AUCL

The Radiance Equation

Jan Kautz

Outline

- Basic terms in radiometry
- Radiance
- Reflectance
- The Radiance Equation
- The operator form of the radiance equation
- Meaning of the operator form
- Approximations to the radiance equation

Light: Radiant Power

- Φ denotes the radiant energy or flux in a volume V.
- The flux is the rate of energy flowing through a surface per unit time (watts).
- The energy is proportional to the particle flow, since each photon carries energy.
- The flux may be thought of as the flow of photons per unit time.

Light: Flux Equilibrium

- Total flux in a volume in dynamic equilibrium
- Particles are flowing
- Distribution is constant
- Conservation of energy
- Total energy input into the volume = total energy that is output by or absorbed by matter within the volume.

Light: Equation

- $\Phi(p, \omega)$ denotes flux at $p \in V$, in direction ω
- It is possible to write down an integral equation for $\Phi(p, \omega)$ based on:
- Emission+Inscattering = Streaming+Outscattering + Absorption
- Complete knowledge of $\Phi(p, \omega)$ provides a complete solution to the graphics rendering problem.
- Rendering is about solving for $\Phi(\mathrm{p}, \omega)$.

Radiance

- Radiance (L) is the flux that leaves a surface, per unit projected area of the surface, per unit solid angle of direction. Unit: [W/m²sr)]

Radiance

- For computer graphics the basic particle is not the photon and the energy it carries but the ray and its associated radiance.

Radiance is constant along a ray.

Solid angle

$$
\mathrm{d} \omega_{\mathrm{b}}=\frac{\mathrm{dB} \cos \theta_{\mathrm{B}}}{\mathrm{r}^{2}}
$$

Radiosity and Irradiance

- Radiosity is the flux per unit area that radiates from a surface, denoted by B, measured in
[W/m²]
$-\mathrm{B}=\mathrm{d} \Phi / \mathrm{dA}$

- Irradiance is the flux per unit area that arrives at a surface, denoted by E, measured in [W/m²]
$-E=d \Phi / d A$

Radiosity and Irradiance

- $L(p, \omega)$ is radiance at p in direction ω
- $E(p)$ is irradiance at p
- $E(p)=(d \Phi / d A)=\int L(p, \omega) \cos \theta d \omega$

$$
\text { or: } L=d E /(\cos \theta d \omega)=d^{2} \Phi /(d A \cos \theta d \omega)
$$

Light Sources - Point Light

- Point light with isotropic radiance
- Power (total flux) of a point light source
- $\Phi_{s}=$ Power of the light source [Watt]
- Intensity of a light source
- $I=\Phi_{s} /(4 \pi s r)$ [Watt/sr]
- Irradiance on a sphere with radius r around light source:
- $E_{r}=\Phi_{s} /\left(4 \pi r^{2}\right)\left[\mathrm{Watt} / \mathrm{m}^{2}\right]$
- Irradiance on a small surface dA
$E(x)=\frac{d \Phi_{s}}{d A}=I \frac{d \omega}{d A}=\frac{\Phi_{s}}{4 \pi} \cdot \frac{d A \cos \theta}{r^{2} d A}=\frac{\Phi_{s}}{4 \pi} \cdot \frac{\cos \theta}{r^{2}}$
$\underline{r}=\underline{x}-\underline{y}$

Light Sources

- Other types of light sources
- Spot-lights
- Cone of light
- Radiation characteristic of $\cos ^{n} \theta$
- Area light sources
- Point light sources with non-uniform directional power distribution
- Other parameter
- Atmospheric attenuation with distance (r) for point light sources
- $1 /\left(a r^{2}+b r+c\right)$
- Physically correct would be $1 / \mathrm{r}^{2}$
- Correction of missing ambient light

Diffuse emitter

Point light

Directional light

Goniometric diagram

Spot light

Reflectance

- BRDF
- Bi-directional
- Reflectance
- Distribution
- Function
- Relates
- Reflected radiance to incoming irradiance

$$
\mathrm{f}\left(\mathrm{p}, \omega_{\mathrm{i}}, \omega_{\mathrm{r}}\right) \quad \text { Unit: } 1 / \mathrm{sr}
$$

Illumination hemisphere

BRDF

- Boils down to: How much light is reflected for a given light/ view direction at a point?
- Defines the "look" of the surface
- Important part for realistic surfaces:
- Variation (in texture, gloss, ...)

Properties of BRDFs

- Non-negativity

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) \geq 0
$$

- Energy Conservation

$$
\int_{\Omega} f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) d \mu\left(\theta_{r}, \phi_{r}\right) \leq 1 \quad \text { for all }\left(\theta_{i}, \phi_{i}\right)
$$

- Reciprocity

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=f_{r}\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)
$$

Specifying BRDFs

- In practice BRDFs are hard to specify
- Commonly rely on ideal types
- Perfectly diffuse reflection
- Perfectly specular reflection
- Glossy reflection
- BRDFs taken as additive mixture of these

How to compute reflected light?

- Integrate all incident light* BRDF + light emitted

The Radiance Equation

- Radiance $L(p, \omega)$ at a point p in direction ω is the sum of
- Emitted radiance $L_{e}(p, \omega)$
- Total reflected radiance

Radiance $=$ Emitted Radiance + Total Reflected Radiance

The Radiance Equation: Reflection

- Total reflected radiance in direction ω :

$$
\int f\left(p, \omega_{i}, \omega\right) L\left(p^{*},-\omega_{i}\right) \cos \theta_{i} d \omega_{1}
$$

(${ }^{*}$ is closest point in direction ω_{i})

- Full Radiance Equation:
- $L(p, \omega)=L_{e}(p, \omega)+\int f\left(p, \omega_{i}, \omega\right) L\left(p^{*},-\omega_{i}\right) \cos \theta_{i} d \omega_{i}$
- (Integration over the illumination hemisphere)

The Radiance Equation

- p is considered to be on a surface, but can be anywhere, since radiance is constant along a ray, trace back until surface is reached at p^{*}, then
$-L\left(p, \omega_{i}\right)=L\left(p^{*},-\omega_{i}\right)$

The radiance equation models global illumination.

Operator Form of the Radiance Equation

- Define the operator R to mean
- $(R L)(p, \omega)=\int f\left(p, \omega_{i}, \omega\right) L\left(p^{*},-\omega_{i}\right) \cos \theta_{i} d \omega_{1}$
- Use the notation $\operatorname{RL}(p, \omega)=L^{1}(p, \omega)$
- Repeated applications of R can be applied
$-R(R L(p, \omega))=R^{2} L(p, \omega)=R L^{1}(p, \omega)=L^{2}(p, \omega)$
- ...
- The operator 1 means the identity:
$-1 L(p, \omega)=L(p, \omega)$

Operator Form

- Using this notation, the radiance equation can be rewritten as:
$-L=L_{e}+R L$
- We can rearrange this as:
$-(1-R) L=L_{e}$
- Operator theory allows the normal algebraic operations:
$-L=(1-R)^{-1} L_{e}$
$-L=\left(1+R+R^{2}+R^{3}+\ldots\right) L_{e} \quad$ (Neumann series/expansion)

Meaning of the Operator

- $\mathrm{L}_{\mathrm{e}}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)$ is radiance corresponding to direct lighting from a source (if any) from direction ω_{i} at point p.
- $R L_{e}\left(p, \omega_{i}\right)$ is therefore the radiance from point p in direction ω due to this
 direct lighting.

Meaning of the Operator

- $R^{2} L_{e}\left(\mathbf{p}, \omega_{i}\right)=R L^{1}\left(p, \omega_{i}\right)$ is therefore light that is 'twice removed' from the light sources.
- Similar meanings can be attributed to
$R^{3} L_{e}\left(p, \omega_{i}\right), R^{4} L_{e}\left(p, \omega_{i}\right)$ and so on.

In general $R L_{e}\left(p, \omega_{i}\right)$ is the contribution to radiance from p in direction ω from all light paths of length $i+1$ back to the sources.

The Radiance Equation

- In general the radiance equation in operator form shows that $\mathrm{L}(\mathrm{p}, \omega)$ may be decomposed into light due to
- The emissive properties of the surface at p
- Plus that due directly to sources
- Plus that reflected once from sources
- Plus that reflected twice
- ... to infinity

Truncating the Equation

- Suppose the series is truncated after the first term
(1) L_{e}
- Only objects that are emitters would be shown
- Suppose one more term is added $(1+\mathrm{R}) \mathrm{L}_{\mathrm{e}}$
- Only direct lighting (and shadows) are accounted for.
- Suppose another term is added ($1+\mathrm{R}+\mathrm{R}^{2}$) L_{e}
- Additionally one level of reflection is accounted for.
- ...and so on.
- Each type of rendering method is a special case of this rendering equation, and computer graphics rendering consists of different types of approximation.

Conclusion

- Radiance equation formally revisited
- And defined as an operator form

