Computer Animation

Sylvia Pan

March 2013

Lecture slides heavily based on previous versions produced by Marco Gillies

Course Outline

- Physical systems
- Physics simulation
- Integration techniques
- Particle systems
- Traditional animation
- Key frame and interpolation
- Character animation
- Body and face
- Behaviour simulation

Computer Animation: Categorises

Three approaches to motion control:

- Artistic animation
- Hand Animation (traditional animation)
- Key frame and interpolation
- Data-driven animation
- Motion capture
- Procedure animation
- Simulations, artificial lives
- AI

Traditional Animation: Overview and some techniques

Traditional Animation

- Aims: More realistic and expressive, less labour intensive
- Methods and animation principles developed in traditional animation also applies in computer animation

Flip Books

- The most basic form of animation is the flip book
- Presents a sequence of images in quick succession

Flip book Animation.pptx

The Time Line

- Animation is a sequence of frames (images) arranged along a time-line
- In films a sequence of images is displayed at

Time

Lasseter ‘87

Frames

- Each frame is an image
- Traditionally each image had to be hand drawn individually
- This potentially requires vast amounts of work from a highly skilled animator

Key Frame System

- The head animator draws the most important frames (Keyframes)
- An assistant draws the in-between frames (inbetweens)

Layers

- Have a background image that does not move
- Put foreground images on a transparent slide in front of it
- Only have to animate bits that move
- Next time you watch an animation notice that the background is always more detailed than the characters

Animation Principles

- "The illusion of Life: Disney Animation"

Ollie Johnston and Frank Thomas, 1981

Animation Principles

- Squash and stretch
- Change the shape of an object to emphasise its motion
- In particular stretch then squash when changing direction

Animation Principles

- Slow in slow out
- In real life an object needs time to accelerate and slow down.
- An animation looks more smooth and realistic with more frames in the beginning and end of a movement, and fewer in the middle.

Stop Motion Animation

- Create models of all your characters
- Pose them
- Take a photo
- Move them slightly
- Take another photo

Stop Motion Animation

- More effort on Creating Characters
- A lot of detail
- Each individual frame is less work

IOCL

Computer Animation

Computer Animation

- Similar to Stop Motion Animation
- First to create 3D computer graphics models (some static, some can be animated!)
- Create the animation frame by frame (pose)
- Finally render the images considering camera position and lighting (take a photo)

Key Frame animation and Interpolation

- Computer animation basics
- Computer based key frame system
- Interpolations methods
- Rotations and Quaternions

Key Frame Animation

- The starting point for computer animation is the automation of many of the techniques of traditional animation
- The labour savings can be greatly increased

Key Frame Animation

Key frame: Start
Key frame: End
Animation

Key Frame Animation

- Normally in computer animation objects are 3D models rather than images
- We can animate one property of the object or a few properties at the same time
- e.g. position, rotation, normal map, ...
- Only changing properties need animation
- e.g. you can rotate an object without having to do anything to the texture

Key Frame Animation

- Keyframes are "key poses" of the animated model
- Keyframe is defined as (a tuple):

$$
<\text { time,value > }
$$

- The computer can do the inbetweening

Key Frame Animation

- Example 1: simple object movement <0,[0,0]>,<1,[1,1]>,<2,[2,0]>

- Example 2: head movements: nod slowly and then shake quickly
<0,up><1,down>,<3,up>,<5,down><7,up>
<8,up><8.5,left><9,right><9.5 ,left><10,right>...

Key Frame Animation (positions)

Linear Interpolation

- videos\linear.mov

Linear Interpolation

- The position is interpolated linearly between keyframes

$$
\mathbf{P}(t)=\frac{t-t_{k-1}}{t_{k}-t_{k-1}} \mathbf{P}\left(t_{k}\right)+\left(1-\frac{t-t_{k-1}}{t_{k}-t_{k-1}}\right) \mathbf{P}\left(t_{k-1}\right)
$$

When t goes from 0 to 1 we have:

$$
\mathbf{P}_{t}=t \mathbf{P}_{1}+(1-t) \mathbf{P}_{0}
$$

Linear Interpolation

$$
\mathbf{P}_{t}=t \mathbf{P}_{1}+(1-t) \mathbf{P}_{0}
$$

- Returning an interpolation between two inputs $(\mathrm{p} 0, \mathrm{p} 1)$ for a parameter (t) in the range $[0,1]$:
float lerp(float p0, float p1, float t) \{ return $\mathrm{v} 1^{*} \mathrm{t}+\mathrm{v} 0^{*}(1-\mathrm{t})$;
\}

Linear Interpolation

- The animation can be jerky
- Use smooth curves similar to Bezier instead

Spline Interpolation

videos 1 Spline.mov

Bezier Curves

- Smooth but don't go through all the control points, we need to go through all the keyframes

Hermite Curves

- Rather than specifying 4 control points specify 2 end points and tangents at these end points
- In the case of interpolating positions the tangents are velocities

Hermite Curves

$$
\begin{aligned}
& C(0)=P_{0} \\
& C(1)=P_{1} \\
& C^{\prime}(0)=T_{0} \\
& C^{\prime}(1)=T_{1}
\end{aligned}
$$

$$
\begin{aligned}
C(t) & =\left(2 t^{3}-3 t^{2}+1\right) \mathbf{P}_{0}+\left(t^{3}+2 t^{2}+t\right) \mathbf{T}_{0} \\
& +\left(-2 t^{3}+3 t^{2}\right) \mathbf{P}_{1}+\left(t^{3}-t^{2}\right) \mathbf{T}_{1}
\end{aligned}
$$

Hermite Curves and Bezier Curves

$$
\begin{aligned}
C(t) & =(1-t)^{3} \mathbf{P}_{B O}+3 t(1-t)^{2} \mathbf{P}_{B 1} \\
& +3 t^{2}(1-t) \mathbf{P}_{B 2}+t^{3} \mathbf{P}_{B 3}
\end{aligned}
$$

Bezier to Hermite:

$$
\begin{aligned}
& P_{\mathrm{B} 0}=P_{0} \\
& P_{\mathrm{B} 1}=\frac{1}{3} T_{0}+P_{0} \\
& P_{\mathrm{B} 3}=P_{1} \\
& P_{\mathrm{B} 2}=P_{1}-\frac{1}{3} T_{1}
\end{aligned}
$$

$$
\begin{aligned}
C(t) & =\left(2 t^{3}-3 t^{2}+1\right) \mathbf{P}_{0}+\left(t^{3}+2 t^{2}+t\right) \mathbf{T}_{0} \\
& +\left(-2 t^{3}+3 t^{2}\right) \mathbf{P}_{1}+\left(t^{3}-t^{2}\right) \mathbf{T}_{1}
\end{aligned}
$$

Hermite to Bezier:

$$
\begin{aligned}
& P_{0}=P_{B 0} \\
& T_{0}=3\left(P_{B 1}-P_{B 0}\right) \\
& P_{1}=P_{B 3} \\
& T_{1}=3\left(P_{B 3}-P_{B 2}\right)
\end{aligned}
$$

Tangents

- Now given two control points as well as the tangents at these points, we can interpolate the position at a given time.
- Where do we get the tangents (velocities) from?
- We could directly set them, they act as an extra control on the behaviour
- However often we want to generate them automatically

Tangents

- Base the tangent as a keyframe on the previous and next keyframe
- Obtained the tangent from the pervious keyframe and to the next one

Tangents

- Average the distance from the previous keyframe and to the next one

$$
\mathbf{T}_{k}=\frac{1}{2}\left(\mathbf{P}_{k+1}-\mathbf{P}_{k-1}\right)
$$

- If you set the tangents at the first and last frame to zero you get slow in slow out

Almost perfect...

- That's pretty much it on keyframe animation
- But there's one last problem: Rotations
- Rotations are used a lot on animation
- In fact human body animation is largely based on animating rotations rather than positions

Rotations

- Rotations are very different from positions
- They are essentially spherical rather than linear
- You can split them into rotations about the X,Y \& Z axis (Euler angles), but:
- Then the order in which you do them changes in final rotation
- If you rotate about Y so that the Z axis is rotated onto the X axis you get stuck (Gimbal lock) and are in trouble
videoslgimbal-minus3.flv

Quarternions

- We need a representation of rotations that doesn't suffer these problems
- We use Quaternions
- Invented by William Rowan Hamilton in 1843
- Introduced into computer animation by Ken Shoemake

```
- K. Shoemake, "Animating rotations with
    quaternion curves", ACM SIGGRAPH 1985 pp245-
    254
```


Quaternions

- Quaternions are a 4D generalisation of complex numbers:

$$
\mathbf{q}=w+v_{x} i+v_{y} j+v_{z} k
$$

- The last three terms are the imaginary part and are often written as a vector:

$$
\mathbf{q}=[w, \mathbf{v}]
$$

Quaternions Properties

- The conjugate of a quaternion is defined as:

$$
\overline{\mathbf{q}}=[w,-\mathbf{v}]
$$

- And multiplication is defined as:

$$
\mathbf{q}_{1} \mathbf{q}_{2}=\left[w_{1} w_{2}-\mathbf{v}_{1} \bullet \mathbf{v}_{2}, w_{1} \mathbf{v}_{2}+w_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}\right]
$$

(Non commutative)

Quaternions Properties

- The inverse of a quaternion is defined as:

$$
\mathbf{q}^{-1}=\frac{1}{|\mathbf{q}|^{2}}[w,-\mathbf{v}]
$$

- For a unit quaternion (magnitude =1) we have:

$$
\mathbf{q}^{-1}=\overline{\mathbf{q}}
$$

Quaternion Rotations

- A rotation of angle θ about an axis \mathbf{u} is represented as a quaternion with (u is a unit vector):

$$
w=\cos \left(\frac{\theta}{2}\right), \mathbf{v}=\vec{u} \sin \left(\frac{\theta}{2}\right)
$$

- Now we have: $q=\left[\cos \left(\frac{\theta}{2}\right), \vec{u} \sin \left(\frac{\theta}{2}\right)\right]$
- All rotations are represented by unit quaternions (norm1)

Quaternion Rotations

$$
\begin{aligned}
& w=\cos \left(\frac{\theta}{2}\right), \mathbf{v}=\vec{u} \sin \left(\frac{\theta}{2}\right) \\
& q=\left[\cos \left(\frac{\theta}{2}\right), \vec{u} \sin \left(\frac{\theta}{2}\right)\right]
\end{aligned}
$$

- $[w, \boldsymbol{v}]$ and $[-w,-\boldsymbol{v}]$ specify the same rotation

$$
\begin{aligned}
& {[w, v]=[\cos (\theta / 2), u \sin (\theta / 2)]} \\
& \begin{aligned}
{[-w,-v] } & =[-\cos (\theta / 2),-u \sin (\theta / 2)] \\
& =[\cos ((2 \pi-\theta) / 2),-u \sin ((2 \pi-\theta) / 2)]
\end{aligned}
\end{aligned}
$$

Quaternion Rotations

- A vector (V) is rotated by first converting it to a quaternion:

$$
\mathbf{v}=[0, \mathbf{V}]
$$

- Premultiplying by the rotation and postmultiplying by its inverse

$$
\mathbf{v}_{R}=\mathbf{q} \mathbf{v} \mathbf{q}^{-1} \quad\left(\mathbf{q}^{-1}=\overline{\mathbf{q}}\right)
$$

- And transforming back to a vector

Quaternion Rotations

- A series of rotations can be concatenated into a single representation by a quaternion multiplication.
- A rotation by a quaternion p followed by a rotation by a quaternion q on a vector v :

$$
v_{R}=q\left(p v p^{-1}\right) q^{-1}=(q p) v(q p)^{-1}
$$

Interpolating Quaternions

- As quaternions have unit length, they all lie on a sphere with centre on the origin
- Interpolating normally will result in a quaternion that is not unit length

Interpolating Quaternions

- You can renormalise
- But it will not maintain constant speed along the surface of the sphere

Interpolating Quaternions

- Shoemake introduced Spherical Linear Interpolation (SLERP) which interpolates based on the angle at the centre

SLERP

- Interpolate using the \sin of θ :

$$
q_{1} \frac{\sin ((1-t) \theta)}{\sin \theta}+q_{2} \frac{\sin (t \theta)}{\sin \theta}
$$

SLERP

- [w, \boldsymbol{v}] and $[-w,-\boldsymbol{v}]$ specify the same rotation
- So 2 quaternions on the opposite sides of the hypersphere are the same rotation
- Before doing SLERP we project the 2 quaternions onto the same side
- If $\cos \theta<0$ negate q_{2}
$\cos (\theta)=q_{1} \bullet q_{2}$

$$
=s_{1} s_{2}+v_{1} \bullet v_{2}
$$

