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ABSTRACT

The paper describes an approach to modeling the strategic 
variations in performing secondary tasks while driving.  In 
contrast to previous efforts that are based on simulation of a 
cognitive architecture interacting with a task environment, 
we take an approach that develops a cognitive constraint 
model of the interaction between the driver and the task 
environment in order to make inferences about dual-task 
performance.  Analyses of driving performance data reveal 
that a set of simple equations can be used to accurately 
model changes in the lateral position of the vehicle within 
the lane. The model quantifies how the vehicle’s deviation 
from lane center increases during periods of inattention, and 
how the vehicle returns to lane center during periods of 
active steering. We demonstrate the benefits of the approach 
by modeling the dialing of a cellular phone while driving, 
where drivers balance the speed in performing the dial task 
with accuracy (or safety) in keeping the vehicle centered in 
the roadway. In particular,  we show how understanding, 
rather than simulating, the constraints imposed by the task 
environment can help to explain the costs and benefits of a 
range of strategies for interleaving dialing and steering. We 
show how particular strategies are sensitive to a 
combination of internal constraints (including switch costs) 
and the trade-off between the amount of time allocated to 
secondary task and the risk of extreme lane deviation.
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INTRODUCTION

Today’s information- and technology-rich environments are 
replete with “infotainment” systems for work and pleasure. 
In many of these environments, interaction with such 
systems occurs while the person is performing another task 
— for instance, walking while listening to an iPod, or 
writing a paper while watching an Internet video broadcast. 
One multitasking environment that has garnered a great 
deal of attention is that occupied by the driver of a car. 
Many empirical studies have found harmful effects of 
secondary-task interaction (e.g.,  dialing a cell phone) while 
driving [2,13,16,17]. Nevertheless, people continue at an 
increasingly alarming rate to perform distracting tasks 
while driving — for example, a recent study of over 5,000 
American drivers [20] found that 40% of all drivers talk on 
cell phones, 20% of drivers aged 18-24 select songs on an 
iPod, and 24% of this younger group send text messages, all 
while driving.

To better understand multitasking behavior in driving and 
similarly complex domains,  researchers have started to use 
cognitive modeling as a tool for addressing the many 
theoretical and practical challenges that arise. One common 
approach has used production-system cognitive 
architectures (e.g., ACT-R [1], EPIC [11]) that enable 
interaction with a simulated complex environment. While 
models in the ACT-R architecture have accounted for many 
performance measures of human driver behavior under 
dual-task conditions [13,14,15,16], these efforts have 
generally not attempted to capture the rich strategic 
variability exhibited by humans while multitasking. 
Another recent approach, cognitive constraint modeling 
(CCM), posits that predictions of behavior can be derived 
by finding the set of optimal strategies given an objective 
function, a set of plausible strategies, and a set of 
constraints on human performance [7,8]. CCM facilitates 
exploration of strategic variations in behavior and allows 
for objective functions to represent desired trade-offs in 
performance (e.g.,  between working memory load and task 
completion time [4]).  One feature of the CCM approach is 
the demand for a quantitative analysis of the constraints 
imposed by interaction with the task environment. In 
contrast to simulation-based approaches, constraint models 
are not intended to interact with a simulated environment; 
rather, they demand a mathematical understanding of the 
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consequences of action for objective-relevant features of 
the world. A particular concern in the context of driving is 
the consequence of inattention for lane deviation.

In this paper, we explore how models of driving and driver 
distraction can be developed within the context of cognitive 
constraint modeling (CCM). The most significant challenge 
in this effort lies in abstracting the driving simulation into a 
set of computationally efficient formalisms, which can then 
be utilized for constraint satisfaction and evaluation through 
an objective function. We develop such an abstraction based 
on human steering data and integrate the resulting 
formalism into a CCM model to predict speed/accuracy 
trade-offs in a driver distraction task.

Although we adopt the example of dialing a cell phone 
throughout this paper,  the analysis is readily generalized to 
other in-car secondary tasks that contain a high degree of 
visual/motor interaction. For example, the analysis could be 
applied to predict driver performance while interacting with 
a portable digital music player or satellite navigation 
system. Moreover, there are strong implications for 
designers or usability evaluators regarding the safety of 
mobile devices that might be used while driving. 
Modeling Human Multitasking

People frequently balance performance between two or 
more continuous tasks. Cognitive modeling research 
attempts to provide tools that predict human performance in 
complex real-world tasks. Models have been used to 
generate predictions of human performance on single tasks 
for decades (see http://act-r.psy.cmu.edu/, for example 
domains). Complexities arise, however, in modeling the 
combination of tasks [10,14].  These complexities are 
particularly severe when the tasks share perceptual and/or 
motor resources. 

For instance, Meyer and Kieras [11] point out that if a dual-
task involves a limited peripheral resource, such as the 
eyes, the need to move the eyes from one part of the visual 
field to another will block any possibility of task 
parallelism. Dual-task performance requires the allocation 
of limited resources to be balanced between each of the 
tasks. Predicting human performance under such conditions 
presents a significant challenge for cognitive modeling 
because of the combinatorial explosion in the possible 
ordering of task operators. In other words, people can adopt 
multiple behavioral strategies that interleave tasks in 
different ways. The cognitive modeler is left striving to 
develop models that account for this strategic variability.

As an example consider the task of dialing a 7-digit phone 
number while driving. (Throughout, we shall also assume 
that one “power-on” key-press precedes the 7-digit number 
and that one “send” key-press follows it — giving 9 key-
presses in all.) When entering a cell phone number,  the 
driver could enter all 9 key-presses sequentially without 
once returning attention to the task of driving. Alternatively, 
the driver could enter key-presses singly, returning attention 
to driving after entering each individual key-press. Between 

these two extreme strategies exist a plethora of alternative 
ways to complete the task (i.e., whether to switch back to 
driving between each pair of key-presses). There are at least 
28 = 256 possible strategic variations in this space.

Previous efforts to model human performance during dual-
task conditions have tended to focus on a very small 
fraction of viable strategies — namely, those that could be 
inferred from empirical data and/or task analysis [10,14]. 
For example, Salvucci [14] presented a model for dialing 
while driving that utilized a multitasking general executive. 
The general executive mechanism provides domain-
independent methods for integrating task models. However, 
as with previous modeling efforts,  even this approach 
requires explicit programming of the points at which 
control switches between tasks — typically at points that 
are considered by the modeler to be intuitively convenient 
or expedient. In this case, the model implemented a strategy 
that was based on an analysis of inter-key intervals in the 
human data,  which suggested that the chunk structure of the 
telephone number (e.g., for a 7-digit telephone number this 
might follow a 3-4 representational structure) provided 
natural break points to return attention to driving. The 
model accounted for the increase in dialing time required 
while driving compared to baseline, and also the degraded 
steering that resulted from the introduction of the secondary 
dialing task. 

One question that has not been adequately addressed within 
the literature is why people might adopt a particular 
multitasking strategy over another — for instance, based on 
their desire to complete the secondary task quickly, or their 
desire to drive as safely as possible. Both Roberts and 
Pashler [12] and also Kieras and Meyer [9] have expressed 
the potential problems of failing to explore the contribution 
of strategies and architectural constraints on the range of 
possible models of human performance. 

Kieras and Meyer [9] responded by proposing the use of a 
bracketing heuristic. A bracket was defined by the speed of 
the fastest-possible strategy for the task, and the slowest-
reasonable strategy; thus, observed performance should fall 
somewhere between the performance of these two 
strategies. Kieras and Meyer also articulated the importance 
of exploring the space of strategies to explaining the 
phenomena being modeled. In this way, bracketing provides 
a way to construct truly predictive models in complex task 
domains where the optional strategy optimizations cannot 
be forecast.

Recent work using cognitive constraint modeling has also 
addressed the question of modeling strategic variability in 
complex task domains [7,8]. Eng et al. [4] focused on the 
question of evaluating two different designs for a flight 
deck control panel. They demonstrated that performance 
measures and objective functions could play a key role in 
modeling behavior: Predictions could be shaped not only by 
basic task goals and the constraints on the cognitive 
architecture, but also by the specific performance objectives 
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(e.g., minimizing task completion time or working memory 
load).

The CCM approach affords the kind of rich strategic 
analysis we would like for understanding the complex 
domain of driving and driver distraction.  There is, however, 
a significant limitation in the application of CCM to 
driving. Previous models of driving [13,14,15,16,18] have 
tended to interact with a simulation environment that, in 
essence,  provides the mapping from behavior (e.g., steering 
and acceleration) to changes in the environment (e.g., the 
vehicle’s lane position).  Cognitive constraint models in 
contrast are not intended to interact with a simulated 
environment; rather, they demand a mathematical 
understanding of the consequences of action for objective-
relevant features of the world.  

In order to provide a cognitive constraint model of driving, 
we developed a computational formalism of the interaction 
between the driver and the task environment. We 
constructed this formalism by analyzing trends in empirical 
driver data and expressing these trends as equations that 
provide estimates of performance measures. In particular, 
we attempted to capture how driver performance changes 
over time based on whether the driver is attending to the 
task of steering the car. We focused our analysis on 
established measures of driver performance; namely, the 
lateral distance (or lateral deviation) of the car from the 
center of the lane. Focusing on this feature of driving 
performance enabled a CCM analysis of our illustrative 
phone-dialing task. In the next section we use this analysis 
to systematically understand a large space of reasonable 
multitasking strategies.
A COGNITIVE CONSTRAINT MODEL OF DRIVING IN 
DUAL-TASK CONDITIONS

One of the components of safely driving a car involves 
maintaining a central lane position. While driving down 
even a straight road a driver is required to make many 
minor corrections to the heading of the car. The driver alters 
the heading of the car by adjusting the angle of the steering 
wheel. People rely on visual feedback for this task; 
removing visual feedback can have disastrous consequences 
for a person’s ability to correctly estimate the heading of the 
car, especially during lane change maneuvers [5,19]. 
Essentially, driving can be thought of as a closed-loop 
motor task that requires the integration of continuous visual 
feedback. Maintaining a central lane position therefore 
demands the driver’s attention.

In this paper, we consider the consequences of disrupting 
attention from the task of driving while using a secondary 
in-car device, such as a cell phone. A high-level model of 
driving was developed that was based on analyses of human 
performance data from studies that investigated distracted 
driving conditions. Observed trends in human performance 
data were quantified as functions of time and the vehicle's 
lateral deviation. The aim was to develop a model that 
predicted changes in lateral deviation under dual-task 
conditions.

The driver performance data were taken from two 
experiments that investigated the effect of cell phone use on 
driving [13,16]. Both experiments were conducted in a 
fixed-base driving simulator that included the front half of a 
Nissan 240sx with standard steering and pedal controls. 
These controls were connected via a hardware interface to a 
desktop computer that ran the simulation and data 
collection software. The driving environment in the first 
study [13] used a single-lane roadway with no other 
vehicles present. The environment in the second study [16] 
used a three-lane construction-zone highway environment, 
where the driver navigated in the center lane behind a 
rapidly accelerating and decelerating lead vehicle. The 
secondary task in both experiments involved dialing a 7-
digit phone number on a hands-free phone — a simulated 
cellular phone in the first study and a real Sprint™ cellular 
phone in the second study. (Both studies also included other 
dialing conditions that are not included in our analysis 
below.) In all, we analyzed data from 15 drivers across 
these two experiments (seven from the first and eight from 
the second).

Analysis focused on formally abstracting how people’s 
steering behavior affects the lateral deviation of the vehicle. 
The experimental software logged, at a rate of once every 
30 ms, the normalized steering wheel angle of the simulated 
car and its divergence from the center of the lane (in 
meters). Movement through the center of the lane was 
discounted by transforming all data by its absolute value 
(i.e.,  making all negatives positive).  Steering episodes were 
defined within a sequence of steering data as a period of 
time in which the angle of the steering wheel did not 
significantly alter. 

We assumed that during periods of disruption to normal 
driving the vehicle’s lateral deviation would generally 
increase over time and would decrease once attention was 
returned to the primary task of driving. We refer to these as 
divergent and convergent steering episodes. An episode was 
considered a divergent steer if the lateral deviation of the 
car at the start of the episode was less than its lateral 
deviation at the end of the episode. An episode was 
considered a convergent steer if the lateral deviation of the 
car was less at the end of the episode than it was at the start 
of the episode. For a given sequence, we collapsed identical 
contiguous steering episodes.  Steering episodes were 
represented as a tuple {type, duration, start lane position, 
end lane position}. Data from all steering episodes across 
different participants were pooled. Episodes were 
aggregated if they were of the same type and had a 
difference in duration of less than 100 ms. We report an 
analysis of the mean and standard deviation of these 
aggregate episode data. 
Analysis of Divergent Steering

It was assumed that periods of driver distraction would lead 
to an increase in the vehicle's lateral deviation. The size of 
this increase D in lateral deviation is calculated given a 
simple mathematical relationship between the duration T 
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and the lateral velocity V of a divergent steering episode 
(V = D / T). We analyzed the episode data in order to gain 
an estimate of the vehicle's typical lateral velocity during 
periods of driver inattention.

Divergent steering episode data are presented in Figure 1. 
(Note that each point in the scatter plot is an average over 
similar episodes within the pooled participants data.) It can 
be seen that there is a positive relationship between the 
duration of an episode and the increase in lateral deviation. 
Figure 1 also shows the best fitting straight line through this 
data, which provided a reasonable level of correspondence 
with the human data (r2 = 0.43), t (62) = 6.90, p < .001. The 
slope of this best fitting line yields the average lateral 
velocity of a divergent steering episode (i.e., 0.2833 m/s). 
Thus, given the duration of a divergent steering episode the 
associated increase in lateral deviation is predicted by the 
following, 

Lateral Deviation = 0.2833 x Duration
(1)

There is another less obvious quality to the data, which is 
not captured by the aggregate curve: As the duration of a 
divergent steering episode increases there is an increase in 
the variance around the mean lateral velocity. Indeed, such 
an increase in variance should be expected if we consider 
the mechanics underlying the movement of a car. 
Essentially, over a period of time the car’s position can 
either remain relatively stable or it can veer from the center 
of the lane. That is,  the driver has either accurately 
estimated or grossly misestimated the correct steering angle 
to leave the car in while they engage in a secondary task. 
Under this assumption, if we consider a short duration 
between corrective steering updates, then the range of the 
increase in lateral deviation is quite small. This is because 
sufficient time has not passed for the car to travel very far 
from its starting point. But as the duration increases the 
range of possible end points also increases dramatically 
because more time has passed for the car to move along its 
heading. A function was derived using linear regression to 
predict the relationship between the mean increase in lateral 
deviation and the standard deviation of the increase, 

Standard Deviation = 0.6824 x Lateral Deviation
(2)

The function given by Equation 2 is represented in 
Figure 1. There is a good fit between the function and the 
human data (r2 = 0.66), t (62) = 11.10, p < .001.

The analysis shows that increases in lateral deviation can be 
modeled given the duration of time between corrective 
steering updates. A stochastic performance model can be 
developed: Equation 1 and 2 provide the mean lateral 
deviation and standard deviation of the mean that allow 
sampling from a normal distribution. The resulting model 
captures the basic assumption that as the time between 
corrective steering updates increases the more likely the car 
is to drift from the center of the lane.

Figure 1. Relationship between the duration of divergent 
steering episode and increase in lateral deviation.

Analysis of Convergent Steering

We next turn our attention to an analysis of convergent 
steering episodes. We assume that these episodes are 
motivated by the driver attempting to move the car back to 
a central lane position following a period of distraction. We 
are therefore interested in how the lateral deviation 
decreases during periods of convergent steering. Indeed, an 
obvious component of convergent steering is that active 
adjustments to the heading of the car affects the rate at 
which its lateral position changes over time — that is, the 
vehicle’s lateral velocity. 

Figure 2 presents the relationship between the initial lateral 
position of the car at the beginning of a convergent steering 
episode and lateral velocity (i.e.,  the decrease in lateral 
deviation / duration of time). The human data suggest that 
as the car strays closer to the lane boundary during periods 
of driver inattention, drivers react by making sharper 
corrective steering movements to return the car to a central 
lane position.  A function was derived using linear 
regression to predict lateral velocity given the initial lateral 
deviation of the car at the beginning of the episode, 

Lateral Velocity = 0.1756 x Lateral Deviation + 0.1034
(3)

We assumed a maximum lateral velocity of 0.46 m/s. This 
upper bound was determined by the upper confidence 
interval on the distribution of observed velocities. The 
function given by Equation 3 is represented in Figure 2, and 
it provided a reasonable degree of correspondence with the 
human data (r2  = 0.42), t  (32)  = 4.86,  p  < .001. Further 
analysis of the human data revealed a constant standard 
deviation of the mean of 0.09 m/s. This is also represented 
in Figure 2. In order to develop a stochastic model of the 
lateral velocity of a convergent steering episode, we 
sampled values from a normal distribution given the mean 
lateral velocity (Eq. 3) and the standard deviation observed 
in the human data. 
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Figure 2. Relationship between lateral deviation at the start of 
a convergent steering episode and lateral velocity.

The decrease in lateral deviation for a convergent steering 
episode is given by multiplying lateral velocity by the 
duration of time that is given up to steering.  As should be 
apparent at this stage, lateral deviation must be greater than 
zero because a value of zero causes problems with 
multiplications in the model; therefore, we assume an 
arbitrary minimum lateral deviation of 0.001 m. Moreover, 
this assumption reflects the idea that under dual-task 
conditions, the decrease in lateral deviation associated with 
ever increasing time given up to steering asymptotes. We 
return to this issue shortly.

The method described above captures some important 
qualities of the convergent steering data: 1) The more time 
that is given up to a convergent steering episode, the closer 
the car returns to a central lane position; 2) as the car strays 
closer to the lane boundary, the greater the lateral velocity 
of the convergent steering episode; 3) the greater the lateral 
movement of the car, the more rapidly the car returns to a 
central lane position; 4) velocity only increases up to a 
maximum rate, however, at which point the car returns to 
the center of the lane at a constant rate.
A Cognitive Constraint Model of Dialing while Driving 

The analyses of divergent and convergent steering behavior 
outlined in the previous section were integrated to develop 
a cognitive constraint model of driving under dual-task 
conditions. There were several operating criteria for 
specifying this model:

1. The model presents multitasking between an ongoing 
dynamic task (steering) and a secondary task (dialing).

2. Allocation of resources between the two tasks should 
be predicted given psychological constraints and an 
objective function.

3. An objective function that quantifies performance in 
the overall task should reflect a trade-off between 
steering task performance (i.e., minimizing divergence 
from the center of the lane) and dial task performance 
(i.e.,  minimizing task completion time).

The cognitive constraint model made minimum 
commitments to representing task processes for the driving 
task. In the model, driving performance was determined by 
the duration of distinct periods of distraction, during which 
the secondary dial task was processed, and subsequent 
periods of corrective steering.  Given the previous analysis 
of the human steering data we developed a computational 
formalism that abstracted over the fine-grained details of 
the driving task. 

For the dialing task a 7-digit number was entered. It was 
assumed that one “power-on” key-press preceded the 7-
digit number and that one “send” key-press followed it — 
giving 9 key-presses in all. The duration of each key-press 
was set at 310 ms, which assumed 50 ms for recalling the 
digit, a 50 ms step of cognition,  where the motor response 
is initiated, and 150 ms motor preparation and 60 ms motor 
execution for the key press. In addition, it was assumed that 
the dial task was preceded by a hand movement to the 
phone from the steering wheel, and that it was followed by 
a hand movement back to the steering when the dial task 
was completed. We assumed that each of these hand 
movements took 800 ms. All of the assumptions regarding 
timing estimates for the dial task were based on a 
previously reported model in the literature [14].

A further assumption of the model was that switching 
between tasks would carry a cost overhead (what we shall 
refer to as a switch cost). More specifically,  it was assumed 
that a time cost would be incurred by moving visual 
attention between the outside the car (i.e., to focus on the 
road) and the inside of the car (i.e., to focus on the phone). 
Instead of developing a detailed model of the perceptual/
motor processes involved, we used a simple timing estimate 
of 185 ms to move visual attention between the phone and 
the road, or vice versa. This timing estimate was taken from 
the ACT-R cognitive architecture [1].

The model assumed that only a single task operator could 
be processed at any given time (e.g., a convergent steering 
episode could not occur at the same time as a key-press). 
Switches of attention between tasks could only occur at unit 
task boundaries (e.g., on the completion of key-press or at 
the end of a convergent steering episode). Although it might 
appear that this high-level representation of task operators 
is an over simplification, it was functionally equivalent to at 
least one fine-grained model of driver distraction in the 
literature: Salvucci's [14] model developed within the ACT-
R cognitive architecture that used a queuing mechanism to 
switch between tasks at operator boundaries. 

Figure 3 provides a schematic overview of the cognitive 
constraint model. The upper panel of Figure 3 represents 
the dial and steer operators.  Switch costs operators are 
represented as a switch-operator that links transitions 
between dial and steer operators. Operators are represented 
as a PERT-like representation depicting the flow of 
information in separate task streams over time. Time is 
represented on the horizontal axis (moving left to right) and 
resource streams on the vertical axis. 
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Figure 3. Behavior graph of interleaved steering and dialing 
over time, and corresponding data plot of shifts in lateral 

deviation over time.

The lower panel of Figure 3 represents how the operator 
ordering specified by a particular multitasking strategy was 
used to model changes over time in the lateral deviation of 
the car. As an example, we can define an initial lateral 
deviation of A on the y-axis in the lower panel of Figure 3. 
While dialing, lateral deviation increases. The extent of this 
increase is dependent on the amount of time that attention 
was directed away from the task of steering. For instance in 
the figure, arrow D defines a period of time between the 
end of one steering operator and the start of the next 
steering operator, which followed the completion of a key-
press.  The lateral position of the car at the end of this period 
is represented by point B,  which is given by the sum of the 
increase in lateral deviation and the initial position A. As we 
outlined earlier, the size of the increase is defined by a 
randomly sampled value from a normal distribution with 
mean = 0.2833 x D (Eq. 1) and SD = mean x 0.6824 (Eq. 
2). It is important to note that the duration of any switch 
costs were added to the duration of divergent steering 
episodes and not to the duration of convergent steering 
episodes.

The lateral deviation of the car decreased during periods of 
convergent steering. In the figure, arrow S defines the 
duration of a steering operator during which the lateral 
position of the car decreases from point B to point C. The 
lateral velocity V of the corrective steering movement was 
determined by randomly sampling a value from a normal 
distribution with mean = 0.1756 x B + 0.1034 (Eq. 3) and 
SD = 0.09. The updated lateral position C was determined 
by the initial lateral position B, lateral velocity V, and 
duration S of the steering movement (C = B – V x S, where 
C is constrained to be greater than 0.001 m). 

In order to fully evaluate the strategy space we generated all 
permutations for ordering the task operators and, over each 
of these permutations, we further enumerated over a set of 
steering durations. That is,  for a given interleaving strategy 
we explored a range of discrete values for the duration of 
each of the steering operators. Following a validated control 

model of steering [15],  which posits 150 ms processing 
time for each steering update, we explored multiples of 150 
ms for each steering operator. We set a conservative upper 
limit of 1500 ms for steering updates that were evaluated. 
This upper limit was chosen because we found that using 
steering updates greater than 1500 ms predicted asymptotic 
steering performance. (We provide evidence to support this 
claim in the Results section.) For each steering operator in a 
given strategy all permutations of duration 150, 300, 450, 
600, 750, 900, 1050, 1200, 1350, 1500 ms were explored. 
In total this meant that some 262,701 distinct strategies 
were evaluated.

For each strategy, we modeled changes in lateral deviation 
over the duration of the multitasking episode. For each run, 
the lateral deviation of the car was initiated at 0.05 meters 
from the center of the lane. This estimate was based on that 
observed in the human data. As we have said, lateral 
deviation increased during periods of driver distraction and 
decreased during periods of convergent steering. For each 
strategy changes in lateral deviation were recorded. Each 
strategy was run for 50 trials; note that trials varied in terms 
of lateral deviation because of the random sampling from 
distributions specified for steering episodes. Trials did not 
vary in terms of dial time, however.
RESULTS

For each strategy, we were primarily interested in the time 
to complete the dial task and the average lateral deviation of 
the car while the dial task was being completed.  We 
analyzed the performance of each of the strategy 
permutations, which essentially ranged from doing the 
entire dial task without driving (all 9 key-presses in 
sequence) to maximally interleaving driving (with steering 
updates between each pair of key-presses). Each strategy 
was evaluated using the cognitive constraint model 
described in the previous section. Figure 4 presents the 
performance prediction for each of the 262,701 distinct 
strategies, where the x-axis denotes the time to complete the 
dial task and the y-axis denotes the mean lateral deviation 
of the car from the center of the lane. Each of the model 
data points in the figure represents an average over 50 
trials. It is clear that as the duration of each dial episode 
decreases, total dial time increases and, as a consequence, 
lateral deviation decreases. Moreover, Figure 4 clearly 
shows the speed/accuracy trade-off that exists between 
dialing quickly and driving safely: The upper-left portion of 
the plot represents faster but less safe performance, whereas 
the bottom-right portion represents slower but safer 
performance.

It is possible to highlight interesting and illustrative 
example strategies within the strategy space shown in 
Figure 4. The details of each of these example strategies are 
presented in Figure 5 using a PERT-like representation to 
depict the flow of activity in separate task streams over 
time. The duration of each steering operator is given in the 
figure. It is worth noticing that none of these illustrative 
strategies, in particular the safest strategies,  incorporated a
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Figure 4. Data plot of dial time and average lateral deviation 
for each of the 262,701 strategy models and human data. 

Illustrative strategies represent: FA = Fastest; C1F = fastest 
3-4 chunking; C2F = fastest 3-2-2 chunking; C1S = safest 3-4 

chunking; C2S = safest 3-2-2 chunking; SF = safest. All 
error bars represent 95% confidence interval of mean.

steering update greater than 1.35 s. We show shortly that 
giving up any more time to steering was redundant because 
it did not bring a significant decrease in lateral deviation.

Figure 5 also includes, for each strategy, an estimate of the 
average time required to return the car to a threshold lateral 
deviation of 0.10 m. Although not explored in a more detail 
here, this recovery time is interesting because it points to 
another potential trade-off between 1) the time required to 
complete the dial task and 2) the overall time needed to 
complete the dial task and “reset” the vehicle back to its 
pre-secondary task state.

Another interesting facet to the lateral deviation data was 
that although some strategies maintain a low average lateral 
deviation, they nonetheless predict occasional lane 

departures. Assuming a standard lane width of 3.66 m and a 
mid-sized car width of 2 m, the outer wheel of the car 
would be expected cross the lane boundary at 0.83 m lateral 
deviation from the center of the lane. For each strategy we 
therefore calculated the frequency of trials with which it 
committed a lane departure while completing the dial task. 
It was interesting to find that all strategies that made fewer 
than two steering updates during the dial task posed a 
significant risk of committing a lane violation, in that on 
fewer than 5% of trials they committed a lane violation. 
With this in mind, we return to the modeling results for 
each of the illustrative strategies.
Illustrative Strategies

It can be seen in Figure 4 that the fastest strategy (FA) and 
the safest strategy (SF) show the extremes of the speed/
accuracy trade-off space.  As expected, the fastest strategy 
completes the dial task in a single contiguous block without 
once returning attention to driving. The predicted dial-time 
for this strategy is 4.76 s,  which is simply the sum of the 
dial-task operators (i.e., 9  x  0.31 s for key-presses, 
2  x  0.185  s for switch costs, and 2 x 0.8 s for hand 
movements to and from the phone). As would be expected, 
completing the dial task without returning attention to 
driving resulted in a relatively large lateral deviation 
(M = 0.554 m, SD = 0.122 m) compared to other strategies. 
Moreover, this strategy frequently resulted in lane 
departures (38/50).

We might assume that the safest strategy would maximally-
interleave dialing with frequent steering updates. Indeed, 
strategies with steering updates of up to 1.5 s each were 
explored; thus, the maximum dial-time for a strategy was 
19.72  s (i.e., 9  x  0.31 s for key-presses, 8  x  1.5  s for 
steering updates, 18 x 0.185 s for switch costs, and 2 x 0.8 s 
for hand movements to and from the phone). As would be 
expected,  this strategy resulted in a relatively small lateral 
deviation (M = 0.088 m, S.D. = 0.029 m) compared to other 
strategies. However, it is clear from Figure 4 that lateral 
deviation asymptotes with dial-times greater than 
approximately 14 s.  

Figure 5. Behavior graphs representing interesting and illustrative strategies within the space of possible multitasking strategies.
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We preset an analysis that defines the safest strategy that 
also completed the dial task in a timely manner. Because 
the driving model was stochastic, the average lateral 
deviation of a strategy differed between model runs. It was 
possible to utilize this variance in order to identify a subset 
of strategies that did not significantly differ from the 
strategy that gave up the most amount of time to driving 
while completing the dial task. To this end, a series of t-
tests were conducted to reject strategies.  A strategy was 
rejected if it produced a lateral deviation that was 
significantly greater (p < 0.05) than the lateral deviation of 
the maximum dial-time strategy (see above). From this set 
of safe-driving strategies, the strategy that completed the 
dial task in the least amount of time was defined as the 
safest strategy (SF). In other words,  although strategies with 
steering updates of up to 1.5 s were explored, we identified 
a strategy that proved to be as safe, in terms of lateral 
deviation (M  =  0.090, SD  =  0.036 vs. M  =  0.088  m, 
S.D. = 0.029 m, respectively),  but completed the dial task in 
a more timely manner (16.58 s vs. 19.72 s,  respectively). 
The safest strategy (SF) never predicted a lane departure 
(0/50).

Moreover, Figure 5 shows that the safest strategy did not 
actually need to maximally-interleave dialing with steering 
updates.  This is a somewhat unexpected finding: Dialing up 
to two digits in quick succession, at least in some 
conditions, can be as safe as dialing digits singly.

We next consider a set of strategies that correspond to 
North American phone number chunking structures — that 
is,  a 3-4 or 3-2-2 breakdown of a phone number (plus an 
initial “power-on” and final “send”).  For each of these two 
different chunking strategies we highlight only the fastest 
and safest alternatives (these variations were identified in 
same way as strategies FA and SF).  It is clear from Figure 4 
that giving up more time to driving between dial bursts 
provides much safer performance than when dial time is 
minimized by giving up less time to driving between dial 
bursts. Moreover, the fastest strategy variants resulted in 
many more lane departures than the safest strategy variants: 
C1F = 33/50; C2F = 33/50; C1S = 1/50; C2S = 0/50. 
Comparison with Human Data

A comparison is offered between the model-based 
predictions and previous empirical results. Salvucci [13] 
reports that participants required 7 s (SD = 1.77 s) for an 
equivalent dialing task, and that their average lateral 
deviation was 0.49 m (SD = 0.10 m) during secondary-task 
performance.  These human data are presented in Figure 4. It 
is clear that the human data are within the performance 
limits predicted by the cognitive constraint model. In 
particular, one of the fast chunking strategy variants (C2F) 
predicted performance, in terms of both dial-time and 
lateral deviation, that was very close to that observed in the 
human data (see Figure 4). Indeed, this result corroborates 
previous modeling efforts that have assumed that people 
adopt a strategy that corresponds to the chunking structure 
of the telephone number. The major difference here though 

is that this correspondence has been reached following a 
comprehensive evaluation of the plausible strategy space.

It is also clear that a whole range of strategies actually fit 
the human data approximately as well: We found that some 
9,479 strategies gave performance predictions within the 
95% confidence intervals of the human data. These 
strategies differ widely on dimensions other than their 
correspondence to the data,  and only a small proportion of 
these strategies employed a chunking structure. Strategies 
varied in the number of steering updates: A strategy that 
made only a single, but very long driving update, also fit 
these data, as did a strategy that made as many as six 
shorter driving updates. These strategies make very 
different predictions for the total time required to complete 
the dial task and return the vehicle to its pre-secondary task 
state. Moreover, strategies differed in terms of the 
proportion of trials that a lane departure occurred (e.g., 
seven of the strategies committed 4/50 lane departures, 
which is far fewer than the 33/50 made by strategy C2F).    
GENERAL DISCUSSION

In this paper we have described an approach to modeling 
the space of strategies available for performing secondary 
tasks while driving. For this purpose, we described the 
constraints on the interaction between driver steering 
episodes and the local task environment,  and analyzed the 
speed and safety of the set of possible strategies given these 
constraints. We have shown how various strategies for 
interleaving dialing and driving result in different speed/
accuracy trade-offs. It was found that human performance 
data in the literature [13] fit within the bounds on the 
predicted dual-task lateral deviation and dial-time.

We found that strategies with a familiar chunking structure 
gave performance predictions that were very close to the 
human data (e.g., adopting a 3-4 or 3-2-2 dialing pattern). 
This strategy account is consistent with others in the 
literature. For instance, based on an analysis of inter-key 
intervals in the human data, Salvucci [14] developed an 
ACT-R model that assumed attention was ceded away from 
steering while a chunk of digits was dialed.  The resulting 
model was found to fit the human data. What is novel about 
the work presented here is that all reasonable strategies are 
evaluated and their performance characteristics generated. 
The analysis offers an explanation for why people behave 
the way that they do in terms of the trade-off between dial 
time and safety. It can be seen how participants might view 
other strategies as inferior in terms of this trade-off.  In this 
respect the approach presented here has similarities to 
bracketing [9].

The work that we have reported differs from other 
approaches to modeling driver behavior [13,14,15,16,18] 
that have focused effort on programming software that links 
a computational cognitive architecture to a virtual reality 
simulation of a driving environment. A feature of this 
approach has been a concern with reproducing, by 
simulation, the internal psychological processing 
mechanisms, the mechanics of vehicle motion,  and the 
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interaction between the two. In contrast, we have focused 
on understanding the constraints on the interaction between 
the driver and the task environment that are important to 
some critical performance variables (e.g., lateral deviation 
and dial-time). Two potential advantages of our approach 
are (1) parsimony of expression and (2) explanations for 
why people prefer the strategies that they to choose in terms 
of objective performance criteria.

An interesting empirical question that is posed by the 
current analysis is whether manipulation of the speed/
accuracy trade-off would result in behavioral changes 
equivalent to those predicted. For instance, if participants 
are encouraged to dial as quickly as possible, then we might 
expect this to result in a relatively large lateral deviation.  In 
contrast,  if participants are encouraged to drive as 
conservatively as possible while dialing, then we might 
predict that the duration of dial episodes would decrease 
and consequently the total dial time would increase.  Further 
empirical work is required to address these questions. 
Moreover, the analysis revealed that a whole range of 
strategies fit the human data equally as well, and that these 
strategies vary along other performance dimensions (e.g., 
the number of steering updates, the frequency of lane 
departures, and the total time required to complete the dial 
task and return the vehicle to a central lane position).  Data 
are not currently available to discriminate between these 
accounts. There is an open empirical question regarding the 
type(s) of objective function that people might be sensitive 
to. Given experimental control over an objective function, 
we should be able to move beyond bracketing to make more 
precise predictions of human performance.
Limitations

In the current analysis it was assumed that steering and dial 
operators were limited by a serial bottleneck. This is clearly 
an oversimplification of human performance. Future work 
should extend the cognitive constraint analysis presented 
here to one that incorporates more detailed assumptions of 
the resource constraints of the human cognitive 
architecture. Assumptions of the human cognitive 
architecture have been well specified elsewhere (e.g., ACT-
R [1], EPIC [11]). Although these account differ, it is 
nonetheless commonly assumed, for instance, that people 
can move their eyes to a visual location at the same time 
that their finger punches a key. Presumably incorporating 
such assumptions about perceptual/motor parallelism would 
have consequences for predicting dual-task performance 
here. 

One avenue would be to develop a set of task models within 
a task description language, called Information 
Requirement Grammar (IRG, [6]). IRG is motivated by the 
theory that higher-level task performance is constrained by 
the information requirements and resource demands that 
operate on lower level task processes. A Prolog-based tool, 
called CORE [6,7],  can be used to expand the task 
description specified in the IRG to determine an optimal 
schedule of the start times for each low-level process. 

Previous research has found that this approach allows for 
exploration over the set of permissible strategies within the 
set of task and architectural constraints (Eng et al. [4]; 
Howes et al. [7], but see Brumby & Salvucci [3] for an 
initial report on progress towards this goal in the domain of 
driver distraction). 

In the current analysis all strategy permutations were 
exhaustively evaluated.  There is redundancy in this analysis 
though because many of the strategies do not meaningfully 
differ,  both in terms of the specified task interleaving and 
the performance predictions that are derived.  For example, 
it might be argued that the comparison between strategies 
3-3-4 and 3-4-3 is not particularly meaningful or useful. 
Moreover, evaluating all of the strategy permutation suffers 
the problem of exponential complexity: As the number of 
operators increases, the number of solutions increases 
exponentially. Search heuristics could be used to avoid this 
redundancy in the analysis by terminating the evaluation of 
strategy variants that do not significantly differ from one 
another.  
Implications

The work presented here further develops the cognitive 
constraint modeling approach [4,6,7,8] in understanding the 
implications of a space of strategies for behavior. The work 
in the current paper demonstrates that it may be viable to 
utilize this approach in order to inform the development of 
interfaces that optimize human performance under dynamic 
dual-task (or multitasking) conditions. This method could 
also be used by usability evaluators to compare the methods 
that a proposed or current design makes available to the 
user to the best possible set of methods. 

We believe that it would be helpful, from a cognitive 
engineering perspective, to develop a high-level driver 
model that is capable of abstracting across the effects of a 
wide range of different in-car devices that might vary, for 
instance, in the amount of visual or motor interaction that is 
required to use the device. Initial, unreported efforts suggest 
that there is a high degree of correspondence between the 
best-fitting values given in Eq. 1-3 and those derived from a 
similar analysis of data collected from an iPod distraction 
study [17].  This suggests that the cognitive constraint 
model of distracted driving developed here is likely to be 
robust across different types of secondary tasks.

In contrast, one important area where different types of 
mobile devices differ is the amount of interaction that is 
required to complete a task. The analysis presented here 
clearly suggests that as the duration of an interaction 
episode increases, the associated risk to driving increases 
considerably. Allowing shorter interaction episodes with the 
device is therefore vital,  if it is at all likely that the driver of 
a car will use a device.  For example, scrolling through a list 
of contacts on a cellular phone or a list of artists on an iPod 
might demand longer interaction episodes with the device 
than manually entering the friends telephone number or 
playing music through the “shuffle” option. Task time is 
also related to conflicts between input and output 
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modalities; for instance,  some studies have reported that 
speech-based dialing can consume more time than manual 
dialing but result in no significant degradation in 
performance [13]. The modeling approach developed here 
could potentially serve the foundation for finding particular 
interaction-styles that could be designed into a device so as 
to minimize potential hazardous effects of use while 
driving.
SUMMARY

Despite the obvious risk factors,  people continue to use 
mobile devices while driving [20]. Analyses of driving 
performance data revealed that a set of simple equations 
accurately modeled changes in the lateral position of the car 
within the lane under dual-task conditions. The model 
quantified how the vehicles lateral deviation increased 
during periods of driver inattention, and decreased during 
periods of active steering. The benefit of this approach was 
demonstrated by modeling the dialing of a cellular phone 
while driving. It was shown that understanding, rather than 
simulating, the constraints imposed by the task environment 
can help to explain the costs and benefits of a range of 
multitasking strategies. For instance, each multitasking 
strategy was sensitive to a combination of internal 
constraints (including switch costs) and the trade-off 
between the amount of time allocated to secondary task and 
the risk of extreme lane deviation.

The work presented is of value to designers wishing to 
predict the extent of disruption caused by using mobile 
devices while driving. Abstracted away from dialing, the 
analysis suggests that the interaction strategy adopted by a 
user has an effect on the level of disruption caused by using 
a mobile device while driving. Care should be taken in 
considering the type of interaction strategy that a device 
demands,  if there is a chance the device may be used while 
driving or during other complex tasks.
ACKNOWLEDGMENTS
This research was supported by National Science 
Foundation grant #IIS-0426674 and Office of Naval 
Research grant #N00014-03-1-0087. We would like to 
thank the six anonymous reviewers for their astute 
comments and suggestions for improving the initial draft of 
this manuscript. We would also like to thank Mark Zuber 
and Dan Markley for their help with data analysis. 
REFERENCES
1. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., 

Lebiere, C., and Qin, Y. (2004). An integrated theory of mind. 
Psychological Review, 111, 1036-1060.

2. Briem, V., & Hedman, L.R. (1995). Behavioral effects of 
mobile telephone use during simulated driving. Ergonomics, 
38, 2536–2562.

3. Brumby, D.P., & Salvucci, D.D. (2006). Exploring Human 
Multitasking Strategies from a Cognitive Constraint Approach. 
In Proc. Cognitive Science Society (pp. 2451). Lawrence 
Erlbaum Associates.

4. Eng, K., Lewis, R.L., Tollinger, I., Chu, A., Howes, A., & 
Vera, A. (2006). Generating automated predictions of behavior 

strategically adapted to specific performance objectives. In 
Proc. CHI 2006 (pp. 621-630). ACM Press.

5. Hildreth, E., Beusmans, J., Boer, E., & Royden, C. (2000). 
From vision to action: experiments and models of steering 
control during driving. Journal of Experimental Psychology: 
Human Perception and Performance, 26, 1106–1132.

6. Howes, A., Lewis, R.L., Vera, A., Richardson, J. (2005). 
Information-Requirements Grammar: A theory of the structure 
of competence for interaction.  In  Proc. Cognitive Science 
Society (pp. 977-982). Lawrence Erlbaum Associates.

7. Howes, A., Vera, A., Lewis, R.L., & McCurdy, M. (2004). 
Cognitive constraint modeling: A formal approach to 
supporting reasoning about behavior. In Proc. Cognitive 
Science Society (pp. 595-600). Lawrence Erlbaum Associates.

8. Howes, A., Vera, A., & Lewis, R.L. (In press). Bounding 
rational analysis: Constraints on asymptotic performance. In 
W.D. Gray (Ed.) Integrated Models of Cognitive Systems. 
Oxford University Press.

9. Kieras, D.E., & Meyer, D.E. (2000). The role of cognitive task 
analysis in the application of predictive models of human 
performance. In J.M.C. Schraagen, S.F. Chipman & V.L. 
Shalin (Eds.), Cognitive Task Analysis (pp. 237-260). 
Lawrence Erlbaum Associates.

10. Kieras, D.E., Meyer, D.E., Ballas, J.A., & Lauber, E.J. (2000). 
Modern computational perspectives on executive mental 
processes and cognitive control: Where to from here? In S. 
Monsell & J. Driver (Eds.), Control of Cognitive Processes: 
Attention and Performance XVIII (pp. 681-712). MIT Press.

11. Meyer, D.E., & Kieras, D.E. (1997). A computational theory of 
executive cognitive processes and multiple-task performance: 
Part 1. Basic mechanisms. Psychological Review, 104, 3-65.

12. Roberts, S., & Pashler, H. (2000). How persuasive is a good 
fit? A comment on theory testing. Psychological Review, 107, 
358-367.

13. Salvucci, D.D. (2001). Predicting the effects of in-car interface 
use on driver performance: An integrated model approach. 
International Journal of Human-Computer Studies, 55, 
85-107.

14. Salvucci, D.D. (2005). A multitasking general executive for 
compound continuous tasks. Cognitive Science, 29, 457-492.

15. Salvucci, D.D. (2006). Modeling driver behavior in a cognitive 
architecture. Human Factors, 48, 362-380.

16. Salvucci, D.D., & Macuga, K.L. (2002). Predicting the effects 
of cellular-phone dialing on driver performance. Cognitive 
Systems Research, 3, 95-102.

17. Salvucci, D.D., Markley, D., Zuber, M., & Brumby, D.P. (In 
press). iPod distraction:  Effects  of portable music-player use 
on  driver performance. To appear in Proc. CHI 2007. ACM 
Press.

18. Tsimhoni, O. & Liu, Y. (2003). Modeling steering using the 
queueing network – model human processor (QN-MHP). In 
Proc. Human Factors and Ergonomics Society (pp. 
1875-1879). Human Factors and Ergonomics Society. 

19. Wallis, G., Chatziastros, A., & Bülthoff, H. (2002). An 
unexpected role for visual  feedback in vehicle steering control. 
Current Biology, 12, 295-299.

20. “2006 GMAC Insurance National Drivers Test”, available at 
http://www.gmacinsurance.com/SafeDriving/2006/.

CHI 2007 Proceedings • Task & Attention April 28-May 3, 2007 • San Jose, CA, USA

242


