

Computer Animation

March 2013

Lecture slides heavily based on previous versions produced by Marco Gillies

Course Outline

- Physical systems
 - Physics simulation
 - Integration techniques
 - Particle systems
- Traditional animation
- Key frame and interpolation
- Character animation
 - Body and face
 - Behaviour simulation

Computer Animation: Categorises

Three approaches to motion control:

- Artistic animation
 - Hand Animation (traditional animation)
 - Key frame and interpolation
- Data-driven animation
 - Motion capture
- Procedure animation
 - Simulations, artificial lives
 - AI

Traditional Animation: Overview and some techniques

Traditional Animation

- Aims: More realistic and expressive, less labour intensive
- Methods and animation principles developed in traditional animation also applies in computer animation

Flip Books

- The most basic form of animation is the flip book
- Presents a sequence of images in quick succession

Flip book Animation.pptx

The Time Line

- Animation is a sequence of frames (images) arranged along a time-line
- In films a sequence of images is displayed at 25 frames per second.

Lasseter '87

Frames

- Each frame is an image
- Traditionally each image had to be hand drawn individually
- This potentially requires vast amounts of work from a highly skilled animator

Key Frame System

- The head animator draws the most important frames (Keyframes)
- An assistant draws the in-between frames (inbetweens)

Luxo Jr. by Lasseter 1986

Layers

- Have a background image that does not move
- Put foreground images on a transparent slide in front of it
- Only have to animate bits that move
- Next time you watch an animation notice that the background is always more detailed than the characters

Animation Principles

"The illusion of Life: Disney Animation"

Ollie Johnston and Frank Thomas, 1981

Animation Principles

- Squash and stretch
 - Change the shape of an object to emphasise its motion
 - In particular stretch then squash when changing direction

Animation Principles

- Slow in slow out
 - In real life an object needs time to accelerate and slow down.
 - An animation looks more smooth and realistic with more frames in the beginning and end of a movement, and fewer in the middle.

Stop Motion Animation

- Create models of all your characters
- Pose them
- Take a photo
- Move them slightly
- Take another photo

Stop Motion Animation

- More effort on Creating Characters
- A lot of detail
- Each individual frame is less work

Computer Animation

Computer Animation

- Similar to Stop Motion Animation
 - First to create 3D computer graphics models (some static, some can be animated!)
 - Create the animation frame by frame (pose)
 - Finally render the images considering camera position and lighting (take a photo)

Key Frame animation and Interpolation

- Computer animation basics
- Computer based key frame system
- Interpolations methods
- Rotations and Quaternions

- The starting point for computer animation is the automation of many of the techniques of traditional animation
- The labour savings can be greatly increased

- Normally in computer animation objects are 3D models rather than images
- We can animate one property of the object or a few properties at the same time

 e.g. position, rotation, normal map, ...
- Only changing properties need animation
 - e.g. you can rotate an object without having to do anything to the texture

- Keyframes are "key poses" of the animated model
- Keyframe is defined as (a tuple):

< time, value >

• The computer can do the inbetweening

Example 1: simple object movement
 <0,[0,0]>,<1,[1,1]>,<2,[2,0]>

• Example 2: head movements: nod slowly and then shake quickly

<0,up><1,down>,<3,up>,<5,down><7,up> <8,up><8.5,left><9,right><9.5,left><10,right>...

Key Frame Animation (positions)

• <u>videos\linear.mov</u>

 The position is interpolated linearly between keyframes

$$\mathbf{P}(t) = \frac{t - t_{k-1}}{t_k - t_{k-1}} \mathbf{P}(t_k) + \left(1 - \frac{t - t_{k-1}}{t_k - t_{k-1}}\right) \mathbf{P}(t_{k-1})$$

When t goes from 0 to 1 we have:

$$\mathbf{P}_t = t\mathbf{P}_1 + (1-t)\mathbf{P}_0$$

}

$$\mathbf{P}_t = t\mathbf{P}_1 + (1-t)\mathbf{P}_0$$

• Returning an interpolation between two inputs (p0,p1) for a parameter (t) in the range [0, 1]:

float lerp(float p0, float p1, float t) {
 return v1*t+v0*(1-t);

- The animation can be jerky
- Use smooth curves similar to Bezier instead

Spline Interpolation

videos\Spline.mov

 Smooth but don't go through all the control points, we need to go through all the keyframes

- Rather than specifying 4 control points specify 2 end points and tangents at these end points
- In the case of interpolating positions the tangents are velocities

Hermite Curves

 $C(0) = P_{0}$ $C(1) = P_{1}$ $C'(0) = T_{0}$ P_{0} P_{0} T_{1}

$$C(t) = (2t^{3} - 3t^{2} + 1)\mathbf{P}_{0} + (t^{3} + 2t^{2} + t)\mathbf{T}_{0}$$
$$+ (-2t^{3} + 3t^{2})\mathbf{P}_{1} + (t^{3} - t^{2})\mathbf{T}_{1}$$

Hermite Curves and Bezier Curves

Bezier to Hermite:

Hermite to Bezier:

$$P_{B0} = P_0$$

$$P_{B1} = \frac{1}{3}T_0 + P_0$$

$$P_{B3} = P_1$$

$$P_{B2} = P_1 - \frac{1}{3}T_1$$

$$P_{0} = P_{B0}$$

$$T_{0} = 3(P_{B1} - P_{B0})$$

$$P_{1} = P_{B3}$$

$$T_{1} = 3(P_{B3} - P_{B2})$$

Tangents

- Now given two control points as well as the tangents at these points, we can interpolate the position at a given time.
- Where do we get the tangents (velocities) from?
- We could directly set them, they act as an extra control on the behaviour
- However often we want to generate them automatically

Tangents

- Base the tangent as a keyframe on the previous and next keyframe
- Obtained the tangent from the pervious keyframe and to the next one

Tangents

 Average the distance from the previous keyframe and to the next one

$$\mathbf{T}_{k} = \frac{1}{2} \left(\mathbf{P}_{k+1} - \mathbf{P}_{k-1} \right)$$

 If you set the tangents at the first and last frame to zero you get slow in slow out

Almost perfect...

- That's pretty much it on keyframe animation
- But there's one last problem: Rotations
- Rotations are used a lot on animation
- In fact human body animation is largely based on animating rotations rather than positions

Rotations

- Rotations are very different from positions
- They are essentially spherical rather than linear
- You can split them into rotations about the X,Y & Z axis (Euler angles), but:
 - Then the order in which you do them changes in final rotation
 - If you rotate about Y so that the Z axis is rotated onto the X axis you get stuck (Gimbal lock) and are in trouble

videos\gimbal-minus3.flv

Quarternions

- We need a representation of rotations that doesn't suffer these problems
- We use Quaternions
- Invented by William Rowan Hamilton in 1843
- Introduced into computer animation by Ken Shoemake
 - K. Shoemake, "Animating rotations with quaternion curves", ACM SIGGRAPH 1985 pp245-254

Quaternions

• Quaternions are a 4D generalisation of complex numbers:

$$\mathbf{q} = w + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$$

• The last three terms are the imaginary part and are often written as a vector:

$$\mathbf{q} = \begin{bmatrix} w, \mathbf{v} \end{bmatrix}$$

Quaternions Properties

• The conjugate of a quaternion is defined as:

$$\overline{\mathbf{q}} = [w, -\mathbf{v}]$$

• And multiplication is defined as:

$$\mathbf{q}_1 \mathbf{q}_2 = \left[w_1 w_2 - \mathbf{v}_1 \bullet \mathbf{v}_2, w_1 \mathbf{v}_2 + w_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2 \right]$$

(Non commutative)

Quaternions Properties

• The inverse of a quaternion is defined as:

$$\mathbf{q}^{-1} = \frac{1}{|\mathbf{q}|^2} [w, -\mathbf{v}]$$

 For a unit quaternion (magnitude = 1) we have:

$$\mathbf{q}^{-1} = \mathbf{q}$$

• A rotation of angle θ about an axis **u** is represented as a quaternion with (u is a unit vector):

• Now we have:
$$q = \left[\cos\left(\frac{\theta}{2}\right), \vec{v} = \vec{u}\sin\left(\frac{\theta}{2}\right)\right]$$

 All rotations are represented by unit quaternions (norm1)

$$w = \cos\left(\frac{\theta}{2}\right), \mathbf{v} = \vec{u}\sin\left(\frac{\theta}{2}\right)$$
$$q = \left[\cos\left(\frac{\theta}{2}\right), \vec{u}\sin\left(\frac{\theta}{2}\right)\right]$$

• [*w*, *v*] and [-*w*, -*v*] specify the same rotation

$$[w,v] = [\cos(\theta/2), usin(\theta/2)]$$

[-w,-v] = [-cos(\theta/2), -usin(\theta/2)]
= [cos((2\pi - \theta)/2), -usin((2\pi - \theta)/2)]

A vector (V) is rotated by first converting it to a quaternion:

$$\mathbf{v} = \begin{bmatrix} 0, \mathbf{V} \end{bmatrix}$$

 Premultiplying by the rotation and postmultiplying by its inverse

$$\mathbf{v}_R = \mathbf{q}\mathbf{v}\mathbf{q}^{-1} \qquad (\mathbf{q}^{-1} = \mathbf{q})$$

• And transforming back to a vector

- A series of rotations can be concatenated into a single representation by a quaternion multiplication.
- A rotation by a quaternion p followed by a rotation by a quaternion q on a vector v:

$$v_R = q(pvp^{-1})q^{-1} = (qp)v(qp)^{-1}$$

Interpolating Quaternions

- As quaternions have unit length, they all lie on a sphere with centre on the origin
- Interpolating normally will result in a quaternion that is not unit length

Interpolating Quaternions

- You can renormalise
- But it will not maintain constant speed along the surface of the sphere

Interpolating Quaternions

 Shoemake introduced Spherical Linear Interpolation (SLERP) which interpolates based on the angle at the centre

SLERP

• Interpolate using the sin of θ :

SLERP

- [*w*, *v*] and [-*w*, -*v*] specify the same rotation
- So 2 quaternions on the opposite sides of the hypersphere are the same rotation
- Before doing SLERP we project the 2 quaternions onto the same side
- If $cos\theta < 0$ negate q_2

$$\cos(\theta) = q_1 \bullet q_2$$
$$= s_1 s_2 + v_1 \bullet v_2$$

