

Computer Animation

Sylvia Pan

March 2013

Lecture slides based on previous versions produced by Marco Gillies

Outline

- Motion Editing
- Behaviour Animation
 - Primitive Behaviour
 - Intelligent Behaviour

Motion Editing

- Motion Retargeting
 - adapting one animated motion from one character to another
- Motion Combining
 - assembling motion segments into longer actions
- Styles Translation
 - transforming an input motion into a new style while preserving its original content

Motion Editing - Retargeting

- Adapting an animated motion from one character to another
- Here we only discuss when the target figure is identical to the original figure but with different segment lengths: for instance, different size of limbs
- This seems easy as skeletal animation animates rotations

Motion Editing - Retargeting

- Problems with motion retargeting
 - Foot not on floor
 - Self-penetration
 - Interaction with another avatar (video)

Gleicher 1998

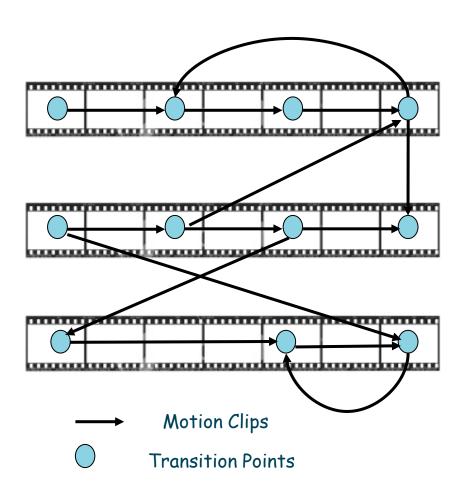
Motion Combining

- Generating a longer piece of motion from small motion segments
- Produce real time responses (useful in games)

Motion Combining

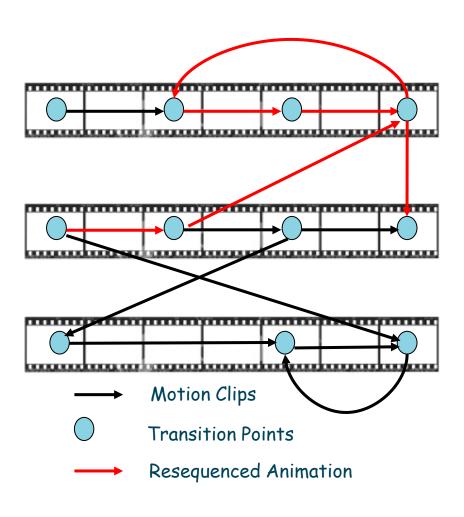
- Easiest: record all your motion with a neutral posture at the beginning and the end
- Motion blending
 - Blending the end of one segment into the beginning of the next segment (similar to key frame animation)
 - Transitions may look awkward unless the two blending points are similar

Motion Combining



Motion Graphs

- Identifying good transitions between segments in a motion data base
- Given a corpus of motion capture data (usually short clips), automatically construct a directed graph connecting the different motions and the transitions.



Motion Combing: Motion Graphs

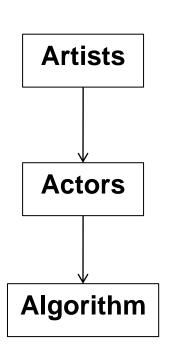
Motion Combining: Motion Graphs

Motion Editing – Style and Content

- A motion can be separated into a Content component and a Style component
 - Content: walking, sitting down, jumping
 - Style: angry, masculine, proud
- Attempt to separate style and content
 - change style of a motion
 - apply style of one motion to another

Motion Editing – Style and Content

- Style translation: transforming an input motion into a new style while preserving its original content.
- An example:


videos\Style Translation for Human Motion.mp4

Computer Animation: Categorises

Three approaches to motion control:

- Artistic animation
 - Hand Animation (traditional animation)
 - Key frame and interpolation
- Data-driven animation
 - Motion capture
- Procedure animation
 - Simulations, artificial lives
 - Intelligent behaviour, AI

Behaviour Animation

Modelling Behaviour

- At the highest level of abstraction, the animator becomes the director
- The intelligent characters know how to get the job done
- The "director" only need to tell them what to do
- The intelligent characters produce realistic (or at least believable) performances.
- The characters appear to be autonomous
- They are called "actors" or "intelligent agent"

Modelling Behaviour

- Three Steps
 - Sensing: Knowing the environment
 - Action Selection: Decide what to do
 - Act: implement the action

Sensing

- Knowing the environment
- Low level
 - a character has direct access to the environment database (can "see" through walls)
- Medium level
 - modelling vision, so the character doesn't see what he is not able to see
- High Level
 - modelling memory, so the character also remembers what he sees

Action Selection

- Decide what to do next depending on input (sensing) and its internal state
 - Overlap with Al
 - Core of behavioural simulation
- Possible factors
 - Satisfying drives (hunger, tiredness, social)
 - Path finding (getting around an environment)
 - Goals (which action helps achieve goals?)
 - Emotion, personality

Act

- Implement the action
- Methods:
 - Inverse Kinematics
 - Motion Capture/Hand Animation
 - Motion Editing

Act: IK

- Use IK when:
 - Interacting with an object
 - Moving the hand to a particular location
 - Moving the hands to a particular place on the body (hands on hips)

Pros

- Allows exact placement of the hand (or other body parts)
- Very flexible, allows a large range of actions

Cons

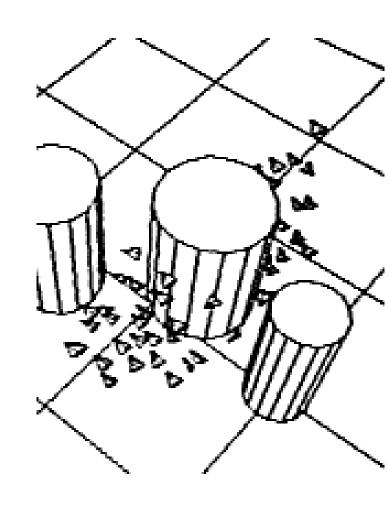
- Less realistic
- Expensive (difficult to generate real time)

Act: Motion Capture/Hand Animation

- Pros
 - High quality motion
 - Faster
- Cons
 - Limited range of motions
 - Either limits to a small number of actions or you end up using inappropriate motion

Act: Motion Editing

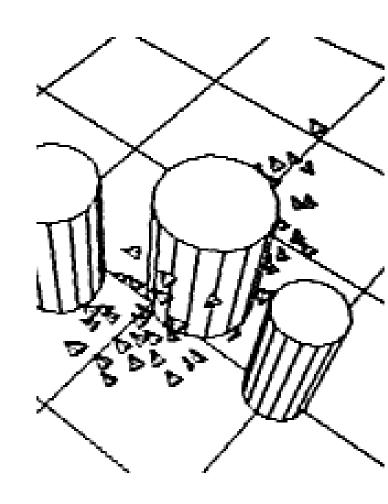
- Combine small motion segmentations together to produce target animation (blending)
- Apply different rotation to different joints (Masking)


Examples

- Primitive behaviour: Flocking
- Intelligent behaviour

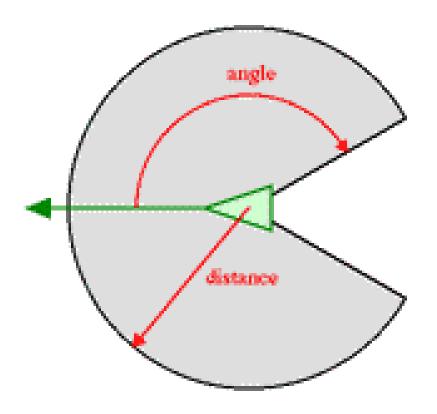
Craig Reynolds - flocking

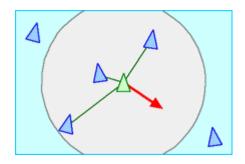
- The first behavioural simulation
- Simulates the behaviour of flocks of birds (boids), schools of fish or herds of animals
- Extensively used in films and other applications

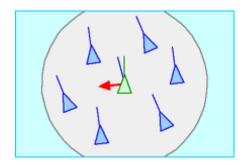

Craig Reynolds - flocking

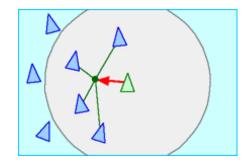
- Craig Reynold's work was an early aspect of the artificial life field
- He observed the behaviour of real flocks of birds and tried to figure out rules of their behaviour
- The resulting rules are surprisingly simple

Boids: Sensing

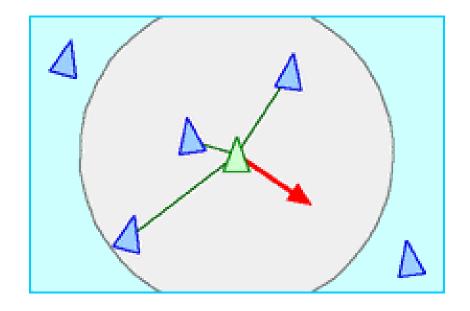

- The boids have direct access to the scene graph
- They directly sense aspects of the behaviour of other boids in their flock
- They also "see" a simplified representation of objects that can act as obstacles


Boids: Sensing

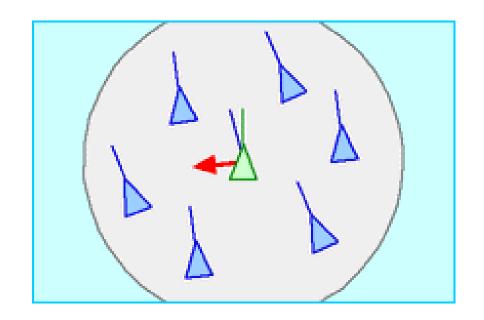

- Need some filtering to provide realistic sensing (and reduce computation)
- Only sense other boids within a certain distance and angle



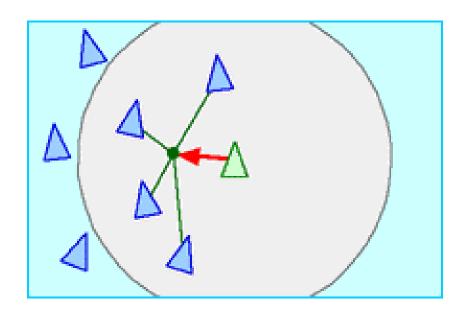
- Obstacle Avoidance
- Separation
- Alignment
- Cohesion



- Obstacle Avoidance
 - There is also a rule to avoid bumping into obstacles
 - Steer to avoid any obstacles in the scene



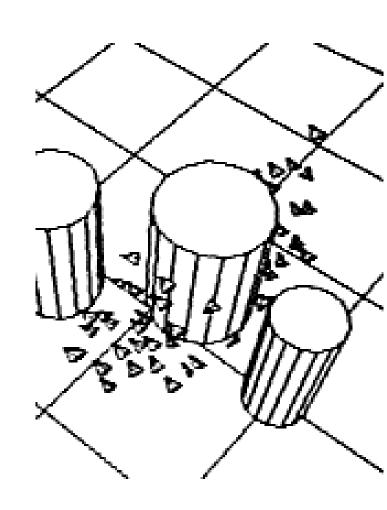
- Separation
 - Steer away from flockmates that are very close



- Alignment
 - Match direction to the average direction of nearby flockmates

- Cohesion:
 - Move towards the centre of mass of nearby flockmates

- The behaviours take strict priority over each other:
 - Obstacle Avoidance
 - Separation
 - Alignment
 - Cohesion


Boids: Act

- Boids are very simple they have a position, orientation and velocity
- They are moved by changing the velocity
- Animations can be added on top

Craig Reynolds - flocking

- Emergent Behaviour
- These simple rules produce surprising results
- Here is a flock splitting to avoid an obstacle
- They recombine afterwards, just like a real flock
- videos\3cr.mov

Examples

- Primitive behaviour: Flocking
- Intelligent behaviour

Modelling Intelligent Behaviour

- Many factor influence human behaviour:
 - Long term: personality, relationship
 - Short term: goal, mood, emotion
- Modelling realistic intelligent behaviour is still a research topic
- We don't understand human behaviours fully!
- But if anything goes wrong, we can tell immediately!

Modelling Intelligent Behaviour

- How to implement?
- Depends on the application!

Facial Expression

- Functions of Facial expressions
 - Reflection of mental states and emotions produce typical facial patterns
 - Six basic emotions: happy, surprise, fear, angry, disgust, sad
 - Function of Communicative Acts
 - Complex mental states: agreement, disagreement, concentration, interest

Ekman 1969

Body movement

- Although not as closely observed as the face, body movements also play an important role in interpersonal communication
 - Locomotion: navigate through scene
 - Posture and gesture: important communicative cues.
 Could reflect personality and emotions (e.g., extraverted or introverted)

Interacting with a Shy/Confident Avatar

videos\ShyAvatar.wmv

Commercial agents

- Microsoft Clippy
- Ikea Anna
 - http://www.ikea.com/gb/en/
- Cantoche
 - http://www.cantoche.com/en~Demo.html

The **SEMAINE** Project

- The Semaine project aims to build a Sensitive Artificial Listener (SAL), a multimodal dialogue system which can
 - interact with humans with a virtual character
 - sustain an interaction with a user for some time
 - react appropriately to the user's non-verbal behaviour

videos\Chatting with a virtual agent the SEMAINE project character Poppy.flv videos\Chatting with a Virtual Agent The SEMAINE Project Character Obadiah 2.mp4

videos\Chatting with a Virtual Agent The SEMAINE Project Character

Obadiah.mp4

videos\Chatting with a Virtual Agent The SEMAINE Project Character Spike.mp4