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Course Outline 

• Physical systems 
– Physics simulation 

– Integration techniques 

– Particle systems 

• Traditional animation 

• Key frame and interpolation 

• Character animation 
– Body and face 

– Behaviour simulation 



Three approaches to motion control: 

• Artistic animation 

– Hand Animation (traditional animation) 

– Key frame and interpolation 

• Data-driven animation 

– Motion capture 

• Procedure animation 

– Simulations, artificial lives 

– AI 

Computer Animation: Categorises 



Traditional Animation: 

Overview and some techniques 



Traditional Animation 

• Aims: More realistic and 

expressive, less labour 

intensive 

• Methods and animation 

principles developed in 

traditional animation also 

applies in computer 

animation 

 



Flip Books 

• The most basic form of 

animation is the flip book 

• Presents a sequence of 

images in quick succession 

 

Flip book Animation.pptx 

Flip book Animation.pptx
Flip book Animation.pptx


The Time Line 

Lasseter ‘87 

Time 

• Animation is a sequence of frames (images) 

arranged along a time-line 

• In films a sequence of images is displayed at 

25 frames per second. 



Frames 

• Each frame is an image 

• Traditionally each image had to be hand 

drawn individually 

• This potentially requires vast amounts of work 

from a highly skilled animator  

 



Key Frame System 

• The head animator draws the most important 

frames (Keyframes) 

• An assistant draws the in-between frames 

(inbetweens) 

Luxo Jr. by Lasseter  1986 



Layers 

• Have a background image that does not 

move 

• Put foreground images on a transparent slide 

in front of it  

• Only have to animate bits that move 

• Next time you watch an animation notice that 

the background is always more detailed than 

the characters 



Animation Principles 

• “The illusion of Life: Disney 

Animation” 

 Ollie Johnston and Frank Thomas,1981  



Animation Principles 

• Squash and stretch 

– Change the shape of an object to emphasise its 

motion 

– In particular stretch then squash when changing 

direction 

 



Animation Principles 

• Slow in slow out 

– In real life an object needs time to accelerate and 

slow down. 

– An animation looks more smooth and realistic with 

more frames in the beginning and end of a 

movement, and fewer in the middle. 



Stop Motion Animation 

• Create models of all your 

characters 

• Pose them 

• Take a photo 

• Move them slightly  

• Take another photo 



• More effort on Creating Characters 

• A lot of detail 

• Each individual frame is less work  

Stop Motion Animation 



Computer Animation 



Computer Animation 

• Similar to Stop Motion Animation 

– First to create 3D computer graphics models (some 

static, some can be animated!)  

– Create the animation frame by frame (pose) 

– Finally render the images considering camera position 

and lighting (take a photo) 

 

 



Key Frame animation and Interpolation 

• Computer animation basics 

• Computer based key frame system 

• Interpolations methods 

• Rotations and Quaternions 



Key Frame Animation  

• The starting point for computer animation is 
the automation of many of the techniques of 
traditional animation 

• The labour savings can be greatly increased 



Key Frame Animation 

Key frame: Start         Key frame: End              Animation  



Key Frame Animation 

• Normally in computer animation objects are 
3D models rather than images 

• We can animate one property of the object or 
a few properties at the same time 
– e.g. position, rotation, normal map, … 

• Only changing properties need animation 
– e.g. you can rotate an object without having to do  

anything to the texture 



Key Frame Animation 

• Keyframes are “key poses” of the 

animated model 

• Keyframe is defined as (a tuple): 

 

• The computer can do the inbetweening 



 time,value



Key Frame Animation 

• Example 1: simple object movement 

<0,[0,0]>,<1,[1,1]>,<2,[2,0]> 

 

 

 

• Example 2: head movements: nod slowly and then 

shake quickly 

<0,up><1,down>,<3,up>,<5,down><7,up> 

<8,up><8.5,left><9,right><9.5 ,left><10,right>… 

 

  



Key Frame Animation (positions) 



Linear Interpolation 

• videos\linear.mov 

videos/linear.mov
videos/linear.mov
videos/linear.mov


Linear Interpolation 

• The position is interpolated linearly between 

keyframes 

 

 

 

When t goes from 0 to 1 we have: 
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Linear Interpolation 

01 )1( PPP ttt 

• Returning an interpolation between two inputs 

(p0,p1) for a parameter (t) in the range [0, 1]: 

 

float lerp(float p0, float p1, float t) {  

 return v1*t+v0*(1-t);  

} 



Linear Interpolation 

• The animation can be jerky 

• Use smooth curves similar to Bezier instead 

 



Spline Interpolation 

videos\Spline.mov 

videos/Spline.mov
videos/Spline.mov
videos/Spline.mov


Bezier Curves 

• Smooth but don’t go through all the control 

points, we need to go through all the 

keyframes 

PB0 

PB1 

PB2 

PB3 



Hermite Curves 

• Rather than specifying 4 control points specify 

2 end points and tangents at these end points 

• In the case of interpolating positions the 

tangents are velocities 

P0 

P1 

T0 

T1 



P0 

P1 

T0 

T1 

Hermite Curves 

C(0) = P0  

 

C(1) = P1 

 

C’(0) = T0 

 

C’(1) = T1 
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Hermite Curves and Bezier Curves 
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Tangents 

• Now given two control points as well as the 

tangents at these points, we can interpolate 

the position at a given time. 

• Where do we get the tangents (velocities) 

from? 

• We could directly set them, they act as an 

extra control on the behaviour 

• However often we want to generate them 

automatically 



Tangents 

• Base the tangent as a keyframe on the 

previous and next keyframe 

• Obtained the tangent from the pervious 

keyframe and to the next one 

 

Pk-1 

Pk 

Pk+1 

Tk 



Tangents 

• Average the distance 

from the previous 

keyframe and to the next 

one 

 

 

 

• If you set the tangents at 

the first and last frame to 

zero you get slow in slow 

out 
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Almost perfect… 

• That’s pretty much it on keyframe animation 

• But there’s one last problem: Rotations 

• Rotations are used a lot on animation 

• In fact human body animation is largely 

based on animating rotations rather than 

positions 



Rotations 

• Rotations are very different from positions 

• They are essentially spherical rather than 

linear 

• You can split them into rotations about the 

X,Y & Z axis (Euler angles), but: 

– Then the order in which you do them changes in 

final rotation 

– If you rotate about Y so that the Z axis is rotated 

onto the X axis you get stuck (Gimbal lock) and 

are in trouble 

videos\gimbal-minus3.flv 

videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv


Quarternions 

• We need a representation of rotations that 

doesn’t suffer these problems 

• We use Quaternions 

• Invented by William Rowan Hamilton in 1843 

• Introduced into computer animation by Ken 

Shoemake 
– K. Shoemake, “Animating rotations with 

quaternion curves”, ACM SIGGRAPH 1985 pp245-

254 



Quaternions 

• Quaternions are a 4D generalisation of 

complex numbers: 

• The last three terms are the imaginary part 

and are often written as a vector: 

kvjvivw zyx q

 vq ,w



Quaternions Properties 

• The conjugate of a quaternion is defined as: 

• And multiplication is defined as: 

 vq  ,w

 211221212121 , vvvvvvqq  wwww

(Non commutative) 



Quaternions Properties 

• The inverse of a quaternion is defined as: 

 v
q

q  ,
||

1
2

1 w

• For a unit quaternion (magnitude = 1) we 

have: 

qq 1



Quaternion Rotations 

• A rotation of angle  about an axis u is 

represented as a quaternion with (u is a unit 

vector): 

 

 

• Now we have: 

• All rotations are represented by unit quaternions 

(norm1) 
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• [w, v] and [-w, -v] specify the same rotation 

 

 [w,v] = [cos(θ/2), usin(θ/2)] 

    [-w,-v] = [-cos(θ/2), -usin(θ/2)]  

    = [cos((2π- θ)/2),-usin((2 π- θ)/2)] 

   

Quaternion Rotations 
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Quaternion Rotations 

• A vector (V) is rotated by first converting it to a 

quaternion: 

• Premultiplying by the rotation and 

postmultiplying by its inverse 

• And transforming back to a vector 

 Vv ,0

1 qvqvR )( 1
qq 



Quaternion Rotations 

• A series of rotations can be concatenated into 

a single representation by a quaternion 

multiplication.  

• A rotation by a quaternion p followed by a 

rotation by a quaternion q on a vector v: 

 

 111 )()()(   qpvqpqpvpqvR



Interpolating Quaternions 

• As quaternions have unit length, they all lie 

on a sphere with centre on the origin 

• Interpolating normally will result in a 

quaternion that is not unit length 

 



Interpolating Quaternions 

• You can renormalise 

• But it will not maintain constant speed along 

the surface of the sphere 



Interpolating Quaternions 

• Shoemake introduced Spherical Linear 

Interpolation (SLERP) which interpolates 

based on the angle at the centre 

q1 q2 

qt 



SLERP 

• Interpolate using the sin of : 

 

 

 

 

 

 

 

 
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SLERP 

• [w, v] and [-w, -v] specify the same rotation 

• So 2 quaternions on the opposite sides of the hypersphere 

are the same rotation 

• Before doing SLERP we project the 2 quaternions onto the 

same side 

• If cos < 0 negate q2 

q1 

q2 

Centre of 
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