
Computer Animation

Sylvia Pan
March 2013

Lecture slides heavily based on previous versions produced by Marco Gillies

Course Outline

• Physical systems
– Physics simulation

– Integration techniques

– Particle systems

• Traditional animation

• Key frame and interpolation

• Character animation
– Body and face

– Behaviour simulation

Three approaches to motion control:

• Artistic animation

– Hand Animation (traditional animation)

– Key frame and interpolation

• Data-driven animation

– Motion capture

• Procedure animation

– Simulations, artificial lives

– AI

Computer Animation: Categorises

Traditional Animation:

Overview and some techniques

Traditional Animation

• Aims: More realistic and

expressive, less labour

intensive

• Methods and animation

principles developed in

traditional animation also

applies in computer

animation

Flip Books

• The most basic form of

animation is the flip book

• Presents a sequence of

images in quick succession

Flip book Animation.pptx

Flip book Animation.pptx
Flip book Animation.pptx

The Time Line

Lasseter ‘87

Time

• Animation is a sequence of frames (images)

arranged along a time-line

• In films a sequence of images is displayed at

25 frames per second.

Frames

• Each frame is an image

• Traditionally each image had to be hand

drawn individually

• This potentially requires vast amounts of work

from a highly skilled animator

Key Frame System

• The head animator draws the most important

frames (Keyframes)

• An assistant draws the in-between frames

(inbetweens)

Luxo Jr. by Lasseter 1986

Layers

• Have a background image that does not

move

• Put foreground images on a transparent slide

in front of it

• Only have to animate bits that move

• Next time you watch an animation notice that

the background is always more detailed than

the characters

Animation Principles

• “The illusion of Life: Disney

Animation”

 Ollie Johnston and Frank Thomas,1981

Animation Principles

• Squash and stretch

– Change the shape of an object to emphasise its

motion

– In particular stretch then squash when changing

direction

Animation Principles

• Slow in slow out

– In real life an object needs time to accelerate and

slow down.

– An animation looks more smooth and realistic with

more frames in the beginning and end of a

movement, and fewer in the middle.

Stop Motion Animation

• Create models of all your

characters

• Pose them

• Take a photo

• Move them slightly

• Take another photo

• More effort on Creating Characters

• A lot of detail

• Each individual frame is less work

Stop Motion Animation

Computer Animation

Computer Animation

• Similar to Stop Motion Animation

– First to create 3D computer graphics models (some

static, some can be animated!)

– Create the animation frame by frame (pose)

– Finally render the images considering camera position

and lighting (take a photo)

Key Frame animation and Interpolation

• Computer animation basics

• Computer based key frame system

• Interpolations methods

• Rotations and Quaternions

Key Frame Animation

• The starting point for computer animation is
the automation of many of the techniques of
traditional animation

• The labour savings can be greatly increased

Key Frame Animation

Key frame: Start Key frame: End Animation

Key Frame Animation

• Normally in computer animation objects are
3D models rather than images

• We can animate one property of the object or
a few properties at the same time
– e.g. position, rotation, normal map, …

• Only changing properties need animation
– e.g. you can rotate an object without having to do

anything to the texture

Key Frame Animation

• Keyframes are “key poses” of the

animated model

• Keyframe is defined as (a tuple):

• The computer can do the inbetweening



 time,value

Key Frame Animation

• Example 1: simple object movement

<0,[0,0]>,<1,[1,1]>,<2,[2,0]>

• Example 2: head movements: nod slowly and then

shake quickly

<0,up><1,down>,<3,up>,<5,down><7,up>

<8,up><8.5,left><9,right><9.5 ,left><10,right>…

Key Frame Animation (positions)

Linear Interpolation

• videos\linear.mov

videos/linear.mov
videos/linear.mov
videos/linear.mov

Linear Interpolation

• The position is interpolated linearly between

keyframes

When t goes from 0 to 1 we have:

01)1(PPP ttt 

)(1)()(1

1

1

1

1





























 k

kk

k
k

kk

k t
tt

tt
t

tt

tt
t PPP

Linear Interpolation

01)1(PPP ttt 

• Returning an interpolation between two inputs

(p0,p1) for a parameter (t) in the range [0, 1]:

float lerp(float p0, float p1, float t) {

 return v1*t+v0*(1-t);

}

Linear Interpolation

• The animation can be jerky

• Use smooth curves similar to Bezier instead

Spline Interpolation

videos\Spline.mov

videos/Spline.mov
videos/Spline.mov
videos/Spline.mov

Bezier Curves

• Smooth but don’t go through all the control

points, we need to go through all the

keyframes

PB0

PB1

PB2

PB3

Hermite Curves

• Rather than specifying 4 control points specify

2 end points and tangents at these end points

• In the case of interpolating positions the

tangents are velocities

P0

P1

T0

T1

P0

P1

T0

T1

Hermite Curves

C(0) = P0

C(1) = P1

C’(0) = T0

C’(1) = T1

1

23

1

23

0

23

0

23

)()32(

)2()132()(

TP

TP

tttt

ttttttC





Hermite Curves and Bezier Curves

P0

P1

T0

T1 Hermite

11

1B3

0

B0

3

1

3

1

TP=P

P=P

PT=P

P=P

B2

0B1

0





Hermite to Bezier:

PB0

PB1
PB2

PB3
Bezier

 

 B2B3

B3

BB

B0

PP=T

P=P

PP=T

P=P





3

3

1

1

010

0

Bezier to Hermite:

3

3

2

2

1

2

0

3

)1(3

)1(3)1()(

BB

BB

ttt

ttttC

PP

PP





1

23

1

23

0

23

0

23

)()32(

)2()132()(

TP

TP

tttt

ttttttC





Tangents

• Now given two control points as well as the

tangents at these points, we can interpolate

the position at a given time.

• Where do we get the tangents (velocities)

from?

• We could directly set them, they act as an

extra control on the behaviour

• However often we want to generate them

automatically

Tangents

• Base the tangent as a keyframe on the

previous and next keyframe

• Obtained the tangent from the pervious

keyframe and to the next one

Pk-1

Pk

Pk+1

Tk

Tangents

• Average the distance

from the previous

keyframe and to the next

one

• If you set the tangents at

the first and last frame to

zero you get slow in slow

out

 11

2

1
  kkk PPT

Pk-1

Pk

Pk+1

Tk

Almost perfect…

• That’s pretty much it on keyframe animation

• But there’s one last problem: Rotations

• Rotations are used a lot on animation

• In fact human body animation is largely

based on animating rotations rather than

positions

Rotations

• Rotations are very different from positions

• They are essentially spherical rather than

linear

• You can split them into rotations about the

X,Y & Z axis (Euler angles), but:

– Then the order in which you do them changes in

final rotation

– If you rotate about Y so that the Z axis is rotated

onto the X axis you get stuck (Gimbal lock) and

are in trouble

videos\gimbal-minus3.flv

videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv

Quarternions

• We need a representation of rotations that

doesn’t suffer these problems

• We use Quaternions

• Invented by William Rowan Hamilton in 1843

• Introduced into computer animation by Ken

Shoemake
– K. Shoemake, “Animating rotations with

quaternion curves”, ACM SIGGRAPH 1985 pp245-

254

Quaternions

• Quaternions are a 4D generalisation of

complex numbers:

• The last three terms are the imaginary part

and are often written as a vector:

kvjvivw zyx q

 vq ,w

Quaternions Properties

• The conjugate of a quaternion is defined as:

• And multiplication is defined as:

 vq  ,w

 211221212121 , vvvvvvqq  wwww

(Non commutative)

Quaternions Properties

• The inverse of a quaternion is defined as:

 v
q

q  ,
||

1
2

1 w

• For a unit quaternion (magnitude = 1) we

have:

qq 1

Quaternion Rotations

• A rotation of angle  about an axis u is

represented as a quaternion with (u is a unit

vector):

• Now we have:

• All rotations are represented by unit quaternions

(norm1)

]
2

sin,
2

[cos

2
sin,

2
cos










































uq

uw




v

• [w, v] and [-w, -v] specify the same rotation

 [w,v] = [cos(θ/2), usin(θ/2)]

 [-w,-v] = [-cos(θ/2), -usin(θ/2)]

 = [cos((2π- θ)/2),-usin((2 π- θ)/2)]

Quaternion Rotations

]
2

sin,
2

[cos

2
sin,

2
cos










































uq

uw




v

Quaternion Rotations

• A vector (V) is rotated by first converting it to a

quaternion:

• Premultiplying by the rotation and

postmultiplying by its inverse

• And transforming back to a vector

 Vv ,0

1 qvqvR)(1
qq 

Quaternion Rotations

• A series of rotations can be concatenated into

a single representation by a quaternion

multiplication.

• A rotation by a quaternion p followed by a

rotation by a quaternion q on a vector v:

 111)()()(  qpvqpqpvpqvR

Interpolating Quaternions

• As quaternions have unit length, they all lie

on a sphere with centre on the origin

• Interpolating normally will result in a

quaternion that is not unit length

Interpolating Quaternions

• You can renormalise

• But it will not maintain constant speed along

the surface of the sphere

Interpolating Quaternions

• Shoemake introduced Spherical Linear

Interpolation (SLERP) which interpolates

based on the angle at the centre

q1 q2

qt

SLERP

• Interpolate using the sin of :

 

q1
sin((1 t))

sin
+q2

sin(t)

sin

q1 q2

qt

SLERP

• [w, v] and [-w, -v] specify the same rotation

• So 2 quaternions on the opposite sides of the hypersphere

are the same rotation

• Before doing SLERP we project the 2 quaternions onto the

same side

• If cos < 0 negate q2

q1

q2

Centre of

sphere

-q2

θ

180-θ

2121

21)cos(

vvss

qq





