

The Radiance Equation

Jan Kautz

2005 Mel Slater, 2006 Céline Loscos, 2007-2013 Jan Kautz

Outline

- Basic terms in radiometry
- Radiance
- Reflectance
- The Radiance Equation
- The operator form of the radiance equation
- Meaning of the operator form
- Approximations to the radiance equation

Light: Radiant Power

- Φ denotes the *radiant energy* or *flux* in a volume V.
- The flux is the rate of energy flowing through a surface per unit time (watts).
- The energy is proportional to the particle flow, since each photon carries energy.
- The flux may be thought of as the flow of photons per unit time.

Light: Flux Equilibrium

- Total flux in a volume in dynamic equilibrium
 - Particles are flowing
 - Distribution is constant
- Conservation of energy
 - Total energy input into the volume = total energy that is output by or absorbed by matter within the volume.

Light: Equation

- $\Phi(p,\omega)$ denotes flux at p \in V, in direction ω
- It is possible to write down an integral equation for Φ(p,ω) based on:
 - Emission+Inscattering = Streaming+Outscattering + Absorption
- Complete knowledge of $\Phi(p,\omega)$ provides a complete solution to the graphics rendering problem.
- Rendering is about solving for $\Phi(p,\omega)$.

Radiance

 Radiance (L) is the flux that leaves a surface, per unit projected area of the surface, per unit solid angle of direction. Unit: [W/m²sr)]

Radiance

• For computer graphics the basic particle is not the photon and the energy it carries but the ray and its associated radiance.

Radiance is constant along a ray.

Solid angle

Radiosity and Irradiance

- Radiosity is the flux per unit area that radiates from a surface, denoted by B, measured in
 [W/m²]
 - $B = d\Phi/dA$

- Irradiance is the flux per unit area that arrives at a surface, denoted by E, measured in
 [W/m²]
 - $E = d\Phi/dA$

Radiosity and Irradiance

- $L(p,\omega)$ is radiance at p in direction ω
- E(p) is irradiance at p
- $E(p) = (d\Phi/dA) = \int L(p,\omega) \cos\theta \, d\omega$

or: L = dE/(cos θ d ω) = d² Φ /(dA cos θ d ω)

dA

Light Sources – Point Light

- Point light with isotropic radiance
 - Power (total flux) of a point light source
 - Φ_s = Power of the light source [Watt]
 - Intensity of a light source
 - $I = \Phi_s / (4\pi sr)$ [Watt/sr]
 - Irradiance on a sphere with radius *r* around light source:
 - $E_r = \Phi_s / (4\pi r^2)$ [Watt/m²]
 - Irradiance on a small surface dA

$$E(x) = \frac{d\Phi_s}{dA} = I\frac{d\omega}{dA} = \frac{\Phi_s}{4\pi} \cdot \frac{dA\cos\theta}{r^2 dA} = \frac{\Phi_s}{4\pi} \cdot \frac{\cos\theta}{r^2}$$
$$\underline{r} = \underline{x} - \underline{y}$$

Light Sources

- Other types of light sources
 - Spot-lights
 - Cone of light
 - Radiation characteristic of $\text{cos}^{n}\theta$
 - Area light sources
 - Point light sources with non-uniform directional power distribution
- Other parameter
 - Atmospheric attenuation with distance (r) for point light sources
 - 1/(ar²+br+c)
 - Physically correct would be 1/r²
 - Correction of missing ambient light

Reflectance

• BRDF

- Bi-directional
- Reflectance
- Distribution
- Function
- Relates
 - Reflected
 radiance to
 incoming
 irradiance

Illumination hemisphere

BRDF

- Boils down to: How much light is reflected for a given light/ view direction at a point?
- Defines the "look" of the surface
- Important part for realistic surfaces:
 - Variation (in texture, gloss, ...)

Properties of BRDFs

• Non-negativity

 $f_r(\theta_i,\phi_i,\theta_r,\phi_r) \geq 0$

Energy Conservation

 $\int_{\Omega} f_r(\theta_i, \phi_i, \theta_r, \phi_r) d\mu(\theta_r, \phi_r) \le 1 \quad \text{for all}(\theta_i, \phi_i)$

• Reciprocity

 $f_r(\theta_i, \phi_i, \theta_r, \phi_r) = f_r(\theta_r, \phi_r, \theta_i, \phi_i)$

Specifying BRDFs

- In practice BRDFs are hard to specify
- Commonly rely on ideal types
 - Perfectly diffuse reflection
 - Perfectly specular reflection
 - Glossy reflection
- BRDFs taken as additive mixture of these

How to compute reflected light?

• Integrate all incident light * BRDF + light emitted

The Radiance Equation

- Radiance L(p, $\omega)$ at a point p in direction ω is the sum of
 - Emitted radiance $L_e(p, \omega)$
 - Total reflected radiance

Radiance = Emitted Radiance + Total Reflected Radiance

The Radiance Equation: Reflection

• Total reflected radiance in direction ω :

$$\int f(p, \omega_i, \omega) L(p^*, -\omega_i) \cos\theta_i d\omega_i$$

(p* is closest point in direction ω_i)

- Full Radiance Equation:
- $L(p, \omega) = L_e(p, \omega) + \int f(p, \omega_i, \omega) L(p^*, -\omega_i) \cos\theta_i d\omega_i$
 - (Integration over the illumination hemisphere)

The Radiance Equation

 p is considered to be on a surface, but can be anywhere, since radiance is constant along a ray, trace back until surface is reached at p*, then

- L(p, ω_i) = L(p*, - ω_i)

Operator Form of the Radiance Equation

- Define the operator R to mean
- (RL)(p, ω) = $\int f(p, \omega_i, \omega) L(p^*, -\omega_i) \cos\theta_i d\omega_1$
 - Use the notation $RL(p, \omega) = L^{1}(p, \omega)$
 - Repeated applications of R can be applied
 - $-\mathsf{R}(\mathsf{RL}(\mathsf{p},\,\omega))=\mathsf{R}^{2}\mathsf{L}(\mathsf{p},\,\omega)=\mathsf{R}\mathsf{L}^{1}(\mathsf{p},\,\omega)=\mathsf{L}^{2}(\mathsf{p},\,\omega)$
 - ...
- The operator 1 means the identity:
 - $-1L(p, \omega) = L(p, \omega)$

Operator Form

Using this notation, the radiance equation can be rewritten ٠ as:

 $-L = L_e + RL$

• We can rearrange this as:

 $- (1-R)L = L_{a}$

Operator theory allows the normal algebraic operations:

 $- L = (1-R)^{-1}L_{p}$ $-L = (1 + R + R^2 + R^3 + ...) L_e$ (Neumann series/expansion)

Meaning of the Operator

- L_e(p, ω_i) is radiance corresponding to direct lighting from a source (if any) from direction ω_i at point p.
- RL_e(p, ω_i) is therefore the radiance from point p in direction ω due to this direct lighting.

This is light that is 'one step removed' from the sources.

Meaning of the Operator

- R²L_e(p, ω_i) = RL¹_e(p, ω_i) is therefore light that is 'twice removed' from the light sources.
- Similar meanings can be attributed to R³L_e(p, ω_i), R⁴L_e(p, ω_i) and so on.

In general $R^iL_e(p, \omega_i)$ is the contribution to radiance from p in direction ω from all light paths of length i+1 back to the sources.

The Radiance Equation

- In general the radiance equation in operator form shows that L(p,ω) may be decomposed into light due to
 - The emissive properties of the surface at p
 - Plus that due directly to sources
 - Plus that reflected once from sources
 - Plus that reflected twice
 - ... to infinity

Truncating the Equation

- Suppose the series is truncated after the first term

 (1)L_e
 - Only objects that are emitters would be shown
- Suppose one more term is added (1+R)L_e
 - Only direct lighting (and shadows) are accounted for.
- Suppose another term is added (1+R+R²)L_e
 - Additionally one level of reflection is accounted for.
- ...and so on.
- Each type of rendering method is a special case of this rendering equation, and computer graphics rendering consists of different types of approximation.

Conclusion

- Radiance equation formally revisited
- And defined as an operator form