Computer Animation

Sylvia Pan

March 2013

Lecture slides heavily based on previous versions produced by Marco Gillies

Course QOutline

Physical systems

— Physics simulation

— Integration techniques
— Particle systems

Traditional animation
Key frame and interpolation

Character animation
— Body and face
— Behaviour simulation

Computer Animation: Categorises

Three approaches to motion control:

* Artistic animation
— Hand Animation (traditional animation)
— Key frame and interpolation

« Data-driven animation
— Motion capture

* Procedure animation

— Simulations, artificial lives
— Al

Traditional Animation:
Overview and some techniques

Traditional Animation

* Aims: More realistic and
expressive, less labour
iIntensive

 Methods and animation
principles developed in
traditional animation also
applies in computer
animation

Flip Books

« The most basic form of
animation is the flip book

* Presents a sequence of
Images in quick succession

Flip book Animation.pptx

Flip book Animation.pptx
Flip book Animation.pptx

The Time Line

« Animation is a sequence of frames (Images)
arranged along a time-line

 In films a sequence of images is displayed at
25 frames per second.

Ry >

Lasseter ‘87

Frames

« Each frame is an image

« Traditionally each image had to be hand
drawn individually

« This potentially requires vast amounts of work
from a highly skilled animator

Key Frame System

* The head animator draws the most important
frames (Keyframes)

 An assistant draws the in-between frames
(inbetweens)

Luxo Jr. by Lasseter 1986

Layers

 Have a background image that does not
move

« Put foreground images on a transparent slide
In front of it

* Only have to animate bits that move

* Next time you watch an animation notice that
the background is always more detailed than
the characters

Animation Principles

Animation”

Ollie Johnston and Frank Thomas,1981

Animation Principles

« Squash and stretch

— Change the shape of an object to emphasise its
motion

— In particular stretch then squash when changing

W@a $

Animation Principles

 Slow In slow out

— In real life an object needs time to accelerate and
slow down.

— An animation looks more smooth and realistic with
more frames in the beginning and end of a
movement, and fewer in the middle.

@v@%é@

Stop Motion Animation

» Create models of all your
characters

* Pose them

« Take a photo

* Move them slightly
« Take another photo

Stop Motion Animation

« More effort on Creating Characters
* A lot of detall
« Each individual frame is less work

Computer Animation

Computer Animation

e Similar to Stop Motion Animation

— First to create 3D computer graphics models (some
static, some can be animated!)

— Create the animation frame by frame (pose)

— Finally render the images considering camera position
and lighting (take a photo)

Key Frame animation and Interpolation

Computer animation basics
Computer based key frame system
Interpolations methods

Rotations and Quaternions

Key Frame Animation

« The starting point for computer animation Is
the automation of many of the techniques of
traditional animation

* The labour savings can be greatly increased

Key Frame Animation

Key frame: Start Key frame: End Animation

(] => |
@ o o

Key Frame Animation

* Normally in computer animation objects are
3D models rather than images

* We can animate one property of the object or
a few properties at the same time
— e.g. position, rotation, normal map, ...
* Only changing properties need animation

— e.g. you can rotate an object without having to do
anything to the texture

Key Frame Animation

« Keyframes are “key poses” of the
animated model

» Keyframe Is defined as (a tuple):

< time,value >

* The computer can do the inbetweening

Key Frame Animation

« Example 1: simple object movement
<0,[0,0]>,<1,[1,1]>,<2,[2,0]>

« Example 2: head movements: nod slowly and then
shake quickly

<0,up><1,down>,<3,up>,<5,down><7,up>
<8,up><8.5,left><9,right><9.5 |left><10,right>...

Key Frame Animation (positions)

Linear Interpolation

e videos\linear.mov

videos/linear.mov
videos/linear.mov
videos/linear.mov

Linear Interpolation

« The position is interpolated linearly between
keyframes

'l P(tk){l— ey jP(t“)

P(t) =
tk _tk—l tk _tk—l

When t goes from O to 1 we have:

P =tP, + (1-t)P,

Linear Interpolation
P, =tP, + (1-t)P,

« Returning an interpolation between two inputs
(pO,pl) for a parameter (t) in the range [0, 1]

float lerp(float pO, float p1, float t) {
return v1*t+vO0*(1-t);

}

Linear Interpolation

« The animation can be jerky
 Use smooth curves similar to Bezier instead

Spline Interpolation

videos\Spline.mov

videos/Spline.mov
videos/Spline.mov
videos/Spline.mov

Bezier Curves

Smooth but don’t go through all the control
points, we need to go through all the
keyframes

Hermite Curves

Rather than specifying 4 control points specify
2 end points and tangents at these end points

In the case of interpolating positions the
tangents are velocities

Hermite Curves

C(0) =Py
C(1) =P,

C(0) =T,

C1=T,

C(t) = (2t° —3t* +1)P, + (t° +2t* +1) T,
+(=2t° +3t°)P, + (t° —t*)T,

Hermite Curves and Bezier Curves

Hermite

Pgo Bezier

CH)=@A—1)°P,, +3t@A—1)2P,, CU) =R -3t +DP, +(t>+2t* +)T,

+3t2A—t)P,, +t3P., +(—2t® +3t*)P, + (t° —t?)T,

Bezier to Hermite;: Hermite to Bezier:

P, =P, P=p,
P, = %TO +P T,=3(P,, - P,,)
P,,=P R = Pa

. H—%Tl T,=3(Py; —Py,)

Tangents

* Now given two control points as well as the
tangents at these points, we can interpolate
the position at a given time.

* Where do we get the tangents (velocities)
from?

* We could directly set them, they act as an
extra control on the behaviour

* However often we want to generate them
automatically

Tangents

« Base the tangent as a keyframe on the
previous and next keyframe

« Obtained the tangent from the pervious
keyframe and to the next one

I:)k+1

Tangents

* Average the distance
from the previous
keyframe and to the next
one

 If you set the tangents at
the first and last frame to
zero you get slow in slow
out

k+1

Almost perfect...

That's pretty much it on keyframe animation
But there's one last problem: Rotations
« Rotations are used a lot on animation

 In fact human body animation is largely
pased on animating rotations rather than
nositions

Rotations

* Rotations are very different from positions

* They are essentially spherical rather than
linear

* You can split them into rotations about the
X,Y & Z axis (Euler angles), but:
— Then the order in which you do them changes in
final rotation

— If you rotate about Y so that the Z axis is rotated
onto the X axis you get stuck (Gimbal lock) and
are in trouble

videos\gimbal-minus3.flv

videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv
videos/gimbal-minus3.flv

Quarternions

We need a representation of rotations that
doesn’t suffer these problems

We use Quaternions

Invented by William Rowan Hamilton in 1843
Introduced into computer animation by Ken

Shoemake

— K. Shoemake, “Animating rotations with

quaternion curves”,
254

ACM SIGGRAPH 1985 pp245-

Quaternions

* Quaternions are a 4D generalisation of
complex numbers:

q=W+VI+V, J+VK

* The last three terms are the imaginary part
and are often written as a vector:

q=|w,v]

Quaternions Properties

« The conjugate of a quaternion is defined as:

q={w,~v]
« And multiplication is defined as:

0.0, = |[WW, —V, e V,, WV, + W,V, +V, XV,]

(Non commutative)

Quaternions Properties

* The inverse of a quaternion is defined as:
1 1

ETT;

W,V

« For a unit quaternion (magnitude = 1) we
have:

q'=q

Quaternion Rotations

« Arotation of angle 6 about an axis u Is
represented as a quaternion with (u Is a unit

vector): (Hj o ((9)
2 2
* Now we have: g = [COS(Q’ Usin(%)]

 All rotations are represented by unit quaternions
(norm1l)

Quaternion Rotations

W=CoS| — |,V=UusIin| —
2 2
). . (6

q= [COS(EJ’ U sm(EJ]

* [w, v] and [-w, -V] specify the same rotation

[w,v] = [cos(0/2), usin(6/2)]
[-w,-v] = [-c0s(8/2), -usin(6/2)]
= [cos((2Tr- 0)/2),-usin((2 1r- 0)/2)]

Quaternion Rotations

* A vector (V) is rotated by first converting it to a

quaternion: Y [O’ V]

* Premultiplying by the rotation and
postmultiplying by its inverse

Ve, =qvg (9" =q)

« And transforming back to a vector

Quaternion Rotations

* A series of rotations can be concatenated into
a single representation by a quaternion
multiplication.

* A rotation by a quaternion p followed by a
rotation by a quaternion g on a vector v:

Ve =d(pvp)g =(gp)v(gp) "

Interpolating Quaternions

* As quaternions have unit length, they all lie
on a sphere with centre on the origin

* Interpolating normally will result in a
guaternion that is not unit length

Interpolating Quaternions
* You can renormalise

« But it will not maintain constant speed along
the surface of the sphere

Interpolating Quaternions

« Shoemake introduced Spherical Linear
Interpolation (SLERP) which interpolates
based on the angle at the centre

SLERP
* Interpolate using the sin of O:

sm((l1-10 si(t@
4 (())_I_% ()
s s @

of

01

SLERP

 [w, v] and [-w, -v] specify the same rotation

* S0 2 guaternions on the opposite sides of the hypersphere
are the same rotation

« Before doing SLERP we project the 2 quaternions onto the
same side

* If cosf< 0 negate g,

ds

Centre of
sphere

cos(¢) =0, q,
=S5, +V, eV,

-0,

