Advanced Modelling, Rendering

 and Animation 2011Jan Kautz Anthony Steed Tim Weyrich

Basic Information

- Lecturers: J. Kautz, A. Steed, T. Weyrich
- Demonstrator: James Tompkin
- Lab Time
- Fridays, 2-4 PM, in MPEB 1.05 (W20-24)
- Thursdays, 3-5 PM, in MPEB 4.06 (W26-30)
- First lab: TBA

Basic Information

- Assessment
- Written Examination (2.5 hours, 75\%
- Coursework Section (2 pieces, 25\%) - Deadlines: TBA (check web page)

Advanced Modelling, Rendering and Animation 2011
Colour in Computer Graphics

Tim Weyrich

Spectral Distributions

- Radiometry (radiant power, radiance etc)
- Measurement of light energy
- Photometry (luminance etc)
- Measurement including response of visual system
- Generally $\mathrm{C}(\lambda)$ defines spectral colour distribution $\lambda \varepsilon\left[\lambda_{a}, \lambda_{b}\right]=\Lambda$
- In computer graphics C is usually radiance.
- Generating Perceivable Colours
- CIE-RGB Colour Matching Functions

Monochromatic Light

 (pure colour)- $\delta(\lambda)=0, \lambda \neq 0$
- $\int \delta(\lambda) \mathrm{d} \lambda=1$
$-\int \delta(t) f(x-t) d t=f(x)$
- $C(\lambda)=\delta\left(\lambda-\lambda_{0}\right)$ is spectral distribution for pure colour with wavelength λ_{0}

Colour Space

- Space of all visible colours equivalent to set of all functions $\mathrm{C}: \Lambda \rightarrow \mathrm{R}$

$$
-\mathrm{C}(\lambda) \geq 0 \text { all } \lambda
$$

$-C(\lambda)>0$ some λ.

Perception and
 'The Sixth Sense' movie

- We do not 'see' $\mathrm{C}(\lambda)$ directly but as filtered through visual system.
- Two different people/animals will 'see' C(λ) differently.
Different $C(\lambda)$ s can appear exactly the same to one individual (metamer).
- (Ignoring all 'higher level' processing, which basically indicates "we see what we expect to see").

Infinite to Finite

- Colour space is infinite dimensional
- Visual system filters the energy distribution through a finite set of channels
- Constructs a finite signal space (retinal level)
- Through optic nerve to higher order processing (visual cortex ++++).

A Simple Model for the Visual System

Photosensitive Receptors

- Rods - 130,000,000 night vision + peripheral (scotopic)
- $1=\int C(\lambda) \mathrm{L}(\lambda) \mathrm{d} \lambda$
- $\mathrm{m}=\int \mathrm{C}(\lambda) \mathrm{M}(\lambda) \mathrm{d} \lambda$
- $\mathrm{s}=\int \mathrm{C}(\lambda) \mathrm{S}(\lambda) \mathrm{d} \lambda$
- $\mathrm{C} \rightarrow(1, \mathrm{~m}, \mathrm{~s})$ (trichromatic theory)
- $\operatorname{LMS}(\mathrm{C})=(1, \mathrm{~m}, \mathrm{~s})$
- $\operatorname{LMS}\left(\mathrm{C}_{\mathrm{a}}\right)=\operatorname{LMS}\left(\mathrm{C}_{\mathrm{b}}\right)$ then $\mathrm{C}_{\mathrm{a}}, \mathrm{C}_{\mathrm{b}}$ are metamers.

2-degree cone normalised

 response curves

Simple Model for an Emitter

 System- Generates chromatic light by mixing streams of energy of light of different spectral distributions
- Finite number (3) and independent of each other

Primaries (Basis) for an Emitter

- $\mathrm{C}_{\mathrm{E}}(\lambda)=\alpha_{1} \mathrm{E}_{1}(\lambda)+\alpha_{2} \mathrm{E}_{2}(\lambda)+\alpha_{3} \mathrm{E}_{3}(\lambda)$
- E_{i} are the primaries (i.e., the display uses them)
- α_{i} are called the intensities.
- CIE-RGB Primaries are:
$-\mathrm{E}_{\mathrm{R}}(\lambda)=\delta\left(\lambda-\lambda_{\mathrm{R}}\right), \lambda_{\mathrm{R}}=700 \mathrm{~nm}$
$\mathrm{E}_{\mathrm{G}}(\lambda)=\delta\left(\lambda-\lambda_{\mathrm{G}}\right), \lambda_{\mathrm{G}}=546.1 \mathrm{~nm}$
$\mathrm{E}_{\mathrm{B}}(\lambda)=\delta\left(\lambda-\lambda_{\mathrm{B}}\right), \lambda_{\mathrm{B}}=435.8 \mathrm{~nm}$
- CIE $=$ Commission Internationale de L' Eclairage

Computing the Intensities

- Or

$$
\left[\begin{array}{lll}
e_{1 L} & e_{2 L} & e_{3 L} \\
e_{1 M} & e_{2 M} & e_{3 M} \\
e_{1 S} & e_{2 S} & e_{3 S}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
c_{L} \\
c_{M} \\
c_{S}
\end{array}\right]
$$

- This gives 3 equations in 3 unknowns which can be solved for the unknown intensities.
- But in practice the L, M and S curves cannot be directly observed, so other techniques are used.

Computing the Intensities

- For a metamer we require (considering L only):

$$
\int C(\lambda) L(\lambda) d \lambda=\int C_{E}(\lambda) L(\lambda) d \lambda
$$

- Expanding:
$\int C(\lambda) L(\lambda) d \lambda=\int\left(\alpha_{1} E_{1}(\lambda)+\alpha_{2} E_{2}(\lambda)+\alpha_{3} E_{3}(\lambda)\right) L(\lambda) d \lambda$ $=\alpha_{1} \int_{\Lambda} E_{1}(\lambda) L(\lambda) d \lambda+\alpha_{2} \int_{\Lambda} E_{2}(\lambda) L(\lambda) d \lambda+\alpha_{3} \int_{\Lambda} E_{3}(\lambda) L(\lambda) d \lambda$

Computing the Intensities

- For a given $\mathrm{C}(\lambda)$ problem is to find the intensities α_{i} such that $C_{E}(\lambda)$ is metameric to $C(\lambda)$
- First Method to be shown isn' t used, but illustrative of the problem.

Computing the Intensities

- Write

$$
\begin{aligned}
& \int_{\Lambda} C(\lambda) L(\lambda) d \lambda=c_{L} \\
& \int_{\Lambda} E_{i}(\lambda) L(\lambda) d \lambda=e_{i L}
\end{aligned}
$$

- And do the same derivation for M and S :

Colour Matching Functions

- Previous method relied on knowing L, M, and S response curves accurately.
- Better method based on colour matching functions.
- Define how to get the colour matching functions $\gamma_{i}(\lambda)$ relative to a given system of primaries (e.g., RGB).

Colour Matching Functions

- Let λ_{0} be a monochromatic colour, and $\gamma_{i}\left(\lambda_{0}\right)(i=1,2,3)$ be the intensities, then:

```
\delta(\lambda-\lambda}\mp@subsup{\lambda}{0}{})\approx\mp@subsup{\sum}{i=1}{}\mp@subsup{\gamma}{i}{}(\mp@subsup{\lambda}{0}{})\mp@subsup{E}{i}{}(\lambda
```

- Also,

```
\int\delta(\lambda-\mp@subsup{\lambda}{0}{})L(\lambda)d\lambda=L(\mp@subsup{\lambda}{0}{})
```

- By substitution: \square
$\int_{\Lambda}\left(\sum_{i=1}^{3} \gamma_{i}\left(\lambda_{0}\right) E_{i}(\lambda)\right) L(\lambda) d \lambda=L\left(\lambda_{0}\right)$

Colour Matching Functions

- This further simplifies to: $\sum_{i=1}^{3} \gamma_{i}\left(\lambda_{0}\right) \sum_{i} E_{i}(\lambda) L(\lambda) d \lambda$

$$
=\sum_{i=1}^{\gamma_{i}\left(\lambda_{0}\right) e_{i L}}
$$

- and so:

3
$\sum \gamma_{i}\left(\lambda_{0}\right) e_{i L}=L\left(\lambda_{0}\right)$
${ }_{i=1}$

Colour Matching Functions

- Now replace λ_{0} by λ, multiply throughout by colour $\mathrm{C}(\lambda)$, and integrate:

$$
\sum_{i=1}^{3} e_{i L} \int_{\Lambda} \gamma_{i}(\lambda) C(\lambda) d \lambda=\sum_{i=1}^{3} e_{i L} \alpha_{i}
$$

- With further rearrangement, we get the

Colour Matching Functions

- Recall that the $\gamma_{i}(\lambda)$ were the intensities for monochromatic colours.
- The result says that we can find the intensities for a metamer for an arbitrary colour based on these.
- How can we estimate these $\gamma_{i}(\lambda)$?
- This can be done with a perceptual colourmatching experiment.

$$
\alpha_{i}=\int_{\Lambda} \gamma_{i}(\lambda) C(\lambda) d \lambda
$$

Colour Matching Experiment

Mixing of 3 primaries

Target colour

2-degree-RGB Colour Matching Functions

Adjust intensities to match the colour

2-degree Colour Matching Functions

- RGB intensities sampled at 5 nm intervals between 390 nm and 830 nm .
- They are ' 2 degree' color matching functions because the observer only sees a field of view of 2 degrees.
- 2 degree ones are used in computer graphics because of the relatively narrow field of view when looking at a display.

Negative Values?

Not all monochrome colours can be represented with positive $\gamma_{i}(\lambda)$.
$\delta\left(\lambda-\lambda_{0}\right) \approx \gamma_{1}\left(\lambda_{0}\right) E_{R}(\lambda)+\gamma_{2}\left(\lambda_{0}\right) E_{G}(\lambda)+\gamma_{3}\left(\lambda_{0}\right) E_{B}(\lambda)$

- In that case we add one beam to the target and try to adjust the other two beams to match the new colour:
$\delta\left(\lambda-\lambda_{0}\right)+\gamma_{1}\left(\lambda_{0}\right) E_{R}(\lambda) \approx \gamma_{2}\left(\lambda_{0}\right) E_{G}(\lambda)+\gamma_{3}\left(\lambda_{0}\right) E_{B}(\lambda)$

Summary Lecture 1

- Compute the radiance distribution $\mathrm{C}(\lambda)$
- Find out the colour matching functions for the display $\gamma_{i}(\lambda)$
- Perform the 3 integrals $\int \gamma_{i}(\lambda) C(\lambda) \mathrm{d} \lambda$ to get the intensities for the metamer for that colour on the display.
-
- Except that's not how it is done ...
-to be continued....

CIE-RGB Chromaticity Space

- Consider CIE-RGB primaries:
- For each $C(\lambda)$ there is a point $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$

$$
\text { - } \mathrm{C}(\lambda) \approx \alpha_{\mathrm{R}} \mathrm{E}_{\mathrm{R}}(\lambda)+\alpha_{\mathrm{G}} \mathrm{E}_{\mathrm{G}}(\lambda)+\alpha_{\mathrm{B}} \mathrm{E}_{\mathrm{B}}(\lambda)
$$

- Considering all such possible points - $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$
- Results in 3D RGB colour space
- Hard to visualise in 3D
- so we' 11 find a 2D representation instead.

CIE-RGB Chromaticity Space

- Consider $1^{\text {st }}$ only monochromatic colours:

$$
-C(\lambda)=\delta\left(\lambda-\lambda_{0}\right)
$$

- Let the CIE-RGB matching functions be $-r(\lambda), g(\lambda), b(\lambda)$
- Then, eg,

$$
-\alpha_{R}\left(\lambda_{0}\right)=\int \delta\left(\lambda-\lambda_{0}\right) \mathrm{r}(\lambda) \mathrm{d} \lambda=\mathrm{r}\left(\lambda_{0}\right)
$$

- Generally
$-\left(\alpha_{\mathrm{R}}\left(\lambda_{0}\right), \alpha_{\mathrm{G}}\left(\lambda_{0}\right), \alpha_{\mathrm{B}}\left(\lambda_{0}\right)\right)=\left(\mathrm{r}\left(\lambda_{0}\right), \mathrm{g}\left(\lambda_{0}\right), \mathrm{b}\left(\lambda_{0}\right)\right)$

CIE-RGB Chromaticity Space

- As λ_{0} varies over all wavelengths - $\left(\mathrm{r}\left(\lambda_{0}\right), \mathrm{g}\left(\lambda_{0}\right), \mathrm{b}\left(\lambda_{0}\right)\right)$ sweeps out a 3D curve.
- This curve gives the metamer intensities for all monochromatic colours.
- To visualise this curve, conventionally project onto the plane
$-\alpha_{R}+\alpha_{G}+\alpha_{B}=1$

CIE-RGB Chromaticity Space

- It is easy to show that projection of $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$ onto $\alpha_{R}+\alpha_{G}+\alpha_{B}=1$ is: $-\left(\alpha_{R} / D, \alpha_{G} / D, \alpha_{B} / D\right)$,

$$
\text { - } \mathrm{D}=\alpha_{\mathrm{R}}+\alpha_{\mathrm{G}}+\alpha_{\mathrm{B}}
$$

- Show that interior and boundary of the curve correspond to visible colours.
- CIE-RGB chromaticity space.

CIE-RGB Chromaticity Diagram

Interpretation of CIE-RGB

 Chromaticity Diagram- Suppose α_{1} and α_{2} are two 3D points corresponding to spectral functions C_{1} and C_{2}.
- Consider the line segment joining them:
$(1-\mathrm{t}) \alpha_{1}+\mathrm{t} \alpha_{2}, \mathrm{t} \varepsilon[0,1]$
- It is easy to see that for any such t this must correspond to another spectral function.
When we project the points and line segment to the plane, the line projects to the 2D line joining them.
- All points on the curved boundary and within the curve represent visible colours.

Spectral Luminous Efficiency Function

CIE-RGB Chromaticity

$$
\begin{aligned}
& \text { - Since } \\
& -C(\lambda) \approx \alpha_{R} E_{R}(\lambda)+\alpha_{G} E_{G}(\lambda)+\alpha_{B} E_{B}(\lambda) \\
& \text { - Then } \\
& \text { - } \mathrm{L}(\mathrm{C})= \\
& \alpha_{R} \int E_{R}(\lambda) V(\lambda) d \lambda \\
& +\alpha_{G} \int \mathrm{E}_{\mathrm{G}}(\lambda) \mathrm{V}(\lambda) \mathrm{d} \lambda \\
& +\alpha_{\mathrm{B}} \int \mathrm{E}_{\mathrm{B}}(\lambda) \mathrm{V}(\lambda) \mathrm{d} \lambda \\
& \text { - Or } \\
& -L(C)=\alpha_{R} 1_{R}+\alpha_{G} 1_{G}+\alpha_{B} 1_{B}
\end{aligned}
$$

Luminance and Chrominance

- $\mathrm{L}(\mathrm{C})=\alpha_{\mathrm{R}} 1_{\mathrm{R}}+\alpha_{\mathrm{G}} \mathrm{l}_{\mathrm{G}}+\alpha_{\mathrm{B}} 1_{\mathrm{B}}$ - and $1_{R} 1_{G} 1_{B}$ are constants
- Consider set of all $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$ satisfying this equation..
a plane of constant luminance in RGB space
- Only one point on plane corresponds to colour C so what is varying over the plane?
- Chrominance
- The part of a colour (hue) abstracting away the luminance
- Colour $=$ chrominance + luminance $($ independent $)$

Luminance and Chrominance

- Consider plane of constant luminance $-\alpha_{R} 1_{R}+\alpha_{G} 1_{G}+\alpha_{B} 1_{B}=L$
- Let $\alpha^{*}=\left(\alpha^{*}{ }_{\mathrm{R}}, \alpha^{*}{ }_{\mathrm{G}}, \alpha^{*}{ }_{\mathrm{B}}\right)$ be a point on this plane $-\left(\mathrm{t} \alpha_{\mathrm{R}}^{*}, \mathrm{t} \alpha_{\mathrm{G}}^{*}, \mathrm{t} \alpha_{\mathrm{B}}^{*}\right)_{\mathrm{B}}, \mathrm{t}>0$ is a line from 0 through α^{*}
- Luminance is increasing (tL) but projection on $\alpha_{R}+\alpha_{G}+\alpha_{B}=1$ is the same.
Projection on $\alpha_{R}+\alpha_{G}+\alpha_{B}=1$ is a way of providing 2D coordinate system for chrominance.

(Change of Basis)

- E and F are two different primaries

$$
-\mathrm{C}(\lambda) \approx \alpha_{1} \mathrm{E}_{1}(\lambda)+\alpha_{2} \mathrm{E}_{2}(\lambda)+\alpha_{3} \mathrm{E}_{3}(\lambda)
$$

$-C(\lambda) \approx \beta_{1} F_{1}(\lambda)+\beta_{2} F_{2}(\lambda)+\beta_{3} F_{3}(\lambda)$

- Let \mathbf{A} be the matrix that expresses F in terms of E $-F(\lambda)=A E(\lambda)$
- Then
- $\alpha=\beta \mathbf{A}$
$-\gamma_{E j}(\lambda)=\sum_{i} \gamma_{F i}(\lambda) \alpha_{\mathrm{ij}}$ (CMFs)

CIE-XYZ Chromaticity Space

- CIE-RGB representation not ideal
- Colours outside $1^{\text {st }}$ quadrant not achievable
- Negative CMF function ranges
- CIE derived a different XYZ basis with better mathematical behaviour
- $\mathrm{X}(\lambda), \mathrm{Y}(\lambda), \mathrm{Z}(\lambda)$ basis functions (imaginary primaries)
- X, Z have zero luminance
- CMF for Y is spectral luminous efficiency function (corresponds to perceived brightness)
- Known matrix A for transformation to CIE-RGB

CIE-XYZ Chromaticity Space

- $\mathrm{C}(\lambda) \approx \mathrm{X} . \mathrm{X}(\lambda)+\mathrm{Y} . \mathrm{Y}(\lambda)+\mathrm{Z} . \mathrm{Z}(\lambda)$
$-\mathrm{X}=\int \mathrm{C}(\lambda) \mathrm{x}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Y}=\int \mathrm{C}(\lambda) \mathrm{y}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Z}=\int \mathrm{C}(\lambda) \mathrm{z}(\lambda) \mathrm{d} \lambda$
$-\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the CMFs
-y is equivalent to V

Converting Between XYZ and RGB

- System has primaries $R(\lambda), G(\lambda), B(\lambda)$
- How to convert between a colour expressed in RGB and vice versa?
- Derivation.. $R(\lambda), G(\lambda), B(\lambda)$ are physical colours and therefore can be expressed as:

$$
\begin{aligned}
& R(\lambda)=X_{R} X(\lambda)+Y_{R} Y(\lambda)+Z_{R} Z(\lambda) \\
& G(\lambda)=X_{G} X(\lambda)+Y_{G} Y(\lambda)+Z_{G} Z(\lambda) \\
& B(\lambda)=X_{B} X(\lambda)+Y_{B} Y(\lambda)+Z_{B} Z(\lambda)
\end{aligned}
$$

Converting Between XYZ \& RGB

- Therefore the chromaticies are:

$$
\begin{aligned}
& \left(\frac{X_{R}}{X_{R}+Y_{R}+Z_{R}}, \frac{Y_{R}}{X_{R}+Y_{R}+Z_{R}}\right)=\left(x_{R}, y_{R}\right) \\
& \left(\frac{X_{G}}{X_{G}+Y_{G}+Z_{G}}, \frac{Y_{G}}{X_{G}+Y_{G}+Z_{G}}\right)=\left(x_{G}, y_{G}\right) \\
& \left(\frac{X_{B}}{X_{B}+Y_{B}+Z_{B}}, \frac{Y_{B}}{X_{B}+Y_{B}+Z_{B}}\right)=\left(x_{B}, y_{B}\right)
\end{aligned}
$$

- The RHS are usually known from manufacturer' s data, but the denominators are unknown.

Converting Between RGB \& XYZ
For constants α, we can write

$$
\begin{aligned}
& C_{R}=\alpha_{R}\left(x_{R}, y_{R}, z_{R}\right) \\
& C_{G}=\alpha_{G}\left(x_{G}, y_{G}, z_{G}\right) \\
& C_{B}=\alpha_{B}\left(x_{B}, y_{B}, z_{B}\right)
\end{aligned}
$$

- If matrix A converts from RGB to XYZ then in particular,

$$
\begin{aligned}
& -\mathrm{C}_{\mathrm{R}}=(1,0,0) \mathrm{A} \\
& -\mathrm{C}_{\mathrm{G}}=(0,1,0) \mathrm{A} \\
& -\mathrm{C}_{\mathrm{B}}=(0,0,1) \mathrm{A}
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
\alpha_{R} x_{R} & \alpha_{R} y_{R} & \alpha_{R} z_{R} \\
\alpha_{G} x_{G} & \alpha_{G} y_{G} & \alpha_{G} z_{G} \\
\alpha_{B} x_{B} & \alpha_{B} y_{B} & \alpha_{B} z_{B}
\end{array}\right]
$$

Converting Between RGB \& XYZ

- To determine the α, consider the white point.
- In XYZ this is $(1 / 3,1 / 3,1 / 3)$ and in RGB is usually $(1,1,1)$.
- So $(1 / 3,1 / 3,1 / 3)=(1,1,1) \mathrm{A}$, and hence:
$\left[\begin{array}{lll}x_{R} & x_{G} & x_{B} \\ y_{R} & y_{G} & y_{B} \\ z_{R} & z_{G} & z_{B}\end{array}\right]\left[\begin{array}{l}\alpha_{R} \\ \alpha_{G} \\ \alpha_{B}\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Converting Between RGB \& XYZ

- Given an RGB colour on a monitor 1 that we want to reproduce on another one 2, we can use A_{1} to go from RGB to XYZ on 1 , and then then $\left(\mathrm{A}_{2}\right)^{-1}$ to go from XYZ to monitor 2.
- Given a computed XYZ colour (e.g., in a global illumination algorithm) we can use A^{-1} to compute the intensity for a particular monitor.

Undisplayable Colours

- Suppose XYZ colour computed, but not displayable?
- Terminology
- Dominant wavelength
- Saturation

XYZ with White Point

Colour might not be displayable

- Falls outside of the triangle (its chromaticity not displayable on this device)
- Might desaturate it, move it along line QW until inside gamut (so dominant wavelength invariant)
- Colour with luminance outside of displayable range.
- Clip vector through the origin to the RGB cube (chrominance invariant)

RGB Cube Mapped to XYZ Space

Summary for Rendering

- Incorrect to use RGB throughout!!!
- Different displays will produce different results
- RGB is not the appropriate measure of light
energy (neither radiometric nor photometric).
- But depends on application
- Most applications of CG do not require 'correct' colours...
- ...but colours that are appropriate for the application.

For Rendering

- Algorithm should compute $C(\lambda)$ for surfaces - means computing at a sufficient number of wavelengths to estimate C (not 'RGB').
- Transform into XYZ space
$-\mathrm{X}=\int \mathrm{C}(\lambda) \mathrm{x}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Y}=\int \mathrm{C}(\lambda) \mathrm{y}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Z}=\int \mathrm{C}(\lambda) \mathrm{z}(\lambda) \mathrm{d} \lambda$
- Map to RGB space, with clipping and gamma correction.

