Color Science

M074 / GVI4 2013
 Tim Weyrich
 presenting slides by Steve Marschner

What light is

- Light is electromagnetic radiation
- exists as oscillations of different frequency (or, wavelength)

Measuring light

- Salient property is the spectral power distribution (SPD)
- the amount of light present at each wavelength
- units:Watts per nanometer (tells you how much power you'll find in a narrow range of wavelengths)
- for color, often use "relative units" when overall intensity is not important

What color is

- Colors are the sensations that arise from light energy of different wavelengths
- we are sensitive from about 380 to 760 nm—one "octave"
- Color is a phenomenon of human perception; it is not a universal property of light
- Roughly speaking, things appear "colored" when they depend on wavelength and "gray" when they do not.

The problem of color science

- Build a model for human color perception
- That is, map a Physical light description to a Perceptual color sensation

Physical

Perceptual

The eye as a measurement device

- We can model the low-level behavior of the eye by thinking of it as a light-measuring machine
- its optics are much like a camera
- its detection mechanism is also much like a camera
- Light is measured by the photoreceptors in the retina
- they respond to visible light
- different types respond to different wavelengths

A simple light detector

- Produces a scalar value (a number) when photons land on it
- this value depends strictly on the number of photons detected
- each photon has a probability of being detected that depends on the wavelength
- there is no way to tell the difference between signals caused by light of different wavelengths: there is just a number
- This model works for many detectors:
- based on semiconductors (such as in a digital camera)
- based on visual photopigments (such as in human eyes)

A simple light detector

$\begin{array}{r}\text { detected } \\ \text { photons } \\ \text { wer unit } \\ \text { wavelength }\end{array}$
wavelength (nanometers)

$$
X=\int n(\lambda) p(\lambda) d \lambda
$$

Light detection math

- Same math carries over to power distributions
- spectum entering the detector has its spectral power distribution (SPD), $s(\lambda)$
- detector has its spectral sensitivity or spectral response, $r(\lambda)$

Light detection math

$$
X=\int s(\lambda) r(\lambda) d \lambda \quad \text { or } \quad X=s \cdot r
$$

- If we think of s and r as vectors, this operation is a dot product (aka inner product)
- in fact, the computation is done exactly this way, using sampled representations of the spectra.
- let λ_{i} be regularly spaced sample points $\Delta \lambda$ apart; then:

$$
\begin{gathered}
\tilde{s}[i]=s\left(\lambda_{i}\right) ; \tilde{r}[i]=r\left(\lambda_{i}\right) \\
\int s(\lambda) r(\lambda) d \lambda \approx \sum_{i} \tilde{s}[i] \tilde{r}[i] \Delta \lambda
\end{gathered}
$$

- this sum is very clearly a dot product

Cone Responses

- S,M,L cones have broadband spectral sensitivity
- S,M,L neural response is integrated w.r.t. λ
- we'll call the response functions r_{S}, r_{M}, r_{L}
- Results in a trichromatic visual system
- S, M, and L are tristimulus values

Cone responses to a spectrum s

$$
\begin{aligned}
S & =\int r_{S}(\lambda) s(\lambda) d \lambda=r_{S} \cdot s \\
M & =\int r_{M}(\lambda) s(\lambda) d \lambda=r_{M} \cdot s \\
L & =\int r_{L}(\lambda) s(\lambda) d \lambda=r_{L} \cdot s
\end{aligned}
$$

Colorimetry: an answer to the problem

- Wanted to map a Physical light description to a Perceptual color sensation
- Basic solution was known and standardized by 1930
- Though not quite in this form-more on that in a bit

$$
\begin{gathered}
S=r_{S} \cdot s \\
M=r_{M} \cdot s \\
L=r_{L} \cdot s \\
\\
\text { Perceptual }
\end{gathered}
$$

Basic fact of colorimetry

- Take a spectrum (which is a function)
- Eye produces three numbers
- This throws away a lot of information!
- Quite possible to have two different spectra that have the same S, M, L tristimulus values
- Two such spectra are metamers

Pseudo-geometric interpretation

- A dot product is a projection
- We are projecting a high dimensional vector (a spectrum) onto three vectors
- differences that are perpendicular to all 3 vectors are not detectable
- For intuition, we can imagine a 3D analog
- 3D stands in for high-D vectors
- 2D stands in for 3D
- Then vision is just projection onto a plane

Pseudo-geometric interpretation

- The information available to the visual system about a spectrum is three values
- this amounts to a loss of information analogous to projection on a plane
- Two spectra that produce the same response are metamers

Basic colorimetric concepts

- Luminance
- the overall magnitude of the the visual response to a spectrum (independent of its color)
- corresponds to the everyday concept "brightness"
- determined by product of SPD with the luminous efficiency function V_{λ} that describes the eye's overall ability to detect
light at each wavelength
- e.g. lamps are optimized to improve their luminous efficiency (tungsten vs. fluorescent vs. sodium vapor)

Luminance, mathematically

- Y just has another response curve (like S, M, and L)

$$
Y=r_{Y} \cdot s
$$

$-r_{Y}$ is really called " V_{λ} "

- V_{λ} is a linear combination of S, M, and L
- Has to be, since it's derived from cone outputs

More basic colorimetric concepts

- Chromaticity
- what's left after luminance is factored out (the color without regard for overall brightness)
- scaling a spectrum up or down leaves chromaticity alone
- Dominant wavelength
- many colors can be matched by white plus a spectral color
- correlates to everyday concept "hue"
- Purity
- ratio of pure color to white in matching mixture
- correlates to everyday concept "colorfulness" or "saturation"

Color reproduction

- Have a spectrum s; want to match on RGB monitor
- "match" means it looks the same
- any spectrum that projects to the same point in the visual color space is a good reproduction
- Must find a spectrum that the monitor can produce that is a metamer of s

$\mathbf{R}, \mathbf{G}, \mathbf{B}$?

Additive Color

CRT display primaries

- Curves determined by phosphor emission properties

LCD display primaries

- Curves determined by (fluorescent) backlight and filters

Combining Monitor Phosphors with Spatial Integration

Color reproduction

- Say we have a spectrum s we want to match on an RGB monitor
- "match" means it looks the same
- any spectrum that projects to the same point in the visual color space is a good reproduction
- So, we want to find a spectrum that the monitor can produce that matches s
- that is, we want to display a metamer of s on the screen

Color reproduction

- We want to compute the combination of r, g, b that will project to the same visual response as s.

Color reproduction as linear algebra

- The projection onto the three response functions can be written in matrix form:

$$
\left[\begin{array}{c}
S \\
M \\
L
\end{array}\right]=\left[\begin{array}{l}
-r_{S}- \\
-r_{M}- \\
-r_{L}-
\end{array}\right]\left[\begin{array}{l}
\mid \\
s \\
\mid
\end{array}\right]
$$

or,

$$
V=M_{S M L} s
$$

Color reproduction as linear algebra

- The spectrum that is produced by the monitor for the color signals R, G, and B is:

$$
s_{a}(\lambda)=R s_{r}(\lambda)+G s_{g}(\lambda)+B s_{b}(\lambda) .
$$

- Again the discrete form can be written as a matrix:

$$
\left[\begin{array}{c}
\mid \\
s_{a} \\
\mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
s_{R} & s_{G} & s_{B} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]=
$$

or,

$$
s_{a}=M_{R G B} C .
$$

Color reproduction as linear algebra

- What color do we see when we look at the display?
- Feed C to display
- Display produces s_{a}
- Eye looks at s_{a} and produces V

$$
\begin{aligned}
& V=M_{S M L} M_{R G B} C \\
& {\left[\begin{array}{c}
S \\
M \\
L
\end{array}\right]=\left[\begin{array}{ccc}
r_{S} \cdot s_{R} & r_{S} \cdot s_{G} & r_{S} \cdot s_{B} \\
r_{M} \cdot s_{R} & r_{M} \cdot s_{G} & r_{M} \cdot s_{B} \\
r_{L} \cdot s_{R} & r_{L} \cdot s_{G} & r_{L} \cdot s_{B}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]}
\end{aligned}
$$

Color reproduction as linear algebra

- Goal of reproduction: visual response to s and s_{a} is the same:

$$
M_{S M L} \tilde{s}=M_{S M L} \tilde{s_{a}} .
$$

- Substituting in the expression for s_{a},

$$
\begin{aligned}
& M_{S M L} \tilde{s}=M_{S M L} M_{R G B} C \\
& C=\underbrace{\left(M_{S M L} M_{R G B}\right)^{-1} M_{S M L} \tilde{s}}_{\text {color matching matrix for RGB }}
\end{aligned}
$$

Subtractive Color

Reflection from colored surface

Subtractive color

- Produce desired spectrum by subtracting from white light (usually via absorption by pigments)
- Photographic media (slides, prints) work this way
- Leads to C, M,Y as primaries
- Approximately, I - R, I - G, I - B

Color spaces

- Need three numbers to specify a color
- but what three numbers?
- a color space is an answer to this question
- Common example: monitor RGB
- define colors by what R, G, B signals will produce them on your monitor
(in math, $\mathrm{s}=\mathrm{R} \mathbf{R}+G \mathbf{G}+\mathrm{BB}$ for some spectra $\mathbf{R}, \mathbf{G}, \mathbf{B}$)
- device dependent (depends on gamma, phosphors, gains, ...)
- therefore if I choose RGB by looking at my monitor and send it to you, you may not see the same color
- also leaves out some colors (limited gamut), e.g. vivid yellow

Standard color spaces

- Standardized RGB (sRGB)
- makes a particular monitor RGB standard
- other color devices simulate that monitor by calibration
- sRGB is usable as an interchange space; widely adopted today
- gamut is still limited

A universal color space: $\mathbf{X Y Z}$

- Standardized by CIE (Commission Internationale de l'Eclairage, the standards organization for color science)
- Based on three "imaginary" primaries \mathbf{X}, \mathbf{Y}, and \mathbf{Z}
(in math, $\mathrm{s}=X \mathbf{X}+\mathrm{Y} \mathbf{Y}+\mathbf{Z Z}$)
- imaginary = only realizable by spectra that are negative at some wavelengths
- key properties
- any stimulus can be matched with positive X, Y, and Z
- separates out luminance: \mathbf{X}, \mathbf{Z} have zero luminance, so Y tells you the luminance by itself

Separating luminance, chromaticity

- Luminance: Y
- Chromaticity: x, y, z, defined as

$$
\begin{aligned}
x & =\frac{X}{X+Y+Z} \\
y & =\frac{Y}{X+Y+Z} \\
z & =\frac{Z}{X+Y+Z}
\end{aligned}
$$

- since $x+y+z=I$, we only need to record two of the three
- usually choose x and y, leading to (x, y, Y) coords

Chromaticity Diagram

Chromaticity Diagram

Color Gamuts

Monitors/printers can't
produce all visible colors
Reproduction is limited to a particular domain

For additive color (e.g. monitor) gamut is the triangle defined by the chromaticities of the three primaries.

Perceptually organized color spaces

- Artists often refer to colors as tints, shades, and tones of pure pigments
- tint: mixture with white
- shade: mixture with black
- tones: mixture with black and white
- gray: no color at all (aka. neutral)
- This seems intuitive

- tints and shades are inherently related to the pure color
- "same" color but lighter, darker, paler, etc.

Perceptual dimensions of color

- Hue
- the "kind" of color, regardless of attributes
- colorimetric correlate: dominant wavelength
- artist's correlate: the chosen pigment color
- Saturation
- the "colorfulness"
- colorimetric correlate: purity
- artist's correlate: fraction of paint from the colored tube
- Lightness (or value)
- the overall amount of light
- colorimetric correlate: luminance
- artist's correlate: tints are lighter, shades are darker

Perceptual dimensions: chromaticity

- In x, y, Y (or another luminance/chromaticity space), Y corresponds to lightness
- hue and saturation are then like polar coordinates for chromaticity (starting at white, which way did you go and how far?)

Perceptual dimensions of color

- There's good evidence ("opponent color theory") for a neurological basis for these dimensions
- the brain seems to encode color early on using three axes: white - black, red - green, yellow - blue
- the white-black axis is lightness; the others determine hue and saturation
- one piece of evidence: you can have a light green, a dark green, a yellow-green, or a blue-green, but you can't have a reddish green (just doesn't make sense)
- thus red is the opponent to green
- another piece of evidence: afterimages (next slide)

RGB as a 3D space

- A cube:

(demo of RGB cube)

Perceptual organization for RGB: HSV

- Uses hue (an angle, 0 to 360), saturation (0 to I), and value (0 to I) as the three coordinates for a color
- the brightest available RGB colors are those with one of R, G, B equal to I (top surface)
- each horizontal slice is the surface of a sub-cube of the RGB cube
(demo of HSV color pickers)
\square

Perceptually uniform spaces

- Two major spaces standardized by CIE
- designed so that equal differences in coordinates produce equally visible differences in color
- LUV: earlier, simpler space; L^{*}, u^{*}, v^{*}
- LAB: more complex but more uniform: L^{*}, a^{*}, b^{*}
- both separate luminance from chromaticity
- including a gamma-like nonlinear component is important

