
Presented at Workshop on Representations, QMW, July 1997

OSM: an ontology-based approach to usability evaluation

Ann Blandford

School of Computing Science
Middlesex University
Bounds Green Road
London N11 2NQ

A.Blandford@mdx.ac.uk

& Thomas Green

 Computer Based Learning Unit
University of Leeds

thomas.green@ndirect.co.uk

Abstract
An Ontological Sketch Model (OSM) is a structured but informal representation of the
ontology — the essential underlying structure — of a system, forming a basis for usability
assessment. Our primary aim is to develop an approach that is usable and that yields useful
results.

We present a preliminary ontology for the OSM, based on descriptions of the entities in the
domain of application, actions that the user can perform, and relationships (such as
“constrains” and “affects”) between entities. Initial studies into the usefulness and usability of
OSMs indicate that the approach is promising, but that further work is needed on developing
more comprehensive training materials.

Introduction
Usability is a central concern in the design of interactive systems. However, the most extensively
used approaches to incorporating user concerns in the design lifecycle (e.g. use of guidelines
(Smith & Mosier, 1986) or heuristic evaluation (Nielsen, 1994)) are informal and heavily reliant
on craft skill. Such methods can be very effective in the hands of a skilled analyst, but they are
highly dependent on the skill of the individual. In principle, theory-based methods offer
approaches to usability evaluation that are less dependent on craft skill, that utilise established
results from cognitive psychology, that can be applied earlier in the design process when fewer
commitments have been made, and that can yield a deeper understanding of usability problems
and appropriate solutions. However, while there is significant work on theory-based methods of
usability assessment within the research community, there has been little take-up of these methods
by industry (Bellotti, 1989). There are many reasons for this, including the difficulty of
“technology transfer” (Buckingham Shum & Hammond, 1994) between the academic
developers of such methods and the industrial users. The aim of the work reported here is to
develop and test an approach to usability evaluation that draws on theoretical results from the
academic community but can be applied by members of a design team at comparatively low cost,
without depending too heavily on craft skill or expertise in cognitive science. The slogan is:
“Useful and Usable Representation”.

In the approach we propose, Ontological Sketch Models (OSM), the analyst generates a structured
but informal representation of the ontology — the essential underlying structure — of the
system. Unlike the great majority of HCI approaches, the focus is not on what the user needs to
do, but on what the user needs to know, represented as a list of entities, actions, and relationships.
A somewhat similar focus on structures rather than tasks can be found in ERMIA (entity-
relationship modelling of information artefacts) (Green and Benyon, 1995), but ERMIA uses a
more detailed, formalistic analysis, has less scope for describing differences between relationships,
and has no representation of user actions. The OSM approach has drawn heavily on ERMIA but
aims to be sketchier and more usable, offering a different type of usefulness.

OSM also draws on the knowledge analysis stage of Programmable User Modelling (PUM;
Young, Green & Simon, 1989; Blandford & Young 1996). Knowledge analysis involves laying
out the knowledge the user needs (in terms of conceptual objects they work with, and
preconditions and effects of operations), and giving an account of where that knowledge might
come from. Full PUM analysis then involves expressing that knowledge formally in an
'Instruction Language' and applying cognitive modelling techniques to reason about likely user
behaviours when interacting with the device. OSM demands less rigour than a full PUM
knowledge analysis, and allows a wider range of concerns to be expressed within the model.

We are aiming to develop an approach that can be used by non-specialists. Experience of training
students in the PUM cognitive modelling technique (Blandford, Buckingham Shum & Young, in
preparation) indicates that students can be trained to do knowledge analysis for surface
phenomena (that do not require a deep understanding of the underlying cognitive model) within
a matter of a few hours, whereas a much longer period of training and practice is needed for the
analysis of phenomena that hinge on having a good understanding of the underlying cognitive
theory. This deeper analysis can be justified in some circumstances — e.g. where the results have
wide applicability (Bellotti et al, 1996) or where the interactive system has to be very reliable —
but may be harder to justify in others. Further informal evidence of the value of non-specialist
approaches comes from our subjective experience that the ideas behind Cognitive Dimensions
(Green & Petre, 1996), which are expressed in a relatively informal way and are not reliant on a
deep understanding of cognitive science, have been taken up by others (e.g. Lavery, 1996; Roast
& Siddiqi, 1997) much more rapidly than those behind task-oriented approaches that are
concerned with detailed behavioural predictions, such as GOMS (John & Kieras, 1996), CCT
(Kieras and Polson, 1985) or PUM. However, we recognise that there is a trade-off between the
power of a technique and the skill required of the analyst, which has to be addressed.

Aims of this work
The aim of this work is to develop and test a technique for usability evaluation that brings
together many of the central ideas behind existing approaches, and that supports reasoning about
various aspects of usability of a system. We can draw an analogy with task analysis. Within task
analysis, complementary approaches have been developed, some focusing on procedural
representations (e.g. Hierarchical Task Analysis (HTA; Annett & Duncan, 1967) or the goal-
oriented sub-structure of Task Knowledge Structures (TKS; Johnson, 1992)) and others on
declarative (e.g. the taxonomic sub-structure of TKS (Johnson, 1992)). Similarly, we see OSMs as
a declarative approach to user-centred evaluation that can complement established procedural
approaches such as GOMS (op. cit.) or Cognitive Walkthrough (Wharton et al, 1994). In
particular, some recent work on domain modelling has focused on the use of explicit ontologies
(e.g. Guarino, 1997) — a theme that we take up in our work on OSMs.

To have any long-term value, any approach to usability evaluation clearly needs, itself, to be both
useful and usable.

A modelling technique is useful if it helps the analyst gain insights into usability issues that might
well have been missed otherwise. No modelling technique can guarantee to identify problems, as
it is a tool that depends on the analyst for effective use, but guidelines on how to reason with a
model should help the analyst to identify particular usability concerns. Also, any modelling
technique is of limited scope; what is needed is not a universal tool, but one whose usefulness is
clearly scoped.

A modelling technique is usable if it is easy to learn to use and to understand. For any technique
to be usable, the notation needs to have a clear syntax and semantics, and an accompanying
methodology.

OSMs: ontology and methodology
Clearly, an approach intended to be usable by non-specialists cannot come anywhere near the
depth and richness of representation afforded by full-scale knowledge representation languages.
An OSM is therefore a sketchy description of the system at a fairly high level of abstraction.
Usability issues are assessed by applying heuristics to the sketch. Construction and reasoning are
typically iterative activities; in particular, it can be hard to identify an appropriate level of
abstraction initially, so ‘construction’ can involve the production of gradually more abstract
sketchy descriptions.

An OSM description covers three aspects of a system design, namely entities, actions, and
relationships. For current purposes, we take brief examples from MS Word (version 5 for the
Macintosh) to exemplify the modelling approach.

Entities
The analyst lists the 'things' that the user has to know about, such as ‘character’, ‘word’,
‘paragraph’, ‘column-width’. For each of these entities, the analyst notes down any of the
following that are significant:

attributes
what attributes an entity has. For example, a character in a document has a font, a size,
etc.

accessibility
whether the entity is user-private – an idea in the head of the user, such as the plot of a
novel; device-private – something the user can’t change easily, maybe not even see, but
has to know about, such as the style hierarchy in Word; or shared, such as a word (in
MS Word). User-private entities are typically components of a domain model that are
not explicitly represented within the device; they may be things that users will want to
manipulate, but which they cannot work with easily using this device.

relevance
whether the entity is relevant to the domain of application, or just to the device. For
example, a word is relevant to the domain of writing and typesetting (domain-relevant),
but a scroll-bar is only relevant to the word-processor device (device-relevant). A user
who is familiar with the domain of application will have to learn about the entities that
are only device-relevant to be able to use this particular system effectively.

persistent visibility
whether an entity can be seen by the user. For example, a word is persistent (always
visible), whereas the offspring of a style in the style hierarchy are invisible to the user.
The symbols for newline, tab etc. that can be revealed in MS Word (if you know how)
are transient.

disguise
whether an entity has a meaningful name, or a meaningful symbol, or an icon that
would let you guess its meaning if you didn't already know; or whether it is disguised.
In MS Word, the tool for changing column widths in tables is disguised, and new users
have a lot of trouble finding it sometimes. (The icon originates in the markings on
typewriters, now unfamiliar to today’s users.)

change column width

Actions
The analyst lists the types of action users can do, such as selecting something (a paragraph, a
word, etc.), and what the actions can be applied to. It is not necessary to list all the different
actions, but to focus on the interesting actions that require new ideas, or that require users to know
about some special tool or some other entity (such as the column width tool illustrated above). An
action description consists of:

action
what the user does

entity
what they do it to

effect
what effect that action has

context
anything particular that has to be true about the state of the device for that action to have
that effect

Relationships
Relationships connect two or more entities. We recognise three particular kinds of relationships:
consists-of, affects, and constrains. In Word, a paragraph consists of sentences, sentences consist of
words, words consist of characters, etc. Changing the style attribute of one of those entities will
affect everything it consists of (by inheritance).

An affects relationship connects entities A and B when changing an attribute of A causes (or may
cause) a change to an attribute of B, but they are not connected by consists-of. For example, the
pagination algorithm in Word is such that adding to the amount of text preceding a table in a
document may result in causing a new page to be started within the table (number of characters
affects position of page-breaks).

A constraint relationship simply asserts that certain attributes of entities are in some way
constrained; for instance, typographical convention requires all the lines of a table to lie on the
same page if possible. We have made little exploration of constraint relationships as yet.

For each relationship, the analyst should record

type
consists-of, affects, constrains, or another kind

entities
the two (or more) entities that are related.

Reasoning with the representation
The purpose of writing out the OSM is to help the analyst to spot potential usability difficulties.
While writing the OSM, or afterwards, the analyst can check for potential difficulties. These
include:

• Is there a simple mapping between the underlying model and the surface
presentation? If not, is this likely to cause the user difficulties?

• Are there actions that users can perform that cause irreversible changes to the
system?

• How easy is it for the user to modify the things that matter to the user? [The
analyst should focus particularly on how easy it is to change attributes or
relations concerning user-private entities that have no direct device
representation.] This may indicate “repetition viscosity” (Green 1990), in
which changing an attribute that has a simple meaning to the user involves
repetitive device actions.

• Is the real-world meaning of entities / attributes in the device representation
always clear?

• Are there non-obvious dependencies between the context and the effect of a
user action? (Does the same action have substantially different effects
depending on the context? Will this always be obvious to the user?)

• Are there non-obvious relationships between the entities the user manipulates
and the effects they have on other entities? (E.g. in a word-processor adding
or deleting text can affect where page-breaks fall) This may indicate “knock-on
viscosity” (Green 1990), meaning that changing one attribute may lead to the
need to adjust other things to restore the values of others.

• Are there actions / entities that the user is unlikely to discover for any reason?

• Are there actions whose effects are unpredictable to the user for any reason?

Tool Support for Reasoning and Evaluation
We have been impressed by the potential offered by approaches that are explorable, executable or
interactive, such as Monk’s Action Simulator (Monk, n.d.), which presents a simple
‘exploratorium’ for Olsen et al.’s (1995) propositional production system approach: for non-
specialists, such environments may turn out to be far more usable than paper-based formalisms.
Moreover, since an interactive environment requires a precisely specified semantics, some of the
problems attending informal approaches are resolved. We are therefore intent on creating a
demonstration version of an OSM environment. This has a long way to go and will not be further
described here, but preliminary work has shown that it is easy to transcribe the OSM into Prolog

assertions and then to use simple heuristics to automatically identify possible usability problems
of repetition viscosity, knock-on viscosity, etc.

An Illustration: J-Sketch
To illustrate the use of the OSM notation, we apply it to a prototype sketching program, J-Sketch
(Rieman, 1996). In brief, J-Sketch allows the user to produce sketchy drawings based on Bezier
curves (See figure 1). The user has a choice of two methods of creating curves; in “click” mode,
the user lays down individual points, and the most recent 4 points are used by the program to
construct each line in the curve; in “drag” mode, the user drags the mouse to form the curve,
and points are laid down automatically at 4 per second. The user has a choice of three colours
(black, grey and white) and 3 pen-widths. There are 5 drawing layers; the layers can be re-
ordered by clicking on tabs at the edge of each layer, and each layer can be made visible or
invisible by clicking on the grey tab-edges.

Figure 1: A J-Sketch screen.
Layer 3 is currently active; any marks on layers 0 & 1 will be visible, while those on layers 2 and 4 will not.

J-Sketch is distributed with a page of user notes. These have been used as the basis for
constructing the OSM description.

J-Sketch Entities
The main entities and their properties are listed in the following table:

Entity Attribute Accessibility Relevance Persistence Disguise
domain-object shape user domain persistent
sketchy-line shape, sketchiness,

colour and width
shared domain persistent

layer current/other;
visible/invisible

shared device persistent tabs not very
salient; tab
edges disguised

mode discrete / continuous shared device transient
point position device device invisible
pen width and colour shared domain persistent
undo icon shared device persistent disguised

The main points to note here are that the domain-objects (the “things” the user is sketching a
picture of — e.g. the whale, eye, tail, fin, mouth, etc. in figure 1) have no explicit device
representation; conversely, the individual points are not accessible to the user.

J-Sketch Actions
The main actions available to the user are listed in the following table:

Action Object Effect Context Notes
click drawing

area
lay down a point for a
sketchy-line

discrete mode

drag drawing
area

lay down shape for
sketchy-line

continuous mode speed of
dragging
affects
sketchiness

press onscreen-
backspace /
select menu-undo
/ press keyboard-
delete

undoes the most recent
point

Works repeatedly
through current curve
(but cannot undo to a
previous curve).

3 alternative
actions all
achieve the
same effect

hide-layer hides content of layer layer
re-appears if
user starts
drawing in it

clear-layer deletes all drawing from
layer

semantically
confusable
with “hide
layer”.

select-pen sets width of lines for next
curve; starts a new curve

select-ink sets colour of lines for next
curve; starts a new curve

lift mouse button finish-drag-curve drawing in drag mode
press space-bar,
or click on pen or
ink

finish-point-curve drawing in click mode no visible cue

The principal usability concerns in relation to actions are noted in the final column of this table.
One additional point to note is that there is no facility to “redo” or to reverse the effect of
clearing a layer.

J-Sketch Relationships
The final stage of constructing the OSM is to list important relations. In this case, the program is
very simple, so we have only identified a few relations:

Type Entity Entity Notes
consists-of sketchy-line points (at least 4 to be visible)

consists-of domain-object sketchy-lines

is on curve layer can be difficult for users to find out this
relationship if they forget it.

As discussed below, this set of relationships omits one important one — that a sketchy-line can
consist of (or denote) several domain objects, as well as the converse being true.

Usability Notes
Overall, the process of constructing the OSM description has shown that in most respects the
system is likely to be easy to use. In noting usability concerns of this prototype system, some
issues arise from the process of generating the description; others arise from reasoning about
aspects of it, such as the consequences of relationships holding. The main usability concerns
identified through constructing this OSM description were as follows:
• We originally included a point as an entity when we tried to describe the effect of the
undo action (which is that it undoes the last point). Undoing is meaningful (if limited) in click
mode, but not at all in drag mode. This highlights the inappropriateness of “undo” in relation to
the entities the user is working with (particularly in drag mode).
• There are three ways to undo, including pressing an on-screen button and selecting an
item from a pull-down menu. This might cause confusion, since there is only one way to achieve
most other effects.
• Since 4 points are needed to compute a line, the first three clicks in click mode have no
visible effect. This might be disconcerting for the novice user.
• Curves are on layers. This relationship is always known to the device, but it has to be
remembered by the user. It can only be found out by hiding then revealing a layer, to see what
disappears and reappears.
• The user has to be aware of what mode the system is in; clicking in drag mode just makes
lots of invisible points, while dragging in click mode only lays down the point at which the user
presses the mouse button down. This system behaviour is likely to be confusing if the user ever
changes mode.
• The drag action has property “speed” which affects the sketchiness of the curve (by
affecting the spacing between points). Users need to understand this relationship if they wish to
control the sketchiness of the curve.
• The tabs for making layers visible / invisible are not obvious to a novice user.

This OSM description and set of usability concerns was made just on the basis of reading the
notes supplied with the program, and using the program sufficiently (usually interleaved with
writing the description) to be able to produce an adequate description. (That is: the requirements
of writing the description in OSM terms raised questions about how the program works, which
could only be answered by running it and finding the answers. In a design context this would
involve asking focused questions of the designer.) Below, we compare the results of that sketch-
modelling with the results of an empirical study of the use of J-Sketch.

Testing OSMs for usability and usefulness
As outlined above, our aim in this work is to produce a technique that is both useful and usable.
As a preliminary investigation into both of these concerns, we conducted an informal study,
focusing on curve drawing, in which we assessed the usefulness and usability of OSMs.

Curve-drawing programs (J-Sketch and the curve-drawing facilities within ClarisWorks) were
selected for this study for several reasons. One is that such programs are widely used, but
comparatively few usability analyses of them have been conducted; another is that task-oriented
approaches such as GOMS are poorly suited to analysing the usability of such systems.

The study, described below, was conducted with a group of 20 final-year undergraduate students
who were enrolled on a module on HCI and Graphics. The results presented here are preliminary,
and are being used to help highlight design modifications needed to the OSM approach.

Assessing usefulness
To assess the usefulness of the OSM approach, we did an OSM-based usability analysis of each of
the software packages we were using, and compared our results against empirical data. The
analysis of J-Sketch is reported above; space does not allow the ClarisWorks analysis to be
presented here.

Students were put into pairs, matched as closely as possible for prior experience. Each pair was
allocated to one of the two drawing programs, and while partner A worked, thinking aloud,
partner B noted what A did and what difficulties were encountered. Audio and video recordings
were taken of two pairs (one using each program). Students were asked to draw a whale (pictures
were provided as a guide), then to modify it by moving its tail; the session lasted for 1.5 hours.
The following week, the same procedure was repeated, with each pair of students using the other
program. However, this session was preceded by a seminar in which students were asked to
describe the program they had used to a pair of student who had used the other program, so that
each pair approached the second program with more prior knowledge.

Every statement in the students’ notes was categorised in terms of difficulties encountered and
things they found easily. From this, an overall pattern of difficulties was established, to be
compared against the OSM-based prediction.

In summary, for J-Sketch the OSM explicitly captured nearly all the usability problems. The
exceptions are as follows:

1) Although "the domain object" was identified as a user-private entity, the analysis did not
extend to consider ways the user might manipulate the entity — for example, by filling it (to
make the whale grey). Subjects actually found filling tedious and annoying (since filling with
a sketchy line causes the line to go outside boundary, like a small child's colouring in.)

2) The fact that there were 3 ways to undo and only 1 to clear was expected to cause confusion.
This does not appear to have been the case. Most students understood the use of the “<=”
on-screen undo button; few discovered the use of the delete key for undoing.

The results for ClarisWorks are less clear-cut. Of the nine specific difficulties encountered by
subjects, 4 had been predicted, but 5 had not. Additional predictions were made about aspects of
the program that subjects never got as far as exploring. Some of the unpredicted difficulties were
ones that an OSM analysis would not be expected to highlight (e.g. students commented that they
had difficulty getting the shape acceptable — a point that might emerge from several aspects of
the system being difficult to work with, but not one that would emerge directly from an OSM
analysis). Others were ones that could in principle have been detected, but were not. For example,
some users tried to select part of a device object (e.g. the tail or the mouth, which have domain
significance) and manipulate just that part. They could not do this; this difficulty did not emerge
from the OSM analysis because it was not noted that a device object could represent several
domain objects. Another example is that many students were confused about the effect of
dragging the cursor in the drawing space (rather than clicking); this was a case where the effect of
dragging was not documented in the user manual, so it was not included in the OSM.

These examples of failure to use OSM to predict usability problems that “in principle” it could
have been used for serve to emphasise the value of expertise — both in the use of the system
being analysed (in this case, ClarisWorks) and in the use of OSMs. As the technique is still under
development, performance is likely to improve in future. (Nevertheless it would be unrealistic to
expect 100% accuracy from any technique that is deliberately sketchy.)

Assessing usability
To assess the usability of OSMs in a broad sense, we asked the same 20 subjects to produce their
own OSM descriptions, according to the following timetable:
session duration activity
1 1 hour training session outlining the OSM approach and working

through a brief example (based on MS Word),
2 1.5 hours produce OSM descriptions of J-Sketch
3 (1 week later) 0.5 hour short de-briefing on their J-Sketch analyses
4 2 hours produce OSM descriptions of ClarisWorks
in their own time produce a short usability report on the OSM methodology

Preliminary analysis indicates that:

• when describing J-Sketch all students except one described appropriate things as entities.
(One student included some action descriptions, possibly because they appear as labels within
pull-down menus.) However, most subjects only described shared entities, omitting either
user-private or device-private ones. When describing ClarisWorks (after de-briefing on their
J-Sketch analyses), some students did include user-private entities. All ClarisWorks
descriptions were of appropriate entities, though some were at too fine a grain of detail to be
really useful.

• similarly, all students (with one exception for J-Sketch) described actions in appropriate ways.
For ClarisWorks , many of these were again at too fine a level of detail.

• the descriptions of relationships were highly variable, and many were inappropriate. In
particular, many were reiterations of action information (“doing X affects entity Y”).

• the subjects’ usability notes did not clearly derive from their OSM descriptions, but from
their experience. For example they included statements like “filling is tedious”.

Their subsequent usability reports on OSM confirm the evidence from the data — that entities
and actions were easily comprehended and described, but that relationships presented more
difficulties, and that few of the subjects really understood how the modelling was meant to be
used to derive usability assessments of the system.

The most important points that arise from this formative study are clear feedback on how training
materials need to be developed:

• emphasising the ontology of the domain (from a user perspective — e.g. noting the
significance of sentences in a document, or domain-objects in a drawing program) as well as
that of the device,

• clarifying how to describe relationships appropriately,

• emphasising the ways in which the modelling is used to inform usability assessment, and

• clarifying how to establish an appropriate level of abstraction in the description.

These initial results are promising, since they represent modelling activity after a very short
period of training and practice, and involve the production of models for systems that subjects
had limited experience of. Further work aims to develop a fuller understanding of the optimal
degree of granularity for our purposes, better teaching materials, and a demonstration of an
interactive modelling environment.

Discussion
We have presented a novel approach to usability assessment that draws on ideas from ontology-
based domain modelling, from PUMA knowledge analysis, and from ERMIA, and which has
been motivated by aims of encapsulating a way of thinking about usability of a system, including
capturing important cognitive dimensions. Initial studies indicate that the approach can be useful
and usable. However, there is much further work to be done, including refining the method,
developing more comprehensive training materials, scoping the approach (in terms of the kinds
of systems it can be applied to, and the kinds of usability issues it can help raise), and developing
tool support. This latter will help to clarify also to what extent usability insights result from the
craft skill of the analyst, and to what extent they can be derived from the modelling.

Acknowledgement
This work has been supported by a grant from the Faculty of Technology at Middlesex
University. We are grateful to Juliet Congreve and the students on her HCI and Graphics course
for their co-operation and participation in the empirical study.

References

ANNETT, J. & DUNCAN, K.D. (1967) Task analysis and training design. Occupational Psychology. 41. 211-
221.

BELLOTTI, V. (1989) ‘Implications of current design practice for the use of HCI --in D. Jones & R. Winder
(Eds.) People and Computers IV, Proceedings of HCI’89, 13-34. Cambridge University Press

BELLOTTI, V., BLANDFORD, A., DUKE, D., MACLEAN, A., MAY, J. & NIGAY, L. (1996) Controlling
accessibility in computer mediated communications: a systematic analysis of the design space. HCI Journal.
11.4 pp.357-432.

BLANDFORD, A., BUCKINGHAM SHUM, S. & YOUNG, R.M. (in preparation) ‘Training software engineers in a
novel usability evaluation technique’.

BLANDFORD, A. E. & YOUNG, R. M. (1996) Specifying user knowledge for the design of interactive systems.
Software Engineering Journal. 11.6, 323-333.

BUCKINGHAM SHUM, S. & HAMMOND, N. (1994) ‘Transferring HCI modelling and design techniques to
practitioners: A framework and empirical work’ in G. Cockton, S.W. Draper & G. Weir (Eds.) People and
Computers IX, Proceedings of HCI’94, 21-36. Cambridge University Press

GREEN, T. R. G. (1990) The cognitive dimension of viscosity: a sticky problem for HCI. In D. Diaper, D.
Gilmore, G. Cockton and B. Shackel (Eds.) Human-Computer Interaction – INTERACT ’90. Elsevier.

GREEN, T. R. G. & BENYON, D. (1996) The skull beneath the skin: entity-relationship models of information
artifacts. International Journal of Human-Computer Studies, 44(6) 801-828

GREEN, T. R. G. & PETRE, M. (1996) Usability analysis of visual programming environments: a 'cognitive
dimensions' framework. J. Visual Languages and Computing, 7, 131-174.

GUARINO, N. (1997) Understanding, building and using ontologies. International Journal of Human-Computer
Studies 46, 293-310.

JOHN, B. & KIERAS, D. E. (1996). Using GOMS for user interface design and evaluation: which technique?
ACM ToCHI.1-30

JOHNSON, P. (1992) Human-Computer Interaction: Psychology, Task Analysis and Software Engineering.
London: McGraw-Hill.

JOHNSON-LAIRD, P.N. (1981) Mental Models. Cambridge: Cambridge University Press.

KIERAS, D. & POLSON, P. An approach to the formal analysis of user complexity. Int. J. Man-Machine
Studies, 22 (1985), 356-394.

LAVERY, D. (1996) Specialising design principles and cognitive walkthroughs for software visualisations, In A.
Blandford and H. Thimbleby (Eds.) HCI 96 Adjunct Proceedings.

MONK, A. F. (no date): The Action Simulator package. Available by ftp via URL
http://www.york.ac.uk/~am1/ftpable.html

NIELSEN, J. (1994) Heuristic Evaluation. In J. Nielsen & R. Mack (Eds.), Usability Inspection Methods (pp.
25-62). New York: John Wiley.

NORMAN, D. (1986). Cognitive Engineering. in NORMAN, D.A. AND DRAPER, J.W., Eds. User Centered
System Design, 31-62 Hillsdale NJ: Lawrence Erlbaum.

OLSEN, D., MONK, A.F. & CURRY, M.B. (1995) Algorithms for automatic dialogue analysis using
propositional production systems. Human Computer Interaction, 10, 39-78.

ROAST, C.R. & SIDDIQI, J. (1997) Formally assessing software modifiability. In C.R. Roast & J. Siddiqi
(Eds.) Formal Aspects of the Human Computer Interface. London: Springer.

SMITH, S. L & MOSIER, J. N. (1986) Guidelines for Designing User Interface Software. Mitre Corporation
Report MTR-9420, Mitre Corporation.

WHARTON, C., RIEMAN, J., LEWIS, C., & POLSON, P. (1994). The cognitive walkthrough method: A
practitioner's guide. In J. Nielsen & R. Mack (Eds.), Usability inspection methods (pp. 105-140). New
York: John Wiley.

YOUNG, R. M., GREEN, T. R. G., & SIMON, T. (1989) Programmable user models for predictive evaluation of
interface designs. In Proceedings of CHI ‘89. ACM, New York.

