

Basic Information

- Lecturers: J. Kautz, A. Steed, T. Weyrich
- **Demonstrator:** James Tompkin
- Lab Time
 - Fridays, 2–4 PM, in MPEB 1.05 (W20–24),
 - Thursdays, 3-5 PM, in MPEB 4.06 (W26-30)
 - First lab: TBA

Basic Information

Assessment

- Written Examination (2.5 hours, 75%)
- Coursework Section (2 pieces, 25%)
 Deadlines: TBA (check web page)

Advanced Modelling, Rendering and Animation 2011 Colour in Computer Graphics

Tim Weyrich

Outline: Today

- Introduction
- Spectral distributions
- Simple Model for the Visual System
- Simple Model for an Emitter System
- Generating Perceivable Colours
- CIE-RGB Colour Matching Functions

Spectral Distributions

- Radiometry (radiant power, radiance etc)
 Measurement of light energy
- Photometry (luminance etc)
 Measurement including response of visual system
- Generally $C(\lambda)$ defines spectral colour distribution $\lambda \varepsilon [\lambda_a, \lambda_b] = \Lambda$
- In computer graphics C is usually radiance.

Monochromatic Light (pure colour)

- $\delta(\lambda) = 0, \lambda \neq 0$
- $\int \delta(\lambda) d \lambda = 1$
- $\int \delta(t) f(x-t) dt = f(x)$
- C(λ) = δ(λ-λ₀) is spectral distribution for pure colour with wavelength λ₀

Colour Space

- Space of all visible colours equivalent to set of all functions $C : \Lambda \rightarrow R$
 - $-C(\lambda) \ge 0 \text{ all } \lambda$
 - $C(\lambda) > 0$ some λ .

Perception and 'The Sixth Sense' movie

- We do not 'see' $C(\lambda)$ directly but as filtered through visual system.
- Two different people/animals will 'see' $C(\lambda)$ differently.
- Different C(λ)s can appear exactly the same to one individual (metamer).
- (Ignoring all 'higher level' processing, which basically indicates "we see what we expect to see").

Infinite to Finite

- Colour space is infinite dimensional
- Visual system filters the energy distribution through a finite set of channels
- Constructs a finite signal space (retinal level)
- Through optic nerve to higher order processing (visual cortex ++++).

Photosensitive Receptors

- Rods 130,000,000 night vision + peripheral (scotopic)
- Cones 5-7,000,000, daylight vision + acuity (one point only)
- Cones
 - L-cones
 - M-cones
 - S-cones

LMS Response Curves

- $l = \int C(\lambda) L(\lambda) d\lambda$
- m = $\int C(\lambda) M(\lambda) d\lambda$
- $s = \int C(\lambda) S(\lambda) d\lambda$
- $C \rightarrow (l,m,s)$ (trichromatic theory)
- LMS(C) = (l,m,s)
- LMS(C_a) = LMS(C_b) then C_a , C_b are *metamers*.

Simple Model for an Emitter System

- Generates chromatic light by mixing streams of energy of light of different spectral distributions
- Finite number (3) and independent of each other

Primaries (Basis) for an Emitter

- $C_{E}(\lambda) = \alpha_{1}E_{1}(\lambda) + \alpha_{2}E_{2}(\lambda) + \alpha_{3}E_{3}(\lambda)$
- E_i are the primaries (i.e., the display uses them)
- α_i are called the *intensities*.
- CIE-RGB Primaries are:
 - $E_{\rm R}(\lambda) = \delta(\lambda \lambda_{\rm R}), \, \lambda_{\rm R} = 700 \rm{nm}$
 - $E_{G}(\lambda) = \delta(\lambda \lambda_{G}), \lambda_{G} = 546.1 \text{nm}$
 - $E_{\rm B}(\lambda) = \delta(\lambda \lambda_{\rm B}), \lambda_{\rm B} = 435.8$ nm

• CIE = Commission Internationale de L'Eclairage

Computing the Intensities

- For a given C(λ) problem is to find the intensities α_i such that C_E(λ) is metameric to C(λ)
- First Method to be shown isn't used, but illustrative of the problem.

- This gives 3 equations in 3 unknowns which can be solved for the unknown intensities.
- But in practice the L, M and S curves cannot be directly observed, so other techniques are used.

- Previous method relied on knowing L, M, and S response curves accurately.
- Better method based on colour matching functions.
- Define how to get the colour matching functions $\gamma_i(\lambda)$ relative to a given system of primaries (e.g., RGB).

Colour Matching Functions

- Recall that the $\gamma_i(\lambda)$ were the intensities for monochromatic colours.
- The result says that we can find the intensities for a metamer for an arbitrary colour based on these.
- How can we estimate these $\gamma_i(\lambda)$?
- This can be done with a perceptual colourmatching experiment.

2-degree Colour Matching Functions

- RGB intensities sampled at 5nm intervals between 390nm and 830nm.
- They are '2 degree' color matching functions because the observer only sees a field of view of 2 degrees.
- 2 degree ones are used in computer graphics because of the relatively narrow field of view when looking at a display.

Negative Values?

 Not all monochrome colours can be represented with positive γ_i(λ).

$\delta(\lambda-\lambda_0)\approx\gamma_1(\lambda_0)E_{R}(\lambda)+\gamma_2(\lambda_0)E_{G}(\lambda)+\gamma_3(\lambda_0)E_{B}(\lambda)$

• In that case we add one beam to the target and try to adjust the other two beams to match the new colour:

 $\delta(\lambda-\lambda_0)+\gamma_1(\lambda_0)E_R(\lambda)\approx\gamma_2(\lambda_0)E_G(\lambda)+\gamma_3(\lambda_0)E_B(\lambda)$

Summary Lecture 1

- Compute the radiance distribution $C(\lambda)$
- Find out the colour matching functions for the display $\gamma_i(\lambda)$
- Perform the 3 integrals $\int \gamma_i(\lambda) C(\lambda) d\lambda$ to get the intensities for the metamer for that colour on the display.
-
- Except that's not how it is done ...
- ….to be continued....

Outline: Lecture 2

- CIE-RGB Chromaticity Space
- CIE-XYZ Chromaticity Space
- Converting between XYZ and RGB
- Colour Gamuts and Undisplayable Colours
- Summary for Rendering: What to do in practice

CIE-RGB Chromaticity Space

Consider CIE-RGB primaries:

- For each C(λ) there is a point ($\alpha_{\rm R}, \alpha_{\rm G}, \alpha_{\rm B}$): • C(λ) $\approx \alpha_{\rm R} E_{\rm R}(\lambda) + \alpha_{\rm G} E_{\rm G}(\lambda) + \alpha_{\rm B} E_{\rm B}(\lambda)$
- Considering all such possible points
 (α_R, α_G, α_B)
- Results in 3D RGB colour space
- Hard to visualise in 3D
- so we'll find a 2D representation instead.

CIE-RGB Chromaticity Space

- Consider 1st only monochromatic colours: - $C(\lambda) = \delta(\lambda - \lambda_0)$
- Let the CIE-RGB matching functions be
 r(λ), g(λ), b(λ)
- Then, eg,
 - $\alpha_{\rm R}(\lambda_0) = \int \delta(\lambda \lambda_0) r(\lambda) d \lambda = r(\lambda_0)$
- Generally
 - $(\alpha_{\mathrm{R}}(\lambda_{0}), \alpha_{\mathrm{G}}(\lambda_{0}), \alpha_{\mathrm{B}}(\lambda_{0})) = (\mathrm{r}(\lambda_{0}), \mathrm{g}(\lambda_{0}), \mathrm{b}(\lambda_{0}))$

CIE-RGB Chromaticity Space

- As λ₀ varies over all wavelengths

 (r(λ₀), g(λ₀), b(λ₀)) sweeps out a 3D curve.
- This curve gives the metamer intensities for all monochromatic colours.
- To visualise this curve, conventionally project onto the plane
 - $-\alpha_{\rm R} + \alpha_{\rm G} + \alpha_{\rm B} = 1$

CIE-RGB Chromaticity Space

- It is easy to show that projection of $(\alpha_R, \alpha_G, \alpha_B)$ onto $\alpha_R + \alpha_G + \alpha_B = N$ is: $- (\alpha_R/D, \alpha_G/D, \alpha_B/D),$ • $D = \alpha_+ \alpha_- + \alpha_-$
- Show that interior and boundary of the curve correspond to visible colours.
- CIE-RGB chromaticity space.

Interpretation of CIE-RGB Chromaticity Diagram

- Suppose α_1 and α_2 are two 3D points corresponding to spectral functions C_1 and C_2 .
- Consider the line segment joining them:
 (1-t) α₁ + t α₂, t ε [0,1]
- It is easy to see that for any such t this must correspond to another spectral function.
- When we project the points and line segment to the plane, the line projects to the 2D line joining them.
- All points on the curved boundary and within the curve represent visible colours.

CIE-RGB Chromaticity

- Define:
- V(λ) = β₁L(λ) + β₂M(λ) + β₃S(λ)
 For specific constants β_i this is the
 - Spectral Luminous Efficiency curve
- The overall response of visual system to $C(\lambda)$ is - $L(C) = K \int C(\lambda) V(\lambda) d\lambda$
- For K=680 lumens/watt, and C as radiance, L is called the luminance (candelas per square metre)

CIE-RGB Chromaticity

Since

- $C(\lambda) \approx \alpha_{\rm R} E_{\rm R}(\lambda) + \alpha_{\rm G} E_{\rm G}(\lambda) + \alpha_{\rm B} E_{\rm B}(\lambda)$
- Then
 - L(C) = $\alpha_{R} \int E_{R}(\lambda) V(\lambda) d\lambda$ + $\alpha_{G} \int E_{G}(\lambda) V(\lambda) d\lambda$ + $\alpha_{B} \int E_{B}(\lambda) V(\lambda) d\lambda$
- Or
 - $L(C) = \alpha_R l_R + \alpha_G l_G + \alpha_B l_B$

Luminance and Chrominance

- $L(C) = \alpha_R l_R + \alpha_G l_G + \alpha_B l_B$ - and $l_R l_G l_B$ are constants
- Consider set of all $(\alpha_R, \alpha_G, \alpha_B)$ satisfying this equation...
- a plane of constant luminance in RGB space
 Only one point on plane corresponds to colour C
- so what is varying over the plane?
- Chrominance

 The part of a colour (hue) abstracting away the luminance
- Colour = chrominance + luminance (independent)

Luminance and Chrominance

- Consider plane of constant luminance $- \alpha_R l_R + \alpha_G l_G + \alpha_B l_B = L$
- Let $\alpha^* = (\alpha^*_{R}, \alpha^*_{G}, \alpha^*_{B})$ be a point on this plane. - $(t\alpha^*_{R}, t\alpha^*_{G}, t\alpha^*_{B})$, t>0 is a line from 0 through α^*
- Luminance is increasing (tL) but projection on $\alpha_{R} + \alpha_{G} + \alpha_{B} = 1$ is the same.
- Projection on $\alpha_{R} + \alpha_{G} + \alpha_{B} = 1$ is a way of providing 2D coordinate system for chrominance.

(Change of Basis)

- E and F are two different primaries
 - $C(\lambda) \approx \alpha_1 E_1(\lambda) + \alpha_2 E_2(\lambda) + \alpha_3 E_3(\lambda)$
- $C(\lambda) \approx \beta_1 F_1(\lambda) + \beta_2 F_2(\lambda) + \beta_3 F_3(\lambda)$
- Let A be the matrix that expresses F in terms of E
 F (λ) = AE(λ)
- Then
 - $-\alpha = \beta A$
 - $-\gamma_{\rm Ei}(\lambda) = \sum_{i} \gamma_{\rm Fi}(\lambda) \alpha_{ij}$ (CMFs)

CIE-XYZ Chromaticity Space

- CIE-RGB representation not ideal
 Colours outside 1st quadrant not achievable
 - Negative CMF function ranges
- CIE derived a different XYZ basis with better mathematical behaviour
 - $X(\lambda)$, $Y(\lambda)$, $Z(\lambda)$ basis functions (imaginary primaries)
 - X, Z have zero luminance
 - CMF for Y is spectral luminous efficiency function V (corresponds to perceived brightness)
- Known matrix A for transformation to CIE-RGB

CIE-XYZ Chromaticity Space

• $C(\lambda) \approx X. X(\lambda) + Y. Y(\lambda) + Z. Z(\lambda)$

- $-X = \int C(\lambda) x(\lambda) d\lambda$
- $-Y = \int C(\lambda)y(\lambda)d\lambda$
- $-Z = \int C(\lambda) z(\lambda) d\lambda$
- x,y,z are the CMFs
- y is equivalent to V

Converting Between XYZ and RGB

- System has primaries $R(\lambda)$, $G(\lambda)$, $B(\lambda)$
- How to convert between a colour expressed in RGB and vice versa?
- Derivation...R(λ), G(λ), B(λ) are physical colours and therefore can be expressed as:

$$\begin{split} R(\lambda) &= X_R X(\lambda) + Y_R Y(\lambda) + Z_R Z(\lambda) \\ G(\lambda) &= X_G X(\lambda) + Y_G Y(\lambda) + Z_G Z(\lambda) \\ B(\lambda) &= X_B X(\lambda) + Y_B Y(\lambda) + Z_B Z(\lambda) \end{split}$$

Converting Between RGB & XYZ

- Given an RGB colour on a monitor 1 that we want to reproduce on another one 2, we can use A₁ to go from RGB to XYZ on 1, and then then (A₂)⁻¹ to go from XYZ to monitor 2.
- Given a computed XYZ colour (e.g., in a global illumination algorithm) we can use A⁻¹ to compute the intensity for a particular monitor.

Colour Gamuts and Undisplayable Colours

- Display has RGB primaries, with corresponding XYZ colours C_R, C_G, C_B.
- Chromaticities c_R, c_G, c_B will form triangle on CIE-XYZ diagram
- All points in the triangle are displayable colours
 - forming the colour gamut

Undisplayable Colours

- Suppose XYZ colour computed, but not displayable?
- Terminology
 - Dominant wavelength
- Saturation

Colour might not be displayable

- Falls outside of the triangle (its chromaticity not displayable on this device)
- Might desaturate it, move it along line QW until inside gamut (so dominant wavelength invariant)
- Colour with luminance outside of displayable range.
- Clip vector through the origin to the RGB cube (chrominance invariant)

Summary for Rendering

- Incorrect to use RGB throughout!!!
 Different displays will produce different results
 - RGB is not the appropriate measure of light energy (neither radiometric nor photometric). - But depends on application
 - Most applications of CG do not require 'correct colours...
 - ...but colours that are appropriate for the application.

For Rendering

- Algorithm should compute $C(\lambda)$ for surfaces
- means computing at a sufficient number of wavelengths to estimate C (not 'RGB').
- Transform into XYZ space
 - $X = \int C(\lambda) x(\lambda) d\lambda$
 - $-Y = \int C(\lambda)y(\lambda)d\lambda$
- Map to RGB space, with clipping and gamma correction.