include only
operational ideas associated with immunology — attack detection, learning and
rejection.

Artificial Immune System, AIS [1], portrays a collection of mechanisms that
combine characteristics found in some elements of a natural immune system
(cells and proteins). The mechanisms are used to address intrusion detection, so
the underlying model does not consider the entire variety of system elements. A
similar argument applies to both [4] and [3, pages 242-261]. Other applications
of immune system phenomena can be found in [23].

More related to ours is the work of Hatcher, Tofts and Dunn [8, 7, 6]. They
have applied WSCCS to computer modelling issues of biological systems, such
as sex ratio, sex determination and parasite transmission rate. Focusing on a
very specific problem, they have been able to formally analyse or simulate the
behaviour of biological systems. Their papers have been a source of inspiration
for the work presented here.

5 Conclusions

We have argued that process algebras is an appropriate means to model the
immune system. The intended model would involve only aspects of behaviour,
ignoring other important subtleties, such as learning and detection. The model
could be used to analyse immune system’s expected population, with which
we can address properties like effectiveness, robustness and self-stabilisation.
To model the immune system, we need a process algebra combining existing
ones. To conduct formal analysis, we need to extend existing techniques so as
to incorporate the analysis of partially developed infinite-state systems. While
this development is time consuming, the associated payoffs are worthwhile. We
reckon the resulting tool could be used as a controlled laboratory by biologists.
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Abstract. Three real world applications are depicted which all have a
full first order theorem prover based on the hyper tableau calculus as
their core component. applications concern information retrieval in elec-
tronic publishing, the integration of description logics with other knowl-
edge representation techniques and XML query processing.

1 Introduction

Automated theorem proving is offering numerous tools and methods to be used
in other areas of computer science. An extensive overview about the state of the
art and its potential for applications is given in [9]. Very often there are special
purpose reasoning procedures which are used to reason for different purposes,
like e.g. knowledge representation [22] or logic programming [15].

The most popular methods used for practical applications are resolution-
based procedures or model checking algorithms. In this paper we want to demon-
strate, that there is an important potential for model based procedures. Model
based theorem proving can be based very naturally on tableau calculi [19], and
in particular there is a line of development, which started with the SATCHMO
approach [28] and was later refined and extended towards the hyper tableau
calculus [8].

In this paper three real world applications are depicted which all have a
full first order theorem prover based on the hyper tableau calculus as their
core component. I.e. deduction is not used to produce or verify the software,
but a deduction system is a part of the running application system. The three
applications are

– information retrieval in electronic publishing
– reasoning in description logic and knowledge representation
– query answering and optimization in XML databases

These applications all stem from research and development projects, which
do not deal with automated reasoning primarily. The model generation theorem
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prover was an obvious tool for the purposes of these projects, because in each of
the tasks it was not just a yes/no answer required, but the model to be returned
by the prover was the answer to the query in the respective application.

In the following section we shortly depict the hyper tableau prover and on
this basis we can describe the applications in the successive sections.

2 Theorem Proving with Hyper Tableau

2.1 Features

In the hyper tableau approach application tasks are specified using first order
logic — plus possibly non-monotonic constructs — in clausal form. While a
hyper tableau prover can be used straightforwardly to prove theorems, it also
allows the following features, which are on one hand essential for knowledge
based applications, but on the other hand usually not provided by first order
theorem provers:

1. Queries which have the listing of predicate extensions as answer are sup-
ported.

2. Queries may also have the different extensions of predicates in alternative
models as answer.

3. Large sets of uniformly structured input facts are handled efficiently.
4. Arithmetic evaluation is supported.
5. Non-monotonic negation is supported.
6. The reasoning system can output proofs of derived facts.
7. The system can be used as reasoner for a description logic, enhanced with

rules and ABox reasoning capability.

Hyper tableau is a “bottom-up” method, which means that it generates in-
stances of rule1 heads from facts that have been input or previously derived.
Derived facts are stored as lemmas. This has the heuristic effect of avoiding
redundant re-computations and supports the use of the calculus for model gen-
eration, since it makes it possible to detect when a fixed point of rule application
is reached.

If a hyper tableau derivation terminates without having found a proof, the
derived facts form a representation of a model of the input clauses.2

A rule head may be a disjunction. In hyper tableau, disjunctions are handled
by exploring the alternative branches in a systematic way. Backtracking can be
used to generate one model after the other.

1 We use Prolog notation for clauses throughout this paper: A clause is viewed as rule
“Head :- Body.”, where Head consists of its positive literals, combined by “;” (or),
and Body consists of its negative literals, combined by “,” (and). If a clause contains
only positive literals, i.e. is a fact or a disjunction, it is notated as “Head.”, if it
contains only negative literals, as “false :- Body.”.

2 The Herbrand model output consists of all ground instances of the derived facts.
Since the derived facts must not necessarily be ground, in some cases they can
characterize an infinite model.



KRHyper Inside 57

Of the features listed above, items 1 and and 2, the generation of answer
sets, are made possible through model generation.

Large sets of uniformly structured input facts play a role comparable to
base relations of databases in conventional applications, however nested and
incomplete data structures can be represented by terms. So item 3 benefits from
implementation techniques used in database systems, which can be smoothly
integrated with the hyper tableau method.

The handling of special language constructs, items 4 and 5, is facilitated by
two aspects of the controlled way in which the hyper tableau calculus builds up
data structures: First, it does not generate new clauses with negative literals,
which means that only input clauses have negative literals, and so information
about the context in which special predicates will be evaluated is statically avail-
able at preprocessing. Second, the implementation of nonmonotonic operations
such as negation as failure is facilitated by the possibility to detect when a fixed
point of inferencing is reached. Intuitively speaking, we then know, that it is not
possible to infer certain information, and can use this knowledge positively.

Regarding item 6, many first order theorem provers can output the proofs
of refutations, albeit often in an idiosyncratic syntax that makes it difficult to
process them further. For model generation, it is additionally desirable that
derivations of the facts belonging to a model are available.

Item 7, the practical suitability as a processor for description logic extended
by rules and ABox reasoning, is a consequence of the other features. It is de-
scribed in more detail in section 4.

2.2 A Small Example

The following example illustrates how our hyper tableau calculus based system,
KRHyper, proceeds to generate models. Figure 1 shows four subsequent stages
of a derivation for the following input clauses:

p(a). (1)

q(X, Y) ; r(f(Z)) ; r(X) :- p(X). (2)

false :- q(X, X). (3)

s(X) :- p(X), not r(X). (4)

KRHyper provides stratified negation as failure. The set of input clauses is
partitioned into strata, according to the predicates in their heads: if a clause c1
has a head predicate appearing in the scope of the negation operator not in the
body of c2, then c1 is in a lower stratum than c2. In the example, we have two
strata: the lower one containing clauses (1), (2) and (3), the higher one clause
(4).

Stage (I) shows the data structure maintained by the method, also called
hyper tableau, after the input fact (1) has been processed. One can view the
calculus as attempting to construct the representation of a model, the active
branch, shown with bold lines in the figure. At step (I), this model fragment
contradicts for example with clause (2): a model containing p(a) must also
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*
s(a)

p(a)

q(a,Y) r(f(Z)) r(a)
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p(a)

r(f(Z)) r(a)
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r(a)

(III) (IV) (V)(II)(I)

Fig. 1. Stages of a KRHyper derivation

contain all instances of q(a,Y) or of r(f(Z)) or r(a). The model fragment is
“repaired” by derivating consequences and attaching them to the hyper tableau:
The corresponding instance of clause (2) is attached to the hyper tableau. Since
it has a disjunctive head, the tableau splits into three branches. The first branch
is inspected and proved contradictory with clause (3). This state is shown in
(II).

Computation now tracks back and works on the second branch. With the
clauses of the lower stratum, no further facts can be derived at this branch,
which means that a model for the stratum has been found, as shown in step
(III). Computation then proceeds with the next higher stratum: s(a) can be
derived by clause (4). Since no further facts can be derived, a model for the
whole clause set has been found, represented by the facts on the active branch:
{p(a), r(f(X)), s(a)}, as shown in (IV).

If desired, the procedure can backtrack again and continue to find another
model, as shown in state (V). Another backtracking step then finally leads to
the result, that there is no further model.

2.3 The KRHyper System

Our system, KRHyper, implements the hyper tableau calculus by a combination
of semi-naive rule evaluation [29] with backtracking over alternative disjuncts
and iterative deepening over a term weight bound. It extends the language of
first order logic by stratified negation as failure and built-ins for arithmetic.

For the applications described here, this system is used “embedded” in dif-
ferent ways: As a knowledge maintenance and processing unit in the server com-
ponent of a client-server system and as target system for the transformation
of a higher level language and a knowledge representation language based on
description logic.
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3 Living Book — Electronic Publishing

Living Book [7] is an electronic book system based on the Slicing Information
Technology (SIT) [13] for the management of personalized documents: Docu-
ments or textbooks are fragmented into small semantic units, so called slices
or units, such as e.g. the definition of a concept, an example, an exercise or a
paragraph. Slicing Information Technology evolved from an electronic library
system for mathematics, the ILF Mathematical Library, which was developed
within the Deduction research program of Deutsche Forschungsgemeinschaft in
the nineties.

Meta data play an important role to describe dependencies among slices,
which may originate from a single document or from different ones. Keywords
can be assigned to slices to indicate their contents. The process of “slicing”, i.e.
fragmenting and annotating given documents such as manuals or mathematical
textbooks, is partially automated, but usually needs some further manual work.

The Living Book system has a client-server architecture, which is shown in
figure 2.
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Fig. 2. Living Book — system architecture

3.1 The User View

A client side program, the SIT-Reader, offers all functionality of the system to
the user through a common Web browser; figure 3 shows a screenshot.
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To use the system, the user can mark units, like e.g. analysis/3/1/153 and
analysis/3/1/16 representing e.g. theorem 3.1.15 in the analysis book together
with its proof. Then she can tell the system that she wants to read the marked
units and gets a generated PDF document containing just those units. If the
user thinks that this information is not sufficient for her understanding, she can
tell the system to include all units which are prerequisites of the units selected.

Fig. 3. Living Book — screenshot

But also more infor-
mation about the user’s
profile can be incorpo-
rated in generating tai-
lored documents: she may
select a certain chapter,
say e.g. chapter 3 contain-
ing everything about inte-
grals in the analysis book.
But instead of requesting
all units from this chap-
ter the user wants the sys-
tem to take into account
that she knows e.g. unit
3.1 already, and she pos-
sibly wants just the ma-
terial that is important
to prepare for an exam.
Based on the units with
their meta data, the de-
duction system can exploit this knowledge and combine the units to a new
document (hopefully) fitting the needs of the user.

In conclusion, we not only have the text of the books, we have an entire
knowledge base about the material, which can be used by the reader in order
to generate personalized documents from the given books. If we are running the
system with three books in combination, we have altogether more the 12.000
facts and between 50 and 100 rules in the knowledge base.

3.2 The Knowledge Management System

From the viewpoint of deduction, the most interesting component of Living Book
is the knowledge management system on the server side. As shown in figure 2, the
knowledge management system handles meta data of various types: Types of
units (Definition, Theorem etc),Keywords describing what the units are about
(Integral etc), References between units (e.g. a Theorem unit about Integral
refers to a Definition unit), and what units are Required by other units in
order to make sense.

3 “/” is a binary function symbol, written as right-associative infix operator.
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Further, a User Profile stores what is known and what is unknown to the
user. It may heavily influence the computation of the assembly of the final docu-
ment. The user profile is built from explicit declarations given by the user about
units and/or topics that are known/unknown to him. This information is com-
pleted by deduction to figure out what other units must also be known/unknown
according to the initial profile.

3.3 The Logic Behind

On a higher, research methodological level the deduction technique used in the
knowledge management system is intended as a bridging-the-gap attempt. On
one side, our approach builds on results from the area of logic-based knowledge
representation and logic programming concerning the semantics of (disjunctive)
logic programs (see [10] for an overview). On the other side, our KRHyper system
used in Living Book is built on calculi and techniques developed for classical first
order classical reasoning. To formalize our application domain we found features
of both mentioned areas mandatory: the logic should be a first order logic, it
should support a default negation principle, and it should be “disjunctive”. To
our knowledge, such a “cross-over” is novel, and therefore we will motivate the
logic used by some examples now.

First order Specifications. In the field of knowledge representation, and in
particular when non-monotonic reasoning is of interest, it is common practice
to identify a clause with the set of its ground instances. Reasoning mechanisms
often suppose that these sets are finite, so that essentially propositional logic
results. Such a restriction should not be made in our case. Consider the following
clauses, which are actual program code in the knowledge management system
about user modeling:

unknown unit(analysis/1/2/1). (1)

known unit(analysis/1/2/ ALL ). (2)

refers(analysis/1/2/3, analysis/1/0/4). (3)

known unit(Book B/Unit B) :- (4)

known unit(Book A/Unit A),

refers(Book A/Unit A, Book B/Unit B).

The fact (1) states that the unit named analysis/1/2/1 is “unknown”;
the fact (2), the _ALL_ symbol stands for an anonymous, universally quantified
variable. Due to the /-function symbol (and probably others) the Herbrand-
Base is infinite. Certainly it is sufficient to take the set of ground instances of
these facts up to a certain depth imposed by the books. However, having thus
exponentially many facts, this option seems not really a viable one. The rule (4)
expresses how to derive the known-status of unit from a known-status derived
so far and using a refers-relation among units.
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Default Negation. Consider the following program code, which is also about
user modeling:4

%% Actual user knowledge:

known unit(analysis/1/2/ ALL ). (1)

unknown unit(analysis/1/2/1). (2)

refers(analysis/1/2/3, analysis/1/0/4). (3)

%% Program rules:

known unit inferred(Book/Unit) :- (5)

known unit(Book/Unit),

not unknown unit(Book/Unit).

unknown unit inferred(Book/Unit) :- (6)

unit(Book/Unit)

not known unit inferred(Book/Unit).

The facts (1), (2) and (3) have been described above. It is the purpose of
rule (5) to compute the known-status of a unit on a higher level, based on the
known units and unknown units. The relation called unknown unit inferred,
which is computed by rule (6) is the one exported by the user-model computation
to the rest of the program.

Now, facts (1) and (2) together seem to indicate inconsistent information, as
the unit analysis/1/2/1 is both a known unit and a unknown unit. The rule
(5), however, resolves this apparent “inconsistency”. The pragmatically justified
intuition behind is to be cautious in such cases: when in doubt, a unit shall
belong to the unknown unit inferred relation. Also, if nothing has been said
explicitly if a unit is a known unit or an unknown unit, it shall belong to the
unknown unit inferred relation as well. Exactly this is achieved by using a
default negation operation not, when used as written, and when equipping it
with a suitable semantics5.

Disjunctions and Integrity Constraints. Consider the following clause:

computed unit(Book1/Unit1) ;

computed unit(Book2/Unit2) :-

definition(Book1/Unit1,Keyword),

definition(Book2/Unit2,Keyword),

not equal(Book1/Unit1, Book2/Unit2).

It states that if there is more than one definition unit of some Keyword, then
(at least) one of them must be a “computed unit”, one that will be included
in the generated document (the symbol ; means “or”). Beyond having proper
disjunctions in the head, it is also possible to have rules without a head, which
act as integrity constraints.

4 The not operator has been illustrated by the example in section 2.2.
5 Observe that with a classical interpretation of not, counterintuitive models exist. We
use a variant of the perfect model semantics for stratified disjunctive logic programs.
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4 Knowledge Representation Beyond Description Logic

In this section we will argue that automated deduction techniques, in partic-
ular those following the model computation paradigm, are very well suited for
knowledge representation purposes. This is an argument leaving the mainstream
of knowledge representation research, which currently has its focus on the devel-
opment of description logic (DL) systems. We want to point out that we consider
the DL direction of research extremely successful: it led to a deep insight into
computational properties of decidable subclasses of first order reasoning; it made
clear some interesting links to non-classical logics, and, moreover, DL systems
are nowadays outperforming most modal logic theorem provers. Despite these
successful developments we find two reasons which motivate our approach to use
a first order theorem prover for knowledge representation purposes instead of
dedicated description logic systems.

First, even the key researchers in the field of description logics are stating
some severe deficiencies of their systems (e.g. [18]): research into description
logics focused on algorithms for investigating properties of the terminologies, and
it is clear that for realistic applications the query language of description logic
systems is not powerful enough. Only recently has the community investigated
seriously the extension of description logic systems towards ABox and query
answering, which is not trivial [24, 23].

Second, the most advanced systems are essentially confined to classical se-
mantics and do not offer language constructs for non-monotonic features (which
are a core topic in another branch of the knowledge representation community).
Although there are some results on extending DL languages with nonmonotonic
features [4], it seems that this direction of research is vastly unexplored.

Additionally, it has been widely recognized that adding to the terminological
language of DL a complementary knowledge representation scheme based on
rules (as used in logic programs) would greatly improve expressivity. This issue
is currently addressed in particular within the Semantic Web context, but no
really convincing solution has been found so far [6, 16, 17].

As mentioned above, our focus is on the development of a language and
system that combines a terminological language with a rule-like language and
nonmonotonic features. The specifications may be “mixed”, in the sense that
concepts and roles defined in the terminological part may be used or further ex-
tended/constrained in the logic program part. Regarding computation with such
specifications, we follow a model-computation paradigm. That is, a bottom-up
procedure is employed that computes a (minimal) model of the whole speci-
fication. (The usefulness of the model-generation paradigm in general and in
particular in conjunction with DL will be argued for below and in other parts
of this paper.) The computation uses a naive transformation of the description
logic syntax into first order predicate logic. Clearly, we are loosing decidability
in the general case; however, being careful with the definition of knowledge bases
in the application, we can retain decidability. With respect to performance we
give some figures in the conclusion. In the following we will roughly sketch the
system we are targeting at.
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4.1 Kernel + KRHyper

Our approach is oriented at the paradigm of logic programming and model-based
theorem proving. Instead of starting with a small and efficient kernel language
like ALC,6 which is stepwisely extended towards applicability, we start with a
rather general DL language and the rather general language of first order logic
programs, and then we identify sub-languages that are decidable and practically
feasible.

Our approach is a transformational one, which embeds DL into logic program-
ming by translating DL constructs into logic programming constructs. This way,
the semantics of the original specification is given the semantics of the resulting
logic program. The largest subclass that we can handle is that of the Bernays-
Schönfinkel fragment extended by a default-negation principle. The user of our
system can decide to stay within this class or whether she wants to use some
language constructs which leave this class.

Our approach can be summarized as

Kernel + KRHyper

where

– Kernel is an OIL-like language which is augmented by some additional con-
structs, like non-monotonic negation and second-order features (reification).

– KRHyper means the extended first order predicate logic which can be pro-
cessed by our system. As a logic programming system, it provides rules,
axioms, constraints and concrete domains.

4.2 The Kernel Language

OIL class definitions, e.g.

class-def defined carnivore

subclass-of animal

slot-constraint eats

value-type animal

have a similar concrete syntax in our kernel language. Most parts of OIL are
covered, in particular all kinds of class definitions, inverse roles, transitive roles
etc. The constructs from the Kernel language are translated to our logic pro-
gramming language following standard schemes.

Beyond this, we are able to handle the following points which are mentioned
explicitly as missing in [18]:

6 I.e. concept descriptions are formed using the constructors negation, conjunction,
disjunction, value restriction and existential qualification.
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Rules and Axioms. In addition to constructs in the syntax of the knowledge
representation language we can use arbitrary formulae as constraints, rules or
axioms. For instance, we can state in the rule part

dangerous(X) :- carnivore(X), larger than(30,X).

to express sufficient conditions for being dangerous. The larger_than relation
would be defined by the user as a binary predicate.

Using Instances in Class Definitions. Although it is well known (cf. [3]) that
reasoning with domain instances certainly leads to EXPTIME-algorithms, it is
very clear that exactly this is mandatory in practical applications. For instance,
the previous example could also be supplied as7

dangerous <= carnivore & larger than(30).

in the terminological part.

Default Reasoning. In our system we included a closed world assumption, such
that we can use a default negation principle “not ” following the perfect model
semantics. Default negation may be used both in the rule part and in the termino-
logical part. For the latter case, the previous example might more appropriately
be written as

dangerous <= carnivore & not smaller than(30).

Switching Back and Forth. One may switch back and forth between the termi-
nological part and the rule part, by keeping in mind that concepts translate into
unary predicates, and that roles translate into binary predicates.

ABoxes. Concrete instances of concepts (roles) are handled via unary (binary)
predicates. This is a very natural and well-understood method for model gener-
ation procedures. For instance, from

dangerous <= carnivore & not smaller than(30).

and the ABox consisting solely of

carnivore(leo).

the model generation prover will derive dangerous(leo). Unlike other systems,
no grounding in a preprocessing phase takes place, and the system is capable of
computing with ABoxes consisting of tens of thousands of objects.

7 Notice that description logic languages such as OIL usually permit concept defini-
tions via equivalences (<=> in our syntax) or via necessary conditions (=> in our
syntax). However, we start off with a concrete ABox that is assumed to implicitly
represent a model of some TBox, and that can be extended to an explicitly repre-
sented model by using sufficient conditions, as shown.
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Limited Second-Order Expressivity. Very often it is necessary to treat statements
of the language as objects and to apply procedures for some kind of evaluation to
them. This can be done in our context by meta-language constructs à la Prolog.
For instance, via concept_instance(Concept,Instance) one has access to the
Concept names where Instance is an instance of. For example,

all dangerous(X) :-

call(findall(Z,

(dangerous(Y), concept instance(Z,Y)),X)).

describes as a Prolog-list all the concepts that have an instance of the dangerous
concept.

4.3 Sample Application

This method of using Kernel + KRHyper for reasoning in description logic is
the core of an application we built for a major German bank. It is a knowledge
management system, which is used as decision support for the communication
department of the bank. An important characteristic of this system, is that it
contains besides the TBox a large ABox, containing press articles and excerpts
thereof. The reasoning mechanism is Kernel + KRHyper which in particular has
to deal with the ABox. The system is extended with a graphical user interface,
which allows easy modifications of the ABox and the TBox and which supports
the usual queries one wants to get answered from knowledge base. The system
is realized as a client-server architecture and can be used via an ordinary web
browser. This knowledge management system is already in use in the bank and,
currently it is extended with automatic learning-based mechanisms, in order to
extend the knowledge base.

Working on this application brought two rather trivial, but nevertheless im-
portant aspects to our attention. One is, that the user of such an application
does not care at all, which technique is inside the system. From a deduction point
of view, we are happy seeing a theorem prover running as part of an application
software, the user, however, is only interested in things like reliability, efficiency
and costs. We learned, that the use of an existing theorem prover helps to meet
exactly these requirements. The second lesson we learned is, that it is extremely
difficult for people who are not computer scientists to use a language of de-
scription logic for defining concepts or to express complex queries. Although we
defined a Windows-like graphical user interface, we found that users encounter
difficulties to use it. Currently we are redesigning the interface of the system,
such that the knowledge representation format is completely hidden behind func-
tionalities which are only from the application domain.
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5 Flexible Database Queries for XML Data

In the last few years, semistructured data and in particular XML have played
an increasing role within the database community. Databases for XML data
have evolved in the context of database integration tasks (Enterprise Application
Integration, EAI ); these databases have a strong focus on data that is structured
irregularly, is implicit, incomplete and therefore often result in large schemas [1].

Various query languages for semistructured data have been proposed in order
to deal with the complex and nested structure of these data. Many languages
use path queries [26, 14, 12, 2, 25] which have emerged as an important class of
browsing-style queries on the Web. Navigational database access by these path
queries require the user to know lot of structural details. It has been pointed out
that declarative query constructs are needed in order to reduce or even avoid
explicit navigation through the data [20, 11].

Here, we present an approach that relies on the assumption that techniques
from logics and in particular knowledge representation, as e.g. subsumption of
XML types [27] may be useful for querying XML data.

5.1 Example

<university>
<researcher>

<name>Smith</name>
<publications>

<monograph>
<title>Basics of databases</title>
<author><name>Smith</name>
</author>
<isbn>7899</isbn>
<subject>DB</subject>

</monograph>
<article>

<title>Flexible queries</title>
<author><name>Smith</name>
</author>
<author><name>Miller</name>
</author>
<proceeding>VLDB 2000
</proceeding>

</article>
<publication>

<title>XML Schema</title>

<author>
<name>Smith</name>

</author>
</publication>

</publications>
</researcher>
<-- more researcher elements -->
<library>

<books>
<book>

<title>Databases</title>
<author>

<name>Smith</name>
</author>
<isbn>1234</isbn>

</book>
<book>
<!-- more book elements -->
</book>

</books>
<library>

</university>

Fig. 4. Example XML data

Let us consider an example XML document representing a university with
a library and researchers working in the university. A library consists of books
where each book has a title, an author and an ISBN. Researchers have a name
and an associated set of publications e.g. articles, monographs or some general
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kind of publication without further specialization. Figure 4 shows an excerpt
from the represented data.

UNIVERSITY RESEARCHER

LIBRARY

BOOKS

MONOGRAPH

PUBLICATIONS SG(PUBL)

BOOK

ARTICLE

PUBLICATION STRING

STRING

publication title

AUTHOR

author
name

proceeding

subject isbn

books

book

library

researcher

publications

art
icl

e

monograph

name

ROOT

university

single valued relationship

multi valued relationship

is-subconcept -of

Fig. 5. Schema for database from figure 4

The content of a database is described by means of a schema; often for XML
data Document Type Definitions (DTDs) are used. Recently, XML Schema [31]
has evolved with the advantage, that user defined types can be represented;
furthermore, besides referential relationships between elements of the XML data,
XML Schema provides the possibility to model generalization and specialization
relationships. Figure 5 uses a graphical notion to represent an example schema
for the database in figure 4.

5.2 Querying the Data

Existing query languages use path queries, that navigate along the structures of
the XML data. For instance, in order to access the name of all researchers of
a university in XPath [30] we use /university/researchers/researcher/name.
Path queries usually allow some form of “abbreviation”. For instance, with
//researcher/name we address all descendants of the “root” that are researcher -
elements and navigate to their names. However, because path queries work di-
rectly on the XML data and not on the schema, it is not possible to query
those elements from a data source, that belong to the same type or concept. In
particular, in order to ask e.g. for all kinds of publications, we would have to
construct the union of path queries navigating to publication, book, article and
monograph, explicitly.

This problem has been addressed in [21], where the notions and the issues
have been described. One possibility is to add a concept based query facility by
means of graph based technology. Another possibility, presented here, is to rely
on existing technologies and in particular systems from the area of description
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logics [5]. In DL, retrieving instances from a certain concept is a well known
requirement and standard services are available out-of-the-box in existing DL
systems such as RACER [22].

Fig. 6. Tree representation of XML
documents

In order to use the DL-system, we
represent the types in an XML schema
by concept expressions in DL as follows.
For every type c in the schema with at-
tributes (outgoing edges) a1, a2, . . . , an

leading to types t1, t2, . . . , tn a concept
expression

c ≡ ∃a1.t1u∃a2.t2u. . .u∃an.tn.

is introduced. Specialization edges from
c to c′ are represented by inclusion de-
pendencies

c v c′.

Furthermore, the data in an XML
database is represented by ABox-facts. To this end, we represent each element in
the database by a unique object identifier (see figure 6 for illustration). The ap-
propriate ABox representation is sketched as follows. For every element o being
an instance of concept c we introduce the fact

o : c

(e.g. o36:Book) and furthermore, if the element o has a child o′ with tag name a
we write:

(o′, o) : a.

For instance, (o35, o37) : book. This representation is used when using standard
services from DL-systems. For instance, we now can use the service retrieve-
instances applied to the concept PUBLICATION, in order to retrieve PUBLICA-

TION, MONOGRAPH, BOOK and ARTICLE elements. Flexible query processing
therefore makes use of TBox-reasoning (finding the relevant concepts and paths
from the database description) and combines this with ABox reasoning and the
retrieval of instances.

5.3 Path Completion

By path completion we mean, roughly, the problem of deriving from a concept
name in a schema (the start concept) and an end concept a path through this
schema connecting the start and the end concept. Such a path then can imme-
diately be turned into a fully specified (e.g.) XPath query. Notice that this way
the problems with XPath queries as explained in Section 5.2 can be avoided.
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Fig. 7. Result of a KRHyper run. See text for
explanation.

The question remains how to
compute path completions. To
this end, we propose to build
on the DL formalization as de-
scribed above. Then, it seems
natural to appeal to some stan-
dard service offered by contem-
porary DL-systems and let it
compute the path completion.
Unfortunately we did not find
a way of doing so. However, we
succeeded in finding a solution
based on model computation. It
works as follows:

1. The start concept, say, cs,
is populated by filling the
ABox with a : cs, where a

is a fresh name.
2. The DL specification of

the schema graph is trans-
formed into clause logic, us-
ing the well-known standard
mapping. Also, the (single-
ton) ABox a : cs is trans-
formed into a fact cs(a).

3. To the clause logic part
the following two clauses
are added, where false :-

ce(X) is the clause logic
transformation of the con-
cept ¬ce:

end :- ce(X).

false :- not end.

Now, speaking figuratively, computing a minimal model of the thus obtained
clause set corresponds to labeling in the schema graph the start concept and
propagate the label according to the concept hierarchy and via the roles encoun-
tered. Appealing to minimal model computation is an issue in order to avoid
unwanted population of concepts. Notice that “substitution groups” [31] in the
schema graph may introduce disjunctions in the head of the clauses, which may
lead to different models or models that do not populate the end concept. It
is exactly the purpose of the clauses in 3. above to avoid the latter problem.
Observe that as small as the use of the default negation operator “not” may
seem, it is a very useful feature to filter out unwanted models. The figure on the
right shows the result of running our KRHyper prover, where the start concept
is RESEARCHER and the end concept PUBLICATION u ∃title.>.
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6 Conclusion

The KRHyper theorem prover is an integral part of all three applications, that
derive from quite different fields. Contrasting schemes that limit the use of a
prover to the setup or configuration of an application, in our case the prover
is a continuously used core component of the depicted systems. Any concerns
about performance degradation imposed by the use of a full featured KRHyper
system did not come true. Comparisons with a widely respected DL reasoner
rendered KRHyper superior with respect to execution time as well as memory
consumption. Based on these experiences we are continuing to investigate the
applicability of deduction systems in upcoming projects.
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Abstract. We present a dynamic knowledge-base maintenance system
for representing and reasoning with knowledge about the Sentient Com-
puting environment. Sentient Computing has the property that it con-
stantly monitors a rapidly-changing environment, thus introducing the
need for abstract modelling of the physical world which is at the same
time computationally efficient. Our approach uses deductive systems in a
relatively unusual way, namely, in order to allow applications to register
inference rules that generate abstract knowledge from low-level, sensor-
derived knowledge. Scalability is achieved by maintaining a dual-layer
knowledge representation mechanism for reasoning about the Sentient
Environment that functions in a similar way to a two-level cache. The
lower layer maintains knowledge about the current state of the Sentient
Environment at sensor level by continually processing a high rate of
events produced by environmental sensors, e.g. it knows of the position
of a user in space, in terms of his coordinates x,y,z. The higher layer
maintains easily-retrievable, user-defined abstract knowledge about cur-
rent and historical states of the Sentient Environment along with tem-
poral properties such as the time of occurrence and their duration e.g.
it knows of the room a user is in and for how long he has been there.
Such abstract knowledge has the property that it is updated much less
frequently than knowledge in the lower layer, namely only when certain
threshold-events happen. Knowledge is retrieved mainly by accessing the
higher layer, which entails a significantly lower computational cost than
accessing the lower layer, thus ensuring that the lower-level can be repli-
cated for distribution reasons maintaining the overall system scalability.
This is demonstrated through a prototype implementation.

1 Introduction

Our research is focused on Sentient Computing [11] applications. Sentient com-
puting is the proposition that applications can be made more responsive and
useful by observing and reacting to the physical world. Awareness comes through
sensing and a sensor infrastructure (Fig. 1(a)), distributed in the environment,
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provides information about the spatial properties of users and objects, i.e. their
position in space, their containment within a region such as a room or their prox-
imity to a known physical location. Sentient Applications make it possible for
the user to perform easily complex computations involving spatial and temporal
notions of a dynamic changing environment. E.g. when a user walks into his
study at home, it is possible for his PC to automatically and seamlessly display
the desktop from his office environment. Or, whenever two people are co-located
in a single space, the system can make this information graphically available to
an Active Map, or deliver a relevant reminder. e.g. “You asked me to remind
you, to give Tom his book back, when you meet him.” Sentient Computing ap-
plications can be viewed as a logical layer, namely, the Application Layer in the
Sentient Applications layered architecture (Fig. 1(a)).

However, there is a significant gap between the level of abstraction in the
knowledge about the Sentient World that Sentient Computing applications re-
quire for their functionality and the actual low-level data that get produced by
the sensors and which constitute a low-level, precise, knowledge layer. To illus-
trate this using the previous example, the sensor that dispatches information
about a user’s position, only knows who the user is and his coordinates in space.
An application that displays the user’s screen in response to his proximity to his
PC, needs to know when a more abstract situation has occurred, that is, when
the user is close to his PC. The information about the user’s proximity to his PC
is a logical abstraction of his position in space and it is expressed in relation to
the position of another physical object, namely his PC. To make matters worse,
the above system will need to monitor a large number of users distributed among
a number of distinct locations at the same time. Even so, it needs to react to
the perceived changes with no perceptible delay.

We propose that the gap between the application-layer abstraction and the
sensor-derived precision be bridged by using a deductive component that reasons
with low-level, sensor-derived knowledge in order to deduce high-level, abstract
knowledge, which can in turn be used easily by the application layer. Further-
more, we believe that the proposed deductive reasoning does not compromise
computational efficiency and performance even for very large distributed envi-
ronments.

This work tackles the above issue of scalable, system-level, computationally-
efficient abstract modelling of the physical world. Its contributions are a formal
definition of a knowledge representation as well as a mechanism for reasoning
with such knowledge using logical deduction that combines expressiveness, scal-
ability and performance.

1.1 Layered Interfaces

For the abstract model of the Sentient world we chose to design a dual-layer
knowledge representation architecture. Our design approach is inspired by the
OSI paradigm [14] for layered network architecture where each layer incorporates
a set of similar functions and hides lower-level problems from the layer above it
thus achieving simplicity, abstraction and ease of implementation.



KR and Scalable Abstract Reasoning for Sentient Computing 75

Deductive Knowledge Base  Layer

Sensor Infrastructure Layer

Application Layer

RegisterRecurringQuery()

RunQuery()

DefineDALPredicate()
notify()

Deductive Abstract Layer

Sensor Abstract Layer

monitor() callback()

sensor events

(a)

P1 P2

monitor P1 monitor P2

 event rate λL

rate λrate λH1 H2

Sensor Abstract Layer

Deductive Abstract Layer

API

(b)

Fig. 1. The Sentient Applications layered architecture and its API (a) andthe dual-level
architecture (b) .

1.2 API

The application Layer communicates with the dual Deductive Knowledge base
layer via an API consisting of a DefineDALPredicate(), RunQuery() and
RegisterRecurringQuery() interfaces (see Fig. 1(a)). The DefineDALPredi-
cate() interface, takes as arguments the predicate name along with its parame-
ters, and creates the necessary representation in the Distributed Abstract Layer
(DAL) for this piece of knowledge. The RunQuery() command is similar to an
SQL SELECT statement in that it returns the current stored state of the Sentient
world by first trying to obtain the information of interest from the Deductive
Abstract Layer. If that piece of information is not contained there, a communi-
cation process between the two knowledge layers is triggered so that this piece of
knowledge is generated from the low-level Sensor Abstract Layer and maintained
dynamically in DAL before it is returned to the application layer. In this way,
it will be available for future queries.

The RegisterRecurringQuery() command is used by the Application Layer in
order to register interest in a particular, recurring situation in a way that the
application layer is notified whenever the situation occurs, starting with its next
occurrence. The RegisterRecurringQuery() command together with the notify()
command, behave similarly to the publish-subscribe protocol.

The interface between the two layers, used by both API commands, is based
on a monitor-callback mechanism similar to an asynchronous invocation between
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a consumer and a publisher. Nomenclature here is taken from the theory of Dis-
tributed Systems [2]. The monitor mechanism in the Sensor Abstract Layer
watches all changes in the environment reported by the Sensor Infrastructure
for certain threshold events, as specified in the RunQuery() and RegisterRecur-
ringQuery() statements. The callback mechanism ensures that such threshold
events, when they occur, trigger an update in the Deductive Abstract Layer
accordingly, creating instances of the predicates that hold and destroying these
that are no-longer true, as the case may be.

In this way, the two knowledge layers behave as a two-level cache for the
Application Layer, enabling scalability.

1.3 Paper Outline

The rest of the paper is organised as follows: First, significant work in related ar-
eas is discussed and then, the architecture of the proposed system is described.
Section 4 presents a formal definition of the knowledge representation archi-
tecture using first-order logic. Sentient Applications reason about the available
knowledge through an interface which is described in Section 5. Next, a proto-
type implementation, discussed in Section 6, confirms the achieved scalability.
Last, some conclusions and future work are discussed.

1.4 What is Not a Goal of this Paper.

We have chosen to describe the deductive component of the proposed architecture
by using first-order logic. We believe first-order logic to be a very powerful and
general tool for representing and reasoning with knowledge and we have found
it to be appropriate and sufficient for the needs of Sentient Computing as is
demonstrated in later sections. It is not our goal to provide a comparative study
between first-order logic and other reasoning schemes such as planning and
description logics, however a concise survey of literature related to planning and
description logics can be found in section 2.

2 Related work

Having an efficient and scalable data model is of great importance for Sentient
Computing, not only because of the dynamic and rapidly changing nature of the
processed data in this paradigm, but also because of the heterogeneity of it. In
this section we chose to survey literature in systems that are faced with similar
concerns.

SPIRIT [10] is the most influential system in this area and is also the only sys-
tem which tries to address scalability as an issue which is inherently linked with
processing sensor-derived data. SPIRIT is a sophisticated system that provides
a platform for maintaining spatial context, based on raw location information,
derived from the Active Bat location system. SPIRIT has a similar goal to our
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proposed architecture in that it offers applications the ability to express rela-
tive spatial statements in terms of geometric containment statements. However,
its approach towards both data-modelling and scalability is quite different from
ours. SPIRIT models the physical world in a bottom-up manner, translating
absolute location events for objects into relative location events, associating a
set of spaces with a given object and calculating containment and overlap rela-
tionships among such spaces, by means of a scalable, spatial indexing algorithm.
The indexing algorithm uses a quadtree for indexing spaces of arbitrary sizes
and geometries and provides fast and predictable insertion, updating and query
of spaces.

Since we believe scalability to be an enabler for distribution, it is useful
to discuss the potential of efficiently distributing an architecture in order to
cater for larger sizes of the physical world. In this aspect, although SPIRIT
supports parallelism in the level of the storage of the world model objects [25],
the distribution capabilities of the above mentioned spatial indexing algorithm
are unclear. In fact, calculating relationships between spaces which are not stored
on the same computer suggests a high communication overhead between the
distributed elements which may affect significantly the response time of the
algorithm.

Hence, SPIRIT uses a bottom-up, engineering approach in order to address
scalability in calculating spatial updates in the world model.

FLAME [13, 3] is a development platform [13, 3] providing middleware sup-
port for applications by modelling location information. FLAME uses a Spatial
Relation Model to assign regions to location events and generate events that
denote region containment and overlapping.

Apart from the above mentioned development platforms, context-aware [24]
applications include Teleporting [23], ComMotion [19], CyberMinder [1] and
Proem [17]. The Teleporting System developed at Olivetti Research Laboratory
is a tool for experiencing mobile X sessions. It provides a familiar, personalised
way of making temporary use of X displays as the user moves from place to
place. ComMotion is a GPS-based [4] system [19] which uses location and time
information in order to deliver location-related information such as a grocery
list, when the user is close to a super-market. CyberMinder is a system that
delivers context-aware reminders, based on a specific set of contextual informa-
tion such as location, time and agenda items. Proem is a peer-to-peer system,
which matches pairs of mobile users according to their given profile of prefer-
ences. Last, Narayanan [20] presents the notion of grouping together locations
that share spatial or logical features.

Our approach differs in that it tackles scalability in a top-down manner. It
looks at the stored data through a knowledge perspective, and uses logical de-
duction in order to produce a mapping from the heterogenous data to different
levels of abstract knowledge and exploiting the latter property in order to en-
sure efficient allocation of resources. By separating concerns between three key
areas, namely, the sensor infrastructure that instruments the physical world, pre-
cise and abstract knowledge about the physical world and the application layer,
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we achieve a clearer view of abstract knowledge and provide good grounds for
scalability in terms of knowledge queries as well as the creation of efficient in-
terfaces. Furthermore, although our work is focused on the Sentient Computing
environment, it is modelled in a formal way, which can be reapplied to all the
above-described development platforms, independent of the underlying sensor
technology, accommodating at the same time application systems such as [19],
[1], [17] as users of the proposed architecture. For this reason, we adopted the
formalism of first-order logic, as we believe this to be a powerful mechanism for
reasoning. First-order logic, provides the desired expressiveness that applications
need in order to define their requirements in knowledge. Several other alterna-
tives, that may be applicable to knowledge-representation and reasoning in this
area, are discussed briefly below:

Planning Systems [22] are systems that given a formula that represents a
goal γ they attempt to find a sequence of actions that produces a world state
described by some state description S such that S |= γ. We say then that the
state description satisfies the goal. Although the state-space approach of planning
systems looks promising for Sentient Computing, the goals pursued by planning
systems are different and a lot of work needs to be done in this direction to
determine any potential contributions in this area.

Description Logics [21] are logic-based approaches for knowledge-representation
systems. Description logics represent entities using a “UML”-like language called
DL Language. The logic used for reasoning with such entities is derived from
first-order logic but is much less powerful and expressive than first-order logic.
Description Logics have the advantage that they allow for the specification of
logical constraints. Similarly to planning, any potential contribution of Descrip-
tion Logics to Sentient Computing is yet to be determined.

3 Knowledge Representation

This section describes the architecture (Fig. 1(b)) of the two logically distinct
layers of knowledge representation and discusses their functionality as a two-
layered cache for the Sentient application layer.

We use a definition introduced by Samani and Sloman in [18], according
to which an event is a happening of interest that occurs instantaneously at a
specific time. Furthermore, we define the Sentient environment to be the physical
environment and the current logical state of the Sentient environment to be the
set of all known facts about the Sentient environment between an initial event
and a terminal event. Initial and terminal events can be any events that are
of interest to the Sentient application layer. Based on the above, we can say
that the Sensor Abstract Layer maintains a low-level but precise view of the
current logical state of the Sentient environment, as produced by sensors that
are distributed throughout the environment and continually updated through
events. Equally, we can say that the Deductive Abstract Layer maintains an
abstract view of the current logical state of the Sentient environment.
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A particularly interesting source of events are the ones that characterise the
location of an object. These are generated by a location system such as the Active
BAT [10] where the position of users in 3-D space is tracked typically once per
second, by means of an ultrasonic transmitter called BAT. The Sensor Abstract
Layer processes all the generated events and thus knows of the last position of
all users in the system in terms of their co-ordinates.

A more abstract view about the state of the Sentient environment can easily
be inferred from the knowledge stored in the Sensor Abstract Layer. E.g. from a
user’s position (x , y , z ) and from a set of known polyhedra that represent regions,
the room the user is in follows logically. Furthermore, from a known set of nested
polyhedra, additional locations that the user is present in, can also be inferred.
1

The Deductive Abstract Layer (DAL) through its interaction with the Sensor
Abstract Layer (SAL) maintains such abstract knowledge about the current
and past states of the Sentient Environment together with temporal information
about the initial events that triggered them, the duration of each state, as well
as when they stopped holding. Such data can be used by statistical models in
order to generate a likelihood estimation of situations that may occur in the
future, based on their past occurrences [16].

The two layers interact through a monitor-callback communication scheme.
A monitor call initiated by the Application Layer, causes the Sensor Abstract
layer to filter through to DAL only those low-level changes that affect the ab-
stract knowledge stored in the Deductive Abstract Layer, thus alleviating the
Deductive Abstract Layer from the cost of continually monitoring all the data
that are produced by the sensors. Consequently, knowledge in DAL is updated
in a significantly lower rate (λH

1 , λ
H
2 ) than it does in SAL (λL) ensuring in this

way that any large amount of physical data can be processed by replicated SALs,
maintaining at the same time the overall system scalability.

Example. In order to illustrate the functionality of the dual-layer architecture
in more detail, let us consider the case where the Application layer is interested
in receiving notification whenever two or more users are co-located. Through
a RunQuery() statement initiated by the Sentient Application Layer, unless it
already knows about co-located users, DAL will register a Monitor() call to SAL
in order for the latter to start monitoring the sensor data that signify co-location
occurrences. As a result, the Sensor Abstract Layer monitors the incoming events
in order to determine from the users’ positions whether two or more users are
contained in the same room. When this occurs, the respective knowledge about
the user’s co-location will be generated in the Deductive Abstract Layer through
a callback() call. All further changes in the position of these users in the Sensor
Abstract Layer are monitored in order to determine whether the two users are
still co-located. If any of the co-located users exits the containing region, the
change in the users’ location in combination with the co-location predicate in-

1 The query: “Is user X in Cambridge?” needs to answer positively even if User X is
in FC15, which is in the William Gates Building in Cambridge.’
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stance in the current, abstract state (DAL), signals an inconsistency. As a result,
another callback() call is triggered from SAL to DAL, invalidating the current
state, logging it as a historical state and generating a new current state. In prac-
tice, not the whole state of the Sentient Environment is changed, as most of
abstract knowledge remain unaltered. Our approach in generating a new current
state is similar to updating a table in a traditional database.

3.1 Scalability concerns

The main benefit of the proposed architecture is that it maintains a consistent,
abstract state of the Sentient environment in the Deductive Abstract Layer which
can be made available to the application layer at a significantly low cost than if it
would be generated directly from the Sensor Abstract Layer. There are three key
reasons that enable DAL to act similarly to a fast cache for the application layer:
The availability of the abstract knowledge in DAL, the fact that this knowledge
changes at a lower rate than it does in SAL make DAL more computationally
efficient at keeping its stored knowledge consistent. Figure 1(b) depicts the dif-
ferent rates with which knowledge is updated in each layer. Section 5.2 discusses
in more detail, computational concerns associated with the functionality of the
two layers.

4 Formal definition

This section presents a formal definition of the proposed scalable knowledge
representation architecture for Sentient Computing. The concepts of the dual-
layer architecture that were discussed in the previous section are now formally
defined using first-order logic.

4.1 First order logic

First order logic [6] or predicate calculus, was chosen as being appropriate and
sufficient for the description of the two knowledge layers as they both maintain
either current knowledge only (Sensor Abstract Layer) or a combination of cur-
rent and historical knowledge (Deductive Abstract Layer) about the Sentient
Environment. Time is implicit in SAL and explicit in DAL. However, when de-
scribing the monitoring mechanism that establishes the links between the two
layers, temporal aspects of the described predicates are addressed by realising
that as the Sensor Abstract Layer is updated first, until the changes are updated
to the Deductive Abstract Layer, this will contain the last known abstract state
of the world.

Concepts and Definitions We assume that the physical world contains N indi-
vidual values that represent autonomously mobile objects such as people that
work in a building. We also assume that the physical environment containsM in-
dividual values which represent known physical locations of interest. Locations
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can be classified into atomic locations and nested locations. Atomic locations
will typically be polyhedral named regions, such as “the coffee-area”, “mike’s
desk”and rooms. Via a process of nesting we produce a set of aggregated poly-
hedral regions such as floors and buildings (each floor may contain a specific set
of rooms and each building a particular set of floors) as well as logically aggre-
gated spaces such as departments (each department may contain a number of
floors, or buildings).

We call a knowledge base K a system that stores knowledge about the Sen-
tient environment. A knowledge base represents predicates that are true by stor-
ing an instance of each of these predicates. We refer to this instance as a fact. The
assertion of a fact in the knowledge-base is equivalent to it being stored in the
knowledge base as a true statement. A fact being retracted from the knowledge
base has as a result the removal of the fact from the knowledge base. In fact, the
assert command is similar to a database ADD, whereas the retract command
is equivalent to a database DELETE. When a fact is asserted in the knowledge
base, this signifies that the predicate that the fact corresponds to has the value
TRUE. When the fact is retracted from the knowledge base, this signifies that
the corresponding predicate has the value FALSE. Nomenclature is taken from
logic programming.

4.2 Naming convention for predicates

For reasons of clarity and simplicity, we adopt the following naming convention
for logical predicates throughout this document:

L 〈SAL predicate name〉 ((argument name ?argument value)· · ·
· · · (argument name ?argument value))

H 〈DAL predicate name〉 ((argument name ?argument value)· · ·
· · · (argument name ?argument value))

The main difference is that DAL predicates have additional time parameters
which represent the beginning and wherever appropriate, the end of the situa-
tion they refer to. For the description of the predicates we have used a named
parameter notation based on the CLIPS [26, 9] syntax. Table 1 portrays some
significant predicates. Each predicate argument has an associated value which is
denoted with ?argument-value. The predicates and their arguments are discussed
in detail in sections 4.3 and 4.4.

4.3 Sensor Abstract Layer (SAL)

The knowledge base for this layer contains up to N facts of the type
L UserAtLocation(uid, x, y, z)2 that represent an object’s last known position

2 The positional parameters notation L UserAtLocation(uid,x,y,z) is used in-
terchangeably throughout this paper with the named parameter notation
L UserAtLocation(uid ?uid)(x ?x )(y ?y) (z ?z )) for simplicity reasons.
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Current Predicates Historical Predicates

DAL (H UserAtLocation (H UserAtLocationHistoric
(uid ?uid)(rid ?rid) (uid ?uid)(x ?x)(y ?y)(z ?z)
(start-time ?start-time)) (start-time ?start-time)

(end-time ?end-time))
(H UserColocation (H UserColocationHistoric
(uid-list ?uid1 · · ·?uidn) (uid-list ?uid1 · · ·?uidn)
(rid ?region-id) (rid ?region-id)
(start-time ?time-value)) (start-time ?time-value)

(end-time ?time-value))
(H UserIsPresent (H UserIsPresentHistoric
(uid ?uid) (uid ?uid)
(start-time ?time-value)) (start-time ?time-value)

(end-time ?end-time))

SAL (L UserAtLocation(uid ?uid)
(x ?x)(y ?y)(z ?z))

Table 1. Naming convention for logical predicates

in 3-D space in terms of its Cartesian coordinates x , y , z . L UserAtLocation is
the most precise location known to the system for each user. The variable ?uid
represents the unique user identification for that particular user. In examples we
use users’ full names as identifiers. The variables x,y,z represent the user’s last
known co-ordinates. In this way, each user is associated with a position in space.

Apart from these positions, the knowledge base also contains M1 facts of
type L AtomicLocation each corresponding to the M1 known atomic regions of
physical space (e.g. rooms and polyhedral areas of space) and M2 nested regions
(floors, larger areas, buildings, neighbourhoods). There are therefore four distinct
type of predicates represented in this layer.

(L UserAtLocation (uid ?uid)(x ?x )(y ?y) (z ?z ))
(L AtomicLocation (rid ?region-id) (polyhedra ?n1?n2 · · ·?nj))
(L NestedLocation (rid ?region-id) (site-list ?site1 · · ·?sitek))
(L InRegion (x ?x )(y ?y)(z ?z )(rid ?region-id))

As the people move in space, a location system generates in average λL

L UserAtLocation facts/sec per mobile user and asserts them in the knowledge
base. For each new fact of type L UserAtLocation the fact that represented the
previous known position for that user is retracted, so that the knowledge base
only contains the most recent known location for that.

The predicate L AtomicLocation associates a named location such as ”Room
5” characterised by a unique identifier, the region-id, with a set of j points,
n1 · · ·nj , which form the nodes of a polyhedral region that defines that area.3

3 We assume a co-ordinate system that assigns a set of co-ordinate values x,y,z to each
position in space.
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The predicate L NestedLocation associates a nested location such as “The Com-
puter Laboratory” with a list of nested and atomic locations that are directly
contained in it. The predicate L InRegion is created as a result of a spatial in-
dexing algorithm, which determines the smallest region that contains the given
co-ordinates, as expressed in the L UserAtLocation predicate.

4.4 Deductive Abstract Layer (DAL)

The higher level is logically distinct from the lower level in that it maintains
a complete view of the Sentient world. Although it lacks the knowledge of the
accuracy of the exact user position (as this is only known to the Sensor Abstract
Layer), it knows of high-level situations seen from a user-perspective as well
as their temporal properties i.e. whether they hold at the current instant, or
whether they happened in the past, when they first occurred and what was their
duration. Such dynamic knowledge is modelled in the form of current and historic
predicates. Current predicates represent a dynamic situation that still holds.
Historic predicates represent a situation that occurred for a certain interval,
beginning at a certain point in time and ending at a later point in time. As a
consequence of the above modelling technique, the Deductive Abstract Layer has
the important property that it accumulates gradually information about what
has happened in the Sentient world. Now, the format of the DAL predicates is
discussed in detail.

The DAL Current predicates. DAL current predicates describe a situation which
occurred at an instant t0 and which still holds at the current instant which is
represented with the value now. Such predicates have the general format:

(predicate name (arg1 ?arg1)· · · (argn ?argn) (start-time ?time-value))

Arguments arg1 to argn represent the parameters of the situation that is
described by the predicate and the variables ?arg1 to ?argn their respective
values. The argument named “start-time” represents the time when the situation
described by the above predicate became first known to the system.

An important current predicate is the one used to describe a high-level lo-
cation, e.g. Mary being in the proximity of the coffee-machine, or James being
on floor 4.

(H UserAtLocation(uid ”Mary”) (rid ”coffee-machine-area”) (start-time 11:02))

(H UserAtLocation(uid ”James”) (rid ”floor-4”) (start-time 13:05))

where ?uid represents the user’s unique identification and ?region-id is the value
of the named parameter rid which represents the name of the smallest region
that contains the user.

Similarly, applications can request through the API for the SAL to register
their interest in situations where two or more users are co-located in the same
high-level region by using the predicate H UserCoLocation.
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(H UserCoLocation(uid-list ?uid1 · · ·?uidn)(rid ?region-id)(start-time ?time-value))

This process is explained in more detail in section 5.2.In the above formula,
uid-list is the list of users that are co-located in a region with name rid . The
variables ?uid1 to uidn represent the unique identification of these users.

The DAL historical predicates. The DAL historical predicates describe a situ-
ation which occurred at a time instance t0, remained holding for a duration d

and ceased holding at a time instance t1. Such predicates are expressed in the
following general format:

(predicate name (arg1 ?arg1)· · · (argn ?argn) (start-time time-value)
(end-time ?time-value))

The argument ”start-time” represents the time when the situation described
by the above predicate became first known to the system. The argument ”end-
time” represents the time when the situation stopped being true e.g. when the
user left the room he was in. E.g. the DAL historical predicate that describes
the situation where Jane and Mike move into the meeting room in their office
building at 12.46 pm, remain in the same room for 9 minutes and Jane leaves
the meeting room at 12.55 pm, is expressed below: It is worth noting that there
can be multiple instances of historic predicates for the same user.

(H UserLocationHistoric (uid-list ”Jane Hunter”)(rid “Meeting Room”)
(start-time 12.46) (end-time 12.55))

(H UserCoLocationHistoric (uid-list “Mike Smith” “Jane Hunter”)
(rid “Meeting Room”)(start-time 12.46) (end-time 12.55))

4.5 User-Defined DAL Predicates

It is worth noting that whereas all SAL predicates are predefined, all predicates
in DAL are user-defined. This means that in the initial state, DAL contains no
predicates. DAL predicates get created through the DefineDALPredicate() API
call (see section 1.2) and instances of these predicates (facts) get generated from
the Sensor Abstract Layer by the monitor() and callback() calls (see Section 1.2).

5 Queries

Queries are used by the application layer in order to capture and return the
current instance of the stored knowledge about the Sentient World. Queries are
similar to SQL [5] SELECT statements in the theory of relational databases. We
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can view a query as a first-order logical expression f(c1, c2 · · · cn) which has the
property that upon the satisfaction of a set of atomic formulae c1, c2 · · · cn, an
answer is triggered.

f(c1, c2 · · · cn)⇒ Answer

where f is any first-order formula involving the formulae (c1, c2 · · · cn).
Answer can have a value of ”yes”, ”no”, ”I don’t know” or a value extracted

from a stored fact such as the user id. The interface through which the answer is
returned to the user is subject to the application layer and can be implemented
in various ways, e.g.by using a print function, by publishing a structured event or
through an API. We have chosen to adopt the structured event approach where
the answer is encoded as a structured event and is returned to the application
layer via a notify() call (see Section 1.2).

Examples of logical queries are “Who is present in the building now ?” and
“Which users are co-located now?” The first query may be useful in the case of
an application that delivers reminders to anybody who is present in the building
late in the evening in order to remind them to lock their door on the way out.
The second query may be useful for the same application, delivering a reminder
to one party which is semantically associated with the second e.g. the reminder:
“Remember to ask Jane to return your book” will be delivered when the user
is in the same room with Jane [1]. Equally interesting as an example is the
case where a user enters a conference site and is interested to know if there is
somebody present from the University of Cambridge.

The number of conditions in the queries depends on the underlying knowledge
base model. E.g. if the above mentioned query ”Who is present in the building?”
was to be executed at a knowledge-base with a single layer of knowledge (i.e.
the Sensor Abstract Layer), it could then be written as a query of the following
form:

Query 1 Return All Present Users (Sensor Abstract Layer).

uid|(L UserAtLocation(uid ?uid) (x ?x ) (y ?y) (z ?z ))∧
(L AtomicLocation(rid ?region-id) (polyhedron ?n1?n2 · · ·?nj) )∧
(L InRegion(x ?x) (y ?y)(z ?z) (rid ?region-id))

The “|” operator is similar to an SQL SELECT operator in that it returns
the values for the associated variables. In this case, uid represent the information
that will be returned in the answer. Query 1 expresses the logical statement that
in order for a user to be present in the building, three conditions need to hold
simultaneously:

– He or she needs to be seen by the location system at a position which can
be characterised by the co-ordinates x,y,z.

– The system must know of at least one region with id rid which can be
characterised by a known polyhedral shape, and

– The system is able to determine that the coordinates of the user’s position
belong to a known region, such as the one described above.
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If all of the above hold simultaneously, than the user is deduced to be present.
The same query, should it be applied on DAL it would assume a simpler

form:

Query 2 Return All Present Users (Deductive Abstract Layer).

uid|(H UserIsPresent(uid ?user-id) (start-time ?t))

Query 1 and Query2 are defined to be equivalent directly by the application
layer through the RegisterRecurringQuery interface and its arguments. E.g. for
the case of the (H UserIsPresent(uid ?uid) (start-time ?t)) predicate, an appli-
cation would have to issue the following statement:

RegisterRecurringQuery(application identity, (H UserIsPresent(uid ?uid)
(start-time ?start-time)), Query 1, Query 2)

In the above statement, the argument application identity describes an iden-
tification for the application that has issued the statement and to which the
answer will be returned to. The H UserIsPresent predicate is similar in content
to the H UserAtLocation one and it is useful as an abstraction of the user’s
location, where the actual location is of no interest to the application.

Similarly, the query ”Which users are co-located now?” can be viewed as:

Query 3 Return All Co-Located Users (Sensor Abstract Layer).

(uid1, uid2)| (L UserAtLocation(uid ?uid1)(x ?x1)(y ?y1) (z ?z1)∧
(L UserAtLocation(uid ?uid2)(x ?x2)(y ?y2) (z ?z2))∧
(L AtomicLocation(rid ?region-id) (polyhedron ?n1?n2 · · ·?nj))∧
(L InRegion(x ?x1)(y ?y1)(z ?z1) (rid ?region-id))∧
(L InRegion(x ?x2)(y ?y2)(z ?z2)(rid ?region-id))∧
(L InRegion(x2, y2, z2, rid))∧
(uid1 6= uid2)

The same query, should it be applied on the Deductive Abstract Layer instead
of the Sensor Abstract Layer, assumes a simpler form.

Query 4 Return All Co-Located Users (Deductive Abstract Layer).

(uid1, uid2)|(H UserCoLocation(uid-list ?uid1?uid2)(rid ?rid)(start-time ?t))

Similarly, Queries 3 and 4 are declared to be equivalent through the Register-
RecurringQuery interface:

RegisterRecurringQuery(application identity,
(H UserCoLocation (uid-list ?uid1?uid2)(rid ?rid)(start-time ?t)),
Query 3, Query 4)

Based on the RegisterRecurringQuery definitions, Queries 1 and 3 are equiva-
lent to Queries 2 and 4 respectively. However, Queries 2 and 4 have in average
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fewer conditions than their equivalent Queries 1 and 3. This is due to the fact
that the information of the users’ presence and co-location is available in the
Deductive Abstract layer in the form of the logical predicates, H UserIsPresent
and H UserCoLocation respectively. Section 6 discusses in detail the effect of
the above observation to the computational complexity involved in the execu-
tion of queries in the proposed reasoning system, demonstrating that queries
executed in the Deductive Abstract Layer such as Queries 2 and 4, entail the
use of significantly fewer computational resources than queries executed in the
Sensor Abstract Layer (Queries 1 and 3).

5.1 Recurring queries

A second approach for the application layer to derive information from the knowl-
edge base is by registering interest to a recurring situation that gets triggered
by periodic timing events. Whenever such a situation occurs, a notify() call,
returns a structured event that represents the predicate of interest to the appli-
cation layer. Contrary to queries, recurring queries do not examine the current
state of the Sentient World in order to establish whether the situation of inter-
est holds at the current instance. Rather, they act similarly to a subscribe call
in the publish-notify protocol for distributed systems, in registering interest in
receiving information about the future occurrences of the situation in question.

E.g. an application may be interested in a regularly recurring event such as
”Whenever any two people are co-located update the GUI so that co-located
people are portrayed as being enclosed in a rectangular area.” We can view a
recurring query as a first-order logical expression f(c1, c2 · · · cn) which has the
property that upon the satisfaction of a set of atomic formulae c1, c2 · · · cn , a
set of actions are triggered.

f(c1, c2 · · · cn)⇒ notify(event)

The notify(event) call passes on to the application layer a structured event
that contains the queried information. Such an event can be a Supervisor Alert
event which is defined elsewhere in the system. When it is received by the ap-
plication, the latter sends an appropriate e-mail message to the user. In fact,
a particular case of recurring queries, is that, where upon satisfaction of the
query, a notification action is being performed. E.g. “Whenever my supervisor
enters the lab, notify me.” Recurring queries can be expressed as logical impli-
cations, in which the left-hand-side is a simple query and the right-hand-side is
a notify(event) predicate.

Query 5 Whenever my supervisor enters the lab, notify me by email.(Deductive
Abstract Layer)

uid|(H UserIsPresent(uid “Andy Hopper”)⇒ notify(Supervisor Alert))

The application layer, on receipt of the Supervisor Alert event, is responsible
for issuing an appropriate e-mail notification. Note that this is equivalent to
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a high-level query, as it assumes that the predicate H UserIsPresent is already
available in the knowledge-base.

5.2 Analysis

Having discussed queries and recurring queries, we can now look into how the
two-layer knowledge scheme ensures scalability .

In order to illustrate this, we consider a prototype implementation, where
queries and recurring queries are implemented in each layer by means of a CLIPS
[26] inference engine. Each query is mapped to a CLIPS rule. CLIPS implements
a forward chaining rule interpreter that given a set of rules applied on a set
of stored facts, cycles through a process of matching rules to available facts
thus determining which queries are satisfied by the stored state of the Sentient
environment. The process by which CLIPS determines which facts satisfy the
conditions of each query or recurring query, is called pattern matching and the
Rete algorithm [8] is used for this purpose.

The advantage of the proposed architecture is due to three important factors:

– First, as can be seen from Sections 5, 5.1, queries that are executed in the
Deductive Abstract Layer such as Query 3, assume a much simpler form
than those executed in the Sensor Abstract Layer (Query 1), as the latter
have more conditions in average and therefore require more computational
resources for pattern matching.

– Secondly, pattern matching is triggered repeatedly every time the stored
knowledge changes by an assert or retract command. Therefore, the lower
the rate of knowledge updates, the lower the computational load required
(see figure 1(b)). Since the knowledge update rate in DAL is significantly
lower than the one in SAL (produced by the regular updates of the sensor
infrastructure), DAL is computationally more efficient.

– Finally, the machine that hosts DAL has fewer real-time constraints, intro-
duced by the interruptions caused by the assert and retract statements that
control knowledge updates.

The next session discusses the computational complexity associated with
queries in more detail by analysing the Rete algorithm.

6 Prototype implementation

This section aims to give a quantitative evaluation of the proposed scheme and
its algorithm by discussing an implementation of the proposed system and by
comparing Query 3 (see Section 5) which is executed at the Sensor Abstract
Layer to the same query (Query 4) which is executed at the Deductive Abstract
Layer and demonstrate that the latter entails a significantly lower number of
computational steps.

We have implemented the proposed architecture using the Jess[12] produc-
tion system. Jess is a java-based implementation of CLIPS. For the acquisition
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of real-time location information, we have built a middleware component [15]
that interfaces the Active BAT system using CORBA structured events, and
translating them into Jess facts.

6.1 Sensor Abstract Layer.

A model was created in Jess for the LCE [7] based on location data produced by
the Active BAT. The experiment involved 15 members of the lab moving around
21 known locations in the LCE. An instance of the lower-layer was captured and
the following query “Return All Co-Located Users” was executed in the Sensor
Abstract Layer.

Query 6 Return All Co-Located Users (Sensor Abstract Layer).

(uid1, uid2)| (L UserAtLocation(uid ?uid1)(rid ?rid))∧
(L UserAtLocation(uid ?uid2)(rid ?rid))∧
(L AtomicLocation(rid ?region-id) (polyhedron ?n1?n2 · · ·?nj))∧
(uid1 6= uid2)

The Rete Algorithm Our implementation uses the Rete Algorithm [8] for pattern
matching. In the Rete algorithm, the pattern compiler creates a network by
linking together nodes that test query elements. This network functions similarly
to a finite state machine whenever a query is added in the knowledge base, or
whenever a new fact s asserted or retracted. More specifically, for each predicate
included in the query, the network creates a one-input node, portrayed in red
in Fig 2. Node n1 corresponds to the predicate L UserAtLocation and node
n2 to the predicate L AtomicLocation. Node n3 corresponds to the condition
(uid1 6= uid2). Also portrayed in red is the root node of the network, n0. A
two-input (green) node is created for each conjunction of predicates. Node n5

corresponds to the conjunction:

(L UserAtLocation(uid ?uid1)(rid ?rid))∧
(L UserAtLocation(uid ?uid2)(rid ?rid))

Node n6 corresponds to the conjunction:

(L UserAtLocation(uid ?uid1)(rid ?rid))∧
(L UserAtLocation(uid ?uid2)(rid ?rid))∧
(L AtomicLocation(rid ?region-id)(polyhedron ?n1 · · ·?nj))

Node n7 is also a two-input node, that represents the conjunction of the above
predicates with the condition (uid1 6= uid2). Finally, node n8 is a terminal node
that determines whether the query is satisfied or not.

The Rete algorithm proceeds as follows: When the query is added to the
Sensor Abstract Layer, for each stored fact, a token is created. Each token is
an ordered pair of a tag which in this case has the value “UPDATE” and a
description of the stored fact. All these tokens are passed to node n0 which
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Fig. 2. The Rete Network for the Return All Co-Located Users query (Sensor Abstract
Layer)

is the root node in the network. Node n0 passes all the generated tokens to
each of its successor nodes. Node n1 checks whether any of the received tokens
correspond to facts of type L UserAtLocation4 and passes all such tokens to
node n5. Node n5 checks all UserAtPosition tokens against each other, in order
to determine which pairs satisfy the conjunction:

(L UserAtLocation(uid ?uid1)(rid ?rid))∧
(L UserAtLocation(uid ?uid2)(rid ?rid))

For each of the pairs that satisfy the conjunction, it creates a new token
and forwards this on to node n6. Node n2 tests for tokens that are of type
L AtomicLocation and passes these on to node n6 too. Node n6 joins the pairs
that represent the conjunction :

(L UserAtLocation(uid ?uid1)(rid ?rid))∧
(L UserAtLocation(uid ?uid2)(rid ?rid))∧
(L AtomicLocation(rid ?region-id)(polyhedron ?n1 · · ·?nj))

into bigger tokens and forwards them on to n7. Node n7 tests that uid1 6= uid2

thus excluding trivial co-locations of the same person. It forwards the eligible
tokens to n8, the success node. These tokens satisfy the whole query. For each
token, n8 creates an instantiation of the query.

In order to get an measure of the computational complexity that the imple-
mented scheme entails, we chose to look at the number of node activations and

4 In this prototype implementation the SPIRIT system was used to provide
L UserAtLocation predicates from the Active BAT positions.
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the number of tests performed in total by the nodes on the network. The results
are shown in Table 2 (SAL).

Sensor Abstract Deductive Abstract

Layer (SAL) Layer (DAL)

total of node activations 317 200

total of tests on nodes 1611 0

Table 2. Pattern Matching Costs.

6.2 Deductive Abstract Layer

Repeating the previous experiment, with the same initial state, we now consider
Query 4 (see Section 5) which is executed in the Deductive Abstract Layer. The
network for this query is portrayed in Fig. 3.

Fig. 3. The Rete Network for the Return All Co-Located Users query (Deductive
Abstract Layer)

Node n0 is the root node. Node n1 tests whether the received token is of
type H UserCoLocation. Node n2 passes on the tokens with the correct number
of arguments and n4 creates an instantiation of the query and adds it to the
conflict set.

Performing the same analysis as before, the results are presented in Table 2.
It is worth noting that the number of computational steps executed by the Rete
algorithm for pattern matching each query are significantly lower for the DAL
query. Taking into consideration that both networks (see Fig. 2, Fig.3) behave
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similarly to acyclic finite automata, which are triggered repeatedly each time a
fact is asserted or retracted in each knowledge layer respectively, we can easily
infer that the overall number of computational steps required for DAL is smaller
than that required for SAL, as knowledge in DAL changes much less frequently.
Last, SAL is continually interrupted by a very high event rate which has an
immediate effect on the machine that hosts that layer.

7 Conclusions and future work

A scalable knowledge representation and abstract reasoning system for Sen-
tient Computing was presented where knowledge was modelled formally using
first-order logic. First-order logic proved suitable for Sentient Computing, espe-
cially in the context of the proposed architecture which is based on a cache-like,
dual-layer scheme which maintains abstract knowledge in the higher Deduc-
tive Abstract layer as opposed to rapidly-changing low-level knowledge in the
lower, Sensor Abstract layer. Abstract knowledge remains consistent with the
rapidly changing state of the Sentient world by closely monitoring associated,
low-level predicates as requested by the application layer through an API inter-
face. Such predicates are contained in the Sensor Abstract Layer and by having
only threshold changes reflected at the Deductive Abstract Layer. Maintaining
abstract knowledge is a requirement of the Sentient Application layer and it is
made available to Sentient Applications through a mechanism of queries which
are mainly executed at the Deductive Abstract layer. Experiments with a proto-
type implementation confirm that the two-layered architecture is more efficient
than a single-layered one. Future work will involve designing and implementing
a large-scale, fully distributed architecture based on the proposed system.
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