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Advanced Modelling, Rendering 
and Animation 

2011  
 

Jan Kautz 
Anthony Steed 
Tim Weyrich 

Basic Information 

l Lecturers: J. Kautz, A. Steed, T. Weyrich  
l Demonstrator: James Tompkin 
l Lab Time 

–  Fridays, 2–4 PM, in MPEB 1.05 (W20–24) 
–  Thursdays, 3–5 PM, in MPEB 4.06 (W26–30) 
–  First lab: TBA 

Basic Information 

l Assessment 
–  Written Examination (2.5 hours, 75%)  
–  Coursework Section (2 pieces, 25%)  

l  Deadlines: TBA (check web page) 

Advanced Modelling, Rendering 
and Animation 

2011  
Colour in Computer Graphics 

Tim Weyrich 

Outline: Today 

l  Introduction 
l Spectral distributions 
l Simple Model for the Visual System 
l Simple Model for an Emitter System 
l Generating Perceivable Colours 
l CIE-RGB Colour Matching Functions 

Spectral Distributions 

l  Radiometry (radiant power, radiance etc) 
–  Measurement of light energy 

l  Photometry (luminance etc) 
–  Measurement including response of visual system 

l  Generally C(λ) defines spectral colour distribution 
λε[λa, λb] = Λ 

l  In computer graphics C is usually radiance. 
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Monochromatic Light  
(pure colour) 

l δ(λ) = 0, λ≠0 
l  ∫ δ(λ) d λ = 1 
l  ∫ δ(t) f(x-t)d t = f(x) 
l C(λ) = δ(λ-λ0) is spectral distribution for 

pure colour with wavelength λ0 

Colour as Spectral 
Distributions 

The image cannot be displayed. Your 
computer may not have enough memory 
to open the image, or the image may 
have been corrupted. Restart your 
computer, and then open the file again. If 
the red x still appears, you may have to 
delete the image and then insert it again.
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Spectral Energy Distribution 

Visible Spectrum 

400nm 700nm 

Schematic Representation 
of Colour Spectra 

Colour Space 

l Space of all visible colours equivalent to set 
of all functions C : Λ→R 
–  C(λ) ≥ 0 all λ 
–  C(λ) > 0 some λ. 

 

Perception and  
‘The Sixth Sense’ movie 

l  We do not ‘see’ C(λ) directly but as filtered 
through visual system. 

l  Two different people/animals will ‘see’ C(λ) 
differently. 

l  Different C(λ)s can appear exactly the same to one 
individual (metamer). 

l  (Ignoring all ‘higher level’ processing, which 
basically indicates “we see what we expect to 
see”). 
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Infinite to Finite 

l Colour space is infinite dimensional 
l Visual system filters the energy distribution 

through a finite set of channels 
l Constructs a finite signal space (retinal 

level) 
l Through optic nerve to higher order 

processing (visual cortex ++++). 

A Simple Model for the Visual 
System 

Human Eye Schematic 

Photosensitive Receptors 

l Rods – 130,000,000 night vision + 
peripheral (scotopic) 

l Cones – 5-7,000,000, daylight vision + 
acuity (one point only) 

l Cones 
–  L-cones 
–  M-cones 
–  S-cones 

LMS Response Curves 

l  l = ∫C(λ)L(λ)dλ 
l m = ∫C(λ)M(λ)dλ 
l  s = ∫C(λ)S(λ)dλ 
l C → (l,m,s) (trichromatic theory) 
l LMS(C) = (l,m,s) 
l LMS(Ca) = LMS(Cb) then Ca, Cb are 

metamers. 

2-degree cone normalised 
response curves 
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Simple Model for an Emitter 
System 

l Generates chromatic light by mixing 
streams of energy of light of different 
spectral distributions 

l Finite number (3) and independent of each 
other 
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Primaries (Basis) for an 
Emitter 

l  CE(λ)=α1E1(λ)+ α2E2(λ) + α3E3 (λ)  
l  Ei  are the primaries (i.e., the display uses them) 
l  αi are called the intensities. 
l  CIE-RGB Primaries are: 

–  ER(λ) = δ(λ- λR), λR = 700nm 
–  EG(λ) = δ(λ- λG), λG = 546.1nm 
–  EB(λ) = δ(λ- λB), λB = 435.8nm 

 
l  CIE = Commission Internationale de   L’Eclairage 

 

Computing the Intensities 

l For a given C(λ) problem is to find the 
intensities αi such that CE(λ) is metameric 
to C(λ) 

l First Method to be shown isn’t used,  but 
illustrative of the problem. 

Computing the Intensities 

l  For a metamer we require (considering L only): 

l  Expanding: 

Computing the Intensities 

l  Write 

l  And do the same derivation for M and S: 

In principle C, L and 
Ei will be known. 

Computing the Intensities 

l  Or 

l  This gives 3 equations in 3 unknowns which can 
be solved for the unknown intensities.  

l  But in practice the L, M and S curves cannot be 
directly observed, so other techniques are used. 

Colour Matching Functions 

l Previous method relied on knowing L, M, 
and S response curves accurately. 

l Better method based on colour matching 
functions. 

l Define how to get the colour matching 
functions γi(λ) relative to a given system of 
primaries (e.g., RGB). 
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Colour Matching Functions 
l  Let λ0 be a monochromatic colour, and γi(λ0) (i=1,2,3) be the 

intensities, then: 

l  Also,  

l  By substitution: 

Colour Matching Functions 

l This further simplifies to: 

l  and so: 

l Now replace λ0 by λ, multiply throughout 
by colour C(λ), and integrate: 

l With further rearrangement, we get the 
result: 

 

Colour Matching Functions Colour Matching Functions 

l Recall that the γi(λ) were the intensities for 
monochromatic colours. 

l The result says that we can find the 
intensities for a metamer for an arbitrary 
colour based on these. 

l How can we estimate these γi(λ)? 
l This can be done with a perceptual colour-

matching experiment. 

Colour Matching Experiment 

Target colour 

Mixing of 3 primaries 

Adjust intensities to match the colour 

overlap 

2-degree RGB Colour 
Matching Functions 
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2-degree Colour Matching 
Functions 

l  RGB intensities  sampled at 5nm intervals 
between 390nm and 830nm.  

l  They are ‘2 degree’ color matching functions 
because the observer only sees a field of view of 2 
degrees.  

l  2 degree ones are used in computer graphics 
because of the relatively narrow field of view 
when looking at a display. 

Negative Values? 
l Not all monochrome colours can be 

represented with positive γi(λ). 

l  In that case we add one beam to the target 
and try to adjust the other two beams to 
match the new colour: 

Summary Lecture 1 

l  Compute the radiance distribution C(λ)  
l  Find out the colour matching functions for the 

display γi(λ)  
l  Perform the 3 integrals ∫ γi(λ)C(λ)d λ to get the 

intensities for the metamer for that colour on the 
display. 

l  …. 
l  Except that’s not how it is done …  
l  ….to be continued…. 

Outline: Lecture 2 

l CIE-RGB Chromaticity Space 
l CIE-XYZ Chromaticity Space 
l Converting between XYZ and RGB 
l Colour Gamuts and Undisplayable Colours 
l Summary for Rendering: What to do in 

practice 

CIE-RGB Chromaticity Space 

l Consider CIE-RGB primaries: 
–  For each C(λ) there is a point (αR, αG, αB):  

l  C(λ) ≈ αR ER(λ) + αG EG(λ) + αB EB(λ)  

–  Considering all such possible points  
l  (αR, αG, αB) 

–  Results in 3D RGB colour space 
–  Hard to visualise in 3D 
–  so we’ll find a 2D representation instead. 

CIE-RGB Chromaticity Space 

l Consider 1st only monochromatic colours: 
–  C(λ) = δ(λ- λ0) 

l Let the CIE-RGB matching functions be 
–  r(λ), g(λ), b(λ) 

l Then, eg, 
–  αR(λ0) = ∫ δ(λ- λ0) r(λ)d λ = r(λ0) 

l Generally 
–  (αR(λ0), αG(λ0), αB(λ0)) = (r(λ0), g(λ0), b(λ0)) 
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CIE-RGB Chromaticity Space 

l As λ0 varies over all wavelengths 
–  (r(λ0), g(λ0), b(λ0)) sweeps out a 3D curve. 

l This curve gives the metamer intensities for 
all monochromatic colours. 

l To visualise this curve, conventionally 
project onto the plane 
–  αR + αG + αB = 1 

CIE-RGB Chromaticity Space 

l  It is easy to show that projection of  
(αR, αG, αB) onto αR + αG + αB = 1 is: 
–  (αR/D, αG/D, αB/D), 

l  D = αR + αG + αB  

l Show that interior and boundary of the 
curve correspond to visible colours. 

l CIE-RGB chromaticity space. 

CIE-RGB Chromaticity 
Diagram 
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Interpretation of CIE-RGB 
Chromaticity Diagram 

l  Suppose α1 and α2  are two 3D points corresponding to 
spectral functions C1 and C2. 

l  Consider the line segment joining them: 
–  (1-t) α1 + t α2  , t ε [0,1] 

l  It is easy to see that for any such t this must correspond to 
another spectral function. 

l  When we project the points and line segment to the plane, 
the line projects to the 2D line joining them.  

l  All points on the curved boundary and within the curve 
represent visible colours. 

CIE-RGB Chromaticity 

l  Define: 
–  V(λ) = β1L(λ) + β2M(λ) + β3S(λ) 

l  For specific constants βi this is the  
–  Spectral Luminous Efficiency curve 

l  The overall response of visual system to C(λ) is 
–  L(C) = K ∫ C(λ) V(λ)d λ 

l  For K=680 lumens/watt, and C as radiance, L is 
called the luminance (candelas per square metre) 

Spectral Luminous Efficiency 
Function 
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CIE-RGB Chromaticity 

l Since  
–  C(λ) ≈ αR ER(λ) + αG EG(λ) + αB EB(λ) 

l Then 
l  L(C) =  

   αR ∫ ER(λ) V(λ)d λ  
+ αG ∫ EG(λ) V(λ)d λ  
+ αB ∫EB(λ) V(λ)d λ 

l Or 
–  L(C ) = αR lR + αG lG + αB lB  

Luminance and Chrominance 
l  L(C ) = αR lR + αG lG + αB lB  

–  and lR  lG lB are constants 
l  Consider set of all (αR, αG, αB) satisfying this 

equation… 
–  a plane of constant luminance in RGB space 

l  Only one point on plane corresponds to colour C  
–  so what is varying over the plane? 

l  Chrominance 
–  The part of a colour (hue) abstracting away the 

luminance 
l  Colour = chrominance + luminance (independent) 

Luminance and Chrominance 

l  Consider plane of constant luminance 
–  αR lR + αG lG + αB lB = L 

l  Let α* = (α*R, α*G, α*B) be a point on this plane. 
–  (tα*R, tα*G, tα*B), t>0 is a line from 0 through α* 

l  Luminance is increasing (tL) but projection on  
αR + αG + αB = 1 is the same. 

l  Projection on αR + αG + αB = 1 is a way of 
providing 2D coordinate system for chrominance. 

(Change of Basis) 

l  E and F are two different primaries 
–  C(λ) ≈ α1 E1(λ) + α2 E2(λ) + α3 E3(λ) 
–  C(λ) ≈ β1 F1(λ) + β2 F2(λ) + β3 F3(λ) 

l  Let A be the matrix that expresses F in terms of E 
–  F (λ) = AE(λ) 

l  Then 
–   α = βA  
–  γEj(λ) = ∑i γFi(λ) αij   (CMFs) 

CIE-XYZ Chromaticity Space 

l  CIE-RGB representation not ideal 
–  Colours outside 1st quadrant not achievable 
–  Negative CMF function ranges 

l  CIE derived a different XYZ basis with better 
mathematical behaviour 
–  X(λ), Y(λ) , Z(λ) basis functions (imaginary primaries) 
–  X, Z have zero luminance 
–  CMF for Y is spectral luminous efficiency function V 

(corresponds to perceived brightness) 
l  Known matrix A for transformation to CIE-RGB 

CIE-XYZ Chromaticity Space 

l C(λ) ≈ X. X(λ) + Y. Y(λ)  + Z. Z(λ)  
–  X = ∫C(λ)x(λ)dλ 
–  Y = ∫C(λ)y(λ)dλ  
–  Z = ∫C(λ)z(λ)dλ 
–  x,y,z are the CMFs 
–  y is equivalent to V 
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2-deg XYZ Colour Matching 
Functions 
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Diagram 

Converting Between XYZ and 
RGB 

l System has primaries R(λ), G(λ), B(λ)  
l How to convert between a colour expressed 

in RGB and vice versa? 
l Derivation…R(λ), G(λ), B(λ) are physical 

colours and therefore can be expressed as: 

Converting Between XYZ & RGB 
l  Therefore the chromaticies are: 

l  The RHS are usually known from manufacturer’s data, but 
the denominators are unknown. 

 Converting Between RGB & XYZ 
l  For constants α, we can write: 

l  If matrix A converts from RGB to XYZ then in 
particular, 
–  CR = (1,0,0) A 
–  CG = (0,1,0) A 
–  CB = (0,0,1) A 

Converting Between RGB & XYZ 
l To determine the α, consider the white 

point. 
l  In XYZ this is (1/3,1/3,1/3) and in RGB is 

usually (1,1,1). 
l So (1/3,1/3,1/3) = (1,1,1)A, and hence: 
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Converting Between RGB & XYZ 

l  Given an RGB colour on a monitor 1 that we want 
to reproduce on another one 2, we can use A1 to 
go from RGB to XYZ on 1, and then then (A2)-1 to 
go from XYZ to monitor 2. 

 
l  Given a computed XYZ colour (e.g., in a global 

illumination algorithm) we can use A-1 to compute 
the intensity for a particular monitor. 

Colour Gamuts and 
Undisplayable Colours 

l Display has RGB primaries, with 
corresponding XYZ colours CR, CG, CB 

l Chromaticities cR, cG, cB will form triangle 
on CIE-XYZ diagram 

l All points in the triangle are displayable 
colours 
–  forming the colour gamut 

Some Colour Gamuts Undisplayable Colours 

l Suppose XYZ colour computed, but not 
displayable? 

l Terminology 
–  Dominant wavelength 
–  Saturation 

XYZ with White Point 
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•  Q dominant wavelength 
 
•  WP/WQ saturation 

Colour might not be 
displayable 

l Falls outside of the triangle (its chromaticity 
not displayable on this device) 
–  Might desaturate it, move it along line QW 

until inside gamut (so dominant wavelength 
invariant) 

l Colour with luminance outside of 
displayable range. 
–  Clip vector through the origin to the RGB cube 

(chrominance invariant) 
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RGB Colour Cube 
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RGB Cube Mapped to XYZ 
Space 

Summary for Rendering 

l  Incorrect to use RGB throughout!!! 
–  Different displays will produce different results 
–  RGB is not the appropriate measure of light 

energy (neither radiometric nor photometric). 
–  But depends on application 

l  Most applications of CG do not require ‘correct’ 
colours… 

l  …but colours that are appropriate for the 
application. 

For Rendering 

l  Algorithm should compute C(λ) for surfaces 
–  means computing at a sufficient number of wavelengths 

to estimate C (not ‘RGB’). 
l  Transform into XYZ space 

–  X = ∫C(λ)x(λ)dλ 
–  Y = ∫C(λ)y(λ)dλ 
–  Z = ∫C(λ)z(λ)dλ 

l  Map to RGB space, with clipping and gamma 
correction. 


