
Acceleration Techniques
V1.4 (January 2013)

Jan Kautz

2

Goals

•  Although GPUs can now deal with many polygons
(millions), the size of the models for application
keeps on growing

•  Want to introduce techniques to generate different
options for rendering a specific object (level of
detail)

•  Want to assess when to use different
representations so that the viewer can’t notice
them in use

3

Overview

1.  Motivation & Introduction
•  Examples
•  Bottlenecks
•  Simple techniques

2.  Level of Detail Control
3.  Progressive Meshes

1. Motivation & Introduction

•  Games need always more polygons, more textures
•  Also CPU needs to be shared between different

components:
–  Sound
–  Animation
–  Behaviour
–  Illumination
–  Etc.

•  You need to reduce the rendering cost to control the real
time frame rate (50/60fps for games)

4

5

Real time

•  You can find in the literature different definitions of real time
–  Often it is assumed 25fps, which comes from videos
–  But if less it is often not noticeable for the eye, and a video running at

15/10 fps seems smooth
–  For games it is 60 fps
–  For some interactive devices with feedback, you need often a frequency of

600hz (or even more)
–  Real time is something that needs to be defined given the applications and

the devices
–  In the UCL-CAVE the frame rate is 45 or 42.5 fps /eye
–  Modern stereo TVs are 120 fps (up to 600fps for plasma TVs)

•  Real time is something that needs to be defined for each application

6

Bottlenecks

•  Recall the GPU lecture: bottlenecks occur for
many reasons. Two most common being polygon-
limited or pixel-limited
–  Reduce the polygons
–  Simplify the shaders

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound
CPU/Bus
Bound

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Vertex Bound Pixel Bound
CPU/Bus
Bound

7

Techniques to accelerate rendering

•  Reducing the number of polygons in the model
–  Mesh optimisation
–  Image-based rendering

•  Reducing the number of polygons to display
–  Level of detail
–  Visibility culling (previous course)
–  Image-based rendering (later in course)
–  Point-based rendering (out of scope for this course)

8

Level of Detail

•  Simply edit the mesh to reduce polygon count
–  Some metric of mesh deformation caused by removing

edges, faces, etc.
–  Very common as a first step in processing 3D scan data

9

2. Level of Detail Control

•  Taken from the article

“Adaptive display algorithm for interactive frame
rates during visualisation of complex virtual
environments”

Thomas Funkhouser and Carlo Sequin

SIGGRAPH 93

Context

•  Smoothness of the display = constant fps
•  Number of polygons to display ≠ number of

polygons of the model – may vary from one frame
to another

•  Rendering all potential visible polygons may result
in no control on the interactivity

10

Target

•  Control the frame rate: have a constant frame rate
whatever needs to be displayed
–  Frame rate decided by the user

•  Trade the image quality to achieve the control on
the interactive frame rate
–  (Choice often made in practice)

•  Idea: select the level of detail and render the
visible objects given their importance to achieve
the best possible image

11

Existing techniques considered

•  Visibility culling
•  Level of detail
•  Problem: no guaranty of the bounded frame rate

–  Still more polygons than manageable might need to be
displayed

•  Reactive vs. predictive
–  It is better to predict the number of polygons that are

going to be displayed to pre-adjust the algorithms,
rather then being ‘caught by surprise’ looking at
previous frames only

12

Approach

•  Predictive
•  Consider 3 parameters

–  object O
–  level of detail L
–  rendering algorithm (lighting) R

•  And 2 heuristics
–  Cost (O,L,R) : time required to render O at L with R
–  Benefit(O,L,R) : the contribution to model perception of O

•  Goal
–  Maximize Σ Benefit(O,L,R)
–  Control Σ Cost(O,L,R) ≤ Target Frame Rate

•  Do as well as possible in a given amount of time
13

Cost heuristic

•  Predictive = depends on the number of the current
visible polygons

•  Maximum of time taken by
–  The per-primitive processing

•  Coordinate transformations, lighting, clipping, etc.
–  The per-pixel processing

•  Rasterization, z-buffering, alpha blending, texture mapping, etc.
•  Cost (O,L,R) = C1 Poly(O,L) + C2Vertex(O,L) + C3Pix(O,L)
•  C1,C2,C3 constant, dependent on the rendering

algorithm and the machine (determined
empirically)

14

Benefit heuristic

•  Ideal: predict the contribution to human perception
–  Difficult to measure

•  Practical metrics:
–  Dependent on the size (number of pixels) occupied by

the object on the final image
–  Dependent on the accuracy of the rendering algorithm

(compare rendering to ideal image)
–  Dependent on other factors

•  Semantic: importance of the object in the scene
•  Focus: place on the screen
•  Motion blur: speed of the object
•  Hysteresis: change in LOD may reduce the quality

15

Benefit heuristic – Accuracy

•  Estimate:
–  The number of errors decreases with the number of

samples
•  More mesh/rays, less error

•  Accuracy(O,L,R)
 = 1 – Error
 = 1 – BaseError/Samples(L,R)m

•  Samples(L,R) = Number of pixels/vertices/
polygons

•  m dependent on method (1 = flat, 2 = gouraud)

16

17

Benefit heuristic – Full Formula

•  Benefit(O,L,R) =
Size(O) * Accuracy(O,L,R) * Importance(O) *
Focus(O) * Motion(O) * Hysteresis(O,L,R)

•  Every function between 0…1

Optimisation Algorithm

•  Use for each object:
–  Value(O) = Benefit(O,L,R)/Cost(O,L,R)

•  Incremental algorithm
–  List all the visible objects
–  Initialise every object

•  Visible at previous frame with previous L and R
•  Newly visible with lowest L and R

–  Update accuracy attributes depending on current value
•  Loop until stable and under frame rate

18

19

Remarks

•  Worst case: n log n
•  But coherence between frame = few iterations
•  Parallelisation of the computations/display

Results

•  Test scene

•  Results
–  Static: LOD (systematic <1024 pixels)
–  Feedback: LOD with adaptive size threshold
–  Optimization: with prediction

20

Results

21

22

3. Progressive Meshes

•  Some objects have a very high polygon-count
•  The fine details of the object description are not

always needed
•  Idea:

–  Lower the number of polygons of an object by reducing
its mesh

–  Represent the object with a different polygon count
depending on circumstances

•  Level of Detail (LOD)

23

Example

24

Applications

•  Complex meshes are expensive to store, transmit
and render, thus motivating a number of practical
problems:
–  Mesh simplification
–  Level-of-Detail (LOD) approximation
–  Progressive transmission
–  Mesh compression
–  Selective refinement

25

Mesh simplification

•  E.g., for scanned data

26

Scanned model
2 millions polygons

Mesh simplification
7500 polygons

Real Statue

Selective Refinement

•  Add detail to specific areas

27

Progressive meshes

•  They are many techniques to calculate and store
LOD meshes

•  One is
–  Progressive Meshes, H. Hoppe, SIGGRAPH’96

28

Progressive meshes

•  Store a representation of a mesh at different LODs
•  Use a structure that makes it easy to go from one

level to another
–  Smooth transition is important

29

LOD structure

•  A mesh (made of triangles) can be represented by
–  M(K, V, D, S)

•  K = Simplicial complex connectivity between Mesh
elements (faces, edges, vertices)

•  V = Vertex positions, define shape of the mesh
•  S = Scalar attributes associated to corners {f,v}:

colour, normals, texture coordinates
•  D = Discrete attributes associated to faces f {j,k,l}

30

Remarks

•  The structure is capable of identifying differences
within the same object
–  Sharp edges

•  Boundary edge
•  Adjacent faces have different discrete attributes
•  Adjacent corners have different scalar attributes

31

Creation of the progressive mesh

•  A representation scheme for storing and
transmitting arbitrary triangle meshes

•  Mn = Mesh at the higher level
•  M0 = Mesh at the lowest level
•  vsplit = Vertex split operations between different

levels

32

nMM =ˆ = (M0, { vsplit0, …, vsplitn-1 })

Building the progressive mesh

•  Edge collapse / Vertex split

33

Edge collapse

34

Overview of the simplification algorithm

•  Energy metric:

•  Only collapse transformations
•  Steps:

–  Priority queue of edge collapse
–  In each iteration perform the transformation at the front

of the queue
–  Recompute priorities in the neighbourhood of the

transformation

35

() () () () ()MEMEMEMEME discscalarspringdist +++=

Preserving surface geometry

•  Record the geometry of the original mesh by
sampling from it a set of points

•  Evaluating Edist(V) involves computing the
distance of each point xi to the mesh (minimization
problem)

•  Minimization of Edist(V) + Espring(V) is computed
iteratively

36

Preserving scalar attributes

•  Continuous scalar fields
•  Optimizing scalar attributes at vertices:

–  Each vertex of the original mesh has a position and a
scalar attribute vj

–  We want to measure the deviation of the sampled
attribute values X from those of M

–  We introduce a scalar energy term Escalar
–  Solve Escalar by single least-square problems

37

Scalar Attribute Example: Colour

38

Preserving discontinuity curves

•  Appearance attributes give rise to a set of
discontinuity curves in the mesh

•  If an edge collapse would modify the topology of
discontinuity curves we prefer to disallow it

•  Define Edisc to penalize discontinuity changes.

39

Results

40

Geomorphs

•  Can’t apply split or collapses one at a time (would
be too slow)

•  However, can transition between two Meshes Mi
and Mj using a geomorph

•  Note that Mi and Mj have different numbers of
vertices, and a vertex in Mi might split (or collapse)
more than once

•  But you can simply animate all the moving vertices
at once

41

Conclusion

•  To accelerate the rendering one can reduce the
number of polygons to display

•  Generic optimisation algorithm to control the frame
rate while providing the ‘best possible quality’
based on perception metrics

•  Progressive meshes are one example of many
different efficient structures to store and retrieve
level of detail meshes

42

