
Preprint: Final version of paper is available from

CONNELL, I., GREEN, T. & BLANDFORD, A. (2003) Ontological
Sketch Models: Highlighting User-System Misfits. In E. O’Neill, P.
Palanque & P. Johnson (Eds.) People and Computers XVII, Proc.
HCI’03. 163-178. Springer.

Ontological Sketch Models: Highlighting
User-System Misfits
Iain Connell1, Thomas Green2 & Ann Blandford1
1 UCL Interaction Centre (UCLIC), University College London,
26 Bedford Way, London WC1H OAP, U.K.
{i.connell, a.blandford}@ucl.ac.uk
2 Oriel House, 27 Allerton Park, Leeds LS7 4ND, UK.
greenery@ntlworld.com

Ontological Sketch Modelling (OSM) is a novel approach to usability
evaluation that concentrates on both the user’s conceptual model of the
domain and ‘working practices’, and the conceptual model built into a
device or a work-system. Analysing the degree of fit between these
models can reveal potential problems in learning and use that are not
revealed by existing HCI approaches. We show how OSM can identify
such potential misfits between user and system. We also describe how an
OSM analysis can be edited, conventionalised and viewed in tabular
form, thereby allowing automatic highlighting of user-system misfits.
Illustrative examples are a typical drawing application and a digital
music library.

Keywords: ontological sketch modelling, usability evaluation, conceptual
models, misfits, drawing application, digital music library.

1 Background to OSM

Ontological Sketch Modelling (OSM) is a novel approach to usability evaluation
that concentrates on both the user’s conceptual model of the domain and ‘working
practices’ (that is: how the device fits in with the way the user works), and the
conceptual model built into a device or a work-system. Analysing the degree of fit

2 Connell, Green & Blandford

between these models can reveal potential problems in learning and use that are not
revealed by existing HCI approaches. Essentially, OSM aims not just to say
whether a device might be easy to use, but whether the device does something that
makes sense to the user. OSM is also exceptional among HCI evaluation methods
in that the same approach can apply either to individual devices or to a whole work
system: our investigations have ranged from digital watches to the London
Ambulance Service dispatch system [Blandford et al. 2002].

Devices and systems can exhibit substantial mismatches between the user’s
preferred conceptualisation and that which is imposed. For example, users of a
video link may be compelled by the system to define the Quality of Service in
terms of bandwidth, while they think of it in terms of frame rate or image
resolution. Similarly, the user of a drawing program (see below) may think in
terms of representations of domain objects (e.g. “this part of the drawing shows the
whale’s tail”) while the program supports only the manipulation of device objects
(e.g. curves, text boxes). We call these mismatches ‘misfits’.

Central to OSM’s approach is the simultaneous representation, in the same
language, of the user’s conceptualisation of the domain and the conceptualisation
that is built into the system or device. (Note that for brevity we may find ourselves
referring to either ‘the system’ or ‘the device’; in each case, we mean the whole
gamut.) Misfits cannot be revealed by any approach to HCI that focuses solely on
either the user or the device: both must be considered. Traditional task-centered
user-modelling for HCI has had some very effective results, but in our view it
cannot reveal misfits because it does not explicitly consider how the user’s
conceptual model relates to the model imposed by the device.

Application of OSM to several full-scale examples, two of which are described
below, has shown that effective and useful insights can be readily obtained. We
have also demonstrated that non-experts can be quickly taught the technique to a
standard that is reasonably effective [Blandford & Green 1997].

In an OSM analysis the analyst describes first the visible entities and attributes
that are linked within the device or system; then the entities contained in the user’s
conceptual model; and lastly those entities embodied within the device that are not
part of the user’s conceptualisation, but which users need to be aware of in order to
use the device effectively. The resulting entities may be private to the device (the
user cannot alter them), or they may be private to the user (the device does not
represent them), or they may be shared (accessible to both the device and the user).
All communication between the two worlds of device and user takes place through
the shared entities. If the user-private entities do not fit well onto the shared
entities, the device will have usability problems. If the device-private entities are
difficult to discover or understand, the user is likely to have difficulty learning to
work with them.

The OSM notation is informal and intentionally sketchy. However, we have
developed an OSM editor (illustrated below) which enforces a consistent format
and terminology. The editor output data can be displayed in whatever manner is
convenient; at present we use a stylised tabular format that is simple but revealing.
In this paper we show how such a format may be used to reveal user-system
misfits. A certain amount of algorithmic analysis is also possible, but we

Ontological Sketch Models 3

anticipate that the main effectiveness of the approach will lie in the insights gained
by codifying and reflecting upon conceptual models and device features.

OSM’s emphasis on conceptual modelling has roots in such work as Payne’s
‘task-entity analysis’ [Payne 1993], which demonstrated how users’ conceptual
models of the time-management domain were ill-served by the electronic diaries
then available; and in Moran’s ETIT analysis [Moran 1983], which mapped
‘external’ domain tasks onto ‘internal’ device tasks. These studies, though ground-
breaking, demonstrated only what could be achieved when the analyst was an
expert in applied cognitive science. To be practically useful to non-experts, a
methodology needed to be developed. Attempts at methodologies which have
influenced OSM include the framework of ‘cognitive dimensions’ (CDs)
developed by Green [1989] and others [Blackwell et al. 2001], some of which can
be interpreted as misfits; ‘Entity-Relationship Models for Information Artefacts’
(ERMIA) developed by Green & Benyon [1996]; and ‘Programmable User
Models’ (PUMs) [Young et al. 1989; Blandford & Young 1996].

Broadly speaking we would argue that none of these methodologies achieved the
right blend. CDs have been taken up by some practitioners but for some purposes
are under-defined, while ERMIA and PUMs are too detailed and too difficult. In
contrast, we claim that OSM is novel in that encourages its users to scrutinise and
reflect on all parts of the system without forcing them to employ detailed and time-
consuming new notations.

2 The Structure of an OSM

An OSM is not a formal model, in the fullest sense of that word, but it is highly
conventionalised in structure. The central feature of the model is a list of entities.
For each entity there is a statement of how it can be created and deleted (if
possible), and—more importantly—whether or not the entity is explicitly known to
the user, whether or not it is represented at the user-system interface, and whether
or not it is represented within the system. These elaborations are illustrated below.

Each entity potentially has a set of attributes. For each attribute there is a similar
statement of how its value can be set and changed, how far it is known to the user,
and how far it is represented at the interface and in the system.

The methods for creating and deleting entities, and for setting and changing
attributes, are actions. Each action can be moded and/or disguised (i.e. available
but hard to find).

The model also contains relationships of several types. First, an entity can
consist-of other entities: this is a term that covers many different types of possible
relationship, which it would be counter-productive to distinguish in detail. There
are two forms of ‘constraint’ relationship: one attribute’s value can constrain
another either as a device-constraint, present whether the user likes it or not, or as a
goal-constraint, a state of affairs that is important to the user but is not necessarily
imposed by the device. For example, it is a device constraint that all of a drawing
must lie within the bounds of the drawing space; it is a potential goal constraint
that certain parts of a drawing should be aligned neatly (if the constraint is violated
the resulting drawing might not make proper sense, but the device will permit it).
Lastly, it is necessary to note that changing one attribute may change another—e.g.

4 Connell, Green & Blandford

changing page margins in a word processor may change the number of pages
needed for a given document.

The examples illustrated below feature entities and attributes rather than actions.
Unabridged versions of the analyses from which they are derived may be obtained
from the OSM web site [OSM 2003].

An OSM model can be displayed in any convenient form. In fact, we are still
searching for the best visualisation technique for such a structure. At present we
export the model into XML format and translate that into a stylised hypertext table.
As will be demonstrated, this allows for the tabulation of the model in concise
form; it also provides opportunity for the automatic highlighting of likely user-
system misfits.

3 Procedure

In its current form an OSM analysis consists of the following stages.

 i. The analyst gets to know the system and the users and constructs a paper-
based analysis. This sets out in tabular form the main device and user
entities and attributes, plus actions and relationships. A table of user-
interface-system dependencies is also constructed.

 ii. The analysis is then conventionalised as an OSM model, preferably by
setting it out in our OSMosis editor (available from the OSM web site:
OSM [2003]). The conventionalised model can be displayed in tabular
format, preferably in hypertext, and if necessary can be revised. User-
system misfits are highlighted automatically.

 iii. The conventionalised model can also be converted to Prolog assertions to
allow algorithmic analysis of further types of misfits. (This will not be
illustrated here.)

3.1 Initial Analysis

The first stage of the initial (paper-based) analysis is to identify in tabular form the
core entities, attributes, actions and relationships. We group entities and attributes
into device and user. Actions are typically described in terms of interaction
processes. Some relationships may arise immediately out of the initial device-user
considerations (our first example, the drawing application, being a case in point).

In the second stage, for each entity and attribute so far described, we delineate
the differences between the device/domain (system) and user concepts, and the
ways in which these are mediated via the interface.

At these initial stages the analyst must rely on a certain amount of craft
knowledge, depending on familiarity with the device and/or domain. For a simple
device such as a drawing application the main device entities and attributes may be
revealed by inspection and exploration alone. More complex systems such as
digital libraries may require input from designers and domain specialists, as well as
resort to manuals and help files. In order to elicit users’ conceptual entities,
techniques such as structured interviewing or verbal protocol analysis can be used,
perhaps allied to observation. The second analysis illustrated in this paper made

Ontological Sketch Models 5

use of interviews with musicians (see also Blandford et al. [2002] for an account of
the interviewing and inquiry methods used in a study of dispatch methods at
London Ambulance Service).

The first stage is heavily iterative, requiring frequent re-visiting of concepts and
relationships. It is also likely that return will be made to these putative results after
the conventionalising stage, for example in order to enforce consistency with the
edited and tabulated version.

3.2 Conventionalising and Viewing the Model

The paper-based analysis is likely to include too much detail in some parts, along
with gaps in others. It is also likely to contain inconsistencies and omissions. By
conventionalising the model many of these problems can be eliminated, at the
inevitable cost of omitting much free-form detail. Our experience indicates that a
strict method of conventionalising is essential; otherwise, despite our best
intentions, we have found ourselves cheating. Thus we transcribe the initial
analysis into our OSM editor, OSMosis. We then export the result in XML format
and translate it into HTML using an XSLT processor. The resulting structure can
be viewed in various formats, among them the stylised tables illustrated below.

Since the quantity of the input to the conventionalised model is not restricted, the
amount of detail to be included depends partly on the purposes for which the model
is being made. However, a tool like OSMosis does confine the analyst to a certain
degree of formalism. The examples below show how fairly extensive paper
analyses (six pages, for even the drawing application) can be reduced to a more
manageable quantity and viewed in shorthand format.

Inspection of the model can highlight the potential user-system misfits which
have been revealed by the initial analysis, particularly the delineation of the
device/domain, interface and user dependencies. This in turn can feed back into
the paper analysis and the initial model. The misfit-highlighting process has been
automated and is illustrated for the examples below.

3.3 Algorithmic Analysis

Finally, algorithmic analysis can reveal further misfits. These have mostly been
derived from Green’s cognitive dimensions framework [Green 1989]. For
example, in that framework viscosity denotes resistance to change: a change that
the user conceptualises as a single operation turns out to require multiple actions
(repetition viscosity); alternatively, an action may turn out to require several
cleaning-up operations to restore internal consistency (knock-on viscosity).

It is relatively easy to convert the conventionalised OSM model into Prolog
assertions and scrutinise the model for examples of viscosity and other such
misfits. Details will not be given here because to date this has formed only a minor
part of our analyses.

6 Connell, Green & Blandford

4. Example Analyses

As illustrations of the OSM analysis process, we present two representative
examples. The first, a drawing application, will be familiar to most readers. In this
application most of the key activities take place in the system; the challenges for
the user are to understand the tools that are available and how to manipulate the
display objects. The second example is an internet-based digital library. This is an
application where the user’s understanding and requirements reside largely ‘in the
head’, and need to be expressed in a form suitable for accessing system
information. As noted above, we have completed analyses of both smaller and
larger systems; for example, Blandford et al. [2002] report on the application of
OSM to a multi-person work system.

For reasons of space, we focus on entities, attributes and relationships and omit
the details of the OSM editor (as well as the Notes transferred from the paper
tables). The complete analyses are available from the OSM web site [OSM 2003].

4.1 Drawing Application

Common features of typical desktop drawing applications are a drawing space, a
set of drawing tools (e.g. palette, toolbar(s), panels), and the means to change and
combine created drawing objects. In OSM terms, the drawing objects are entities
whose attributes can be manipulated and changed using the appropriate tools.

4.1.1 Initial Analysis

The first main device entity is the Drawing Object out of which drawings are
realised. This is a shared entity, meaning that it is part of both the user’s
conceptualisation and the device’s representation. See Figure 1. The object has
several attributes, the first of which is its configuration or object type (straight line,
rectangle, oval, polygon, free line). Drawing objects are created by selecting the
appropriate tool from the palette or toolbar (etc.) and inserting the object into the
drawing space; once created, an object can be changed by manipulating its size,
shape, fill colour (etc.) attributes. Some of these changes can be made ‘directly’
(e.g. by dragging the object’s grab handles), some ‘indirectly’ (e.g. via dialogue
boxes initiated from menu options), and some only by means of certain palette or
toolbar selections (e.g. by switching between ‘drawing’ and ‘text’ cursors).

In relation to the latter, we find that there are device constraints (in the OSM
editor jargon, ‘constrained_by_device’ relationships) between the currently
selected tool and the drawing object: not only does the tool dictate the drawing
object to be created, but certain attributes of a drawing object can be changed only
by particular tools. See Figure 2. In addition, the main user entity, a Drawing, can
comprise only the drawing objects which the palette allows us to create (though
drawing objects can be grouped together). We denote this as a ‘consists_of’
relationship (Figure 2).

Ontological Sketch Models 7

Entity Type Create by Delete by Notes

Drawing

Object

Shared Select palette tool

and insert in

drawing space

Select object and

delete

To create an object the

appropriate tool must first be

selected from the palette

Attributes Instances Set by Change by

Configuration

(object type)

Straight line, Rectangle,

Oval, Polygon, Free line

Select tool from

palette

Select a different palette tool

Size Select tool Select grab handles and drag

Shape As per object type Select tool Cannot generally be changed

Fill colour As shown on colour

palette

Select from colour

palette

Re-select

Orientation Horizontal, vertical Object defaults Use 'rotate' tool

Grouped Grouped, not grouped Select several

objects & group

Ungroup

Entity Type Create by Delete by Notes

Drawing User Add, manipulate

and combine

drawing objects

Select and delete A drawing consists of drawing

objects which can be combined

together

Attributes Instances Set by Change by

Size Within drawing space Expand and reduce

Shape Combine drawing objects Re-combine drawing objects

Orientation Horizontal, vertical As for drawing objects

Figure 1. A main device entity (Drawing Object) and a main user entity (Drawing) for
a drawing application. See text for explanation.

Relationship Actor Type Acted On Notes

Define_object Palette

tool

Constrained_

by_device

Drawing Object The drawing object to be

created depends on the palette

tool which is first selected

Define_actions Drawing

Object

Constrained_

by_device

Palette tool Some actions which can be

performed on a drawing object

are defined by the object type

Consists_of Drawing Consists_of Drawing objects

Figure 2. Two device-constraint relationships and a consists-of relationship for a
drawing application. See text for explanation.

For each of the entities and attributes so far described we now set out the main
components of the dependencies between the user, interface and system. See
Figure 3.

In the current OSM configuration, we judge the user’s conceptualisation of each
component (entity or attribute) as being Explicit, Implicit, or Absent, and the
system’s as either Present or Absent. If a component is explicit or implicit to the
user but absent from the system, we record that as a definite user-system misfit.
Similarly, if a component is present in the system (domain or device) but absent
from the user’s model, that also represents a misfit.

8 Connell, Green & Blandford

At the interface, an entity or attribute is judged to be one of the following:
Absent, Direct, Disguised, Delayed, Hidden or Undiscoverable. By these terms,
we mean:

o Absent: not represented;
o Direct; represented and easily interpreted by the user;
o Disguised: represented, but hard to interpret;
o Delayed: represented, but not available to the user until some time later

in the interaction;
o Hidden: represented, but the user has to perform an explicit action to

reveal the state of the entity or attribute; and
o Undiscoverable: represented only to the user who has good system

knowledge, but unlikely to be discovered by most users.
In general, if an interface component is disguised or delayed, this may represent

a misfit, depending on the other two components; if, however, it is deemed to be
hidden or undiscoverable, we record that as a misfit independently of the other
components.

In this example, Figure 3 shows that both drawings and drawing objects have
been judged to be directly represented at the interface and part of the user’s explicit
or implicit conceptual model. However, some drawing object attributes are
deemed to be either disguised or hidden at the interface, and the user’s drawing
itself is absent from the system model. In particular, the ‘Grouped’ attribute is
shown as both absent from the user’s conceptual model and hidden at the interface.
This will be highlighted as a serious misfit when the OSM model is
conventionalised. See the next Section.

Entities & Attributes User Interface System

Drawing Explicit Direct Absent

Orientation Explicit Direct Present

Shape Explicit Direct Present

Size Implicit Direct Present

Drawing object Implicit Direct Present

Configuration Implicit Disguised Present

Fill colour Explicit Direct Present

Grouped Absent Hidden Present

Orientation Explicit Direct Present

Shape Explicit Direct Present

Size Explicit Direct Present

Figure 3. Part of a User-Interface-System table
(showing entities Drawing and Drawing Object) for a

drawing application. See text for explanation.

4.1.2 Conventionalising and Viewing the Model

We now transcribe the essential elements of the paper-based analysis into the OSM
editor, OSMosis. Figure 4 shows sample editor content, for the entity
‘Drawing_object’ and the attribute ‘Grouped’ (featured in Figures 1 and 3). The
leftmost dialogue box shows the full entity-action-attribute-relationship listing; the

Ontological Sketch Models 9

middle dialogue box the six attributes of the highlighted entity (illustrated in
Figures 1 and 3); and the rightmost box the system-interface-user dependencies,
plus ‘set’ and ‘change by’ actions, for the highlighted attribute.

Figure 4. OSMosis editor with sample content for a drawing application. See text
for explanation.

Once thus transcribed we can export the model in XML and view it in a stylised
hypertext table, as partially illustrated (minus the Actions and without any
transcribed Notes) in Figure 5. Misfits are flagged against the ‘User Interface
System’ table just described. In this example the only serious misfit (denoted **)
relates to the attribute ‘Grouped’, others being recorded as either less serious
(denoted *) or merely potential misfits (denoted ?? or ?). (The user-interface-
system table is also colour-coded to enhance visual interpretation.)

10 Connell, Green & Blandford

Figure 5. Part of a stylised hypertext table (tabulated model) for a drawing application.

In this first example analysis, then, the main source of user-interface-system
misfits has been attributed to the inferred absence of a system concept for a
drawing, the strong relationship between drawing objects and palette tools, and the
absent-hidden-present nature of drawing object grouping.

The second example which follows illustrates how a different set of misfits may
be focused more on the user’s expectations of how system information should be
organised, in this case in an online digital library.

4.2 New Zealand Digital Music Library

The New Zealand Digital Music Library [NZDL 2003] is part of the New Zealand
Digital Library (NZDL). It holds a large number of digitised melodies which can
be retrieved over the internet and played back on the client computer. Melody files
may be browsed or searched. Searching may be by title (‘text query’) or by tune
matching (‘music query’), the latter including sung or played inputs. We
summarise the results of an OSM analysis (full version available from the OSM
web site—OSM [2003]) carried out on the Music Library in the form in which it
existed between October 2001 and January 2002. (Since then, partly as a result of
this and related analyses, e.g. Blandford & Stelmaszewska [2002], the interface has
been revised.)

Ontological Sketch Models 11

4.2.1 Initial Analysis

The NZDL Music Library consists of several sub-collections, each of which
contains indexed melody files. A Melody File is thus the main device entity,
whose attributes include file name and file size. Each sub-collection’s melody files
have particular component types and playback formats. Neither a Melody File nor
its attributes may created, deleted or changed by end users. See Figure 6.

Entity Type Create by Delete by Notes

Melody File Device Impossible for end user.

(NZDL: retrieve from

external source or create

from score)

Impossible for end

user.

(NZDL: Remove from

sub-collection)

Sub-collections consist of

melody files held in

different formats.

Attributes Instances Set by Change by

How indexed Title, alphanumeric

Name Many and various

No. of components 3 to 5

Playback format MIDI0, MIDI1, AIFF, etc.

Size Various

Type of components Melody, score, title, lyrics, etc.

Impossible for

end user.

(Done by NZDL)

Impossible for

end user.

(Done by NZDL)

Figure 6. NZDL Music Library: entities and attributes for the device entity
Melody File. See text for explanation.

In order to retrieve a melody file from a sub-collection by tune matching, the
user must input (that is, sing or play) the tune into the client computer. That
version of the melody is then matched against the stored data using a proprietary
conversion system named Meldex [Bainbridge 2000]. Successful tune matching
thus requires that the stored version of the tune be compatible with the converted
version, which in turn requires that the sung or played input be in suitable form.

However, musicians’ conceptual models of both tunes and melody file searching
may be more complex. Figure 7 shows some potential descriptors (attributes) of a
‘tune’ derived from interviews carried out with musicians of varying IT and music
information retrieval experience. Besides the melody itself, these include pitch,
tempo, rhythm and tonality. (The same interviewees also offered a variety of
additional criteria on which they might expect to perform ‘text’ searches, such as
composer, year, period, artist.) Thus we judged there to be some potential misfits
between the tune-matching requirements of the Music Library and those of its
likely users. These are recorded in the User-Interface-System table using the same
conventions as described above (Figure 3). When conventionalised, they are
highlighted (flagged) in the stylised hypertext table, as illustrated in the next
Section.

12 Connell, Green & Blandford

Entity Type Create by Delete by Notes

Tune User Recall Forget In order to make a match with a sub-

collection melody file the user must first

recall the tune

Attributes Instances Set by Change by

Melody, pitch, notes,

spaces, tempo, harmony,

rhythm, tonality

(Requires

specialised musical

knowledge)

Play, sing or

otherwise transcribe

a recalled tune

Play, sing or

transcribe

differently

Figure 7. NZDL Music Library: Entities and descriptor attributes for the user
entity Tune. See text for explanation.

4.2.2 Conventionalising and Viewing the Model

The result of conventionalising and viewing the Music Library tune matching
model is partially illustrated (minus Actions and Notes) in Figure 8. In this more
complex example we have identified, amongst others: two serious misfits (flagged
**), namely those related to playback format and melody file size (both absent-
hidden-present); system concepts deemed absent from the user’s model (indexing,
number, and type of melody file components), flagged *?; and implicit user
concepts for a tune other than melody itself, such as harmony, notes, pitch, rhythm,
which were judged to be absent from the system model of the tune matching
process (flagged *??). (These may, however, be revealed in the scores of retrieved
melodies once displayed and/or played back on the user’s computer.)

Ontological Sketch Models 13

Figure 8. Part of a stylised hypertext table for the NZDL Music Library.

In this second example the main source of misfits was attributed to the contrast
between system melody file concepts which may be absent from the user’s
conception and hidden at the interface (absent-hidden-present), and user concepts
for a tune which may be both delayed at the interface (until retrieved and played
back) and absent from the system model for tune matching (implicit-delayed-
absent).

5 Conclusions

OSM presents an evaluation methodology which appears to guide non-expert
analysts successfully towards an understanding of how far a device or a system
matches or falls short of a typical user’s conceptualisation of that domain. By its

14 Connell, Green & Blandford

deliberately sketchy nature, it avoids drowning the analyst in detail, but it can be
made almost as detailed, or as broad-brush, as desired.

The scope of OSM analysis is restricted to conceptual misfits. It has little to say
about other issues, such as the rendering of the system image, the choice of
communicative language (cf. heuristic evaluation, Nielsen [1994]) or speed of
operation (cf. the keystroke level model, Card et al. [1983]). Conversely, those
methods may have little or nothing to say about conceptual misfits.

Inferences about misfits between the system and the user’s conceptualisation
may be revealed both by the tabular format and by algorithmic analysis.
Experience to date (illustrated by the examples presented in this paper) suggests
that much is revealed by the former process, for it encourages the analyst to
question assumptions about the fit between system and user. The algorithmic
analysis, in contrast, is only effective when a reasonable amount of detail has been
made available.

At present, our main concern is with relationships. Typically, analysts can
readily unearth entities: user entities may be uncovered through the knowledge
elicitation techniques outlined above, while system entities are quickly found by
inspection. Attributes also appear to be speedily unearthed. But relationships can
be easily missed, for they are neither externalised on the interface nor likely to be
immediately grasped by the analyst. Unfortunately, it is often the degree to which
a system helps its users to meet goal constraints that determines how useful it is.
Much, therefore, hangs on the analyst’s success during the first stage, that of
constructing the paper-based model and eliciting relevant knowledge.

How does OSM relate to other approaches? Of the non-modelling approaches to
usability evaluation, perhaps the nearest comparison is with Cognitive
Walkthrough (CW) [Polson et al. 1992]. CW was intended to guide non-expert
analysts towards a cognitive analysis by considering novice-user usability issues.
Both CW and OSM require the analyst to make decisions about the potential user’s
knowledge, but their focus is different: CW considers each individual action step
required to achieve a stated goal, but has nothing to offer about structural
relationships. In our experience, CW does a good job of highlighting potential
difficulties in learning to use a device, but has almost nothing to say about whether
that device fits the user’s conceptualisation, and therefore, in our view, nothing to
say about whether the device is useful. OSM is almost exactly complementary in
its approach. Current work is exploring the ways in which OSM and CW differ in
their potential to identify misfits associated with everyday systems such as ticket
vending machines. It is hoped that this will also demonstrate measurable
differences between the two methods. Other OSM analyses, for example of the
NZDL Music Library summarised in Section 4.2.1, have generated
recommendations for changes to existing systems.

After applying OSM to several full-scale systems, two of which are illustrated
here, we are confident that the technique has real-life potential for the illumination
of a range of applications including both analogue tools (e.g. a fob watch) and
digitally-based applications (e.g. desktop tools, online diaries, ticket vending
machines, digital libraries) as well as work practice studies (e.g. ambulance
dispatch, health care IT support). OSM goes well beyond the confines of the
laboratory. However, it does not purport to supplant the analyst’s judgement: in

Ontological Sketch Models 15

many cases, the analyst will have to decide whether or not an action is easy to find,
and will always have to decide how much detail to include. It is hard to imagine
that any approach could totally remove the need for judgement; however, we
persist in the belief that even inexperienced analysts know what questions they are
trying to answer.

Acknowledgements

We are grateful for the information about the NZDL Music Library provided by
David Bainbridge of Waikato University. The OSM editor was developed by
Owen Green. The work reported in this paper has been supported by EPSRC grant
no. GR/R39108.

References

Bainbridge, D. [2000], “The Role of Music IR in the New Zealand Digital Library
Project”, in International Symposium on Music Information Retrieval (ISMIR),
Plymouth, Mass., October 2000.

Blackwell, A.F., Britton, C., Cox, A., Green, T.R.G., Gurr, C.A., Kadoda, G.F.,
Kutar, M., Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roes, C., Wong,
A. & Young, R.M. [2001], “Cognitive Dimensions of Notations: Design Tools
for Cognitive Technology”, in M. Beynon, C.L. Nehaniv & K. Dautenhahn
(eds.) Cognitive Technology 2001 (LNAI 2117), pp.325-341. Springer-Verlag.

Blandford, A. E. & Green, T. R. G. [1997], “OSM: an Ontology-based Approach to
Usability Evaluation”, in Proceedings of an International Workshop on
Representations in Interactive Software Development, Queen Mary and
Westfield College, July 1997, pp.82-91.

Blandford, A. E. & Stelmaszewska, H. [2002], “Usability of Musical Digital
Libraries: a Multimodal Analysis”, in M. Fingerhut (ed.), Proceedings of the
3rd. International Conference on Musical Information Retriveal, ISMIR 2002,
Paris, October 2002, pp.231-237.

Blandford, A. E. & Young, R. M. [1996], “Specifying User Knowledge for the
Design of Interactive Systems”, Software Engineering Journal 11.6, 323-333.

Blandford, A. E., Wong, B. L. W., Connell, I. W. & Green, T. R. G. [2002],
“Multiple Viewpoints on Computer Supported Team Work: a Case Study on
Ambulance Dispatch”, in X. Faulkner, J. Finlay & F.D. Étienne (eds.), People
and Computers XVI, pp.139-156. Proceedings of HCI 2002, London,
September 2002. Springer.

Card, S. K., Moran, T. P. & Newell, A. [1983], The Psychology of Human-
Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Green, T. R. G. [1989], “Cognitive Dimensions of Notations”, in A. Sutcliffe & L.
Macaulay (eds.), People and Computers V, pp.443-460. Proceedings of HCI
’92, York, September 1992. Cambridge University Press.

Green, T. R. G. & Benyon, D. [1996], “The skull Beneath the Skin: Entity-
Relationship Models of Information Artifacts”, International Journal of
Human-Computer Studies 44(6), 801-828.

16 Connell, Green & Blandford

Moran, T. P. [1983], “Getting Into a System: External-internal Task Mapping
Analysis”, in A.Janda (ed.), Human Factors in Computing Systems, pp.45-49.
ACM SIGCHI and Human Factors Society conference proceedings, Boston,
December 1983. New York: ACM Press.

NZDL (New Zealand Digital Library) Music Library [2003], last accessed May
2003,
http://www.nzdl.org/fast-cgi-bin/music/musiclibrary

Nielsen, J. [1994], “Heuristic Evaluation”, in J. Nielsen & R. Mack (eds.),
Usability Inspection Methods, pp.25-62. New York: John Wiley.

OSM (Ontological Sketch Modelling) [2003], last accessed May 2003,
http://www.uclic.ucl.ac.uk/annb/OSM.html

Payne, S. J. [1993], “Understanding Calendar Use”, Human-Computer Interaction
8, 83-100.

Polson, P., Lewis, C., Rieman, J. & Wharton, C. [1992], “Cognitive Walkthroughs:
a Method for Theory-based Evaluation of User Interfaces”, International
Journal of Man-Machine Studies 36, 741−773.

 Young, R. M., Green, T. R. G. & Simon, T. [1989], “Programmable User Models
for Predictive Evaluation of Interface Designs”, in K. Bice. & C. Lewis (eds.),
Wings for the Mind: CHI ‘89 Conference Proceedings, pp.15-19. ACM
conference on human factors in computing systems, Austin, Texas, April-May
1989. Reading, MA: Addison-Wesley.

