Acceleration Techniques
V1.4 (January 2013)

Jan Kautz

Goals

* Although GPUs can now deal with many polygons
(millions), the size of the models for application

keeps on growing
« Want to introduce techniques to generate different

options for rendering a specific object (level of
detail)

« Want to assess when to use different
representations so that the viewer can’t notice

them In use

Overview

1. Motivation & Introduction
 Examples
* Bottlenecks
« Simple techniques

2. Level of Detail Control
3. Progressive Meshes

1. Motivation & Introduction

« Games need always more polygons, more textures

* Also CPU needs to be shared between different
components:
— Sound
— Animation
— Behaviour
— lllumination
— Etc.

* You need to reduce the rendering cost to control the real
time frame rate (50/60fps for games)

Real time

* You can find in the literature different definitions of real time

Often it is assumed 25fps, which comes from videos

But if less it is often not noticeable for the eye, and a video running at
15/10 fps seems smooth

For games it is 60 fps

For some interactive devices with feedback, you need often a frequency of
600hz (or even more)

Real time is something that needs to be defined given the applications and
the devices

In the UCL-CAVE the frame rate is 45 or 42.5 fps /eye
Modern stereo TVs are 120 fps (up to 600fps for plasma TVs)

« Real time is something that needs to be defined for each application

Bottlenecks

* Recall the GPU lecture: bottlenecks occur for
many reasons. Two most common being polygon-
limited or pixel-limited
— Reduce the polygons
— Simplify the shaders

— -

CPU transfer transform raster texture fragment frame
buffer

Techniques to accelerate rendering

* Reducing the number of polygons in the model
— Mesh optimisation
— Image-based rendering

* Reducing the number of polygons to display
— Level of detalil
— Visibility culling (previous course)
— Image-based rendering (later in course)
— Point-based rendering (out of scope for this course)

Level of Detail

« Simply edit the mesh to reduce polygon count

— Some metric of mesh deformation caused by removing
edges, faces, etc.

— Very common as a first step in processing 3D scan data

2. Level of Detail Control

« Taken from the article
“Adaptive display algorithm for interactive frame
rates during visualisation of complex virtual
environments”

Thomas Funkhouser and Carlo Sequin

SIGGRAPH 93

Context

« Smoothness of the display = constant fps

* Number of polygons to display = number of

polygons of the model — may vary from one frame
to another

* Rendering all potential visible polygons may result
iIn no control on the interactivity

10

Target

 Control the frame rate: have a constant frame rate
whatever needs to be displayed

— Frame rate decided by the user

* Trade the image quality to achieve the control on
the interactive frame rate
— (Choice often made in practice)

 |dea: select the level of detail and render the
visible objects given their importance to achieve

the best possible image

11

Existing techniques considered

Visibility culling
Level of detall

Problem: no guaranty of the bounded frame rate

— Still more polygons than manageable might need to be
displayed

Reactive vs. predictive

— It is better to predict the number of polygons that are
going to be displayed to pre-adjust the algorithms,
rather then being ‘caught by surprise’ looking at
previous frames only

12

Approach

* Predictive
« Consider 3 parameters
— object O
— level of detail L
— rendering algorithm (lighting) R
* And 2 heuristics
— Cost (O,L,R) : time required to render O at L with R
— Benefit(O,L,R) : the contribution to model perception of O
+ Goal
— Maximize X Benefit(O,L,R)
— Control 2 Cost(O,L,R) = Target Frame Rate

* Do as well as possible in a given amount of time

13

Cost heuristic

Predictive = depends on the number of the current
visible polygons

Maximum of time taken by
— The per-primitive processing

« Coordinate transformations, lighting, clipping, etc.
— The per-pixel processing

 Rasterization, z-buffering, alpha blending, texture mapping, etc.
Cost (O,L,R) = C, Poly(O,L) + C,Vertex(O,L) + C4,Pix(O,L)
C,,C, C, constant, dependent on the rendering
algorithm and the machine (determined
empirically)

14

Benefit heuristic

 |deal: predict the contribution to human perception
— Difficult to measure

 Practical metrics:

— Dependent on the size (number of pixels) occupied by
the object on the final image

— Dependent on the accuracy of the rendering algorithm
(compare rendering to ideal image)

— Dependent on other factors
« Semantic: importance of the object in the scene
* Focus: place on the screen
« Motion blur: speed of the object

« Hysteresis: change in LOD may reduce the quality
15

Benefit heuristic — Accuracy

 Estimate:

— The number of errors decreases with the number of
samples
« More mesh/rays, less error

* Accuracy(O,L,R)
=1—Error
= 1 — BaseError/Samples(L,R)™

« Samples(L,R) = Number of pixels/vertices/
polygons

* m dependent on method (1 = flat, 2 = gouraud)

16

Benefit heuristic — Full Formula

* Benefit(O,L,R) =
Size(O) * Accuracy(O,L,R) * Importance(O) *
Focus(O) * Motion(O) * Hysteresis(O,L,R)

« Every function between 0...1

17

Optimisation Algorithm

» Use for each object:

— Value(O) = Benefit(O,L,R)/Cost(O,L,R)
* Incremental algorithm

— List all the visible objects

— Initialise every object

« Visible at previous frame with previous L and R
* Newly visible with lowest L and R

— Update accuracy attributes depending on current value
* Loop until stable and under frame rate

18

Remarks

* Worst case: nlogn
« But coherence between frame = few iterations

» Parallelisation of the computations/display

19

Results

Start

« Test scene

T-——

* Results
— Static: LOD (systematic <1024 pixels)
— Feedback: LOD with adaptive size threshold
— Optimization: with prediction

20

Results

=]

=]

Tima 18]

Tim= 18]

8]

(1]
u
1]
L=
H
0 Fram=g 250
a) No detail elision.
(1
u
rries T, o
e E
Fram=g 250

L

-

|::| Feedback algorithm.

i

i Frameas 250
b“ Static algorithm.
™ rI _|.' T _-\.-l..-.. r - r
Frames 250

dn {Jﬂ-nm ation algorithm.

LOD Selection

Compute Time

Frame Time

Algorithm Mean | Max || Mean | Max | StdDev
None 0.00 0.00 043 | 099 | 0305
Static 0.00 0.01 011 | 0.20 | 0.048
Feedback 0.00 0.01 0.10 | 0.16 | 0.026
Optimization 0.01 0.03 0.10 | 0.13 | 0.008

21

a) Feedback algonthm b) Optimization algorithm

Figure 9: Images depicting the LODs selected for each object at the
observer viewpoints marked "C’ using the Feedback and Optimiza-
fion algorithms. Darker shades of gray represent higher LODs.

a) No detail elision

b) Optimization algorithm (0.10 seconds)

Figure 10: Images for observer viewpoint “A° generated using 2) no
detail elision (72,570 polygons), and b) the Optimization algonthm
with a 0.10 second target frame time (5,300 polvgons).

=

3. Progressive Meshes

« Some objects have a very high polygon-count

* The fine details of the object description are not
always needed

e |dea:

— Lower the number of polygons of an object by reducing
its mesh

— Represent the object with a different polygon count
depending on circumstances
 Level of Detail (LOD)

23

Example

24

Applications

 Complex meshes are expensive to store, transmit
and render, thus motivating a number of practical
problems:
— Mesh simplification
— Level-of-Detail (LOD) approximation
— Progressive transmission
— Mesh compression
— Selective refinement

25

Mesh simplification

* E.g., for scanned data

Scanned model Mesh simplification
2 millions polygons 7500 polygons

Real Statue

26

Selective Refinement

» Add detail to specific areas

27

Progressive meshes

* They are many techniques to calculate and store
LOD meshes

* Oneis
— Progressive Meshes, H. Hoppe, SIGGRAPH’ 96

28

Progressive meshes

« Store a representation of a mesh at different LODs

» Use a structure that makes it easy to go from one
level to another

— Smooth transition is important

29

LOD structure

* A mesh (made of triangles) can be represented by
- M(K, V, D, S)

K = Simplicial complex connectivity between Mesh
elements (faces, edges, vertices)

V = Vertex positions, define shape of the mesh

S = Scalar attributes associated to corners {f,v}:
colour, normals, texture coordinates

D = Discrete attributes associated to faces f {j k,l}

30

Remarks

* The structure is capable of identifying differences
within the same object
— Sharp edges
« Boundary edge

« Adjacent faces have different discrete attributes
« Adjacent corners have different scalar attributes

31

Creation of the progressive mesh

* A representation scheme for storing and
transmitting arbitrary triangle meshes

N

M=M" =M, {vsplit, ..., vsplit, , })

 M" = Mesh at the higher level
* M, = Mesh at the lowest level

» vsplit = Vertex split operations between different
levels

32

Building the progressive mesh

« Edge collapse / Vertex split

ecol
’ s

Xy v Xy v
T T

33

Edge collapse

ecol
T A
A
v
‘u’Spllt
MH (i=3)y M!
V) Vi
v, v,
V3 Vs
v, vy
“5 “5
Vs '6
V.,

(a)

(b)

34

Overview of the simplification algorithm

* Energy metfric:
EM)=E, M)+E__ (M)+E

dist spring scalar
* Only collapse transformations
¢ Steps:

— Priority queue of edge collapse

— In each iteration perform the transformation at the front
of the queue

— Recompute priorities in the neighbourhood of the
transformation

(M)+E, (M)

disc

35

Preserving surface geometry

* Record the geometry of the original mesh by
sampling from it a set of points

« Evaluating E (V) involves computing the
distance of each point x; to the mesh (minimization
problem)

* Minimization of E (V) + Egpi,4(V) Is computed
iteratively

36

Preserving scalar attributes

 Continuous scalar fields

* Optimizing scalar attributes at vertices:

— Each vertex of the original mesh has a position and a
scalar attribute v,

— We want to measure the deviation of the sampled
attribute values X from those of M

— We introduce a scalar energy term E
— Solve E

scalar

by single least-square problems

scalar

37

Scalar Attribute Example: Colour

S —
(a) M

(200 x 200 vertices)

38

Preserving discontinuity curves

* Appearance attributes give rise to a set of
discontinuity curves in the mesh

* |If an edge collapse would modify the topology of
discontinuity curves we prefer to disallow it

» Define E.. to penalize discontinuity changes.

39

Results

(a) M (12,946 faces) (b) M (200 faces) (c) M (1.000 faces)

40

Geomorphs

« Can’t apply split or collapses one at a time (would
be too slow)

* However, can transition between two Meshes M,
and M, using a geomorph

* Note that M; and M, have different numbers of
vertices, and a vertex in M, might split (or collapse)
more than once

* But you can simply animate all the moving vertices
at once

41

Conclusion

* To accelerate the rendering one can reduce the
number of polygons to display

* Generic optimisation algorithm to control the frame
rate while providing the ‘best possible quality’
based on perception metrics

* Progressive meshes are one example of many

different efficient structures to store and retrieve
level of detail meshes

42

