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ABSTRACT

Algorithms for image synthesis render photo-realistic imagery, given the description of a
scene. Physically based rendering specifically stresses the physical correctness of the algorithms
and their results. The algorithms perform an accurate simulation of the behaviour of light, in
order to faithfully render global illumination effects such as soft shadows, glossy reflections and
indirect illumination. In this dissertation we investigate image-based Monte Carlo rendering
algorithms. We pay special attention to their correctness, their versatility and their efficiency.

First of all, we discuss theoretical frameworks that describe the global illumination problem.
These formal mathematical models are the first step to ensure the correctness of the eventual
results. Moreover, they allow to apply standard numerical techniques to compute a solution. We
give an overview of existing models, which are based on the rendering equation and the potential
equation. We then introduce a model based on a new concept, called the global reflectance
distribution function. It combines the ideas of radiance and potential into a single function,
which is defined by a set of two integral equations. We later show that, while the three models
are equivalent, a straightforward Monte Carlo approach to solve them leads to entirely different
rendering algorithms.

We chose to apply Monte Carlo methods because of their versatility. First, we give an
overview of Monte Carlo techniques in general. The variance of a technique provides a mea-
sure for the stochastic errors on its results. The basic strategy of Monte Carlo methods is to
reduce the variance by averaging the results of large numbers of samples. Convergence is slow,
however. Variance reduction techniques therefore try to improve the efficacy of the individual
samples, by taking into account information about the integrand. We discuss techniques such as
stratified sampling, importance sampling, the combining of estimators, control variates, Russian
roulette and next event estimation. We stress their unbiasedness, which ensures that the estima-
tors always converge to the exact solution. We specifically analyse aspects that are of importance
for the global illumination problem and we present a few improvements to existing techniques.

Finally, we apply the Monte Carlo methods to the mathematical models of the global illumi-
nation problem. The different models give rise to entirely different algorithms. The rendering
equation leads to the well-known path tracing algorithm, while the potential equation leads to
the light tracing algorithm. We discuss their strengths and weaknesses. We study the application
of the variance reduction techniques and present results from practical experiments. The global
reflectance distribution function and its equations give rise to a new algorithm, which we have
called bidirectional path tracing. This algorithm proves to have superior qualities for rendering
typical indirectly illuminated interior scenes.
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Chapter 1

Introduction

1.1 Rendering

Part of the research on computer graphics is concerned with image synthesis, i.e. the rendering
of virtual scenes by means of a computer. The input of a rendering program is a description of
a scene by way of its geometry and the optical characteristics of the objects. After specification
of viewing parameters such as the viewpoint and the viewing direction the eventual output of the
program is a synthetic image of that scene. Image synthesis has numerous practical applications,
for instance:

� In mechanical engineering computer renderings aid the development of complex work
pieces. Engineers can catch and correct errors at an early stage by interactively examining
and changing the model.

� In industrial design the renderings may give an impression of the aesthetic and ergonomic
qualities of the design. They can illustrate the effects of different shapes, textures and
colours without physically having to construct different prototypes.

� The entertainment industry makes increasing use of computer graphics and of synthetic
imagery for short or even full-length feature films, commercials and motion rides.

� Renderings that correctly simulate illumination effects can help civil engineers, illumi-
nation engineers and architects designing safe and ergonomic tunnels, buildings, houses,
etc.

The requirements placed upon image synthesis algorithms strongly depend on the application.
On the one hand the rendering process should be as fast as possible. For animation films this is
typically of the order of a few minutes to a few hours per frame, while interactive design applica-
tions require at least several frames per second. On the other hand an increasing number of appli-
cations demand a high degree of realism. For mechanical engineering the images have to convey
the geometry of the model unambiguously, in which case a simple visualisation suffices. Com-
puter animators strive for visually more pleasing imagery. The images should not only present
the geometry of the scene but also include illumination effects such as shadows and reflections.
Illumination engineering applications additionally need the resulting images to be a physically
truthful representation of reality. This requires an accurate simulation of the behaviour of light
in the virtual scene, which is obviously computationally more expensive. Because these goals
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4 CHAPTER 1. INTRODUCTION

of speed on the one hand and realism on the other hand are contrary, all rendering algorithms
have to make a trade-off. Current technology does not allow real-time photo-realistic rendering,
which makes the trade-off all the more tangible. Research on image synthesis algorithms seeks
to push the boundaries of both speed and realism.

The outset of this thesis is the aspect of realism and accuracy of synthetic imagery. We will
stress the use of formal physical models and mathematically sound techniques in developing ren-
dering algorithms. This well-founded theoretical basis is the initial step in a scientific approach
to the problem. In the first place it offers an indication about the correctness of the eventual
algorithms. The accuracy of the results obviously also depends on the accuracy of the input, on
any restrictions of the physical model and on the numerical accuracy of the algorithm. We will
discuss each of these aspects in the text.

In the second place the mathematical framework accommodates general numerical optimisa-
tions that produce equally accurate results with less computational effort. The basic algorithms
that we will derive in a straightforward way from the mathematical models are physically correct
but excruciatingly slow. Further improvements should therefore make them practical. Rather
than resorting to very specific shortcuts we will look at common numerical techniques and ex-
amine how they can be applied to the problem at hand.

In the following sections we will further introduce the rendering problem and this work. First
we will briefly discuss the typical input and the output of a rendering algorithm. Then we will
present a cursory inspection of different types of physically-based rendering algorithms. We will
conclude the introduction with a survey of the objectives of this thesis and an overview of the
contents of the text.

1.2 The Input

As mentioned in the introduction the input of a rendering program consists of a description of the
geometry and the optical characteristics of the model to be rendered. Additionally the viewing
parameters have to be specified.

The geometry of a scene is in practice described by a combination of geometric primitives.
They present either a solid representation or a boundary representation:

� A solid representation is based on three-dimensional primitives like spheres, cubes, cones,
etc. A list of their coordinates and size parameters defines the entire geometry. Transfor-
mations, such as scaling and shearing, and constructive solid geometry operations, such
as taking the union or the difference of primitives, further enhance the versatility of the
representation. It is natural to work with in the sense that it closely corresponds to our
everyday experience that complex objects often consist of simpler primitives. It is most
commonly used by ray tracing algorithms, which can handle arbitrary geometries.

� A boundary representation on the other hand only describes the two-dimensional surfaces
that delimit the solid objects. The surfaces are defined mathematically by the coefficients
of implicit or parametric equations. Boundary element methods work on surfaces that
are discretised, mostly into triangles or general polygons. Rendering algorithms in this
case perform their illumination computations on the geometric elements. The radiosity
algorithm is a typical example. The finite elements provide a uniform representation which
is convenient to process.
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The optical characteristics of the objects are likewise described by the parameters of ap-
propriate models. The complexity of these models strongly depends on the application. In the
simplest case each surface has Red/Green/Blue-components describing a colour assigned to it.
Simple shading techniques such as the well-known Phong reflection model take into account
light sources in the scene. Physically-based rendering requires more exact information about the
optical characteristics of each surface:

� The reflective properties of a surface are quantified by the bidirectional reflectance dis-
tribution function, which will be discussed in Section 2.1.3. From a macroscopic point of
view light that is incident to a surface is partially absorbed and partially reflected. Reflected
light may be scattered in all directions. The amounts of reflection and absorption depend
on parameters such as incident direction, exitant direction and the wavelengths of the inci-
dent and exitant light. A reflectance model has to represent these intricate phenomena. The
Lambertian model for instance only approximates the surfaces as perfectly diffuse. They
are then characterised by their diffuse reflectivities. More sophisticated models also take
into account directional reflection such as specular and glossy reflection.

� The self-emissive properties of light sources are quantified by the self-emitted radiance
function, which is further discussed in Section 2.1.1. Light is emitted as a result of an
electrical or a chemical process. Radiation from surfaces such as the glowing wire inside
a light bulb is mostly diffuse. Compound emitters such as the entire light bulb generally
have more complex characteristics, which again have to be described by a suitable model.

The geometric models along with their surface characteristics are usually created by means
of a modelling program or measured directly using 3D scanners and goniophotometers. Man-
ufacturers of luminaires sometimes provide the required data to model light sources. We will
assume that a complete model of the scene is available to begin with. This text therefore does not
consider the problem of measuring and modelling the geometric sizes and optical characteristics
of surfaces. Without limiting the scope of the algorithms presented, our implementation and test
scenes are based on simple geometric and optical models.

In principle light can also interact with participating media like fog, smoke or dust. Mea-
suring and modelling their geometries and optical characteristics and then taking into account
their presence is a topic of ongoing research. Fortunately the influence of a medium like air is
negligible in most common scenes. We will therefore concentrate on the interaction of light with
surfaces only.

Even without participating media the resulting images can obviously only be as accurate as
the input model. So far little work has been done on the relation between modelling and render-
ing. In practice the overall solution is not very sensitive to small errors in the input geometry or
optical characteristics. For instance, a slight change in the position of an object in a scene will
generally have little influence on the overall illumination and aspect of the scene. The images
do tend to look more realistic when the input model is detailed, for instance by extensive use of
texture maps to model optical details on the surfaces. In order to obtain visually pleasing images
the modelling step may even be more important than the rendering step. Attention to the latter is
still essential however for applications that require physically accurate images.

The final information required to render an image is a set of viewing parameters. This in-
cludes the viewpoint of the observer in the virtual scene, the viewing direction and the field
of view. More sophisticated rendering techniques may require parameters such as the camera
aperture and the plane of focus to realistically simulate camera artifacts.
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1.3 The Output

The eventual output of a rendering program is an image of the input scene. As mentioned earlier
the desired quality varies with the application. For simple design and engineering applications a
wire frame representation may do. Colouring the surfaces, applying a simple shading model such
as Phong shading and interpolating colours by means of Gouraud shading may further improve
the appearance of the images. The chief advantage of these rendering techniques is that they are
supported by modern graphics hardware.

Physically-based rendering has more ambitious goals. Cohen [14] notes that these goals are
not clearly defined though. Ideally the aim would be to create the same visual impression as when
watching a corresponding actual scene. Due to practical and technological constraints such as the
available display hardware this is currently not feasible. An alternative goal is to render an image
that is indistinguishable from a photograph. Appendix A discusses some technical implications
of such a choice. This dissertation will however not go into the technological problems resulting
from the limited dynamic ranges and colour gamuts of output devices for instance. We will
study the so-called global illumination problem. Typical examples of global illumination effects
are soft shadows, glossy reflections, indirect illumination and “colour bleeding” of coloured
surfaces onto neighbouring surfaces due to diffuse reflection. Essential for physically-based
rendering is the physical correctness of the results, irrespective of the way in which they are
eventually presented to the viewer. We will concentrate on the lighting simulation which ensures
this correctness.

1.4 Physically-Based Rendering Algorithms

The core problem of physically-based rendering is the global illumination problem. The visual
perception of a scene is the result of light being emitted from light sources, interacting with
the objects in the scene and arriving at the viewpoint. The interaction is in general a complex
combination of reflection, transmission and scattering of light. Rendering a realistically looking
and accurate image therefore requires a faithful simulation of these global illumination effects
in the scene. The results of the simulation are radiance functions or radiant fluxes leaving the
surfaces of the scene, as will be discussed in Chapter 2.

The introduction of the radiosity algorithm by Goral et al. [34] in '84 was the first incentive
for a physically more exact approach to the rendering problem. Previous rendering techniques
relied on ad hoc approximations of various visual effects. The radiosity algorithm solves a finite
element model of diffuse illumination in a scene. As such it was the first to be based on an actual
physical model. It expresses the model in mathematical terms and subsequently finds a solution
by means of known numerical algorithms.

Another milestone was the rendering equation, which was introduced in computer graphics
by Kajiya [53] in '86. It provided a more general physical framework for the rendering problem.
Along with it Kajiya presented a stochastic ray tracing algorithm for solving it.

Both the radiosity algorithm and stochastic ray tracing have been improved and extended
since. Excellent overviews can be found in the reference works by Cohen and Wallace [17],
Sillion and Puech [118] and Glassner [33]. Without enumerating all contributions it may be
noteworthy to mention two common classifications of physically-based rendering algorithms:
object-based versus image-based algorithms and deterministic versus Monte Carlo algorithms.
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1.4.1 Object-Based and Image-Based Algorithms

This classification tells something about what the algorithms try to solve. It is based on the space
for which the algorithms find a solution.

� Object-based rendering algorithms try to solve the global illumination problem indepen-
dently of the eventual viewing parameters such as viewpoint and field of view. For this
purpose the problem has to be simplified first, as a completely general solution requires
too much memory and too much computation time in practice. Typical examples are
the radiosity method and similar finite element methods which compute a radiosity so-
lution for all surfaces in the scene. Rendering the solution becomes a relatively simple
post-processing step. On the basis of the viewing parameters the surfaces can be painted
with any hidden-surface algorithm while the illumination solution provides the colours. In
the case of the radiosity method graphics hardware can assist with the rendering, allow-
ing interactive walk-throughs of moderately complex scenes. Important developments for
object-based rendering algorithms have been hierarchical algorithms, higher order basis
functions and wavelet algorithms, e.g. [122, 41, 63, 35, 104].

� Image-based rendering algorithms consider the viewing parameters as a basic component
of the problem. They compute solutions specifically for all pixels or groups of pixels in
the image. Although the underlying global illumination models are the same the resulting
algorithms are usually quite different. Typical examples are stochastic ray tracing algo-
rithms, e.g. [20, 19, 53], which compute radiance values for all individual pixels in turn.
Image-based algorithms accordingly only pursue partial solutions for the global illumina-
tion problem, i.e. for the visible part of the scene rather than for the entire scene. In general
they can handle more complex illumination models and geometries as a result. Their dis-
advantage is speed; with current technology it is still not possible to generate acceptable
images fast enough for interactive frame rates.

This classification is of course not absolute. Several two-pass or multi-pass algorithms have
been developed that combine an object-based view-independent pass with an image-based view-
dependent pass, e.g. [117, 127, 11, 137]. More recent object-based rendering algorithms also
take into account the eventual viewing position, for instance to guide hierarchical refinement of
the finite elements [119, 7, 9] or to determine the ordering of the computations [10]. Image-
based rendering algorithms on the other hand often store information about the illumination in
object-space to speed up the computations [134, 133, 67, 50].

1.4.2 Deterministic and Monte Carlo Algorithms

Like all numerical algorithms rendering algorithms can also be subdivided in deterministic and
Monte Carlo algorithms, which says more about how they solve the problem:

� Deterministic rendering algorithms are based on classical numerical techniques. In the
case of the global illumination problem these techniques mostly involve specific cubature
rules for integrating high-dimensional functions, e.g. [16, 8, 103, 105], and solution meth-
ods for large sets of linear equations, e.g. [15, 41, 35]. Theoretical and practical error
bounds give an indication of their effectiveness.
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� Monte Carlo rendering algorithms employ stochastic techniques to compute the high-
dimensional integrals of the global illumination problem. Monte Carlo algorithms in
general average their results from a large number of random samples. The samples are
generated according to the underlying stochastic process of the problem. The more sam-
ples the algorithm can take the more reliable the results will be. The amount of stochastic
noise in the results is a measure of their success, which is expressed by the variance of
the algorithm. Chapter 3 further discusses the basic principles of Monte Carlo algorithms
and several optimisations. In the context of rendering, Monte Carlo techniques are ap-
plied both in object-based algorithms, e.g. [86, 83, 81], and in image-based algorithms,
e.g. [20, 19, 53]. Because of their simplicity they are somewhat more versatile, which
makes them often the only practical alternative for image-based rendering algorithms.

Again this classification is not clear-cut. Deterministic rendering algorithms may apply
Monte Carlo techniques to solve sub-problems. A deterministic radiosity method may compute
form factors using a Monte Carlo method for instance [128, 41].

1.5 Objectives of this Thesis

The primary goal of this thesis is the development and improvement of physically-based ren-
dering algorithms. We will concentrate on the global illumination problem which is the chief
problem to be solved in this context. The algorithms should meet the following conditions:

� Correctness. The lighting simulation must by faithful to reality, so that the results can
be relied upon. The basis of the correctness should be a formal physical model of the
global illumination problem. Even if it has to be simplified to be practical this allows
to identify any limitations of the algorithms that are derived from it. We will present
several alternative models. On the basis of these we will be able to apply provably correct
mathematical techniques and standard numerical algorithms to solve the problem. We will
discuss these techniques and their application extensively.

� Versatility. We are interested in algorithms that are general, in addition to being correct.
The input should not be restricted in any way, other than being physically possible. The
algorithms should handle arbitrary types of geometry and optical characteristics of the
surfaces. They should scale well to scenes of arbitrary complexity and detail.

� Efficiency. The basic algorithms are versatile but computationally expensive as a result.
We will therefore study their efficiency and any optimisations that can reduce the com-
putation time. Thanks to the formal mathematical framework we will be able to apply
standard numerical optimisations. A theoretical study should indicate their potential while
test results will then reveal their practical use.
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1.6 Overview

The remaining chapters of this dissertation are organised as follows:

� Chapter 2 introduces the physical concepts that are relevant to physically-based rendering
and to the global illumination problem. The essential radiometric quantities are radiance
and radiant flux. We will formalise the problem itself using alternative mathematical mod-
els. The classical model to describe the radiance function is the rendering equation. The
potential function which has been introduced into computer graphics more recently is de-
fined by the potential equation. This equation presents a dual view of the problem. We will
then present a new concept, the global reflection distribution function, which combines the
ideas of the radiance function and the potential function in a single function. We will show
how it is defined by two equivalent integral equations.

� Chapter 3 gives an overview of Monte Carlo methods in general. After an explanation
of the basic principles the emphasis will lie on variance reduction techniques. We will
present them in a coherent framework and stress the underlying ideas they have in com-
mon. We will note any elements that are of particular interest for application to the global
illumination problem.

� Chapter 4 applies the numerical techniques of Chapter 3 to the mathematical framework
of Chapter 2. We will argue why we opt for an image-based approach and for Monte
Carlo algorithms, given our objective of versatility. In this context we will show how
the different models lead to different rendering algorithms. Most commonly known is
the rendering equation as a basis for the path tracing algorithm. This algorithm gathers
light starting from the viewpoint. Similarly the potential equation leads to the light tracing
algorithm, which distributes light starting from the light sources. The specific strengths and
weaknesses of these algorithms will be discussed. We will show how the global reflectance
distribution function and its equations give rise to a new algorithm called bidirectional path
tracing. This algorithm successfully combines the strengths of the previous approaches
by simultaneously distributing and gathering light from the light sources and from the
viewpoint respectively.

The variance reduction techniques discussed in the previous chapter can improve the ba-
sic rendering algorithms further. We will present a systematic analysis of these general
optimisations in the case of these specific algorithms.

� Chapter 5 presents some practical test results. We will apply the various algorithms and
optimisations of Chapter 4 to a set of test scenes. The results should give an impression of
their qualities in practice.

� Chapter 6 summarises the results of this work. We will draw some final conclusions and
indicate possible future research directions.
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Chapter 2

The Global Illumination Problem

Physically-based rendering is a simulation problem that is typically solved in three steps:

1. Identifying the physical problem,

2. Formalising the problem in a mathematical model,

3. Developing an algorithm to solve the model.

In this chapter we will concentrate on the first two steps. In physically-based rendering one
is interested in light and its interaction with the environment. Light is emitted from light sources
and reflected through the scene. Light that is emitted or reflected in the direction of the viewer
contributes to the perceived image of the scene. Physically-based rendering is concerned with
creating synthetic images of a given model by simulating these processes. The images should
approximate real images by some measure. The major problem in physically-based rendering
is the global illumination problem: determining the complex interreflection of light through the
scene.

Throughout this dissertation we will consider the problem from the point of view of geometric
optics. This corresponds to a particle model of light, in which photons travel in straight lines,
with their energies adding up to macroscopically measurable quantities. We will not consider the
wave model of light that can account for effects such as interference and polarisation.

We will first present the basic notions that are prerequisite to talk about global illumination.
The key notions to quantify light are radiance and radiant flux. These are the radiometric quanti-
ties that we are actually trying to compute. Reflection at surfaces can be described by means of
the bidirectional reflectance distribution function which quantifies the local reflective properties
of the surfaces in a scene.

Using these notions we will then discuss a few alternative mathematical models of the global
illumination problem. The most well-known formulation is the rendering equation. This integral
equation determines the radiance function. Closely related to it is the potential equation. This
dual version of the rendering equation determines the potential function. We then introduce
a new concept, the global reflectance distribution function, along with two equivalent integral
equations that determine its behaviour. The different models provide different views on the
global illumination problem. In later chapters we will show how they can give rise to different
algorithms.

11
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2.1 Concepts

The basic notions for the global illumination problem are the radiometric quantities. They are
usually considered over the visual spectrum that lies between 400 and 700 nm. Each radiometric
quantity also has a spectral counterpart that expresses the quantity per unit wavelength. These
quantities can be indicated by a subscript �. In our discussions we will usually make abstraction
of this wavelength dependency and omit the subscript.

2.1.1 Radiance

The radiance L for a given point x and direction �x is defined as the differential power radiated
per unit surface area and per unit time from point x in direction �x (Fig. 2.1):

L�x��x� �
���

�Ax���x
� (2.1)

where:

� �Ax� = a differential surface area around point x and at a right angle with direction �x,

� ��x = a differential solid angle around �x,

� ��� = the differential radiant power through �Ax� and ��x.

Radiance is expressed in W�m�sr. Note that steradians (sr) are not really physical units but
they are commonly included for clarity. As a radiance value is defined for each point in the 3D
space and for each direction in the 2D directional space the radiance function is 5-dimensional.
It is fundamental as most radiometric and photometric quantities can be derived from it. It is also
important because it is the quantity that is perceived eventually; a view is defined unambiguously
by the radiance values that reach the viewer.

The radiance immediately before it hits a surface is of special interest and is called the in-
coming radiance or field radiance. We will denote it by Li wherever required. The radiance
immediately after it leaves a surface is called outgoing radiance or surface radiance. We will
denote it by Lo. They can be defined formally with respect to the surface:

Li�x��x� �
���

j�x �Nxj ��x��x � (2.2)

Lo�x��x� �
���

j�x �Nxj ��x��x � (2.3)

where:

� j�x �Nxj = the cosine (in absolute value) of the angle between direction �x and the normal
Nx to the surface at point x,

� d�x = a differential surface area on the surface around point x,

� ��x = a differential solid angle around �x,

� ��� = the differential radiant power coming in, respectively going out, through ��x and
��x.

Furthermore the self-emitted radiance Le can be defined, which is radiance that is emitted from
light sources as the result of some electrical or chemical process.
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Invariance along a direction

The most important property of radiance for our applications is that it is invariant along the
direction in which it is radiated, if the light travels through vacuum (Fig. 2.2). This property
can easily be proven using the more general property of conservation of energy. As in most
global illumination models and algorithms we will approximate the actual media –air usually– by
vacuum. This approximation is valid for most daily scenes that do not contain strongly scattering,
absorbing or emitting media such as smoke, steam, fog or fire.

The invariance of radiance along a line implies that the surface radiance at one point on a
surface is equal to the field radiance at the point on the first surface along the given direction.
That point can be defined formally by means of a ray casting function r that maps a point x and
direction �x on the nearest point on a surface along that direction (Fig. 2.3). The invariance
relation then becomes

Lo�x��x� � Li�r�x��x���x�� (2.4)

In our derivations we will often implicitly use the following reciprocity relation of the ray casting
function:

y � r�x��x�� x � r�y����
x ��

where we denote the opposite direction of a direction � by ���. By convention the directions in
most of the equations we will present point in the direction of the light transport we are interested
in, to make it easier to visualise their physical meanings. Alternatively one could only consider
directions pointing away from the surfaces, as in [26] for example.

dAx⊥

dωx

d
2Φ

x

Θx

Figure 2.1: Explanation of the symbols used in the definition of radiance. Radiance expresses
the amount of light radiated from a given point x in a given direction �x.

L y Θ,( )
L z Θ,( )

L x Θ,( )

Figure 2.2: In absence of a participating medium radiance is invariant along the direction in
which it is radiated.
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2.1.2 Radiant Flux

The radiant flux � through a given set of points and directions S is defined as the total amount
of radiant energy per unit time that is being radiated from that set S. It is expressed in W . By
definition it is the integral of the radiance function L�x��x� over all points and directions of S:

� �
Z Z

S
L�x��x� j�x �Nxj d�xd�x� (2.5)

For surface radiance the expression can be rewritten as an integral over all surface points and all
directions with the help of a suitable function We�x��x�:

� �
Z
A

Z
�x

L�x��x�We�x��x� j�x �Nxj d�xd�x� (2.6)

where:

x

Θx
r x Θx,( )

Lo x Θx,( ) Li r x Θx,( ) Θx,( )

Θx

Figure 2.3: The ray casting function r maps a point x and a direction �x on the nearest point as
seen from point x along direction �x. Due to the invariance of radiance along direction �x the
surface radiance Lo at �x��x� equals the field radiance Li at �r�x��x���x�.

Φ

Figure 2.4: Radiant flux is the amount of radiant energy per unit time being radiated from a
set of points and directions. In radiosity methods the set typically consists of all the points of a
surface patch along with all the corresponding hemispherical directions.

Φ

Figure 2.5: A set that is of interest for image-based rendering techniques is the set of surface
points and directions that point through a pixel on a virtual screen.
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� A = the combined surfaces in the scene,

� �x = the hemisphere of outgoing directions above the surface at point x,

� We�x��x� = 1 for all pairs of points and directions that belong to the set, and 0 otherwise
(the function is called We for reasons which will become clear later on),

� d�x = a differential solid angle around direction �x,

� d�x = a differential surface area on the surface around point x.

The expression for the flux may be written in short using a dot product notation:

� � hL�Wei� (2.7)

where the dot product is defined as

hf� gi �
Z
A

Z
�x

f�x��x�g�x��x� j�x �Nxj d�xd�x�

A set in which one may be interested is the set of points on a surface patch along with all the
hemispherical directions as in Fig. 2.4. Classical radiosity methods compute these fluxes in one
form or another for each of the patches of the discretised scene. Of greater interest to us here
will be the set of points and directions corresponding to a pixel in a virtual camera as in Fig. 2.5.
Image-based methods try to compute the corresponding fluxes for each of the pixels.

Note that one can alternatively define a weighted average L of the radiance function over
some part of the domain, rather than the total flux, by defining We�x��x� as a weight function
that may have other values than 0 or 1. As a weight function it is normalised as follows:Z

A

Z
�x

We�x��x� j�x �Nxj d�xd�x � ��

The expression remains the same as the expression for the flux:

L �
Z
A

Z
�x

L�x��x�We�x��x� j�x �Nxj d�xd�x�

This is of interest when computing a weighted average of the radiance function over a pixel for
instance. As computing a flux and computing a weighted average are essentially the same our
discussion will be in terms of fluxes, implicitly assuming the alternative possibility.
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2.1.3 The Bidirectional Reflectance Distribution Function

The bidirectional reflectance distribution function (BRDF) fr for a surface point x, an incoming
direction �i and an outgoing direction �o gives a measure for the amount of radiance impinging
at point x along direction �i that is reflected along direction �o (Fig. 2.6). Formally:

fr�x��i��o� �
�Loutput�x��o�

Linput�x��i� j�i �Nxj ��i � (2.8)

where:

� �Loutput�x��o� = the differential surface radiance reflected at point x in direction �o as a
result of the field radiance Linput�x��i� at point x through the differential solid angle ��i
around direction �i.

The units of the BRDF are ��sr. The BRDF defines the local reflective properties of the
surface. For metals it is the macroscopic result of interactions with facets at a microscopic level.
For these facets the reflection and refraction of light is perfectly described by the Fresnel equa-
tions and Snell's law. The distributions of their slopes and directions determine the macroscopic

Θo

Θi

x

Linput x Θi,( )

dLoutput x Θo,( )

dωi

Figure 2.6: Explanation of the symbols used in the definition of the bidirectional reflectance
distribution function.

�i

0.4
0.3
0.2
0.1

0
0.20.10-0.1-0.20.20.10-0.1-0.2

BRDF

Figure 2.7: A polar diagram of a simple modified Phong BRDF for a fixed incoming direction.
The BRDF is the sum of a constant diffuse part and a specular lobe around the perfect specular
reflectance direction.
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behaviour that is described by the BRDF. The BRDF can therefore be estimated on the basis of a
model of the surface consisting of specular microfacets [21, 22, 42]. For other types of surfaces,
such as plastics and varnished materials, the reflectance characteristics are the result of more
complex sub-surface scattering. In general the BRDF can be measured directly and tabulated
using a goniophotometer as described in [131]. For practical applications it is often represented
by means of an empirical model [131, 100, 31]. The parameters of a model can then be estimated
or fitted to actual measurements using a least squares method. For an overview of BRDF models
we refer the reader to [102]. Figure 2.7 gives an example of a simple model. We will always
assume that the BRDF is known and that it can be represented using a suitable model. A special
case that is noteworthy is an ideal Lambertian reflector for which the BRDF is simply constant
over the hemisphere:

fr�x��i��o� � fr� ��i � �i� ��o � �o�

The definition of the BRDF can easily be extended to include refraction by considering the
entire sphere of directions rather than only the hemisphere above the surface. We will implicitly
assume this generalisation in our discussions.

Conservation of energy

A physically correct BRDF must be energy-conserving. For any incoming direction the power re-
flected over the hemisphere can never be more than the incident power. Any power that is not re-
flected is absorbed and transformed into heat. Formally, the so-called directional-hemispherical
reflectance should be less than or at most equal to 1:

��x��i� �
Z
�o

fr�x��i��o� j�o �Nxj d�o � �� ��i � �i� (2.9)

The reflectance is dimensionless.

Helmholtz reciprocity

Another important property of the BRDF is Helmholtz reciprocity. Because the reflective prop-
erties of a surface do not depend on the direction in which light travels, the roles of the incoming
and the outgoing directions can be exchanged (Fig. 2.8):

fr�x��i��o� � fr�x��
��
o ����

i �� (2.10)

BRDF models that are energy-conserving and reciprocal are called physically plausible [72, 73].

Θo

Θi

x

Θo
1–

Θi
1–

x

Figure 2.8: Helmholtz reciprocity: the value of the BRDF for a particular point and incoming
and outgoing directions remains the same if the incoming and outgoing directions are exchanged.
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2.2 The Rendering Equation

The previous paragraphs showed how field radiance and surface radiance are related through
the invariance of radiance along a line and through local reflection. Combining these properties
will lead to the rendering equation, which describes the global reflection of light throughout a
given scene. It was first introduced in computer graphics by Kajiya (in terms of a quantity called
intensity) [53].

Radiance leaving a surface is the sum of self-emitted radiance and reflected radiance. The
BRDF describes the relation between field radiance and reflected surface radiance. Using the
definition of the BRDF (2.8) the total surface radiance can therefore be written as follows:

Lo�x��o� � Le�x��o� � Lr�x��o�

� Le�x��o� �
Z
�i

Li�x��i�fr�x��i��o� j�i �Nxj d�i�

Because each field radiance corresponds to a surface radiance, as expressed by Eq. (2.4), this
equation can be rewritten as

Lo�x��o� � Le�x��o� �
Z
�i

Lo�y��i�fr�x��i��o� j�i �Nxj d�i�

where point y is such that y � r�x����
i � (Fig. 2.9). We will only talk about surface radiance

from here on and simply omit the “o” subscript. We will also refer to a hemisphere of incoming
directions by “���”. The equation then becomes

L�x��x� � Le�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y� (2.11)

This is the rendering equation expressed in terms of radiance, sometimes called the radiance
equation. It is a linear integral equation known as a Fredholm equation of the second kind. As
Arvo [3] noted though, it is particular in the sense that the domain of the integral is not the entire
domain of the radiance function. The domain consists of a set of points along with a single
direction for each point, which has measure 0 compared to the entire domain.

The rendering equation formally specifies the global illumination problem. Most commonly
the light sources are known by way of their self-emitted radiance, the reflective properties of the
scene by way of the BRDFs of the surfaces and the geometry of the scene by way of the ray
casting function and the normals at the surfaces. The resulting surface radiance function is then
determined unambiguously.

The rendering equation can be written in short using an integral operator:

L � Le � TL� (2.12)

where the integral operator or transport operator T is defined as

�Tf��x��x� �
Z
���x

f�y��y�fr�x��y��x� j�y �Nxj d�y�

The operator transforms the surface radiance function L�y��y� into the surface radiance function
Lr�x��x�, which is the resulting radiance after one reflection. Gershbein et al. [32] and Arvo [3]
show that the transport operator can be split in a local reflection operator that accounts for the
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local scattering of incident radiant power and a field radiance operator that accounts for the
geometry of the scene. We refer the reader to the literature for further details.

For some purposes it is more convenient to write the integral of the rendering equation as an
integral over all surfaces instead of an integral over all directions in the hemisphere. This can be
achieved by means of a simple transformation:

L�x��x� � Le�x��x� (2.13)

�
Z
A
L�y��y�x�fr�x��y�x��x�v�x� y�

j�y�x �Nxj j�y�x �Nyj
kx� yk� d�y

� Le�x��x� �
Z
A
L�y��y�x�fr�x��y�x��x�G�x� y�d�y�

where:

� �y�x = the direction from point y to point x,

� v�x� y� = the visibility function, which is 1 if there are no objects between point x and
point y, and 0 otherwise,

� kx� yk = the Euclidean distance between point x and point y,

� G�x� y� = the so-called geometry function.

x

L x Θx,( )

L y Θy,( )

y

Figure 2.9: Explanation (in 2D) of the symbols used in the rendering equation.
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2.3 The Potential Equation

Although adjoint integral equations were already known for solving integral problems in general,
e.g. [30, pp. 197–198], and practically used in nuclear physics in the 60's and 70's, e.g. [48], the
potential equation has only been introduced in computer graphics in '93 by Pattanaik [84, 83,
88, 87, 85, 89]. He presented the potential function or potential capability and the potential
equation as the adjoints of the radiance function and the rendering equation. In '92 Smits et
al. [119] had already proposed the discrete equivalent for diffuse radiation under the name of
importance. While Pattanaik used the potential equation to actually solve the global illumination
problem, Smits used it to direct the radiosity computations to regions that are important for the
resulting image. This idea was extended to general discretised non-diffuse radiation by Aupperle
and Hanrahan [7] and by Christensen et al. [13].

In this section we will present the definition of potential and mention its most important
properties. From the definition follows an expression of radiant flux in terms of potential. Then
we will derive the potential equation. The structure is similar to the discussion of radiance and
the rendering equation, as these are dual to potential and the potential equation. Finally we will
show that the rendering equation and the potential equation are actually adjoint.

The potential W for a certain point x and direction �x is defined as the flux that is radiated
through a given set S as the result of a single unit of radiance being emitted through a differential
volume around point x and direction �x (Fig. 2.10). Formally:

W �x��x� �
���output

Linput�x��x���x�Ax�

� (2.14)

where:

� ���output = the differential radiant power through the given set S, as a result of the input
radiance Linput�x��x� through the differential surface area �Ax� at point x and through
the differential solid angle ��x around direction �x.

Potential is dimensionless. As with the radiance function the potential function is invariant along
each given direction when travelling through vacuum. Note that somewhat confusingly the poten-
tial function is not a potential function in the usual physical sense, but for the sake of continuity
we will proceed using this name.

Of particular interest to us is the potential function for points and directions leaving the
surfaces in the scene. It can be written as

W �x��x� �
���output

Linput�x��x���x j�x �Nxj ��x � (2.15)

Given this definition the radiant flux through a given set S as a result of self-emitted radiance
Le can now be expressed in terms of the potential:

� �
Z
A

Z
�x

Le�x��x�W �x��x� j�x �Nxj d�xd�x� (2.16)

Or, using the same dot product notation as defined for the radiance function in Eq. (2.7):

� � hLe�W i� (2.17)
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Just as the radiance function is governed by the rendering equation the potential function is
governed by an integral equation called the potential equation. The potentialW for a point x and
a direction �x is also a sum of two terms. If �x��x� belongs to the given set S, any radiance will
contribute to the flux directly. This can be taken into account by a first term We�x��x� which
will be 1 in this case, and 0 otherwise, as defined for Eq. (2.6). Point x and direction �x can
also contribute indirectly to the flux through reflection, which can be expressed in terms of the
potential values at the nearest point from point x along direction �x (Fig. 2.11). Formally:

W �x��x� � We�x��x� �Wr�x��x�

� We�x��x� �
Z
�y

W �y��y�fr�y��x��y� j�y �Nyj d�y� (2.18)

where y � r�x��x�. The function We�x��x� can be considered as self-emitted potential, in
analogy with the self-emitted radiance function Le�x��x�; hence the symbol we use in our dis-
cussions.

Again the potential equation can be written in short using an integral operator:

W � We � T �W� (2.19)

where the integral operator or transport operator T� is defined as

�T �f��x��x� �
Z
�y

f�y��y�fr�y��x��y� j�y �Nyj d�y�

dAx⊥

dωx

d
2Φoutput

x

Θx

Linput x Θx,( )

S

Figure 2.10: Explanation of the symbols used in the definition of potential. The set of points and
directions S can be seen as a detector that measures the differential flux as a result of radiance
that is emitted through a differential volume around point x and direction �x. The measured
ratio gives the potential for point x and direction �x.

W x Θx,( )

W y Θy,( )

y

x

Figure 2.11: Explanation of the symbols used in the potential equation.
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The potential equation can also be written as an integral over all surfaces instead of an integral
over all directions in the hemisphere:

W �x��x� � We�x��x� (2.20)

�
Z
A
W �y��y�z�fr�y��x��y�z�v�y� z�

j�y�z �Nyj j�y�z �Nzj
ky � zk� d�z

� We�x��x� �
Z
A
W �y��y�z�fr�y��x��y�z�G�y� z�d�z�

Adjointness of the Rendering Equation and the Potential Equation

Two operators T and T � and their respective equations

f � fe � Tf

g � ge � T �g

are called adjoint with respect to a dot product h�� �i if and only if

hf� gei � hfe� gi�
for each fe and ge. The rendering equation and the potential equation –or more precisely: their
respective operators– are therefore adjoint, because their corresponding expressions (2.6) and
(2.16) for the flux � must yield the same results for any set S (i.e. for any function We�x��x�)
and for any self-emitted radiance function Le�x��x�:

� � hL�Wei � hLe�W i�
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2.4 The Global Reflectance Distribution Function

From the previous sections it is clear that the radiance function L�x��x� is defined with respect
to a fixed self-emitted radiance function Le�x��x�, and that the potential function W �x��x� is
defined with respect to a fixed function We�x��x� corresponding to the set S. The relationship
between L�x��x� and W �x��x� is not defined by the expressions, making it difficult to combine
them into some model or algorithm. In [65] we have therefore proposed the notion of the global
reflectance distribution function (GRDF) which is defined with respect to a given scene but which
does not depend on any particular emission function such as Le�x��x� nor on a fixed set such as
S.

Similarly to the discussions of radiance and potential in the previous sections this section will
present the definition of the GRDF and the defining integral equations. We will also express flux
in terms of the GRDF.

2.4.1 Definition

The definition bears some similarity to the approach often taken in system theory, where a system
is studied on the basis of its response to some input signal. The global reflectance distribution
function Fr for points and directions �x��x� and �y��y� expresses the differential amount of
radiance leaving point y along direction �y as the result of a single unit of emitted radiance from
point x on a surface along direction �x (Fig. 2.12). Formally:

Fr�x��x� y��y� �
��Loutput�y��y�

Linput�x��x���x�Ax�

�
��Loutput�y��y�

Linput�x��x���x j�x �Nxj ��x � (2.21)

The GRDF may be considered as a generalisation of the BRDF. While the latter only specifies
the local behaviour of light reflecting at a single surface, the GRDF defines the global illumina-
tion effects of light reflecting through a complete scene. The units of the GRDF are ��m�sr. It is
theoretically defined over the entire space of points and directions and therefore 10-dimensional.
As before we will only use it at the surfaces of the scene though. Because we assume that there

Linput x Θx,( )

Loutput y Θy,( )

Figure 2.12: The global reflectance distribution function gives a measure for the fraction of the
radiance emitted at point x along direction �x that is eventually output at point y along direction
�y through all possible reflections throughout the scene.
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is no participating medium the function is constant when moving point x along direction �x and
point y along direction �y between two surfaces, by virtue of the invariance of the input and
output radiance functions along these directions.

2.4.2 Flux in Terms of the GRDF

Now that the GRDF has been defined we can use it to determine the flux through the given set
of points and directions S (defined by We�x��x�) and with respect to the given self-emitted
radiance function Le�x��x�. From the definition of the GRDF (2.21) and the expression of the
flux in terms of radiance (2.6) we can derive

� �
Z
A

Z
�x

Z
A

Z
�y

Le�x��x�We�y��y�Fr�x��x� y��y� (2.22)

j�x �Nxj j�y �Nyj d�yd�yd�xd�x�
Note that it is only at this time that the functions Le�x��x� and We�x��x� come into play;

the GRDF itself is totally independent of them. If required, it remains possible to express the
radiance function with respect to a given Le�x��x� and the potential function with respect to a
given We�x��x� in terms of the GRDF:

L�x��x� �
Z
A

Z
�x

Le�x��x�Fr�x��x� y��y� j�x �Nxj d�xd�x�

W �x��x� �
Z
A

Z
�y

We�y��y�Fr�x��x� y��y� j�y �Nyj d�yd�y�

2.4.3 Equations Defining the GRDF

The GRDF is specified by a set of two integral equations. Firstly, one can look at the behaviour of
the function for a fixed �x��x�. Similarly to the derivation of the rendering equation, the radiance
at �y��y� is the result of two contributions. If both pairs of points and directions are equal, the
input radiance contributes directly to the output radiance. In this case the output radiance is not
differential but finite, so that the fraction is a Dirac impulse. The second contribution results
from the reflection of incoming radiance at point y which arrives from points z, possibly through
multiple reflections throughout the scene (Fig. 2.14). This can be expressed formally as

Fr�x��x� y��y� � ��x��x� y��y� (2.23)

�
Z
���y

fr�y��z��y�Fr�x��x� z��z� j�z �Nyj d�z�

where z � r�y����
z �. The function ��x��x� y��y� is the Dirac impulse which is 0 if �x��x� ��

�y��y�, but which integrates to 1 over the domain of �x��x� for a given �y��y� and vice versa:Z
A

Z
�x

��x��x� y��y� j�x �Nxj d�xd�x � ��Z
A

Z
�y

��x��x� y��y� j�y �Nyj d�yd�y � ��

Alternatively, one can look at the behaviour of the function for a fixed �y��y�. This dual
viewpoint resembles that of the potential equation. The question here is how radiance at �x��x�
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can contribute to the output radiance. Once again, if both pairs of points and directions are equal
the input radiance contributes directly to the output radiance, which is expressed by the Dirac
impulse. The input radiance can also contribute indirectly, through reflection in all directions
around point z which is seen by point x in the direction �x (Fig. 2.14). This results in another
recursive equation:

Fr�x��x� y��y� � ��x��x� y��y� (2.24)

�
Z
�z

fr�z��x��z�Fr�z��z� y��y� j�z �Nzj d�z�

where z � r�y����
z �.

It is interesting to see that these dual equations are fully equivalent, by virtue of the bidirec-
tional nature of light. The fraction of the radiance emitted from one point that is received by
another point equals the fraction that would be received if the roles of the emitter and the re-
ceiver are exchanged, thus reversing the paths the light follows. This property can be expressed
elegantly in terms of the GRDF:

Fr�x��x� y��y� � Fr��y��
��
y � �x����

x ��

where �x � r�x��x� and �y � r�y��y� as shown in Fig. 2.15. This expression is equivalent to the
Helmholtz reciprocity of the BRDF (Eq. (2.10)).

y

Fr x Θx y Θy, , ,( )

Fr x Θx z Θz, , ,( )

z

Figure 2.13: Explanation of the symbols used in the first equation that defines the GRDF. It is
analogous to the rendering equation.

Fr x Θx y Θy, , ,( )

Fr z Θz y Θy, , ,( )

z

x

Figure 2.14: Explanation of the symbols used in the second equation that defines the GRDF. It
is analogous to the potential equation.
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Substitution of these properties in both sides of the second integral equation (2.24) yields

Fr��y��
��
y � �x����

x � � ��x��x� y��y�

�
Z
�z

fr�z��
��
z ����

x �Fr��y��
��
y � �z����

z � j�z �Nzj d�z�

Renaming the variables appropriately results in the first integral equation (2.23). It implies
that any of the two dual equations in combination with the reciprocal property is sufficient to
define the GRDF unambiguously.

The integral equations can again be rewritten in short, using operators. Using the same
operator T as the rendering equation (2.12), Eq. (2.23) becomes

Fr�x��x� y��y� � ��x��x� y��y� � TFr�x��x� y��y�� (2.25)

where T operates on the variables y and �y, treating x and �x as constants. Using the same
operator T � as the potential equation (2.19), Eq. (2.24) on the other hand becomes

Fr�x��x� y��y� � ��x��x� y��y� � T �Fr�x��x� y��y�� (2.26)

where T � now operates on the variables x and �x, treating y and �y as constants.
The occurrence of a Dirac impulse in both integral equations may seem a bit awkward for

practical use in algorithms. Luckily one will always want to integrate the GRDF in order to
obtain some flux. Therefore it is an advantage rather than a disadvantage, since integrating a
Dirac impulse is easy by virtue of its definition.

We have defined the GRDF in terms of outgoing input radiance and outgoing output radiance.
The four alternative combinations of incoming/outgoing input/output radiance lead to different
definitions and different sets of two basic integral equations. Some of these could be slightly
more practical than the other ones for specific applications. We will simply stick to the presented
definition.

Θx

x̃

x

Θy

y

Θy
1–

ỹ

Θx
1–

Figure 2.15: Explanation of the symbols used in the reciprocal property of the GRDF.
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2.5 Summary

The most important radiometric quantities to describe radiant power are radiance and flux. They
have total and spectral variants, depending on whether the entire visual spectrum of wavelengths
is considered or only a single wavelength. The radiance function describes the amount of light
radiated from each position and direction as the result of some light sources in the scene. We
are mostly interested in surface radiance (leaving the surfaces) and field radiance (incident to
the surfaces). Under the assumption or approximation that only surfaces reflect light and that
the medium does not scatter light, radiance is invariant along its direction. This property relates
surface radiance to field radiance.

The starting point to describe global illumination is local illumination. The local reflective
properties of a surface are described by its bidirectional reflectance distribution function (BRDF).
It relates light reflected from the surface along an outgoing direction to light coming in along an
incident direction. This property therefore also relates surface radiance to field radiance.

Combining both relations between surface radiance and field radiance yields the rendering
equation (2.11). This integral equation expresses surface radiance as a function of self-emitted
radiance, geometry and reflective properties of the surfaces. Together with the expression for
radiant flux in terms of radiance (2.6) it yields a first mathematical formalisation of the global
illumination problem:

� �
Z
A

Z
�x

L�x��x�We�x��x� j�x �Nxj d�xd�x� (2.6)

L�x��x� � Le�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y� (2.11)

The potential function gives a measure for the fraction of light emitted at each position and
direction that eventually reaches a given detector (a set of points and directions). As with radiance
potential can be described by means of the potential equation (2.18), which is adjoint to the
rendering equation. Together with the expression for radiant flux in terms of potential (2.16) it
yields an alternative description of the global illumination problem:

� �
Z
A

Z
�x

Le�x��x�W �x��x� j�x �Nxj d�xd�x� (2.16)

W �x��x� � We�x��x� �
Z
�y

W �y��y�fr�y��x��y� j�y �Nyj d�y� (2.18)

We have introduced the global reflectance distribution function (GRDF), which gives a mea-
sure for the fraction of light emitted at each position and direction that is eventually radiated
through any other position and direction. As such it is a 10-dimensional function of pairs of all
combinations of points and directions. It only depends on the geometry and the reflective proper-
ties of the scene, not on the self-emitted radiance function as the radiance function does, nor on
the self-emitted potential function as the potential function does. Its behaviour is described by
two equivalent integral equations (2.23) and (2.24) that correspond to the rendering equation and
to the potential equation respectively. The expression of the flux in terms of the GRDF (2.22)
now contains the factors depending on the self-emitted radiance and potential. Together this set
of equations forms a third description of the global illumination problem:

� �
Z
A

Z
�x

Z
A

Z
�y

Le�x��x�We�y��y�Fr�x��x� y��y� (2.22)

j�x �Nxj j�y �Nyj d�yd�yd�xd�x�
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Fr�x��x� y��y� � ��x��x� y��y� (2.23)

�
Z
���y

fr�y��z��y�Fr�x��x� z��z� j�z �Nyj d�z�

Fr�x��x� y��y� � ��x��x� y��y� (2.24)

�
Z
�z

fr�z��x��z�Fr�z��z� y��y� j�z �Nzj d�z�

In Chapter 4 we will show that these alternative mathematical models are not only of theo-
retical interest. Applying the same standard mathematical techniques to each of them will lead
to different rendering algorithms. We will start by explaining these techniques in Chapter 3.



Chapter 3

Monte Carlo Methods

In this chapter we will present the basic principles of Monte Carlo methods that we require
for application to the global illumination problem. More extensive discussions of Monte Carlo
methods in general can be found in the books by Hammersley and Handscomb [40], by Kalos
and Whitlock [54] and by Shreider [114]. Ermakow presents the principles in a mathematically
more elaborate and precise way in [30]. Davis and Rabinowitz [23] discuss Monte Carlo methods
in the broader context of numerical integration.

3.1 Introduction

Monte Carlo methods have a long history. In 1873 Hall described a noteworthy experiment for
estimating the value of 	 by throwing a needle on a paper with parallel lines at equal distances
and then counting the number of times the needle crosses the lines [36]. Monte Carlo methods
only became practical with the advent of automatic computers though. During World War II
John von Neumann used Monte Carlo simulations in his work on the atomic bomb. After the
war Metropolis and Ulam published the first systematic study on the subject [77]. Monte Carlo
techniques gained a great popularity during the 50's and 60's. Later on they received a lot of
criticism due to their indiscriminate application to every conceivable mathematical problem.

Monte Carlo methods compute results on the basis of random numbers. Historically they are
often applied to problems of a probabilistic nature. Monte Carlo methods can then be straightfor-
ward simulations of the actual random processes. In nuclear physics for instance the behaviour
of neutrons is essentially random. Macroscopic neutron fluxes and other quantities can then be
computed by means of a so-called analogue simulation. Individual particles are emitted, re-
flected, scattered and absorbed stochastically, in a way that is faithful to reality. As in reality
the computed quantities are subject to some probabilistic uncertainty also. The uncertainty on
the computed results can be reduced by performing a large number of simulations. For many
natural phenomena it is impossible to even come close to the actual number, so more intelligent
optimisations have to be found.

Monte Carlo methods can also handle problems of a deterministic nature. In this case a
problem is formalised by means of a mathematical model that can be seen as a description of
a random process. Simulation of the random process yields a solution to the original problem.
Monte Carlo methods can therefore be helpful for problems that cannot be solved easily by other
analytical or numerical means. Even problems of a probabilistic nature are usually formulated

29
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as a mathematical problem and can be worked on as such before solving them with possibly
different Monte Carlo techniques.

The technique of solving a different problem than the original problem with Monte Carlo
methods is sometimes called sophisticated Monte Carlo. It results from analysis and abstraction
of the problem and is mostly aimed at improving the efficiency of the simulations. This is es-
sentially what happens for the global illumination problem as well. The stochastic behaviour of
photons is formalised by the equivalent mathematical models presented in Chapter 2. As a re-
sult Monte Carlo methods do not necessarily simulate the emission, reflection and absorption of
photons directly but simulate the underlying random processes of these models. We will discuss
these approaches to the global illumination problem in Chapter 4, but first we will present the
basic principles of Monte Carlo methods in general.
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3.2 Monte Carlo Integration

All Monte Carlo methods can be regarded directly or indirectly as techniques for numerical inte-
gration. Consider the definite integral of the function f�x� over the interval 	
� ��, the estimand:

I �
Z �

�
f�x�dx� (3.1)

We will assume that f�x� is a function in L��
� ��, i.e.
R �
� f

��x�dx exists. The integral can be
estimated by taking a uniform random number 
 over 	
� �� and evaluating f�
�. f�
� is a so-
called primary estimator of the integral, which we will denote with angular brackets:

hIiprim � f�
�� (3.2)

If the estimator is evaluated for a specific sample it is called an estimate. It is equal to the surface
area of the rectangle below the evaluated point (Fig. 3.1). The estimator is called unbiased
because its expected value E�hIi� is equal to the actual integral (the probability density function
is equal to 1 for now):

E�hIiprim� �
Z �

�
f�x�dx � I�

We will assume that it is possible to take perfectly random, i.e. uncorrelated, uniform samples.
In practice one usually has to resort to computer-generated pseudo-random numbers that have
passed certain statistical tests. More details on the generation of random and pseudo-random
numbers can be found in the standard references.

f�x�

1
0

f�
�

1

0

�

Figure 3.1: A simple primary estimator of the definite integral of a function f�x� over an interval
is the surface area of the rectangle defined by the evaluation f�
� at a uniformly selected random
point 
.
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There is an uncertainty on the result which is expressed by the variance V and the standard
error or standard deviation � of the estimator:

V �hIiprim� � ��prim �
Z �

�
	f�x�� I��dx (3.3)

�
Z �

�
f ��x�dx� I��

This expression is not very helpful as such, as neither of the integrals are known in practice, but
it can serve as a theoretical reference against which to compare optimisations.

The variance is usually unacceptably large when only taking this single sample. The basis of
Monte Carlo methods is to reduce the uncertainty by taking more, say N , independent samples

i and averaging their corresponding primary estimators into a secondary estimator. This is
equivalent to rewriting the original integral (3.1) as a sum of integrals (Fig. 3.2):

I �
Z �

�
f�x�dx

�
NX
i��

Z �

�

f�x�

N
dx

�
NX
i��

Ii�

The secondary estimator is then the sum of the primary estimators:

hIisec �
NX
i��

hIiiprim (3.4)

�
�

N

NX
i��

f�
i��

This average of unbiased primary estimators is unbiased as well. Considering the set of N
samples as a single N -dimensional sample the expected value can be computed as follows:

E�hIisec� �
Z �

�
� � �

Z �

�

�

N

NX
i��

f�xi�dx� � � � dxN

� I�

f�x��N

1
�0
�

f�x��N

1
�0
�

. . .

f�x��N

1
N0
�

Figure 3.2: The secondary estimator of an integral is the average of a set of primary estimators.
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The variance is reduced by a factor N :

��sec �
Z �

�
� � �

Z �

�
	
�

N

NX
i��

f�xi��
�dx� � � � dxN � I� (3.5)

�
�

N

Z �

�
f ��x�dx� �

N
I�

� ��prim�N�

This is a fundamental observation. It means that the standard error of any secondary estimator
of this type is proportional to ��

p
N , which is not all that spectacular when compared to other

numerical techniques. Research on Monte Carlo methods is therefore mostly concentrated on
reducing the other factor, being the variance of the primary estimator. Some important variance
reducing techniques such as stratified sampling, importance sampling and control variates will
be discussed briefly in the following sections. Most of them make use of additional information
that is available about the integral. Almost invariably they can be seen as transformations of the
original integral.

For simplicity we have only discussed one-dimensional integrals. The same Monte Carlo
principles can be easily extended to multi-dimensional integrals though. An obvious way would
be to treat the multi-dimensional integrals as multiple one-dimensional integrals. However, as
with deterministic methods the number of function evaluations, which we are trying to minimise,
increases exponentially with the dimension of the integral. Computing a d-dimensional integral
with N samples per dimension requires Nd samples. This increase quickly becomes prohibitive
for problems such as the global illumination problem where the sampling of pixels, light sources
and hemispheres and effects such as depth of field and motion blur all correspond to different
dimensions. The effect is known as the curse of dimensionality.

An alternative approach is to consider the multi-dimensional integrals as a whole and to take
samples over their entire domains. All definitions and properties of one-dimensional Monte
Carlo integration still hold. Integration domains that are irregularly shaped may pose a problem
in practice. Rejection sampling then presents a simple albeit often inefficient solution by repeat-
edly taking a sample in the bounding box of the integration domain until it lies inside of it. More
sophisticated solutions apply importance sampling which transforms the integration domain, as
will be discussed in Section 3.4. It is worth noting that the convergence rate of Monte Carlo
methods is not affected by the dimension of the integral. This makes them an attractive alter-
native for solving high-dimensional integrals where the complexity of deterministic techniques
becomes a problem.
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3.3 Stratified Sampling

One can easily imagine that the clumping together of sample points reduces their effectiveness
considerably. Without any prior knowledge about the integrand the most effective distribution of
the samples is as uniform as possible. Stratified sampling tries to meet this goal by splitting the
integration domain into several subdomains and estimating the partial integrals in each of these
subdomains using Monte Carlo integration. This approach ensures that each of the subdomains
at least gets a given number of samples. In its simplest form all subdomains are of equal size and
each of them gets a single sample. The original integral (3.1), to be estimated with N samples,
can be rewritten as

I �
Z �

�
f�x�dx

�
NX
i��

Z
Ai

f�x�dx

�
NX
i��

Ii�

where Ai is subdomain or stratum i of the entire integration domain; in this case the interval
	�i � ���N� i�N �. If all samples xi are selected with uniform probability density N over these
subdomains Ai the primary estimators for Ii are f�
i��N . The total estimator becomes the sum
of these partial primary estimators:

hIistrat �
NX
i��

hIiiprim (3.6)

�
�

N

NX
i��

f�
i��

f�x�

1
�
�
�
�
�0

�

�
��

�

Figure 3.3: Stratified sampling consists in subdividing the original integration domain and esti-
mating the resulting partial integrals by means of one or more samples per integral.
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This expression is identical to expression (3.4) for the ordinary secondary estimator. The samples
are chosen in a different way though. While the expected value of the estimator remains the
exact integral for any number of samples, the variance differs from the variance of the ordinary
secondary estimator. It is the sum of the variances of the partial estimators:

��strat �
NX
i��

�Z
Ai

	
f�xi�

N
��Ndxi � I�i

�
(3.7)

�
�

N

Z �

�
f ��x�dx�

NX
i��

I�i �

Due to the latter term always being larger than or equal to the I�-term of Eq. (3.5), the variance of
stratified sampling is always less than or equal to the variance of the ordinary secondary estimator
with the same number of samples:

��strat � ��sec� (3.8)

Yet the cost of distributing the samples over the strata is negligible, which makes stratified sam-
pling a fundamental optimisation. It is different from most other variance reduction techniques
in that each sample is used to estimate a different integral. The estimator as a whole is unbi-
ased because the average of M estimators with N strata each, converges to the exact value for
M �	. In practice however one will construct M 
N strata instead. From this point of view
stratified sampling has the potential to perform better than the typical ��

p
N convergence rate of

Monte Carlo methods.
The success of the variance reduction partially depends on the choice of the strata. In one

dimension equally sized subintervals are the most natural alternative, if no further information
about the integrand is known. Choosing different strata such as unions of small randomly dis-
tributed subintervals would in general decrease the efficiency, as the technique derives its im-
provement from any coherence in the integrand. A sample in a stratum is supposed or at least
hoped to be representative for the entire function in that region. For integrands that change
rapidly within the strata stratified sampling yields little additional variance reduction over an
ordinary secondary estimator.

For multi-dimensional integrals the same rules hold. Choosing appropriate strata is much less
obvious however. They should be “compact” in a sense, such that the integrand is likely to be
more or less constant in these regions. Prior knowledge about the integrand may be helpful for
determining acceptable strata. For a square multi-dimensional integration domain splitting each
interval corresponding to a dimension in N subintervals yields Nd strata and samples, as with
the ordinary secondary estimator. This approach suffers from the same curse of dimensionality
as discussed in the previous section.

N -rooks sampling is a computationally cheap alternative to extend stratified sampling to
higher dimensions. The technique is named after the chess problem, in two dimensions. The
two-dimensional square integration domain is subdivided in N by N squares. N of these squares
are selected in a random N -rooks pattern, as illustrated in Fig. 3.4. A point is then sampled in
each of the selected squares. The technique ensures that each row and each column of squares
receive exactly one sample.

N -rooks sampling can be further extended to any arbitrary number of dimensions d. For
this purpose each integration interval of the d dimensions is subdivided in N subintervals. For
each dimension i a random permutation Pi�� � � � � PiN of the indices �� � � � � N is created in a
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preprocessing step. For each sample s the intervals to be selected in the consecutive dimensions
are indicated by the permutations

�P�s� P�s� P�s� � � ���

Figure 3.5 gives an example. The permutations must be randomised for each individual integral
to avoid correlation between the results.

N -rooks sampling is particularly interesting if the integrand is separable over its dimensions
(e.g. if the integrand is constant along one of the dimensions) because the samples are perfectly
stratified in each individual dimension. In general one can expect the efficiency gain to decrease
as the number of samples increases, as they can start clumping together again over the domain.
Other techniques may then become more attractive in spite of the increased complexity.

Quasi-Monte Carlo methods may present an interesting alternative to classical stratification
techniques. The goal of stratification is to sample the integrand more efficiently by spreading
the samples evenly over the domain. For Monte Carlo methods the samples are still random
in principle. In practice however they are generated by a computer and only pseudo-random
as a result. Quasi-Monte Carlo methods drop the randomness and concentrate on the uniform
distribution of the samples, e.g. [136, 120, 121]. The basic property of unbiasedness no longer
holds for these distributions as they are deterministic rather than stochastic. Several theorems

2

4

5

1

3

Figure 3.4: Stratification of the samples in one dimension can be extended to two dimensions
using N -rooks sampling. The two-dimensional domain is subdivided in a grid of N
N squares.
N squares, indicated by a numeral here, are selected in a random N -rooks pattern. Each selected
square receives exactly one sample.

Dimension #
Interval # 1 2 3 4 . . .

Sample #1 3 4 3 1 . . .
#2 2 1 4 5 . . .
#3 4 5 2 2 . . .
#4 1 2 1 3 . . .
#5 5 3 5 4 . . .

Figure 3.5: N -rooks sampling in its turn can be extended to higher dimensions by creating a
random permutation of the interval indices �� � � � � N for each dimension (shown as columns here)
in a preprocessing step and selecting the correct index for each sample (shown as rows here) and
each dimension. The first two dimensions in this example correspond to the two-dimensional
N -rooks pattern of Fig. 3.4.
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have been derived however that bound their integration errors on the condition that the integrand
is of bounded variation, e.g. [136]. Due to this desirable property Monte Carlo techniques are
sometimes developed and analysed as such and then fed with quasi-Monte Carlo distributions in
anticipation of an improved convergence.
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3.4 Importance Sampling

Another powerful optimisation for Monte Carlo methods is importance sampling. Consider the
basic integral (3.1) again. Some regions of the integral may be more important than other regions
because they have higher function values. Even a few samples in these regions may have a great

p�x�
g�x�
f�x�

1
� 
�
� 
�
�0

1

0

�

�

�

��

Figure 3.6: Importance sampling strives to select more samples in regions of the integrand
f�x� where the function values are high, by sampling according to an appropriate probability
density function p�x� and dividing the estimator by p�x�. The probability density function is the
normalised version of an approximation g�x� of the integrand.
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Figure 3.7: Sampling according to a PDF p�x� is usually done by taking a uniform sample � and
transforming it to 
 with the inverse of the probability distribution function P �x�: 
 � P�����.
The non-uniform sample 
 can then be used in an estimator for the integral of the function f�x�.
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influence on the result. In these cases it is more effective to take more samples in these regions
by sampling according to a probability density function (PDF) p�x� that is of a similar shape as
the integrand, rather than uniformly (Fig. 3.6). The estimator then has to be adapted accordingly
so as not to introduce a bias. The integral can be rewritten as follows:

I �
Z �

�
f�x�dx

�
Z �

�

f�x�

p�x�
p�x�dx�

If a random variable 
 is sampled according to the PDF p�x� over 	
� �� the primary estimator
is

hIiimp �
f�
�

p�
�
� (3.9)

The expected value of the estimator still is the actual value of the integral. The variance now
becomes

��imp �
Z �

�

�
f�x�

p�x�

��
p�x�dx� I� (3.10)

�
Z �

�

f ��x�

p�x�
dx� I��

f�P���x���p�P���x��
p�x�
f�x�
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Figure 3.8: Importance sampling according to a PDF p�x� to compute the integral of a function
f�x� is equivalent to computing the integral of the transformed function f�P���x���p�P���x��
using uniform sampling. If the PDF is chosen appropriately the transformed function is more
constant and therefore easier to integrate. The value of the integral remains the same, but the
variance is reduced.
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Any function p�x� over the integration domain that meets the following requirements can be
used as a probability density function:

� p�x� 
 
 for each x � 	
� �� for which f�x� �� 
,

� R �
� p�x�dx � �,

� It is possible to take a sample x such that the probability density of selecting it is p�x�.
More specifically, it has to be possible to compute the inverse P���x� of the probability
distribution function P �x�. The probability distribution function P �x� is the cumulative
function of the probability density function p�x�:

P �x� �
Z x

�
p�t�dt� (3.11)

For non-negative functions the PDF should ideally be proportional to the integrand: p�x� �
f�x��I , in which case the variance would be 0. Unfortunately the normalisation factor is pre-
cisely the integral which we are actually trying to compute, so this is not a practical option.
However, any other function that has a similar shape as the integrand and that can be normalised,
integrated and then inverted may yield a PDF that reduces the variance of the sampling process.
If the integrand can also be negative the PDF should be proportional to the absolute value of the
integrand, yielding a minimal but now non-zero variance. If the integrand contains a singularity
it is important to include it in the PDF. If this is not possible the variance will in general be very
high and possibly even infinite, because the singularity is then squared in the expression for the
variance.

Selecting a sample 
 according to p�x� is usually performed by taking a uniform random
sample � over 	
� �� and then transforming it: 
 � P����� (Fig. 3.7). Estimator (3.9) is therefore
equivalent to the following estimator:

hIiimp �
f�P������

p�P������
� (3.12)

This observation leads to the alternative interpretation of importance sampling as a transforma-
tion of the original integral:

I �
Z �

�
f�x�dx

�
Z �

�
f�P���t��

dx

dt
dt

�
Z �

�
f�P���t��

dP���t�

dt
dt

�
Z �

�

f�P���t��

p�P���t��
dt�

Uniformly sampling the latter integral is equivalent to sampling the original integral according
to p�x�. Figure 3.8 illustrates this idea. The variance reduction results from the transformed
integral being more constant and therefore easier to integrate. Note that importance sampling
can therefore easily be combined with stratified sampling. It is just uniform sampling after a
transformation and the uniform samples � can easily be stratified.
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Using PDFs in higher dimensions is somewhat more cumbersome. For each dimension a
sample has to be taken so as to obtain the desired multi-dimensional distribution. Consider for
instance the two-dimensional PDF p�x�� x�� over 	
� ��
 	
� ��. In order to sample a pair �
�� 
��
according to this distribution one can first sample 
� according to the following one-dimensional
distribution:

p��x�� �
Z �

�
p�x�� x��dx��

Once 
� is known 
� is sampled according to the distribution

p��x�jx� � 
�� �
p�
�� x��R �

� p�
�� x��dx�
�

The resulting distribution matches the desired distribution because its PDF is the product of the
one-dimensional PDFs: p�x�� x�� � p�x��p�x�jx��. Shirley [109] presents a few transformations
for two-dimensional PDFs that are common in computer graphics.

Importance sampling can in general be achieved by means of various alternative transforma-
tions. Especially in higher dimensions however the strata in the original parameter space may be
heavily distorted in the transformed parameter space. The coherence of the integrand over the
strata may decrease as a result, affecting the efficacy of stratified sampling. This presents an ad-
ditional concern when selecting a suitable transformation. Shirley [108] and Kolb et al. [61] for
instance suggest techniques that map uniformly distributed samples in a square onto uniformly
distributed samples on a disc. They distort the shape of the strata as little as possible and they are
therefore especially suited for stratified sampling. Another interesting example is the transforma-
tion presented by Arvo [4] that maps uniformly distributed samples in a square onto uniformly
distributed spatial angles inside a spherical triangle.

The main challenge with importance sampling lies in finding a function that approximates
the integrand and that can be used as a PDF after normalisation. It requires knowledge about
the integrand and therefore has to be studied specifically for each problem at hand. Most often
a single factor of the integrand, one that determines its shape and is practically tractable, is split
off and used as a PDF. In Chapter 4 we will investigate the alternatives for the integral equations
describing the global illumination problem.
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3.5 Combining Estimators

Sometimes it is hard to construct a single PDF that follows the shape of the entire integrand. It
may be easier to construct several PDFs each of which approximates some specific part of the
integrand. A common instance is an integrand that is a product of two factors. Often each of the
factors on their own can be transformed into a PDF, but not the product. Yet both factors may
predominantly determine the shape of the integrand in some regions. There are a few alternatives:
picking a single PDF, combining the PDFs and selecting a single sample, or selecting one sample
per PDF and combining the estimators.

In [113] Shirley et al. address the typical problem in physically-based rendering whether
to sample according to the BRDF or according to the light sources when computing the direct
illumination of a point on a surface. They suggest to identify the different factors as having a low,
a high or an unknown variation. A single sample is then sampled according to the factor with
the highest known variation, if the importance sampling is worth the additional computational
cost. When sampling the light sources they suggest to make a linear combination of the PDFs
corresponding to the individual luminaires. Again a single sample is taken according to the
resulting PDF. Unfortunately many choices in these techniques are intuitive and one has to rely
on rules of thumb to select acceptable parameters.

In [125, 126] Veach and Guibas present a novel approach in the contexts of direct illumination
computations and of bidirectional path tracing. Although the results seem quite fundamental we
have not found them in the general Monte Carlo literature. As it has proven to be very useful for
the algorithms discussed in Chapter 4 we will give it some more attention. We will also present
some minor improvements.

If one has several primary estimators, all computed with different PDFs, then it is not obvious
how to combine them into a single estimate. Simply averaging them will not be optimal in
general, as some estimators may be more reliable than others. The different estimators may
even have different qualities in different regions of the integration domain. Veach and Guibas
propose to make a weighted average of the estimators where the weights depend on the positions
of the samples. We will derive the condition for the result to be unbiased for a slightly simplified
case with a single sample per PDF. Suppose n random variables 
�� 
�� � � � � 
n are sampled over
	
� �� according to the respective PDFs p��x�� p��x�� � � � � pn�x�. The weighted sum of primary
estimators of integral (3.1) can then be written as

hIicombine �
nX
i��

wi�
i�
f�
i�

pi�
i�
� (3.13)

where wi�xi� are weight functions. The estimator should remain unbiased:

E�hIicombine� �
nX
i��

Z �

�

�
wi�xi�

f�xi�

pi�xi�

�
pi�xi�dxi

�
Z �

�

�
nX
i��

wi�x�

�
f�x�dx

�
Z �

�
f�x�dx�

This condition is satisfied for all possible integrands f�x� if and only if
nX
i��

wi�x� � �� (3.14)
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The variance of the combined estimators is the sum of the variances of the individual terms
as they are stochastically uncorrelated:

��combine �
nX
i��

�
�Z �

�

�
wi�xi�

f�xi�

pi�xi�

��
pi�xi�dxi �

�Z �

�
wi�xi�

f�xi�

pi�xi�
pi�xi�dxi

���� (3.15)

�
Z �

�

�
nX
i��

w�
i

pi�x�

�
f�x�dx�

nX
i��

�Z �

�
wi�x�f�x�dx

��
�

The choice of the weight functions is free as long as they satisfy condition (3.14). Some
alternatives are:

� wi�x� �
�
n

, yielding a simple averaging of the n estimators:

hIiaverage � �

n

nX
i��

f�
i�

pi�
i�
� (3.16)

� wi�x� � � for i equalling a fixed index k, and wi�x� � 
 for all other i. This results in the
selection of a single sample and its estimator k from the set of estimators:

hIiselect � f�
k�

pk�
k�
� (3.17)

Of course it is mostly of theoretical interest; it will not be used in practice as it wastes all
samples but one. Still, this choice can be optimal if its estimator is perfect while the others
are not. The variance obviously equals the variance of the selected estimator.

� wi�x� � � if pi�x� 
 pj�x� for all j �� i, and 0 otherwise yields the so-called maximum
heuristic. The resulting estimator is

hIimaximum �
nX
i��

�pi�
i� 
 pj�
i�� �j �� i��
f�
i�

pi�
i�

 
� (3.18)

� wi�x� �
pi�x	Pn

j��
pj�x	

, the so-called balance heuristic, yields

hIibalance �
nX
i��

f�
i�Pn
j�� pj�
i�

� (3.19)

The variance equals

��balance �
Z �

�

�Pn
i�� pi�x�

f ��x�dx�
nX
i��

�Z �

�

pi�x�Pn
j�� pj�x�

f�x�dx

��
� (3.20)

This choice is optimal in the sense that it minimises the sum of the second-order moments
of the individual terms of the estimator, i.e. the first term of the expression for the vari-
ance (3.15). For a more general case it is proven in [126] that the variance obtained using
other weight functions can only improve the balance heuristic by a limited amount:

��combine � ��balance �
�
�� �

n

	
I��
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� wi�x� �
p
�
i
�x	Pn

j��
p
�
j
�x	

is a generalisation of both the maximum heuristic and the balance

heuristic, called the power heuristic. The estimator becomes

hIipower �
nX
i��

p���i �
i�Pn
j�� p

�
j �
i�

f�
i�� (3.21)

The exponent � can be any number; � � � yields the balance heuristic and � � 	 yields
the maximum heuristic. The strategy is reported to be more effective than other heuristics
if the PDFs fit the integrand particularly well in regions where they are relatively large.
The exponent emphasizes the effects of the weights: they become even larger in regions
where they were relatively large already and smaller in regions where they were relatively
small.

As with importance sampling and other variance reduction techniques we can interpret the
combination of estimators as a transformation of the original integral. Formally:

I �
Z �

�
f�x�dx

�
nX
i��

Z �

�
wi�x�f�x�dx�

on the same condition as above that
Pn

i��wi�x� � �. From this point of view combining differ-
ent estimators of the same integrand with weight functions is actually equivalent to partitioning
the integrand with the weight functions and summing the estimators. Sampling each of the n
integrals with its corresponding PDF and summing the estimators yields the combined estima-
tor (3.13). The importance sampling corresponds to the following additional transformations:

I �
nX
i��

Z �

�

wi�P
��
i �t��

pi�P
��
i �t��

f�P��
i �t��dt�

Figures 3.9 to 3.14 illustrate the partitioning on an example. The integrand is the product of
two strongly peaked functions. The second and third graphs show how the integrand is parti-
tioned: into two equal parts (Fig. 3.9), into the function itself and 0 (Fig. 3.10), into 0 and the
function itself (Fig. 3.11), into parts corresponding to the maximum heuristic (Fig. 3.12), into
parts corresponding to the balance heuristic (Fig. 3.13) and into parts corresponding to the power
heuristic (Fig. 3.14). The respective parts are sampled according to the PDFs corresponding to
the two original peaked functions. The fourth and fifth graphs of each figure show the func-
tions after the transformations that are implied by the importance sampling. Both transformed
integrals are estimated with a single sample and the estimates are summed. This is equivalent
to taking a single sample from the two-dimensional function at the bottom of each figure. The
variance is also the sum of the variances as the samples are uncorrelated. The more constant both
transformed functions are the lower the variance will be. In this example the maximum heuristic
yields functions that are much more constant than the original function. In some subintervals the
functions drop to 0 though, thereby increasing the variance substantially. The effect is similar to
hit-or-miss sampling where the integrand is estimated by assigning 1 or a constant to a sample if
it lies within the volume to be integrated and 0 otherwise. This technique is very inefficient in
general and will also have a negative influence on the maximum heuristic. The balance heuristic
yields visibly much more constant functions and therefore better results. The power heuristic
with � � � lies somewhere in between both heuristics and has little effect in this case.
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Figure 3.9: An example integrand f�x� that is the product of two strongly peaked functions.
The integrand is partitioned by halving it. Both parts are sampled according to their own PDFs.
This is equivalent to the transformations shown. Finally the estimates are summed.
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Figure 3.10: The same integrand is now partitioned into itself and 0. Both parts are sampled
according to their own PDFs and the estimates are summed. The weight functions thus always
select the first estimator.
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Figure 3.11: The same integrand is now partitioned into 0 and itself. Both parts are sampled
according to their own PDFs and the estimates are summed. The weight functions thus always
select the second estimator.
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Figure 3.12: The same integrand is now partitioned on the basis of the maximum heuristic. The
weight functions are only 1 at points where the corresponding PDFs have the largest value. Both
resulting parts are sampled and the estimates are summed.
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Figure 3.13: The same integrand is now partitioned on the basis of the balance heuristic. The
weight functions are large at points where the corresponding PDFs are relatively large. Both
resulting parts are sampled and the estimates are summed.
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Figure 3.14: The same integrand is now partitioned on the basis of the power heuristic with
� � �. The weight functions are large at points where the corresponding PDFs are relatively
large, slightly more so than with the balance heuristic.
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An interesting question is whether these heuristics can be improved without any further
specific knowledge about the integrand. For some heuristics this appears to be possible. In
his discussion of stochastic quadrature rules Ermakow points out that estimators that are not
symmetrical in 
�� � � � � 
n can always be replaced by symmetrical estimators with a lower vari-
ance [30, pp. 124-125]. A multi-dimensional function F �x�� x�� � � � � xn� is called symmetrical in
this context if it remains invariant when its variables are permuted arbitrarily. Suppose one has
an estimator that is a function of n stochastic variables:

hIiasymmetrical � F �
�� � � � � 
n��

where the stochastic variables 
�� � � � � 
n are sampled over 	
� ��n according to the n-dimensional
PDF p�x�� � � � � xn�. If the estimator is not symmetrical a symmetrical estimator and a symmetri-
cal PDF can be constructed as follows:

hIisymmetrical �

P
P �k������kn	 F �
k�� � � � � 
kn�p�
k�� � � � � 
kn�P

P �k������kn	 p�
k�� � � � � 
kn�
�

psymmetrical�x�� � � � � xn� �
�

n�

X
P �k������kn	

p�xk� � � � � � xkn��

where the summation over P �k�� � � � � kn� denotes a summation over all possible permutations
of �� � � � � n assigned to k�� � � � � kn. One can easily show that the expected value of the esti-
mator remains unchanged. The symmetrical PDF only brings about a random permutation of
the stochastic variables which has no effect, as the estimator is now symmetrical. The original
PDF is therefore equally effective and simpler to use in practice. The variance of the symmet-
rical estimator however can be shown to be always lower than the original variance. For each
�x�� � � � � xn� � 	
� ��n:

�P
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X
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F ��xk� � � � � � xkn�p�xk� � � � � � xkn��

where the inequality holds because 	
P
aibi�

� � P
a�i bi

P
bi if all bi � 
. Integrating both sides

of this inequality over the interval 	
� �� yields the second order moments of the complete sym-
metrical and asymmetrical estimators respectively. Therefore always:

��symmetrical � ��asymmetrical� (3.22)
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We can now apply these findings to the combined estimator (3.13). The expression shows
that the estimator is in general not symmetrical in 
�� � � � � 
n if the factors wi�x��pi�x� differ. The
n-dimensional PDF is the product of the different PDFs:

p�x�� � � � � xn� � p��x�� � � � pn�xn��

Beside the artificial estimator that selects a single estimator from the ones available, the
combined estimator is not symmetrical for the maximum heuristic and for the power heuristic in
general (with � �� �). They can therefore be improved as follows:

� For the maximum heuristic the estimator becomes

hIimaximum�sym (3.23)

�

P
P �k������kn	

�Pn
i���pi�
ki� 
 pj�
ki�� �j �� i��

f��ki 	

pi��ki 	

 

�
p��
k�� � � � pn�
kn�P

P �k������kn	 p��
k�� � � � pn�
kn�
�

Figure 3.15 shows the symmetrical version of the maximum heuristic for the double-
peaked example function. Equation (3.22) guarantees that it is an improvement over the
ordinary maximum heuristic shown in the bottom graph of Fig. 3.12.

� For the power heuristic the estimator becomes

hIipower�sym �

P
P �k������kn	

�Pn
i��

p
���
i

��ki 	Pn

j��
p
�
j
��ki 	

f�
ki�

�
p��
k�� � � � pn�
kn�P

P �k������kn	 p��
k�� � � � pn�
kn�
� (3.24)

Figure 3.16 shows the symmetrical version of the power heuristic for the example func-
tion. Equation (3.22) again guarantees that it is an improvement over the ordinary power
heuristic shown in the bottom graph of Fig. 3.14. In this case the visible difference is small.

As mentioned earlier the stochastic variables can safely be sampled using the original non-
symmetrical PDF. The resulting estimators after transformation that are shown in the figures
are therefore not necessarily symmetrical anymore.

The balance heuristic cannot be improved any further using this technique as its estimator is
already symmetrical. Future research should point out if there are other ways to enhance it.

In general, the variance of a combination of n estimators can be better or worse than the
variance of n samples taken according to any of the individual PDFs pi�x�. It can also be better
or worse than the variance of n samples taken according to any linear combination of the PDFsP

i �ipi�x�. Veach and Guibas already mention that it is not possible to combine several bad
estimators into a single good estimator [126]. Moreover, if one estimator is perfect or nearly
perfect additional estimators will only increase the variance of the result. The main challenge
when applying the technique to actual problems therefore lies in finding PDFs that at least have
the potential to sample parts of the integrand efficiently.
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Figure 3.15: The symmetrical estimator derived from the maximum heuristic shown in Fig. 3.12,
after transformation on the basis of the original non-symmetrical PDF. The variance is guaran-
teed to be lower.
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Figure 3.16: The symmetrical estimator derived from the power heuristic with � � � shown
in Fig. 3.14, after transformation on the basis of the original non-symmetrical PDF. Again the
variance is guaranteed to be lower.
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3.6 Control Variates

The requirements for deriving a PDF from a function that approximates the integrand are some-
times difficult to meet. If one knows a function g�x� that approximates the integrand f�x� and
that can be integrated analytically then it can be used as a control variate (Fig. 3.17). Transform-
ing the original integral (3.1) again yields

I �
Z �

�
f�x�dx

�
Z �

�
	f�x�� g�x��dx�

Z �

�
g�x�dx

�
Z �

�
	f�x�� g�x��dx� J

�
Z �

�
	f�x�� g�x� � J �dx�

If a random variable 
 is sampled uniformly over 	
� �� the primary estimator for the latter ex-
pression becomes

hIicon � f�
�� g�
� � J� (3.25)

The expected value of the estimator still is the actual value of the integral. The variance now
becomes

��con �
Z �

�
	f�x�� g�x� � J ��dx� I�� (3.26)

f�x�� g�x� � J
f�x�� g�x�

g�x�
f�x�

10

0

Figure 3.17: A function g�x� that approximates f�x� and that can be integrated analytically can
serve as a control variate. It is more efficient to sample the difference between the functions
and add the known integral value J than to sample f�x� itself in order to compute an estimate.
As with importance sampling the variance reduction results from the transformed function being
more constant.
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As with importance sampling the ideal case g�x� � f�x� (and therefore J � I) would reduce
the variance to 0 but would also require the knowledge of the exact value of the integral. Control
variates that only approximate the integrand have a smoothing effect on it and thereby reduce the
variance of the estimator.

Unlike importance sampling control variates do not require the cumulative function of the
approximating function to be invertible. On the other hand the approximation has to be known
exactly. With importance sampling it only has to be known to a constant factor since the function
is normalised anyway. If a function is used for importance sampling it has no further effect
as a control variate. The implicit transformation of the importance sampling would reduce the
function to a constant. This constant function is useless as a control variate, as can be seen from
the expressions for the estimator (3.25). Halton [39, 38] makes a brief comparison between the
effectiveness of importance sampling and that of control variates. The intuitive conclusion is
that functions that approximate the integrand with a constant relative error are more effective as
a basis for importance sampling; functions that approximate the integrand with a small absolute
error are more effective as control variates.
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3.7 Monte Carlo Methods to Solve Integral Equations

Consider the following integral equation:

f�x� � g�x� �
Z �

�
K�x� y�f�y�dy� (3.27)

where f�x� is the unknown function, g�x� is a known function and K�x� y� is the kernel of
the integral operator. The equation is known as a Fredholm equation of the second kind. If it
cannot be solved analytically, which is often the case in practical applications, one can solve it
numerically. Finite element methods are a first alternative to compute an approximation to the
unknown function f�x�, as a sum of basis functions. In some cases it may not be feasible to
reconstruct the entire function, because it is too complex to store for instance. In other cases
it may not be necessary to know the entire function, if one is only interested in the function
values at a few sample points. Then an alternative approach is to use a Monte Carlo method that
computes f�x� for a fixed x by evaluating the right hand side as if it were an ordinary integral.
Because this in turn requires the evaluation of some f�y� the process is repeated recursively. If
all subsequent integrals are evaluated by each time taking a sample 
i over 	
� �� according to the
PDF pi�x� the resulting primary estimator looks as follows:

hf�x�irecursive � g�x� �
K�x� 
��

p��
��
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where 
� � x. The series of points 
�� 
�� � � � is a so-called Markov chain if the PDFs pi�x� for
each point 
i only depend on the previous point 
i��. It is also called a random walk, as one can
visualise the process as a series of random hops from one point to the next one over the domain
of the integral equation.

The integral equation can be written in short using an integral operator:

f � g � Tf�

The solution can then be written out as a Neumann series:

f � g � Tg � T �g � T �g � � � �

The primary estimator (3.28) can be regarded as a Monte Carlo evaluation of this sum of integrals.
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3.8 Russian roulette

The infinite number of terms in the estimator (3.28) presents a practical problem. The series
has to be cut off at some point. If the Neumann series converges the terms will converge to 0.
Truncating the series at some fixed point however is equivalent to consistently estimating one of
the integrals in the recursion as 0. From a theoretical point of view this unavoidably introduces
a bias into the result. Even from a practical point of view one is never sure that the neglected
terms are not important compared to the computed terms. A theoretically more sound technique
is Russian roulette. It does not cut off any of the subsequent integrals in a deterministic way,
but each of them may be cut off in a probabilistic way. Dividing the estimator by the proper
probability to compensate for the probabilistic truncation yields an unbiased estimator. The
primary estimator for the simple integral (3.1) can be derived through a simple transformation
(Fig. 3.18):

I �
Z �
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where:

� P = some arbitrary but fixed number in �
� ��,

� u�x� = the step function that is 1 for x � �, and 0 for x 
 �.

�
P
f� x

P
�

1P0

Figure 3.18: Russian roulette can be regarded as a transformation of the original integral. The
integrand is scaled down by P on the x-axis and scaled up by ��P on the y-axis. The value of
the integral remains the same. The Monte Carlo estimator of the transformed function over the
interval 	
� �� therefore has the same expected value, albeit with a larger variance. The technique
is mostly used to terminate an otherwise infinite recursion when solving an integral equation.
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Straightforward Monte Carlo integration of the latter integral with a single uniform random sam-
ple 
 from 	
� �� yields the following primary estimator:

hIiRussian �



�
P
f� �

P
� if 
 � P ,


 otherwise.
(3.29)

The estimator shows that P is actually the probability that the integrand f�x� has to be evalu-
ated. The probability that the estimator is just 0 is � � P . Russian roulette is therefore often
implemented by choosing two random variables, the first of which is used to decide whether the
estimate is 0 or not and the second of which is used to actually estimate the integral. One can
show that the variance of the latter approach is larger once the technique is being applied in com-
bination with stratified sampling (N -rooks sampling). Thus the above estimator is preferable.

The derivation shows that the estimator is unbiased. The variance unavoidably increases
compared to the standard primary estimator (3.2) however:
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Russian Roulette Combined with Importance Sampling and Control Vari-
ates

We will now analyse the effects of combining Russian roulette, importance sampling and control
variates, as the results will be of practical interest for the algorithms developed in the Chapter 4.

(a)

hIiRussian�imp

1P0
(b)

hIiRussian�imp�con

1P0

Figure 3.19: (a) Applying the same importance sampling as in Fig. 3.6 after the Russian roulette
smoothes the scaled function in a similar way. (b) Using a function proportional to the PDF as
a control variate normally does not have any additional effect. When applied before the Russian
roulette however, it smoothes the integrand further.
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As mentioned before a function that is used as a PDF for importance sampling cannot bring any
further benefits as a control variate. If Russian roulette is also applied however, the control variate
can reduce the variance further. Consider the function g�x� that approximates the integrand
f�x�, that can be integrated analytically (J �

R �
� g�x�dx) and that can be used to derive a PDF

(p�x� � g�x��J). If Russian roulette is applied, followed by importance sampling the estimator
on the basis of a uniform sample � over 	
� �� becomes a combination of Eq. (3.12) and Eq. (3.18):
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 otherwise.
(3.31)

Figure 3.19a shows the transformed integrand for the example. It has become more constant in
the region where it differs from 0. The variance equals
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If the function g�x� is used as a control variate before applying the Russian roulette the estimator
becomes
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Figure 3.19b shows the eventual integrand. The function has become more constant because the
part differing from 0 has been translated downwards and the constant part has been translated
upwards. Even in case the original function is not evaluated the estimate will differ from 0. The
variance can be shown to be equal to
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Comparing Eq. (3.32) and Eq. (3.34) shows that the variance will be smaller if the integral of the
approximating function lies close enough to the actual integral. More precisely:

��Russian�imp�con � ��Russian�imp � 
 � J � �I� (3.35)
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Russian Roulette Applied to Integral Equations

Russian roulette is usually only applied when the integral is actually part of an integral equation.
If it is applied at each level of the recursion the random walk is guaranteed to terminate, albeit in
a non-deterministic time. It becomes a finite series 
�� 
�� � � � � 
k because the integral is estimated
as 0 at some point 
k. If each 
i is sampled according to the PDF pi�x� with a probability Pi the
primary estimator (3.28) in the case of integral equation (3.27) becomes a finite sum:

hf�x�iRussian�recursive � g�x� (3.36)
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where 
� � x.
In many physical applications the normalisation value of the kernel K�x� y� is smaller than 1

for each x � 	
� ��:
Z �

�
K�x� y�dy � ��

The kernel can then be used as a so-called subcritical PDF. This is equivalent to sampling accord-
ing to its corresponding normalised PDF and using the normalisation constant as the probability
for Russian roulette:

Pi �
Z �

�
K�
i��� y�dy�

pi�x� �
K�
i��� x�

Pi

�

A subcritical PDF is therefore equally valid in estimators as a regular PDF. In this case the
primary estimator simplifies to the elegant expression

hf�x�isubcriticalPDF �
kX

i��

g�
i�� (3.37)

This approach entirely follows the spirit of importance sampling. The integral is likely to give
only a small additional contribution if the kernel is small. By setting a low probability for con-
tinuing the random walk at this point more work can be put in solving other –hopefully more
important– integrals and integral equations. Ermakow discusses alternative estimators in [30].
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3.9 Next Event Estimation

In our applications the estimator (3.37) suffers from a high variance because the source function
g�x� will be mostly 0 over the domain. The estimate will only spuriously get large contribu-
tions, which is an unfavourable hit-or-miss sampling effect. In that case next event estimation
offers great advantages. The original integral of integral equation (3.27) can be split up into two
separate integrals each of which is solved in a different way:
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The former integral is preferably estimated by sampling according to a PDF that is shaped similar
to the dominant factor g�y� of the integrand. In the latter integral h�y� is unknown so it is sampled
as before. Formally, if at each level of the recursion �i is sampled according to the PDF pi�z� and
each 
i according to the subcritical PDF K�
i��� x� the primary estimator becomes

hf�x�inextevent � g�x� � hh�x�inextevent�
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Combining the two equations yields
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3.10 Summary

In this chapter we have presented the basic principles of Monte Carlo methods that are important
for the global illumination algorithms presented in Chapter 4. All Monte Carlo methods are
essentially techniques for numerical integration. They compute an estimate for a definite integral
on the basis of random samples. The primary estimator expresses the estimate as a function of a
single sample. An estimator is unbiased if its expected value is equal to the actual value of the
integrand. Secondary estimators average several uncorrelated results from the primary estimator
into a more reliable estimator. The uncertainty of the result is quantified by the variance, which
is inversely proportional to the number of samples.

As the variance decreases only slowly when increasing the number of samples, research on
Monte Carlo methods is mainly directed towards finding other variance reducing techniques.
Most of these techniques can be regarded as transformations of the integral that try to smooth
the integrand, in the sense of making it more constant. Smoother functions are easier to integrate
numerically. For Monte Carlo methods this means a lower variance for the same number of
samples, or the same variance for a smaller number of samples.

A first important optimisation is stratification of the samples, to keep them from clumping
together. Samples that are spread out more or less evenly over the integration domain will in
general be better at capturing the shape of the integrand. The most straightforward unbiased
technique is to subdivide the integration domain into subdomains, then take a single sample
in each of the subdomains to estimate the partial integrals and finally sum the estimates. In
one dimension the subdomains are usually equally sized intervals. This can be extended to an
arbitrary or even an infinite number of dimensions using N -rooks sampling.

Importance sampling is intended to select more samples in regions where the integrand is
large, by using an appropriate probability density function (PDF). The estimator then has to
be adapted accordingly. Ideally the PDF should be proportional to the integrand. Importance
sampling corresponds to uniformly sampling the integrand after a transformation. The transfor-
mation is based on the inverse of the probability distribution function, which therefore has to be
practically computable.

If several potentially good PDFs are available they can be combined using heuristics such
as the balance heuristic that have provable good properties. This combining of estimators is
equivalent to partitioning the integrand and summing the estimators for the different parts. We
have shown how heuristics with non-symmetrical estimators can be further improved by deriving
symmetrical estimators.

Control variates are functions that approximate the integrand and that unlike the integrand
can be integrated analytically. Sampling the difference between the control variate and the inte-
grand and adding the analytically computed integral yields a new primary estimator with a lower
variance.

Monte Carlo methods can handle integral equations as well. The actual solution of the inte-
gral equation is only estimated in a specific point by treating the integral equation as a recursive
definite integral. The infinite recursion can be stopped using Russian roulette. We have shown
how Russian roulette and importance sampling can be combined with control variates, and under
which condition this reduces the variance further. A final variance reduction technique, specifi-
cally for integral equations, is next event estimation. It always estimates the source term one step
ahead in the recursion, in order to sample its shape more efficiently.
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In general, we have shown explicitly how all the variance reducing techniques discussed can
be seen as transformations of the original integral. The variance reduction results from the trans-
formed integrand being smoother and therefore easier to integrate. This observation also has
its practical use in that it shows that different variance reduction techniques, e.g. stratified sam-
pling and importance sampling, can be combined by consecutively applying the corresponding
transformations.

The transformations also show that all these variance reduction techniques are unbiased: av-
eraging an increasing number of primary estimates is guaranteed to converge to the desired solu-
tion. Still, a large number of samples is often required to reduce the uncertainty to an acceptable
level. In practice Monte Carlo methods often only have an accuracy of 0.1% or less. A primary
rule is therefore to compute quantities analytically wherever possible. Somewhat ironically all
variance reducing techniques also work this way. The more information one has about the prob-
lem the further the probabilistic Monte Carlo aspect and its associated variance can be reduced.
As Trotter and Tukey put it: “The only good Monte Carlos are dead Monte Carlos” [123] (quoted
in [38]).

The question remains whether deterministic methods are not preferable over probabilistic
methods. The inherent uncertainty on the results of Monte Carlo methods may feel awkward.
Deterministic methods on the other hand often have strict error bounds. However, these bounds
only hold under certain conditions on the integrand, which can rarely be met in practical appli-
cations. Physical quantities for instance often have complex discontinuities and oscillations in
space and in time. Furthermore, deterministic integration techniques typically suffer from the
curse of dimensionality, which is far less of a problem for Monte Carlo techniques. Shreider
suggests that Monte Carlo methods may be interesting for smooth integrands in 5 or more di-
mensions, for piece-wise smooth integrands in 2 or more dimensions and for less well-behaved
discontinuous integrands in any number of dimensions [114, pp. 124–125]. Progress in deter-
ministic integration techniques have undoubtedly shifted these boundaries considerably. Davis
and Rabinowitz [23, pp. 416–417] give an overview of classes of deterministic integration tech-
niques for integrals of dimensions up to 2, 7, 15 and even greater. Monte Carlo methods may
still be a viable alternative for problems with complex and high-dimensional integrands.

Other research has investigated the possibilities of biased estimators that still have a lower
error overall and the possibilities of quasi-Monte Carlo methods. Quasi-Monte Carlo methods
apply the same techniques as Monte Carlo methods, only substituting the random numbers by
deterministic sequences of numbers that have desirable properties. They allow to put more rigid
bounds on the integration error as with deterministic methods, also under similar conditions.
Although their convergence rate is claimed to be far superior for some problems, some tech-
nical difficulties still remain. Their application to more complex problems such as the global
illumination problem largely remains to be explored so far.

In Chapter 4 we will discuss the application of the standard Monte Carlo techniques explained
in this chapter to the global illumination problem and to physically-based rendering in particular.
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Chapter 4

Monte Carlo Methods Applied to the
Global Illumination Problem

In this chapter we will apply the generic Monte Carlo methods discussed in Chapter 3 to the
mathematical models of the global illumination problem discussed in Chapter 2. While the basic
principles are straightforward almost all variance reduction techniques require more informa-
tion about the problem at hand. We will discuss various alternatives for the global illumination
problem and evaluate their performance.

Although the mathematical models for global illumination are completely general we will re-
strict ourselves to computing the radiant flux or average radiance for pixels, as shown in Fig. 2.5,
rather than for patches or other sets of points and directions in the scene, as shown in Fig. 2.4.
The algorithms will therefore be ray tracing-like algorithms rather than radiosity-like algorithms.
They produce photo-realistic images of a scene rather than radiance values for all points and di-
rections in the scene. The advantage of this approach is flexibility; the relative simplicity of the
desired output, if only because of the data structure required to represent the results, allows for
more complex problems and more versatile algorithms.

The choice for a Monte Carlo approach is not self-evident. In the case of physically-based
rendering at least a few arguments plead in favour of this approach however:

� The integrals that describe the problem are high-dimensional. In general some integrand
has to be sampled over each pixel to obtain anti-aliasing, which accounts for two dimen-
sions. If depth of field is to be simulated the integrand also has to be sampled over the
camera aperture, accounting for another two dimensions. Light tracing techniques on the
other hand sample over surfaces and hemispherical directions of the light sources, rather
than over the pixels and the camera aperture. This also corresponds to four dimensions.
Some algorithms combine both sampling techniques. If motion blur is to be simulated the
integrand has to be sampled over time, adding yet another dimension. The actual global
illumination problem itself is defined by integral equations over the two-dimensional hemi-
sphere. Monte Carlo methods are less sensitive to the dimension of the problem than de-
terministic techniques.

� The integrands in all global illumination equations are complex. The radiance function and
the potential function can be shown to be bounded because of physical reasons, but they are
not necessarily of bounded variation. They usually have an unwieldy number of first-order
and higher-order discontinuities. Radiosity methods can still determine these discontinu-
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ities explicitly, as they consider a simplified problem with perfectly diffuse surfaces. The
radiance functions only have discontinuities in the 2D space of the surfaces as the functions
are assumed constant along the directional dimensions, i.e. over the hemisphere. Discon-
tinuity meshing algorithms can thus subdivide the finite elements, e.g. [98, 44, 45, 74].
While the associated computational cost is already high for diffuse surfaces, it becomes
prohibitive for general radiance or potential functions in the 4D or 5D space of positions
and directions. This presents problems to any numerical technique that relies on the inte-
grands being smooth or well-behaved. Monte Carlo methods are generally more robust in
this respect.

� The required accuracy of the results is very small compared to many other applications.
The computed images are generally intended as an end product, for viewing purposes.
The human eye has a great dynamic range but only a limited absolute sensitivity. This
is partially reflected in the accuracy of “true colour” displays that are typically limited
to 8 bits per colour channel. An accuracy of only 0.1 to 1% will therefore be perfectly
acceptable in general.

As discussed in Chapter 3 these arguments support the choice of Monte Carlo methods over
deterministic approaches for solving the global illumination problem. Their versatility allows to
attack the problem in its most general shape without making gross simplifications a priori. We are
interested in physically based rendering without restraining the geometry and optical properties
of the scenes or the optical effects to be rendered. Monte Carlo methods seem most suitable
for this purpose as they only point-sample the functions that define the geometry and the optical
properties. We attempt not to resort to shortcuts for specific cases such as perfectly diffuse or
perfectly specular surfaces. The rendering algorithms should be generally applicable.

The most obvious cost of this versatility is a slower convergence. Cook [19] notes that any
remaining stochastic noise in the images is less objectionable to our visual system than the alias-
ing effects of deterministic techniques. In spite of this and of the low accuracy that is required
the slow convergence remains the major obstacle for Monte Carlo rendering techniques to be
practical. Reducing their errors to an acceptable level with acceptable computation times calls
for a detailed study of their application to physically-based rendering.

A pragmatic point of view is that Monte Carlo methods still play an important role in many
algorithms for physically-based rendering, in spite of their disadvantages. Chief examples are the
computation of form-factors in radiosity methods, e.g. [128, 41] and especially the final rendering
steps in many rendering algorithms, e.g. [127, 117, 11, 137]. It may therefore be worthwhile to
study their application to this domain more thoroughly.

We will stress the unbiasedness of the Monte Carlo methods we present. This is an aspect
that is often neglected in practice. Many earlier Monte Carlo rendering algorithms make approx-
imations that are intuitive and yield visually pleasing results. Unfortunately they sometimes lack
a theoretical basis. Especially in physically-based rendering we should only have to resort to
shortcuts when all standard mathematical techniques are exhausted. Kirk and Arvo [56] noted
the undesired effects of biased adaptive sampling techniques in computer graphics. Unbiased-
ness provides a minimal rule by which to develop Monte Carlo algorithms. It guarantees that
the algorithms will eventually converge to the correct solution. Even if this remains a rather un-
helpful argument in practice, recent progress, which we will discuss later, seems to indicate that
there is room for improvement in this direction. This makes unbiased techniques worthwhile to
explore.
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In this chapter we will show how the different mathematical models for global illumina-
tion can lead to different rendering algorithms by straightforward Monte Carlo integration. The
most commonly known model is the rendering equation as the basis of stochastic ray tracing
algorithms. In a similar way the potential equation naturally gives rise to various light trac-
ing algorithms. We will discuss their specific advantages and disadvantages and apply standard
variance reduction techniques to improve their efficiency. Finally, we will demonstrate how the
global reflectance distribution function and its corresponding integral equations lead to a new
algorithm, called bidirectional path tracing. This algorithm effectively combines the favourable
properties of previous algorithms. Test examples will illustrate the practical performance of all
algorithms and optimisations.
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4.1 Monte Carlo Methods Applied to the Rendering Equation
– Path Tracing

4.1.1 Basic Algorithm

A first approach to solve the global illumination problem is based on the rendering equation.
It leads to various stochastic ray tracing algorithms. Ray tracing was first introduced by Whit-
ted [135] as an empirical and deterministic algorithm for simulating various illumination effects.
Cook [20] extended the algorithm with stochastic sampling techniques [20, 19]. Kajiya [53] was
the first to recognise that the algorithm actually tries to solve the rendering equation. Many other
researchers have developed this idea further to construct optimised physically based rendering
algorithms, e.g [134, 106, 99, 69]. They have proposed various techniques such as stratified sam-
pling, adaptive sampling and filtering. Some of these techniques are biased and some of them are
not. In the following sections we will present an overview of common unbiased optimisations in
the notation of our framework and discuss their merits.

The derivation of the basic algorithm starts from the expression of the radiant flux in terms
of radiance (2.6) and the rendering equation (2.11), i.e. the integral equation that describes the
radiance function:

� �
Z
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Z
�x

L�x��x�We�x��x� j�x �Nxj d�xd�x� (2.6)

L�x��x� � Le�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y� (2.11)

We would like to compute the flux or average radiance � through each of the pixels in turn.
Sampling stochastic variables x� and �x� according to some PDF p��x��x� over all surface
points and corresponding hemispheres yields the following primary estimator for the integral of
Eq. (2.6):

h�ipath �
We�x���x�� j�x� �Nx�j

p��x���x��
hL�x���x��ipath�

For image-based rendering algorithms the self-emitted potential for all points and directions
depends on the eye point and on the pixel and is therefore only known indirectly. It depends on
the camera model, as explained in some more detail in Appendix A. In practice a point x�� on the
camera aperture and the direction �x� pointing through the pixel are sampled according to a PDF
p���x��x�. Point x� is then determined by tracing a ray to the nearest surface: x� � r�x����

��
x�
�.

The PDF p��x��x� that is implicitly used for sampling x� and �x� can easily be evaluated a
posteriori:

p��x���x�� �
p���x����x�� j�x� �Nx�j

kx�� � x�k� �

The radiance function is unknown, but the particular value L�x���x�� can be estimated by
treating the rendering equation (2.11) as an infinitely recursive integral, as explained in Sec-
tion 3.7. Applying Russian roulette as in Section 3.8 ensures that the recursion terminates after
a finite number of steps without introducing a bias. If the probability for continuing the random
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walk at each level of the recursion is Pi and each direction �xi is sampled according to a PDF
pi��x� over the hemisphere the general primary estimator (3.36) becomes

h�ipath �
We�x���x�� j�x� �Nx� j

p��x���x��
(4.1)
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where the length of the random walk x�� � � � � xl defines l. Each point xi � r�xi����
��
xi
�, as al-

ready specified in the rendering equation (2.11). This is implemented by tracing a ray from point
xi�� along direction ���

xi
and finding the nearest point xi (Fig. 4.1). The resulting algorithm ob-

viously is a generic form of path tracing, without explicit sampling of the light sources (Fig. 4.2).
The algorithm was first presented by Kajiya [53] as a Monte Carlo solution for physically-based
rendering. Rays are sent out from the virtual eye point through a pixel. They bounce through
the scene and contribute to the estimate of the flux every time they hit a light source. As such
it is a so-called light gathering approach. Figures 4.3 and 4.4 demonstrate the principles on an
example scene.
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Figure 4.1: Explanation of the symbols used in the path tracing algorithm.

eye point

screen
light source

eye path

Figure 4.2: Schematic overview of the path tracing algorithm. The radiant flux through a pixel
has to be estimated. The tracing of a primary ray from the virtual eye point through a pixel
corresponds to sampling the expression for the flux. The subsequent random walk through the
scene corresponds to recursively estimating the radiance values. Each time a light source is hit a
contribution is added to the estimate.
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Figure 4.3: An example scene rendered with the path tracing algorithm. The algorithm is best
suited for scenes with mostly specular surfaces and large diffuse luminaires. This scene contains
large light boxes and a few objects with different geometries and optical characteristics. Note
the typical global illumination effects: indirect illumination, glossy reflections, soft shadows and
“colour bleeding” of the coloured objects on the white surfaces.

Figure 4.4: A few examples of random walks bouncing through the scene (blue rays), taken
from an actual simulation. In this case all walks start from the same pixel in the lower part of the
image. Whenever a ray hits an emitting surface a contribution is added to the pixel. If the light
sources are small, few rays will hit them. These few but possibly large contributions will result
in a large variance.
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4.1.2 Stratified Sampling

Multi-dimensional stratified sampling as presented in Section 3.3 can also be applied to the ex-
pression of the radiant flux (2.6) and to the rendering equation (2.11). In the context of stochastic
ray tracing several researchers discuss the use of sampling techniques that try to distribute the
samples uniformly, such as jittered sampling and Poisson disc sampling, in one and two di-
mensions [25, 71, 19]. In his PhD dissertation Shirley [106] compares two-dimensional N -rooks
sampling to Poisson disc sampling and jittered sampling. On the basis of practical test results and
a theoretical equidistribution metric called discrepancy [136, 108] N -rooks sampling compares
favourably to the alternative methods. Heinrich and Keller [46] include several quasi-Monte
Carlo methods in the comparison. Their tests indicate that the convergence rates are of the same
order of magnitude. Chiu et al. [12] present a combination of N -rooks and grid sampling in two
dimensions that combines the properties of both.

For higher dimensions Cook [19] extends the stratification by constructing two-dimensional
random prototype patterns, specifically for sampling the pixel, the lens, the reflections, etc.
Mitchell [79], Shirley [106] and Schlick [99] discuss multi-dimensionalN -rooks sampling. This
approach is particularly attractive because of its simplicity. Mitchell [80] compares several strat-
ification techniques in two and three dimensions. He shows that quasi-Monte Carlo distributions
such as Zaremba-Hammersley points can have a better theoretical asymptotic behaviour than N -
rooks sampling. Unfortunately the error bounds derived for quasi-Monte Carlo techniques are
not applicable, because the integrands of the global illumination problem are rarely of limited
variation; they are most often highly discontinuous. Heinrich and Keller [47] and Keller [55]
experiment with Halton and Hammersley sequences of quasi-random points for solving the ren-
dering equation for a simple scene. The results look promising, although it is not obvious if they
can be extrapolated to more complex scenes. A practical problem is that the sequences can be
constructed for any fixed number of dimensions but to our knowledge not for an arbitrary and a
priori unknown number, as we require.

One can wonder whether stratified sampling is worth bothering with, as it derives its vari-
ance reduction from coherence in the integrand. The integrand is highly discontinuous over the
hemisphere, because of the discontinuous incoming radiance function. After even a single step
in the recursion, i.e. after one reflection on the ray path, there will often be little coherence left.
However, stratified sampling can at least be worthwhile for sampling the initial expression for the
flux which usually has some coherence. The primary rays will have a better spatial distribution
for sampling the surfaces visible through the pixel. Even if they hit a single surface the fraction
of rays reflected after Russian roulette is a better approximation of the desired fraction. Each of
the reflected rays yields a contribution to the estimate. Reducing the randomness of this frac-
tion therefore significantly reduces the randomness of the result. This reasoning can be extended
further. If subsequently reflected rays are sampled according to a highly specular BRDF the
following integrands may still be coherent, which can again be exploited by stratified sampling.

Overall, stratified sampling has the potential to improve the results and this at little cost. It
should therefore be considered a worthwhile addition to the set of variance reduction techniques
for path tracing as well. A specific advantage of N -rooks sampling is that it offers a perfect
stratification of the individual dimensions, even if one or more dimensions fold into a point, e.g.
when rendering images without depth of field or motion blur.

As noted in Sections 3.3 and 3.4, the effectiveness of any stratification technique depends a
lot on the parametrisation of the integrals. It therefore also depends on the way any importance
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sampling scheme is applied, as one scheme may be implemented using several alternative trans-
formations or parametrisations. A transformation that maps a “compact” region of the unit square
onto some distorted region of the hemisphere will be just as effective as any other equivalent
transformation as far as importance sampling is concerned, but it will decrease the effectiveness
of the stratification.

4.1.3 Importance Sampling

As discussed in Section 3.4 importance sampling should attempt to select more samples in im-
portant regions of the integrand. In the context of ray tracing it is commonly used to select
reflection directions at surfaces, such that more rays are sent in the specular reflection directions
of the hemisphere. Deterministic, non-physical ray tracing algorithms even send a single reflec-
tion ray in the perfect reflection direction. This eliminates the uncertainty on the result and yields
noiseless images. It is however a very crude approximation, which is definitely biased. Since the
introduction of the rendering equation physically more correct approaches have been proposed,
e.g. [53, 106, 57, 113]. Numerous alternative sampling techniques are possible. We will discuss
importance sampling in a slightly more generic way in the context of our framework.

The integral of Eq. (2.6) has a known part We�x��x� j�x �Nxj, which is different for each
pixel. The most natural choice is to sample the integral according to a PDF that is proportional
to this part. The PDF for the stochastic variables x� and �x� then equals

p��x��x� �
We�x��x� j�x �Nxj

W
� (4.2)

where W is the normalisation factor:

W �
Z
A

Z
�x

We�x��x� j�x �Nxj d�xd�x�

This PDF ensures that points and directions are sampled that contribute to the pixel for which the
flux is being computed, proportionally to their importance for the flux. Depending on the camera
model, which determines the importance We�x��x� (cfr. Appendix A.2), this may or may not be

x

L x Θx,( )
fr x Θy Θx, ,( ) Θy Nx⋅

Figure 4.5: Importance sampling of the rendering equation is usually based on the local re-
flectance properties of the surface. The optimisation selects more samples along incoming di-
rections for which the BRDF fr�x��y��x� times the cosine of the incoming direction with the
normal j�y �Nxj is large. The path tracing algorithm then traces more rays along these impor-
tant directions. Importance sampling will mainly reduce the variance of the estimator for specular
surfaces, where the BRDF largely determines the shape of the integrand.
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perfectly feasible. If not, it is in general possible to construct an approximating PDF and modify
the estimators accordingly.

The rendering equation (2.11) has a known part fr�xi����x��xi���
����x �Nxi��

��� at each point
in the recursion. The integral of this factor over the hemisphere is the directional-hemispherical
reflectance ��xi����xi���. According to the law of conservation of energy (2.9) it is always
smaller than 1. The function can therefore in principle be used as a subcritical PDF for sampling
�xi over the hemisphere (Fig. 4.5):

Pi pi��x� � fr�xi����x��xi���
����x �Nxi��

��� � (4.3)

As in Eq. (3.37) the primary estimator (4.1) now simplifies to

h�ipath�imp � W
lX

i��

Le�xi��xi�� (4.4)

The importance sampling based on the BRDFs ensures that more rays are sent in directions
that will have large contributions, at least according to the local reflective properties. Unfortu-
nately it is rarely possible to sample perfectly according to the proposed PDFs, because they
cannot be integrated and then inverted. One usually has to sample according to approximate
PDFs instead and apply the more general expression of Eq. (4.1). The estimator is unbiased but
may have a larger variance. In [66] we discuss various aspects of importance sampling according
to a modified Phong BRDF.

More importantly, the PDFs may not be ideal because of the unknown radiance function in the
integrals. Simple importance sampling ignores this factor, although it may have a large influence
on the shape of the integrand. More specifically directions towards light sources and bright areas
in general are important. Additional information about the radiance function can therefore help
to construct better PDFs, as we will show in Section 4.1.7.

Importance sampling is essential for path tracing as it is the only way to efficiently capture
the possibly sharp peaks of specular BRDFs that dominate the integrand. The radiance function
will then be relatively constant compared to the BRDF so that the latter is a well-suited basis for
a PDF. The algorithm as a whole therefore performs best on scenes with specular surfaces and
diffuse illumination and large diffuse luminaires.

4.1.4 Next Event Estimation

In many common scenes the luminaires are relatively small. Rays then have a low probability
of hitting a light source and most random walks will not contribute to the estimate of the flux.
The effect is similar to hit-or-miss sampling, which also has a large variance. As discussed in
Section 3.9, it can be remedied by applying next event estimation to the sampling of the rendering
equation (2.11):

L�x��x� � Le�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y
� Le�x��x� � Lr�x��x��

where the latter term Lr physically corresponds to the radiance resulting from incident light that
is reflected:

Lr�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y
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�
Z
���x

	Le�y��y� � Lr�y��y��fr�x��y��x� j�y �Nxj d�y

�
Z
���x

Le�y��y�fr�x��y��x� j�y �Nxj d�y

�
Z
���x

Lr�y��y�fr�x��y��x� j�y �Nxj d�y

�
Z
A
Le�y��y�fr�x��y�x��x�v�x� y�

j�y�x �Nxj j�y�x �Nyj
kx� yk� d�y

�
Z
���x

Lr�y��y�fr�x��y��x� j�y �Nxj d�y
� Ld�x��x� � Li�x��x��

The former integral expresses the radiance Ld resulting from direct illumination. The latter
integral expresses the radiance Li resulting from indirect illumination. The directly reflected
radiance is usually estimated by sampling a point on a light source, hence the transformation to
a more convenient expression similar to Eq. (2.13). A simple option for sampling point y in this
integral is a PDF that is proportional to the self-emitted radiance integrated over the hemisphere
at each point:

p�y� �
L�y�

L
� (4.5)

where:

� L�y� �
R
�y
Le�y��y� j�y �Nyj d�y, the self-emitted radiosity or radiant exitance at point

y [W�m�],

� L �
R
A

R
�y
Le�y��y� j�y �Nyj d�yd�y, the total self-emitted flux in the scene [W ].

If all other integrals are sampled as in the previous section, according to the PDF (4.2) and
subcritical PDF (4.3), the estimator (4.4) changes into

h�ipath�imp�nextevent � W

�
Le�x���x�� �

L

L�y�

lX
i��

Le�y��y�xi� (4.6)


 fr�xi��y�xi��xi�v�xi� y�
j�y�xi �Nxij j�y�xi �Nyj

kxi � yk�
�
�

Figure 4.6 gives an overview of the symbols used in the expressions.
The resulting algorithm is path tracing with explicit sampling of the light sources to compute

direct illumination (Fig. 4.7). The algorithm traces rays from the eye point that reflect through
the scene. The visibility function is evaluated by means of a shadow ray at each intersection
point.

The PDF for sampling the direct illumination (4.5) does not take into account any singular-
ities of the integral. They are evaluated in the estimator (4.6) instead. This is an unfortunate
deficiency, as mentioned in Section 3.4. The estimate can become arbitrarily large as a result
of the division by kxi � yk�. These large estimates can easily overwhelm the other primary
estimates with which they are averaged and eventually show up as bright pixels in the image.

As before, the algorithm is best-suited for scenes with mostly specular surfaces. Only now
the next event estimation is most efficient if the light sources are small and if they illuminate
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most of the scene directly. The PDFs for sampling the light sources then dominate the integrand
(Fig. 4.8 and 4.9).

In this particular instantiation the same point on one of the light sources is used at all levels
of the recursion. Alternatively a different point can be sampled each time. It is then also possible
to use more sophisticated sampling techniques that take into account different factors than just
self-emitted radiance, such as distance or subtended solid angle. Shirley et al. [112, 113] present
several of these techniques for different types of luminaires. Zimmerman and Shirley [137]
present a more complex approach to select between different sampling techniques depending
on the characteristics of the light sources. In their particular algorithm the light sources have
a vast range of characteristics as they comprise all the patches of the scene after a radiosity
preprocessing step.
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Figure 4.6: Explanation of the symbols used in the path tracing algorithm with event estimation.
The random walk remains the same as without next event estimation (Fig. 4.1) but an additional
point y is now sampled on a light source.

eye point

screen
light source

eye path

shadow rays

Figure 4.7: Schematic overview of the path tracing algorithm with next event estimation. Direct
illumination is now computed explicitly at each point on the random walk by sampling the light
sources.
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Figure 4.8: An example scene rendered with the path tracing algorithm with next event esti-
mation. The algorithm is best suited for scenes with mostly specular surfaces and small diffuse
luminaires. In this case there is a single light spot against the ceiling.

Figure 4.9: An example random walk (blue rays) starting from a pixel in the lower left corner
of the image. From each intersection point a shadow ray is cast to the light source. If it does not
hit an object (green ray) an illumination contribution is added to the pixel. If it does hit an object
(red rays) no contribution is added.
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4.1.5 Combining Estimators

One of the applications presented by Veach and Guibas [126] for their heuristics to combine
different estimators is the computation of direct illumination. In pure path tracing direct il-
lumination at each point on the eye path is estimated by sampling the hemisphere, preferably
according to the BRDF. In path tracing with next event estimation it is estimated by sampling
the light sources, preferably according to their radiance or their radiosity. The hemisphere is still
sampled however, in order to estimate the indirect illumination. As a ray is already cast for this
purpose the sample offers an alternative estimator for the direct illumination as well, without
much additional work.

For this purpose the samples have to be specified in the same parameter space, for instance
the space of all points on the surfaces. When the algorithm samples a direction and then traces
a ray to determine a point the probability density for sampling that point can be computed using
a simple transformation. If p��� is a PDF for sampling �x over the hemisphere �x and if
y � r�x��x� then the implicit probability density for sampling y is

p�y� � p��x�
j�x �Nyj
kx� yk� �

This value can easily be computed a posteriori. Assuming for instance all samples are taken as
in path tracing with next event estimation, according to PDF (4.5), PDF (4.2) and subcritical
PDF (4.3), the estimator eventually becomes

h�ipath�imp�nextevent�comb � W 	Le�x���x�� (4.7)

� L
lX

i��

Le�y��y�xi�v�xi� y�fr�xi��y�xi��xi� j�y�xi �Nxij j�y�xi �Nyj
L�y�kxi � yk� � Lfr�xi��y�xi��xi� j�y�xi �Nxij j�y�xi �Nyj

� L
lX

i��

Le�y��xi�fr�xi����xi��xi���
����xi �Nxi��

��� j�xi �Nyj
L�y�kxi � yk� � Lfr�xi����xi��xi���

����xi �Nxi��

��� j�xi �Nyj

�
� �

Apart from the interesting properties discussed in Section 3.5 the estimator is particularly strik-
ing because the combination of a bounded but generally inefficient and a more efficient but
unbounded estimator results in an estimator that is in general bounded. Practical tests presented
in [126] and in Chapter 5 strongly indicate its efficiency for a wide range of illumination condi-
tions.
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4.1.6 Control Variates

Control variates as discussed in Section 3.6 can also be applied to the mathematical models of
the global illumination problem. An approximating function that is already used as a PDF for
importance sampling cannot improve the results any further as a control variate. However, in
Section 3.8 we have shown that it can improve the results if the PDF is subcritical. This is the
case when sampling the rendering equation (2.11) using the PDF of Eq. (4.3). In [64] we have
therefore proposed to derive a simple control variate, proportional to the PDF, by assuming that
the incoming radiance is equal to some constant ambient radiance La (Fig. 4.10). Rewriting the
rendering equation yields

L�x��x� � Le�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y

� Le�x��x� �
Z
���x

	L�y��y�� La�fr�x��y��x� j�y �Nxj d�y

�
Z
���x

Lafr�x��y��x� j�y �Nxj d�y

� Le�x��x� �
Z
���x

	L�y��y�� La�fr�x��y��x� j�y �Nxj d�y
���x��x�La�

If the integrals are sampled according to the same PDFs, estimator (4.4) becomes

h�ipath�imp�con � W 	Le�x���x�� � ��x���x��La (4.8)

�
lX

i��

	Le�xi��xi�� La � ��xi��xi�La�

�

� W

�
La �

lX
i��

	Le�xi��xi�� ��� ��xi��xi��La�

�
�

The control variates add some approximate contribution to the estimate, even if Russian roulette
terminates the random walk at some random point. The result remains unbiased by only estimat-
ing the difference with the approximation whenever the random walk continues.

x

L x Θx,( )
L y Θy,( )

x

La

x

L y Θy,( ) La–

= +

Figure 4.10: A simple control variate for the rendering equation can be derived by selecting a
constant ambient incoming radiance La. The resulting reflected radiance is equal to ��x��x�La,
which can often be computed analytically. Instead of sampling L�y��y� the path tracing algo-
rithm now sums this approximation with the result from sampling the difference L�y��y�� La,
to obtain an unbiased estimate for the actual reflected radiance L�x��x�. If La is chosen appro-
priately the estimator will have a lower variance.
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Control variates can also be combined with next event estimation. It then only approxi-
mates the indirect incoming radiance as the self-emitted radiance is computed separately. Esti-
mator (4.6) becomes

h�ipath�imp�nextevent�con � W

�
Le�x���x�� � La �

lX
i��

�
L
Le�y��y�xi�

L�y�
(4.9)


 fr�xi��y�xi��xi�v�xi� y�
j�y�xi �Nxi j j�y�xi �Nyj

kxi � yk� � ��� ��xi��xi��La

��
�

Eq. (3.35) expresses formally how close the integrated control variate should approximate the
actual integral value to reduce the variance of the sampling process. For estimator (4.8) without
next event estimation this means that La should be such that at each point xi


 � ��xi��xi�La � �Lr�xi��xi��

where Lr is the actually reflected radiance, as defined in Section 3.9.
For estimator (4.9) with next event estimation it means that La should be such that


 � ��xi��xi�La � �Li�xi��xi��

where Li is the reflected radiance resulting from indirect illumination.
The functions Lr�x��x����x��x� and even more Li�x��x����x��x� are relatively constant

for common scenes as the illumination becomes smoother after each reflection. The conditions
can thus be satisfied in both cases by choosing an appropriate ambient radiance La. The value
can be conservatively small if necessary; a value of 0 is equivalent to not using a control variate
at all. A more sophisticated approach could be to apply different values for different points and
directions. The improvements that are proposed in the next section do exactly this, based in
additional information about the illumination.

4.1.7 Improved Importance Sampling and Control Variates

In [67] we have presented further improvements to the importance sampling and control variates
of Sections 4.1.3 and 4.1.6. These variance reduction techniques are typically based on the local
reflectance characteristics of the surfaces, which represent an important factor of the integrand.
The field radiance, which is the other factor in the integrand, is simply approximated as a con-
stant. More detailed information about the field radiance could therefore help to improve the
importance sampling and the control variates.

Information about the field radiance throughout the scene has to be stored in an appropriate
data structure. Various data structures to store information about the illumination in a scene
have been proposed in the literature. Boundary element methods such as the radiosity method
store information for each of the elements of the discretised surfaces. The information is usually
restricted to the diffuse component of the illumination, although extensions to store directional
information as well have been proposed, e.g. by discretising the hemisphere [49] or by using
spherical harmonics [116]. Ward [134, 133] uses an octree that is independent from the surfaces
to store diffuse illumination along with information about the gradients. Environment mapping
techniques such as the one proposed by Reinhard et al. [91] store approximate incoming radiance
values for a set of discrete directions. Finite element methods for rendering participating media
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discretise the space into regular grids [82, 70, 76] or hierarchical structures [115], mostly without
storing directional information.

We propose a 5D tree which is a straightforward extension of the 1D binary tree, the 2D
quadtree, the 3D octree, etc. The dimensions are the three regular spatial dimensions and two
additional angular dimensions. Arvo and Kirk [5] already presented a similar tree structure in
the context of accelerating ray intersection tests. For convenience a 5D point corresponding to
a point �x� y� z� and a direction ��� �� is represented in coordinates that are normalised to lie
between 0 and 1:

�xn� yn� zn� sn� tn�

where:

xn � �x� xmin���xmax � xmin��

yn � �y � ymin���ymax � ymin��

zn � �z � zmin���zmax � zmin��

sn � �cos � � �����

tn � ����	�

This parametrisation ensures a uniform subdivision: equally sized 5D volumes at any 5D position
correspond to equal 3D volumes and equal spatial angles. The branching factor of the tree is
�� � ��. It may seem that this would give rise to an explosive growth of the storage requirements,
but it is not a problem in practice as only nodes that are effectively needed to store values are
created.

The data stored in the tree are averaged field radiance values. Throughout the simulation, the
path tracing algorithm estimates field radiance values at different levels of the recursion. Each
estimate is averaged with the values already stored in the appropriate nodes of the tree. Whenever
the number of estimates averaged in a node exceeds a given maximum threshold the node is split;
a new node is created if necessary. The building of the tree is in a sense importance-driven; more
detailed representations are constructed in regions where more rays are traced.

The best estimate for any point and direction can be retrieved from the tree at any time by
descending to the lowest node corresponding to the given coordinates. We impose a minimum
threshold on the number of averaged values for the estimate to be reliable. While the represen-
tation is not as accurate as representations that are based in the geometry of the surfaces we now
avoid any meshing problems. The tree automatically makes abstraction of the complexity of the
scene. Large groups of small geometric and optical details (e.g. a desk cluttered with books, pen-
cils and paper clips) are treated as a whole by storing only averaged incoming radiance values.
The tree is simple to maintain, adaptive and versatile.

The information can now be used to construct PDFs for importance sampling and control
variates. The original normalised PDFs pi��x� of Eq. (4.3), on the basis of the BRDFs, implicitly
entail a transformation to a different parameter space, as discussed in general in Section 3.4. We
will write this parameter space explicitly using �
�� 
�� � 	
� ��
 	
� ��. Rewriting the rendering
equation:

L�x��x� � Le�x��x� �
Z
���x

L�y��y�fr�x��y��x� j�y �Nxj d�y

� Le�x��x� � P
Z
���x

L�y��y�
fr�x��y��x� j�y �Nxj

P p��y�
p��y�d�y
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� Le�x��x� � ��x��x�
Z �

�

Z �

�
L�y��y�d
�d
�

where �y now depends on 
� and 
�. Sampling according to the original PDFs corresponds to
sampling uniformly in this new parameter space. In order to take into account the additional
information about the field radiance we construct an additional non-uniform PDF and a control
variate in this parameter space. For this purpose we resample the stored field radiance values on
a regular grid. This yields a piece-wise constant approximation �L�
�� 
�� of the field radiance.
The approximation can then be used as follows to construct a PDF:

p��
�� 
�� �
�L�
�� 
��

�L
� (4.10)

where:

� �L �
R �
�

R �
�
�L�
�� 
��d
�d
�, the normalisation factor for the PDF, which can be computed

analytically because it is a piece-wise constant function.

The net effect of this importance sampling strategy is that more rays are sent in highly reflective
directions, as before, and now also in bright directions. Both factors can be important for the
resulting radiance estimates. If this process is repeated at each step of the recursion, with the
same Russian roulette strategy as before, based on the reflectivity, the entire estimator for the
flux becomes

h�ipath�betterimp � W
lX

i��

�Li

�Li�
��i� 
��i�
Le�xi��xi�� (4.11)

The expression can be adapted to include next event estimation, similarly to Eq. (4.6).
Jensen [50] independently developed a similar technique, albeit on the basis of a different

data structure. He stores all individual “photons” from a light tracing preprocessing step. During
the actual simulation he retrieves all neighbouring photons to improve the importance sampling
in a virtually identical way as presented here. Dutré and Willems [29] also presented a similar
technique for the light tracing algorithm, which will be discussed in Section 4.2.

The piece-wise constant approximation is also useful as a control variate. With the same
Russian roulette strategy as before the estimator for the flux eventually becomes

h�ipath�betterimp�con � W
h
Le�x���x�� � ��x���x�� �L� (4.12)

�
lX

i��

�
�Li

�Li�
��i� 
��i�
	Le�xi��xi�� �Li�
��i� 
��i�� � ��xi��xi� �Li

��

� W

�
�L� �

lX
i��

�
�Li

�Li�
��i� 
��i�
Le�xi��xi�� ��� ��xi��xi�� �Li

��
�

Again the expression can be adapted to include next event estimation, similarly to Eq. (4.9).
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4.2 Monte Carlo Methods Applied to the Potential Equation
– Light Tracing

4.2.1 Basic Algorithm

A second approach to solve the global illumination problem starts from the expression of the
radiant flux in terms of potential (2.16) and the potential equation (2.18):

� �
Z
A

Z
�x

Le�x��x�W �x��x� j�x �Nxj d�xd�x� (2.16)

W �x��x� � We�x��x� �
Z
�y

W �y��y�fr�y��x��y� j�y �Nyj d�y� (2.18)

As before we would like to compute the flux or average radiance � through each of the pixels.
Sampling stochastic variables x� and �x� according to some PDF p��x��x� over all surface
points and corresponding hemispheres yields the following primary estimator for the integral of
Eq. (2.16):

h�ilight � Le�x���x�� j�x� �Nx�j
p��x���x��

hW �x���x��ilight�

In this case the potential function is unknown, but the particular value W �x���x�� can be
estimated by treating the potential equation (2.18) as an infinitely recursive integral. Applying
Russian roulette with probability Pi at each level of the recursion and sampling each direction
�xi according to a PDF pi��x� over the hemisphere would yield the following primary estimator:

h�ilight �
Le�x���x�� j�x� �Nx� j

p��x���x��
(4.13)



lX

i��

�
� iY
j��

fr�xj��xj����xj�
����xj �Nxj

���
Pjpj��xj�

�
�We�xi��xi��

where the length of the random walk x�� � � � � xl
� defines l. Each point xi
� � r�xi��xi� is
found by tracing a ray (Fig. 4.11). The resulting generic algorithm as shown in Fig. (4.12) is
entirely dual to simple path tracing. It is a light tracing algorithm where rays are shot from the
light sources, again bouncing through the scene. Whenever they pass through the frustum of the
pixel a contribution is added (Fig. 4.2). As such it is a so-called light shooting algorithm.

There are a few essential differences with path tracing though. First of all the random walks
are independent of the pixels. Instead of considering each pixel in turn the pixels can therefore
all be dealt with at the same time. A contribution can be added to the estimate of any of the pixels
whenever a ray passes through it.

More importantly though, the measure of the regions where the self-emitted potential differs
from 0 is usually much smaller than the measure of the regions where the self-emitted radiance
differs from 0. Intuitively: there are far less points and directions covered by a pixel than points
and directions on light sources. The hit-or-miss effect is therefore even worse; most random
walks will not contribute to any pixel at all. If the camera model does not simulate depth of
field the measure of the former sets is even infinitesimally small. The probability of a ray going
through the pixel is then 0. The algorithm is thus quite useless for computing fluxes for pixels,



4.2. LIGHT TRACING 85

unless the camera aperture is excessively large. In their system to assess the visibility of a road in
a foggy atmosphere Rozé et al. [92] apply a light tracing algorithm. In order to obtain acceptable
results they model the eye as a disc with a 
��m radius.

Pattanaik [84, 83, 88, 87, 85, 89] does use an instance of this light tracing algorithm to
compute fluxes leaving diffuse elements from a finite element representation. The approach is
feasible in this case because a patch with its hemisphere in general occupies a larger fraction of
the space of positions and directions than a pixel. Rays therefore have a larger probability of
leaving any particular patch. Moreover, the union of all patches and their hemispheres spans the
entire space of positions and directions that is considered. Each ray contributes to exactly one
patch as a result, so that less computational effort is wasted. Similar problems for estimating
the fluxes of the individual patches occur however if the patches are subdivided into very small
elements.

The same optimisations applied to path tracing in Section 4.1 can also be applied to the sam-
pling of Eq. (2.16) and Eq. (2.18). The primary optimisation for making the algorithm remotely
useful is next event estimation. For the sake of completeness we will first mention the application
of importance sampling however.
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x2Θx2

Figure 4.11: Explanation of the symbols used in the light tracing algorithm.

eye point

screen
light source

light path

Figure 4.12: Schematic overview of the light tracing algorithm. Again the radiant flux through
each pixel has to be estimated. The tracing of a primary ray from a light source corresponds to
sampling the expression for the flux in terms of potential. The subsequent random walk through
the scene corresponds to recursively estimating the potential values. Each time a ray passes
through a pixel a contribution is added to the estimate.
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4.2.2 Importance Sampling

Entirely analogous to Eq. (4.2) an appropriate PDF for sampling the stochastic variables x� and
�x� in the light tracing algorithm is

p��x��x� �
Le�x��x� j�x �Nxj

L
� (4.14)

where L is the same normalisation factor as in Eq. (4.5), the total self-emitted flux. This PDF
ensures that points and directions are sampled proportionally to their self-emitted radiance. This
means that more random walks will start from bright light sources and in bright directions, which
are important for the illumination of the scene.

Likewise analogous to Eq. (4.3) the stochastic variables �xi that determine the rest of the ran-
dom walk can be sampled according to the BRDF times a cosine factor. Formally the subcritical
PDF equals

Pi pi��x� � fr�xi��x��xi��� j�x �Nxij � (4.15)

The primary estimator (4.13) now simplifies to the dual expression of Eq. (4.4):

h�ilight�imp � L
lX

i��

We�xi��xi�� (4.16)

Dutré and Willems suggest further improvements to the importance sampling of the light
sources [28] and of the reflected directions [29]. The basic ideas are dual to the ones presented in
Section 4.1.7. The optimisations send more rays in directions with a high potential. The required
information about the potential is gathered and stored during the simulation. Their scheme is
based on different data structures and does not take into account the BRDFs in the importance
sampling however.

4.2.3 Next Event Estimation

In [27] we explain how the extension of the basic algorithm with next event estimation makes it
possible to actually render images. In summary, a similar derivation as for path tracing can be
made, this time starting from the potential equation (2.18):

W �x��x� � We�x��x� �
Z
�y

W �y��y�fr�y��x��y� j�y �Nyj d�y
� We�x��x� �Wr�x��x��

where the latter term now corresponds to the potential resulting from incident potential that is
reflected:

Wr�x��x� �
Z
�y

W �y��y�fr�y��x��y� j�y �Nyj d�y

�
Z
�y

	We�y��y� �Wr�y��y��fr�y��x��y� j�y �Nyj d�y

�
Z
�y

We�y��y�fr�y��x��y� j�y �Nyj d�y

�
Z
�y

Wr�y��y�fr�y��x��y� j�y �Nyj d�y
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�
Z
Aaperture

We�y��y�z�fr�y��x��y�z�
j�y�z �Nyj j�y�z � V j

ky � zk� d�z

�
Z
�y

Wr�y��y�fr�y��x��y� j�y �Nyj d�y�

where V is the general viewing direction of the camera. For a simple camera model the point z
in the former integral can be sampled uniformly over the camera aperture:

p�z� �
�

Aaperture

� (4.17)

For a perfect pin-hole camera model point z is always the pin-hole or the eye point. As with
simple light tracing each random walk is used to estimate the fluxes through all pixels at the
same time. Determining to which pixel or pixels the random walk contributes is usually straight-
forward.

If all other integrals are sampled as before, according to the PDF (4.14) and subcritical
PDF (4.15), the estimator (4.16) changes into

h�ilight�imp�nextevent � L

�
We�x���x�� � Aaperture

lX
i��

We�xi
���xi���z� (4.18)


fr�xi
���xi��xi���z� (4.19)


 v�xi
�� z�

����xi���z �Nxi��

��� ����xi���z � V
���

kxi
� � zk�
�
� �

Figure 4.13 gives an overview of the symbols used in the expressions. The algorithm as shown in
Fig. 4.14 is now the dual version of path tracing with next event estimation. Next event estimation
somewhat removes the effect of hit-or-miss sampling, to the extent that it is now possible to
render noisy images. The effect still plays however, because the number of contributions added
to each pixel is highly random. The division by kxi
� � zk� in the estimator is less detrimental
than in path tracing; the distance to the eye point is in general bounded from below so that the
estimator cannot become arbitrarily large.

Apart from these problems the algorithm is only well-suited to render reflections from small
directional light sources via specular surfaces on diffuse surfaces. These reflections are known as
caustics. They are difficult to render with other algorithms but most suited for light tracing, as the
PDFs used for importance sampling are the ones dominating the integrands in this case. Dutré
and Willems [28, 29] propose alternative PDFs on the basis of information about the distribution
of potential at the light sources and at each patch in a discretised scene. In his PhD disserta-
tion [26] Dutré discusses various theoretical and practical aspects of light tracing algorithms in
more detail.
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Figure 4.13: Explanation of the symbols used in the light tracing algorithm with event estima-
tion. The random walk remains the same as without next event estimation (Fig. 4.11) but an
additional point y is now sampled over the camera aperture.

eye point

screen
light source

light path

shadow rays

Figure 4.14: Schematic overview of the light tracing algorithm with next event estimation. Di-
rect contributions of potential are now computed at each point on the random walk by sampling
the relevant pixels, if any.
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Figure 4.15: The same example scene as in Fig. 4.8. The light tracing algorithm is only really
suited to render caustics on diffuse surfaces from small directional luminaires via mostly specular
surfaces. Even rendering a simple scene like this one would take an impractical amount of time.

Figure 4.16: An example random walk (white rays) starting from the light source. From each
intersection point a ray is cast to the eye and a contribution is added to the relevant pixel if there
is no intervening object.
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4.3 Monte Carlo Methods Applied to the Integral Equations
of the GRDF – Bidirectional Path Tracing

4.3.1 Basic Algorithm

Section 4.1 and Section 4.2 present two alternative Monte Carlo approaches for physically-based
rendering. Both the gathering and the shooting approach have their advantages and disad-
vantages. This begs for an algorithm that integrates both ideas and hopefully combines their
strengths. In [62] we have presented a third alternative that does exactly this. In [65] we have ex-
plained its theoretical background, which we will also discuss here. The algorithm can be derived
by starting from the expression of the radiant flux in terms of the global reflectance distribution
function (GRDF) (2.22) and integral equations (2.23) and (2.24) defining the GRDF:

� �
Z
A

Z
�x

Z
A

Z
�y

Le�x��x�We�y��y�Fr�x��x� y��y� (2.22)

j�x �Nxj j�y �Nyj d�yd�yd�xd�x�

Fr�x��x� y��y� � ��x��x� y��y� (2.23)

�
Z
���y

fr�y��z��y�Fr�x��x� z��z� j�z �Nyj d�z�

Fr�x��x� y��y� � ��x��x� y��y� (2.24)

�
Z
�z

fr�z��x��z�Fr�z��z� y��y� j�z �Nzj d�z�
We would like to compute the flux or average radiance � through each of the pixels in turn.

Suppose we sample stochastic variables x� and �x� according to some PDF p��x��x� and y� and
�y� according to some PDF q��y��y� over all surface points and corresponding hemispheres. If
we disregard the special nature of the Dirac impulse for a moment, these PDFs yield the following
primary estimator for the flux � as expressed by Eq. (2.22):

h�ibipath �
Le�x���x�� j�x� �Nx� j

p��x���x��

We�y���y�� j�y� �Ny� j
q��y���y��

hFr�x���x�� y���y��ibipath�

As in path tracing the sampling of a point y and direction �y involves tracing a primary ray from
the virtual eye point through the virtual pixel.

The GRDF is unknown, but the particular value Fr�x���x�� y���y�� can be estimated by
sampling any of the equivalent integral equations (2.23) or (2.24) recursively. We would like to
use both of them at the same time, so we will combine them into a single expression. We will
simply use a linear combination of them. With the operator notation of Eq. (2.25) and Eq. (2.26)
and omitting the variable names this yields

Fr � � � w�T �Fr � wTFr�

where w �w� � �. Filling in this expression recursively with different weights each time yields
the following Neumann series:

Fr �
�X
i��

�X
j��

wijT
�iT j��
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where the weights wij are arbitrary, as long asX
i

wi�N�i � �� for N � 
� �� � � � (4.20)

The i-th integral of operator T � can be estimated as in light tracing: the direction �xi is sampled
according to a PDF pi��x� over the hemisphere with a probability Pi for Russian roulette. The
j-th integral of operator T can be estimated as in path tracing: the direction �yj is sampled ac-
cording to a PDF qj��y� over the hemisphere with a probabilityQj for Russian roulette. Overall,
the generic estimator for the flux would become

h�ibipath �
Le�x���x�� j�x� �Nx�j

p��x���x��

We�y���y�� j�y� �Ny� j
q��y���y��



l�X
i��

lX
j��

wij

Qi
k��

fr�xk��xk��
��xk

	j�xj
�Nxj j

Pkpk��xk
	Qj

k��

fr�yk����yk
��yk��

	j�yk
�Nyk��j

Qkqk��yk
	

��xi��xi� yj��yj��

where the lengths of the random walks x�� � � � � xl�
� and y�� � � � � yl define l� and l respectively.
Each point xi
� � r�xi��xi� and each point yj � r�yj����

��
yj
� as shown in Fig. 4.19. The

probability of having a non-zero contribution is 0 though, because of the Dirac impulse. The
solution lies in applying next event estimation, which evaluates each Dirac impulse at an earlier
stage in the sampling process

4.3.2 Next Event Estimation

In path tracing and light tracing, next event estimation is derived by filling in the integral ex-
pressions of the corresponding equations in the right hand sides and subsequently sampling the
two resulting integrals in different ways. In this case the filling in is necessary to remove the
Dirac impulses. The actual evaluation does not require any additional samples anymore, because
of the definitions of the Dirac impulse. Evaluating each Dirac impulse of the Neumann series
at an earlier stage in the sampling process requires transformations to the appropriate parameter
spaces, as with path tracing and light tracing. While the random walk remains the same, the
generic estimator eventually becomes

h�ibipath�nextevent �
lX

i��

l�X
j��

wijCij� (4.21)

where a distinction has to be made between the individual contributions:

� i � 
� j � 
: The flux resulting from this very first term can be estimated by only using
the samples y� and �y� and at this point evaluating the corresponding integral, divided by
the probability density of the samples:

C��� �
We�y���y�� j�y� �Ny� j

q��y���y��
Le�y���y���

From a physical point of view this term is an estimate for the flux received from a light
source that is directly seen through the pixel under consideration. It is estimated in the
same way as it is in path tracing.
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� i � 
� j 
 
: The fluxes resulting from these terms can be estimated by only using the
samples x� and y���y�� � � � ��yj�� and at this point evaluating the estimate. Filling in any
of the two equivalent integral equations eventually yields

C��j �
Le�x���x��yj�

p���x��

We�y���y�� j�y� �Ny�j
q��y���y��



j��Y
k��

fr�yk����yk��yk���
����yk �Nyk��

���
Qkqk��yk�


fr�yj��x��yj ��yj���v�x�� yj���

����x��yj�� �Nx�

��� ����x��yj�� �Nyj��

���
kx� � yj��k� �

where p��x� is the PDF that is explicitly or implicitly used to sample point x� over the light
sources:

p��x� �
Z
�x

p��x��x�d�x�

These terms are estimates for the flux resulting from light that is reflected j times on the
eye path. They are estimated in the same way as in path tracing.

� i 
 
� j 
 
: The fluxes resulting from these terms can be estimated by using the samples
x���x�� � � � ��xi�� and y���y� � � � � ��yj�� and at that point evaluating the estimate:

Cij �
Le�x���x�� j�x� �Nx�j

p��x���x��

We�y���y�� j�y� �Ny�j
q��y���y��
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v�xi� yj���
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���
kxi � yj��k� �

These terms are estimates for the flux resulting from light that is reflected i times on the
light path and j times on the eye path.

The resulting algorithm is called bidirectional path tracing. It was introduced by us in [62],
while Veach and Guibas later independently presented a similar algorithm in [125]. To our
knowledge it is the first pure Monte Carlo rendering algorithm that combines the ideas of shoot-
ing light from the light sources and gathering light through the pixels.

Each term Cij is a different estimate for the flux resulting from light that is reflected i � j
times. This provides a physical explanation for the sums of the weights wij with equal depths of
reflection i � j having to be 1, as expressed by Eq. (4.20).
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Other estimators

While the estimators presented above are already usable there are still some alternatives left
unmentioned. We will name them using negative subscripts. The sums in Eq. (4.21) have to be
extended accordingly to start from �� rather than from 0.

� i 
 
� j � ��: The fluxes resulting from these terms can also be estimated by only using
the samples x���x�� � � � ��xi�� and at this point evaluating the estimate as in pure light
tracing:

Ci��� �
Le�x���x�� j�x� �Nx� j

p��x���x��



�
i��Y
k��

fr�xk��xk����xk� j�xk �Nxk j
Pkpk��xk�

�
We�xi����xi����

As discussed in Section 4.2 these estimators are not practical for image-based rendering as
hardly any rays will pass through any of the pixels.

� i � ��� j 
 
: The fluxes resulting from these terms can also be estimated by only using
the samples y���y� � � � � ��yj :

C���j �
We�y���y�� j�y� �Ny� j

q��y���y��
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These estimators are those of pure path tracing. Estimator C���� actually corresponds to
the C��� defined earlier, which we will redefine in the next paragraph. The other estimators
were missing in our previous work but were applied in [125]. As discussed in Section 4.1
this type of estimator is mostly efficient for rendering scenes with specular surfaces and
large light sources.

� i � 
� j � 
: The fluxes resulting from these terms can also be estimated by only using
the samples x���x�� � � � ��xj and the point on the camera aperture y�� and then evaluating
the estimator:
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and for i 
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where q��y� is the PDF that is explicitly or implicitly used to sample point y�� over the
camera aperture. The estimators are those of light tracing with next event estimation. As
discussed in Section 4.2 they are not particularly useful in general, but well-suited to render
caustics.

Figure 4.17 gives a complete overview of the alternative contributions and the samples they
depend on. Figure 4.18 then gives a visual representation of the same contributions. Their
respective weights must sum to 1 along the diagonal with equal numbers of reflections i� j. The
three positions in the top left corner do not correspond to valid contributions as at least a position
and a direction have to be sampled to estimate a flux. Figure 4.19 summarises the symbols used
for the variables that determine the random walk. Figure 4.20 gives a schematic overview of the
final algorithm as it has been implemented, i.e. without the light tracing contributions.

Comparison with Previous Algorithms

The algorithms discussed in the previous sections select a single contribution from each diagonal
of Figure 4.19. Pure path tracing corresponds to the contributions from the first column (wi�j � �
for i � ��, and 0 otherwise). Path tracing with next event estimation corresponds to the second
column, except for the first element, which estimates direct illumination. It is replaced by the
first element from the first column (w���� � �, wi�j � � for i � 
� j 
 
, and 0 for the other
weights). Pure light tracing corresponds to the first row (wi�j � � for j � ��, 0 otherwise).
Light tracing with next event estimation corresponds to the second row (wi�j � � for j � 
, 0
otherwise).

The potential strength of bidirectional path tracing lies in handling scenes with complex
indirect illumination. A pure gathering approach performs best if the light sources are directed to
large parts of the scene, even if the viewer only looks at a small part of the scene. The eye paths
originate at the eye point and thus easily find their way to the light sources. A pure shooting
approach on the other hand works best if the viewer sees most of the scene, even if the light
sources are directed away. The light paths originate at the light sources and can then bounce
through the scene to contribute to pixels of the screen. The integrated shooting and gathering
approach of bidirectional path tracing combines these advantages. The light paths and the eye
paths originate at the important ends of the illumination transport chain and meet halfway. This
is specifically interesting for complex illumination situations where the light sources illuminate
the scene indirectly and the viewer sees only a part of the scene. Figure 4.21 provides an example
scene, for which Fig. 4.22 visualises a light path and an eye path and the corresponding shadow
rays. Such a pair of random walks makes up a primary estimate in our implementation; the
secondary estimator averages the results of many of these pairs. Alternatively, one could link a
set of several light paths with a set of several eye paths, which would still be unbiased.

Note that bidirectional path tracing puts more computational effort in estimating indirect
illumination by nature. The deeper rays on both paths and especially the additional shadow rays
only serve this purpose. In path tracing and light tracing a larger fraction of the traced rays
caters for lower levels of reflection. The shadow rays of next event estimation already put a
greater emphasis on indirect illumination. For any of the algorithms even more effort can be
put in the deeper rays, by choosing higher probabilities for reflection in the Russian roulette.
Pattanaik notes that the results of his light tracing algorithm improve by applying this absorption
suppression technique [83, p. 91]. This effect is related to the question of how many rays should
be traced at each reflection. Each of the recursive integrals can be estimated by any number of
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samples. Arvo and Kirk [6] already mention that it is difficult to determine an optimal number
a priori. In many practical scenes sampling the objects seen through a pixel and the camera
aperture is a much simpler problem than sampling reflections over the hemisphere. This would
suggest that a tree of samples would be more effective than a simple random walk. For scenes
containing a large number of tiny objects or complex textures on the other hand the primary rays
may again be of great importance for sampling the pixels adequately. The algorithms presented
here therefore stick to the most natural solution of single random walks with Russian roulette
based on the directional-hemispherical reflectance. Further research could present heuristics or
rules to improve this aspect.

As in the path tracing and light tracing algorithms the next event estimation introduces a
division by kxi � yj��k� into some of the contributions. As before, this is an unfavourable
situation, since they can become arbitrarily large as a result. In path tracing the position of the
light sources in a particular scene can bound the factor. In light tracing the viewing parameters
will even bound the factor in most practical cases. In bidirectional path tracing the effect can
occur for a pair of paths anywhere throughout the scene, e.g. if the eye path and the light path
almost meet in a corner. It is therefore unavoidable for most practical scenes. As with the other
algorithms an appropriate combination of the various estimators largely solves this problem,
which will be discussed in Section 4.3.4.

Other Bidirectional Algorithms

There have been many earlier attempts to combine the ideas of shooting and gathering light.
The fundamental difference with our solution lies in the way the illumination transport paths are
linked. Earlier algorithms invariably store the results from a shooting step in some kind of data
structure; they only use these results in a subsequent gathering step. This approach yields a host
of two-pass or multi-pass algorithms. An early example is backward ray tracing, introduced by
Arvo [1] in '86. It has evolved into various bidirectional or multi-pass ray tracing algorithms, e.g.
presented by Heckbert [43], by Chen et al. [11] and by Collins [18]. They all use different types
of data structures to store the diffuse illumination from a stochastic light shooting step. Jensen en
Christensen [52] and Shirley et al. [111] store all possible information from such a step, but only
to perform density estimation afterwards. As with the other techniques, this smoothes out the
illumination. Source selection methods as proposed by Kok and Jansen [58, 60] and similar final
rendering steps, e.g. [93, 11], gather light from a radiosity solution, which is often computed in
a shooting step. Again, the information stored is either diffuse or coarsely directional, because
of storage considerations. The accuracy of the final results depends not only on the Monte Carlo
simulation, but also on the granularity of the data structures. The algorithms are therefore biased
from a strict Monte Carlo point of view.

Our bidirectional path tracing algorithm does not use any such data structures. For each
sample it immediately links the original light path and eye path. Working with the original,
unfiltered samples thus ensures that the method remains unbiased.

Reducing the Number of Shadow Rays

In [68] we have shown how the large number of shadow rays can be reduced by introduc-
ing an additional Russian roulette process. This is an extension to the principle presented by
Shirley [106, 107] and by Shirley and Wang [112]. The lighting contributions typically vary
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over several orders of magnitude. Yet the algorithm traces a shadow ray for each contribution,
representing the same amount of work. In order to spend less computational effort on smaller
contributions and more effort on larger contributions, shadow rays can be grouped. By stochas-
tically selecting the more important contributions and only tracing their corresponding shadow
rays, the number of shadow rays can be reduced, without increasing the variance to the same
degree. For simplicity we have not applied this technique for producing the results of Chapter 5.

Contributions samples on the light path up to . . .
that depend on . . . x� �x� �x� �x�

C���� C���� C����

samples on y�� C��� C��� C��� C���

the eye path �y� C���� C��� C��� C��� C���

up to . . . �y� C���� C��� C��� C��� C���

Figure 4.17: An overview of the stochastic samples on the light path and the eye path and their
corresponding illumination contributions in bidirectional path tracing.

C1 1–,
C2 1–,

C3 1–,

C0 0,
C1 0,
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C3 0,

C 1– 1,
C0 1,

C1 1, C2 1,
C3 1,

C 1– 2, C0 2,
C1 2,

C2 2,
C3 2,

Figure 4.18: A schematic representation of the contributions. The left-most column corresponds
to pure path tracing. The first column (except for the first contribution) corresponds to path
tracing with next event estimation. The first row corresponds to pure light tracing, which is fairly
useless in this context. The second row corresponds to light tracing with next event estimation.
The other contributions are unique to bidirectional path tracing.
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Figure 4.19: Explanation of the symbols used in the bidirectional path tracing algorithm.

eye point

screen
light source

eye path

light path

shadow rays

Figure 4.20: Schematic overview of the bidirectional path tracing algorithm. The flux through a
pixel is estimated by tracing a random walk from a light source and a random walk from the eye
point and by then casting shadow rays between points on the respective paths. A contribution is
added for each shadow ray that does not hit any objects.
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Figure 4.21: An example scene rendered with the bidirectional path tracing algorithm. The
algorithm is best suited to render scenes with complex and mostly indirect illumination. In this
case the scene is illuminated by lamp shades against the walls.

Figure 4.22: An example light path starting from a light source, bouncing to the ceiling and
to the floor (white rays) and an eye path going through a pixel in the lower part of the image
(blue rays). All intersection points on the respective paths are connected by means of shadow
rays. Shadow rays that do not hit any objects (green rays) add an illumination contribution to the
pixel. Shadow rays that do hit an object (red rays) do not add a contribution.
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4.3.3 Importance Sampling

Clearly the same basic importance sampling techniques as applied for path tracing and for light
tracing are suitable for bidirectional path tracing. On the basis of the local emittance and re-
flectance information the stochastic variables x���x���x�� � � � that determine the light path are
ideally sampled according to the PDFs (4.14) and (4.15), as in light tracing. Likewise the stochas-
tic variables y���y���y�� � � � that determine the eye path are ideally sampled according to the
PDFs (4.2) and (4.3), as in path tracing. The resulting estimator is

h�ibipath�nextevent�imp �
lX

i���

l�X
j���

wijC
�

ij� (4.22)

where the relevant contributions simplify to
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The expressions obviously only present an ideal situation. As mentioned before it may not
always be perfectly possible to select samples according to the suggested PDFs. In that case the
more general estimator (4.21) has to be applied as an approximation of the above ideal.
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4.3.4 Combining Estimators

Section 4.3.2 presented different sets of alternative estimators for the different contributions to
the flux. Any properly weighted sum yields an unbiased estimator for the radiant flux. We
already mentioned that the various path tracing and light tracing algorithms can be regarded as
specific instantiations of the generic bidirectional path tracing algorithm by choosing simple sets
of weights.

These weights do not fully exploit the potential of bidirectional path tracing however. In [62,
65] we presented some heuristics to compute weights on the basis of the reflectance charac-
teristics of the surfaces on the eye path. Intuitively one can imagine that directions sampled
at specular surfaces are more reliable than directions sampled at diffuse surfaces, because they
are sampled according to a BRDF that determines the shape of the integrand. One can take
this observation into account by relatively increasing the weights of paths reflecting off specu-
lar surfaces. The resulting estimators proved to have a lower variance than previous estimators.
Especially images of scenes with complex illumination contain visibly less noise. Even though
the estimators are unbiased, the heuristics lack a certain elegance and symmetry, and most of all
some more fundamental theoretical support.

The heuristics presented by Veach and Guibas [126], which we have discussed in the context
of general Monte Carlo methods in Section 3.5, offer better theoretical and practical qualities.
Each contribution Cij corresponding to an illumination transport path x�� � � � � xi� yj��� � � � � y��
can be regarded as a single sample with a given probability density. The probability density
pij�x�� � � � � xi� yj��� � � � � y��� of this sample can be computed as the product of the probability
densities of the individual points, in the correct parameter space. Without writing out the expres-
sions in full the estimator based on the balance heuristic looks like

h�ibipath�nextevent�comb �
lX

i��

l�X
j��

wijCij� (4.23)

where

wij �
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Each weight of the balance heuristic expresses the ratio between

� the probability density of the sampling strategy with which the transport path was actually
constructed,

and

� the sum of the a posteriori probability densities of the alternative strategies, with which the
path could have been constructed.

Contributions of paths that are relatively improbable get low weights as a result and vice versa.
As with the combined estimator (4.7) for path tracing the written out contributionsCij times their
weights wij have sums of factors containing squared distances in the denominator, instead of a
single factor kxi � yj��k�. They are also bounded in most practical cases as a result, which is a
valuable property.
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4.4 Summary

This chapter has shown how Monte Carlo rendering algorithms are nothing but the standard
Monte Carlo methods, explained in Chapter 3, applied to the different mathematical models for
the global illumination problem, explained in Chapter 2. Even though the theoretical models are
mathematically equivalent, straightforward Monte Carlo evaluation of their integrals gives rise
to vastly different algorithms.

The rendering equation naturally leads to stochastic ray tracing, or more specifically to path
tracing. The algorithm estimates the flux through each pixel in turn, starting from the expression
of the flux in terms of radiance. For this purpose it first samples the surfaces and directions seen
through the pixel. It then recursively estimates the integral of the rendering equation by sampling
reflection directions. Each time a point and direction on a light source are selected a contribution
is added to the estimate. The algorithm therefore only works efficiently if the light sources are
large compared to the rest of the scene.

Several variance reduction techniques, some of which were already applied in the earliest
empirical ray tracing algorithms, can further improve the efficiency of the estimators. Various
stratified sampling techniques attempt to spread the samples more evenly over the aperture time,
the lens area, the surface areas and the hemispheres. Importance sampling is mainly applied
to select directions according to the reflective characteristics of the surfaces. This is a great
gain for efficiently simulating specular reflections. If the light sources are relatively small, as
in most common scenes, next event estimation of the integral equations greatly improves the
efficiency, by sampling the light sources separately at each step of the recursion. It provides
an additional estimator to which the theory of combining estimators can be applied. We have
introduced simple control variates to reduce the variance of the estimator further. We have then
proposed a data structure to store more detailed information about illumination in the scene. The
information is useful to construct improved PDFs and control variates.

The potential equation, adjoint to the rendering equation, naturally leads to a light tracing
algorithm. It is dual to path tracing. Starting from the expression for the flux in terms of poten-
tial, it samples points and directions at light sources. It then recursively estimates the integral
equation by sampling the reflection directions. Each time a point and direction going through a
pixel are sampled a contribution is added to the estimate. The basic algorithm is only practical
for computing the fluxes of patches, not for the fluxes of pixels, as far too few samples would
contribute to a pixel. Next event estimation helps a little by computing a direct contribution to a
pixel at each point on the random walk. The algorithm still has a large variance, but it may be
useful for computing caustics.

The global reflectance distribution function and its integral equations give rise to a new al-
gorithm, which we have called bidirectional path tracing. It combines the ideas of shooting and
gathering light from the previous algorithms. The light path and the eye path are random walks
that are created as in light tracing and in path tracing respectively. Connecting the points on the
random walks by means of shadow rays yields a set of estimators for the different parts of the
illumination transport. The estimators can be weighted based on their expected qualities. The
light path and the eye path already trace the most important parts of the illumination transport.
The sets of alternative estimators are therefore more flexible in handling complex illumination
situations than the single estimators of previous algorithms. Practical tests in Chapter 5 will show
that the algorithm has a markedly lower variance when rendering scenes with a lot of indirect
illumination.



Chapter 5

Test Results

In this chapter we will discuss some practical results we have obtained with the algorithms of
Chapter 4. We will examine the influence of the various variance reduction techniques and of the
different algorithms for a set of example scenes. The example scenes are selected specifically so
as to span a wide range of illumination conditions.

5.1 Implementation

We have implemented the different variants of path tracing and bidirectional path tracing. The
program computes and outputs images one pixel at a time. It therefore does not include the light
tracing estimator, for which the entire image would need to be stored. The implementation is
based on the publicly available ray tracer Rayshade, of which the set of input and output routines
and the optimised ray intersection routines are used as a black box. These routines can handle
various geometric primitives and more complex constructive solid geometry.

The program furthermore supports area light sources and spot light sources. All area light
sources are perfect Lambertian emitters, while the spot lights are point light sources with a
Phong-like angular distribution. The BRDFs are modelled as modified Phong BRDFs that are
physically plausible [72, 73, 66]. Image texture maps and procedural texture maps make it pos-
sible to add small optical details.

The camera model computes average radiance values (cfr. Appendix A.2). It allows for a
finite camera aperture, which enables to simulate depth of field, and for a finite exposure time,
which enables to simulate motion blur.

For our tests we have rendered images at a resolution of �

 
 �

 pixels. They are stored
in the 4-byte “RGB+common exponent” format introduced by Ward [130]. We have rendered
reference images of all scenes using 5,000 or 10,000 samples per pixel. In the following sections
we will compare all results with these reference images, on the basis of the RMS error:

RMS �

sP
pixels p	Lref�p � Lp��

N

where N is the number of pixels in the images. The RMS error does not reflect the visual quality
of the image very well, because the latter is largely subjective and therefore difficult to measure.
Rushmeier et al. [96] present some alternative perceptually based metrics to compare synthetic
and real images. The RMS error does however present a suitable measure for the variance of the
Monte Carlo algorithms, by averaging the errors of the pixels over the image.
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A. B. C.

D. E.

Figure 5.1: The test scenes used to evaluate the variance reduction techniques and different
algorithms in practice.
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5.2 Test Scenes

Figure 5.1 shows the example scenes with which we have experimented. Each scene has been
chosen to represent a different illumination situation. While they may be representative for a
large number of scenes, they are doubtlessly not representative for an even larger number of
scenes. The test results should be considered as such.

A. Test scene, illuminated directly by light boxes. The scene loosely resembles the famous
Cornell box, which was introduced in [34, 16] and has been popular as a test scene since. In
this case the walls and the ceiling are mostly diffuse and the floor has a glossy reflectance.
The objects are a diffuse cube, a transparent sphere and a slightly specular cylinder. The
scene is illuminated by four light boxes against the ceiling. This scene was also used to
illustrate pure path tracing in Fig. 4.3.

B. Test scene, illuminated directly by a spot light. The same scene, now illuminated by a
single spot light source against the ceiling. It was also used to illustrate path tracing with
next event estimation in Fig. 4.8.

C. Test scene, illuminated indirectly by lamp shades. The same scene, now illuminated
by two chrome lamp shades against the left wall and the right wall respectively. The
illumination is mostly indirect by light reflected diffusely off the ceiling. Because of this
the scene was also used to illustrate bidirectional path tracing in Fig. 4.21.

D. Office scene, illuminated by neon lighting. A view of our office K00.10 at night. Only
the overhead neon lights are lit. This is a complex scene, containing 4 area light sources
and over a 1000 primitives with various reflectance characteristics and textures. Most of
the room is illuminated directly. Figure 5.2 shows a larger view of the scene.

E. Office scene, illuminated by spot lights. A different view of the same scene, now il-
luminated by the 4 spot lights. The illumination of a large part of the room is indirect.
Figure 5.3 shows a larger view of the scene.

The scenes mostly have diffuse and glossy surfaces, which are in general difficult to render with
ray tracing-like methods. Unless specified otherwise the tests have been performed using the
same algorithms for each given scene:

A. Pure path tracing,

B. Path tracing with next event estimation and combined estimators,

C. Bidirectional path tracing,

D. Path tracing with next event estimation and combined estimators,

E. Bidirectional path tracing.

By default, i.e. except for testing the optimisations themselves, stratified sampling, Russian
roulette and importance sampling according to the subcritical BRDFs discussed in Chapter 4
have been applied, but no control variates.
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Figure 5.2: A larger view of test scene D, the office scene illuminated by neon lighting.

Figure 5.3: A larger view of test scene E, the office scene illuminated by spot lights.
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5.3 Stratified Sampling

We have rendered all test scenes with the algorithms mentioned above, both without stratified
sampling and with stratified sampling. As discussed in Sections 4.1.2, we have chosen for N -
rooks sampling because of its flexibility. The overhead for generating the strata is small. It
consists mainly of generating the permutations for the dimensions, which we have done in a
preprocessing step.

The sample rates in our experiments range from 10 samples per pixel up to a 1,000 samples
per pixel. Figure 5.4 shows the RMS errors of test scene A on a linear scale, while Fig. 5.5 shows
them on a logarithmic scale. The standard deviations of ordinary secondary estimators always
decrease as O���

p
N�, as indicated by Eq. (3.5). The plots of the RMS errors of the test images

have a similar shape, since the images are large enough to average out most of the stochastic
uncertainty on the errors. Note that a reduction of the standard deviation or of the RMS error by
10% for the same number of samples corresponds to a reduction of the variance by almost 20%.
Looking at it from a different point of view, the same results can then be obtained using 20% less
samples.

Equation (3.7), which expresses the variance of a secondary estimator with stratified sam-
pling, shows that the decrease of the variance with an increasing number of samples depends on
the integrand. In practice the RMS errors have a similar O���

p
N� profile, as can be seen in

Figures 5.4 and 5.5. Stratified sampling is guaranteed to have a lower variance. It therefore pro-
duces lower RMS errors on average, although the RMS error of specific images may sometimes
be higher due to the stochastic uncertainty. Table 5.1 presents an overview of the improvements
thanks to stratified sampling for the different test scenes. The RMS errors are reduced by 10-20%
on average. For test scene C the reduction is larger, probably because stratified sampling selects
between the two light sources in a more balanced way.

Test scene Reduction of the RMS errors
A 10 – 15 %
B 0 – 25 %
C 25 – 50 %
D 0 – 15 %
E 10 – 20 %

Table 5.1: Overview of the reduction of the RMS errors due to stratified sampling, for the same
numbers of samples. The different test scenes have been rendered with the specific rendering
algorithms that have been listed above. The percentages indicate average improvements for the
different numbers of samples. For these examples they vary between 0 and 50%.
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Figure 5.4: The RMS errors for renderings of test scene A, without and with stratified sampling,
as functions of the number of samples per pixel. The ordinary secondary estimator has a typical
O���

p
N� convergence rate. In this case stratified sampling yields a more or less consistent

reduction of the RMS error by 10–15%.
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Figure 5.5: The same graphs on a logarithmic scale, clearly showing the O���
p
N� convergence

rate.
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5.4 Importance Sampling

As discussed in Sections 4.1.3 and 4.3.3, importance sampling mainly improves the sampling of
reflection directions for path tracing and bidirectional path tracing. We have tested the effects
of three common techniques. No importance sampling corresponds to sampling the hemisphere
above a surface uniformly. The normalised PDF for the direction �xi then is

pi��x� �
�

�	
�

This technique can easily be improved by also taking the cosine factor into account:

pi��x� �

����x �Nxi��

���
	

�

The optimal PDF on the basis of local information also includes the BRDF:

pi��x� �
fr�xi����x��xi���

����x �Nxi��

���
��xi����xi���

�

Sampling according to this ideal PDF is computationally expensive for the modified Phong
BRDF. We have therefore used a comparable sampling approach, which is explained in [66].
Moreover, each PDF is only an averaged version of the PDFs for each colour component, as
we only select a single reflection direction at each intersection point. For coloured surfaces the
averaged PDF is thus rarely ideal for any of the colour components.

Obviously, the improvements from importance sampling strongly depend on the reflectance
characteristics of the scene. Still, to get an impression, Table 5.2 lists the improvements for
the RMS errors for the test scenes. The results show that taking into account the cosine in the
sampling function reduces the RMS errors by 5 to 30%. Additionally taking into account the
BRDF reduces the RMS errors by 40% or more for the Cornell scene, even if it is mostly diffuse,
and by about 30% for the office model, which is even more diffuse. Note that this optimisation
is standard for almost all ray tracing algorithms. They are therefore better suited for rendering
specular scenes than diffuse scenes. The example scenes are not particularly easy in this respect.

Test scene Reduction of the RMS errors
Cosine BRDF 
 cosine

A 30 % 80 %
B 10 % 40 %
C 10 % 40 %
D 5 % 30 %
E 5 % 30 %

Table 5.2: Overview of the average reduction of the RMS errors due to importance sampling, for
the same numbers of samples. The different test scenes have been rendered with their respective
rendering algorithms. The RMS errors resulting from two importance sampling strategies are
compared to the RMS errors resulting from uniform sampling.
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5.5 Next Event Estimation

Next event estimation for path tracing has been discussed in Section 4.1.4. The improvements
due to next event estimation in path tracing can be arbitrarily large, depending on the size of the
light sources. For scenes with very large light sources pure path tracing may perform better, but
for most common scenes path tracing with next event estimation should yield a lower variance.
The smaller the light sources, the larger the improvement will be. For point light sources next
event estimation remains the only viable alternative.

Next event estimation introduces additional shadow rays in the path tracing algorithm. Ta-
ble 5.3 shows the number of rays per sample for pure path tracing and for path tracing with next
event estimation. The first column shows that the average path lengths are 2.4 and 2.6 for test
scenes A and D respectively. The total number of rays for any image can then easily be estimated
using the expression

Total number of rays � average number of rays per sample


number of samples per pixel


number of pixels�

For test scene A, rendered at �


 �

 pixels with a 100 samples per pixel, this yields approxi-
mately ���
 �


 �


 �

 � ���
 �
� rays, for example.

The second column of Table 5.3 shows the increase in the numbers of rays for the test scenes.
Next event estimation results in twice as many rays, at most. Many rays can be discarded im-
mediately, for instance if the surfaces are facing away from one another. As the tracing of a ray
is computationally relatively expensive, it can be considered as a basic unit of work. We have
therefore compared the performances of the different algorithms on the basis of the same total
number of rays.

Note that in our implementation, path tracing with next event estimation has a smaller com-
putational overhead per ray than pure path tracing. This is most probably true in general, as
evaluating BRDFs is less involved than sampling according to them. Path tracing with next event
estimation performs relatively more evaluations, while pure path tracing performs relatively more
sampling operations. The difference only matters for simple scenes, where the overhead may be
important compared against the cost of tracing a ray.

Table 5.4 gives an impression of the reduction of the RMS errors for scenes A and D, com-
pared to pure path tracing with the same number of rays.

Test scene A has artificially large light boxes, which is relatively unfavourable for next event
estimation. Figure 5.6 shows two images rendered with the same amount of work, without and
with next event estimation respectively. The image rendered with next event estimation looks
better, because it is smoother. There are bright spikes scattered throughout the image however.
These result from the division in the estimator, by a squared distance that can become arbitrarily
small. Even when ignoring the few worst spikes the RMS errors are up to 100% larger. In test
scene D the light boxes are smaller, but the spikes also ruin the improvements of next event
estimation.
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Test scene Average number of rays per sample
Pure path tracing Path tracing with

next event estimation
A 2.4 3.8
B – 4.1
C – 3.4
D 2.6 3.5
E – 3.6

Table 5.3: Overview of the average numbers of rays per primary sample, for path tracing without
and with next event estimation.

Test scene Reduction of the RMS errors
A ��

 %
D ��
 %

Table 5.4: Overview of the reduction of the RMS errors due to next event estimation, for test
scenes A and D. For these particular scenes the RMS errors are increased. The increase results
from spikes that are introduced, which overwhelm the overall visual improvement of the images.
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(a) (b)

Figure 5.6: (a) Test scene A rendered with pure path tracing, at �

 
 �

 pixels with 800
samples per pixel. (b) Test scene A rendered with path tracing with next event estimation, with
500 samples per pixel, such that the total number of rays is approximately the same. The image
looks smoother, but contains spurious bright spikes that increase the RMS error.

Figure 5.7: Test scene A rendered with path tracing with next event estimation and combined
estimators, again with 500 samples per pixel.
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5.6 Combining Estimators

As explained in Section 4.1.5 it may be interesting to combine different estimators automatically.
In this case pure path tracing and path tracing with next event estimation yield different estima-
tors. These can be combined. For specific scenes, the resulting estimator is not necessarily better
than either of the individual estimators. It is more robust however, in that it handles a wider range
of scenes and illumination situations more gracefully. It also does not require any additional rays
over next event estimation.

Table 5.5 gives an idea of the influence of the combined estimator of the RMS error when
rendering test scenes A and D. For the other scenes, which only have point light sources, the
combined estimator is equivalent to next event estimation. While next event estimation gave an
in increased variance for test scenes A and D, the combination of the two estimators reduces the
RMS errors substantially. Figure 5.7 shows test scene A rendered with 500 samples per pixel,
which can be compared to Fig. 5.6. The results confirm the original visual comparison presented
by Veach and Guibas in [126].

Test scene Reduction of the RMS errors
Next event estimation Combined estimators

A ��

 % 35 %
D ��
 % 40 %

Table 5.5: Overview of the reduction of the RMS errors due to next event estimation and to
combining estimators, both compared with pure path tracing, for test scenes A and D. Unlike
next event estimation on its own, the combined estimators do improve the results.
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5.7 Control Variates

In Section 4.1.6 we have proposed a further variance reduction for path tracing by means of
simple control variates. The control variates are based on a constant estimate for the ambient
radiance La in the scene. The control variate is then proportional to the BRDF times a cosine
factor. For the modified Phong BRDF this factor can be integrated analytically using an algorithm
proposed by Arvo [2].

The reduction of the variance and the RMS errors depends on the quality of the estimate.
Figure 5.8 shows how the reduction varies as a function of La for test scene B, for a fixed number
of samples per pixel. The control variate equals the ambient radiance times the BRDF and the
cosine factor. A value of 0 for the ambient radiance corresponds to not using control variates at
all. Values greater than 0 decrease the RMS errors up to a certain point, after which the RMS
errors increase again. The maximum reduction is 10% in this case.

Table 5.6 presents the improvements obtained for test scenes A, B and C. Test scene A
has been rendered with pure path tracing. The ambient radiance then has to approximate the
total incoming radiance. The overall reduction of the RMS error is small, because the constant
ambient radiance is a too simple an approximation of the highly varying incoming radiance.

Test scenes B and C have been rendered with path tracing with next event estimation. The
ambient radiance then only has to approximate the more constant incoming radiance due to
reflections. The reduction is larger for test scene C because this indirect illumination is relatively
more important in this scene.

Images rendered with control variates tend to look better visually, especially for few sam-
ples per pixel. Each pixel receives an acceptable estimate that differs from 0. Without control
variates pixels may remain black, if none of the random walks happen to receive an illumination
contribution. Figure 5.9 illustrates this effect for test scene C, rendered with only 10 samples per
pixel.

We have not repeated the experiments with the improved importance sampling and control
variates that were presented in [67]. These show that the RMS errors can be reduced by 30% for
test scene A, rendered with pure path tracing , and by 20 to 25% for test scene C, rendered with
path tracing with next event estimation. The memory overhead of the 5D tree varies between 2
MB and 14 MB, but the improvements depend little on the size of the tree.

Test scene Reduction of the RMS errors
A 4 %
B 10 %
C 14 %

Table 5.6: Overview of the reduction of the RMS errors by means of control variates. The
control variates are based on a constant approximation of the incoming radiance. Depending on
the quality of this approximation the RMS errors are reduced by 4 to 14% for these examples.
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Normalised RMS error as a function of La
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Figure 5.8: RMS errors for test scene B, as a function of the estimated ambient radiance La,
for a fixed number of samples per pixel. The RMS errors decrease until the ambient radiance
reaches its optimum estimate and then increase again.

(a) (b)

Figure 5.9: (a) Test scene C rendered with path tracing with next event estimation, at �


 �


pixels with only 10 samples per pixel. (b) Test scene A rendered in the same way, but with
control variates. Each pixel now at least gets an estimated value different from black.
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5.8 Bidirectional Path Tracing

We have introduced bidirectional path tracing in Section 4.3. It presents a different approach
to physically based rendering than classical path tracing. For each sample it traces not only a
path starting from the eye point and the corresponding shadow rays to a light source, but also a
path starting from a light source and the additional shadow rays. Table 5.7 shows the increase in
numbers of rays per sample for the different scenes. The number of rays is 2 to 3 times larger on
average. Note that in our implementation, the computational overhead per ray of bidirectional
path tracing is again lower than that of the other algorithms.

Table 5.8 gives an overview of the results of bidirectional path tracing, compared against
path tracing with next event estimation and combined estimators, with the same total number of
rays. Bidirectional path tracing only performs worse for test scenes A and D, which are almost
completely illuminated directly. The algorithm in these cases still yields lower RMS errors for
the same numbers of primary samples. When the results are compared on the basis of the same
total number of rays however, the additional rays are only a computational burden that does not
pay off. For the other scenes bidirectional path tracing consistently performs better. Even for
test scene B, which is mostly illuminated directly, the RMS errors are reduced. Unsurprisingly,
the algorithm yields the largest reduction for test scenes C and E, because they are illuminated
almost exclusively indirectly. Figures 5.10 and 5.11 illustrate this with images of scenes C and E,
rendered with both algorithms. The differences are obvious. Note that obtaining the same RMS
errors with the path tracing algorithm as with the bidirectional path tracing algorithm would
require at least four times as many samples for these scenes.

Test scene Average number of rays per sample
Path tracing with Bidirectional path tracing

next event estimation
A 3.8 9.7
B 4.1 10.6
C 3.4 8.9
D 3.5 7.9
E 3.6 6.8

Table 5.7: Overview of the average numbers of rays per primary sample, for path tracing with
next event estimation and for bidirectional path tracing.

Test scene Reduction of the RMS errors
A ��
 %
B 40 %
C 70 %
D ��
 %
E 50 %

Table 5.8: Overview of the reduction of the RMS errors by using bidirectional path tracing, for
the same total numbers of rays. The reduction is compared against path tracing with next event
estimation and combined estimators. It is substantial for scenes containing at least some indirect
illumination.
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(a) (b)

Figure 5.10: (a) Test scene C rendered with path tracing with next event estimation and com-
bined estimators, with 1000 samples per pixel. (b) Test scene C rendered with bidirectional path
tracing, with 400 samples per pixel, such that the total number of rays is approximately the same.

(a) (b)

Figure 5.11: (a) Test scene E rendered with path tracing with next event estimation and combined
estimators, with 1000 samples per pixel. (b) Test scene E rendered with bidirectional path tracing,
with 500 samples per pixel, such that the total number of rays is approximately the same.
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5.9 Summary

In this chapter we have tested the algorithms and optimisations presented in the previous chapters
against a set of example scenes. While the examples and the results may not be representative
for every conceivable input scene, they do provide an impression of the value of the various
techniques.

We have measured the RMS errors of different series of test images, compared against ref-
erence images. The latter have been rendered at a high accuracy. The RMS errors give an
indication of the variances and standard deviations of the random processes, averaged over the
images. Similarly to the standard deviation the RMS errors decrease as ��

p
N , where N is the

number of primary samples per pixel.
In our experiments, stratified sampling using multi-dimensional N -rooks sampling provides

a more or less consistent reduction of the RMS error by 20%. The reduction hardly varies with
the number of samples per pixel in our tests, which go up to a 1000 samples per pixel.

Next event estimation provides a visible reduction of the noise in the images rendered with
path tracing, but it can also introduce spurious bright spikes. These are due to divisions by
distances that can become arbitrarily small, as explained in the previous chapters. If the spikes
are not filtered out, the RMS errors increase significantly. In spite of this, next event estimation
remains the only alternative for very small light sources or point light sources. We have not tested
more complex sampling strategies of the light sources, which have been mentioned in Chapter 4.
However, without any additional cost the estimators of pure path tracing and path tracing with
next event estimation can be combined into a more robust estimator. The combined estimator
yields a significantly lower RMS errors in our experiments.

We have shown that control variates can also yield a reduction of the RMS error. For constant
approximations of the incoming radiance we have observed reductions of about 10%. More
accurate approximations on the basis of information about the incoming radiance, stored in a 5D
tree, gave reductions of about 25%.

Bidirectional path tracing presents an alternative approach to physically-based rendering.
On the basis of the same number of samples per pixel it consistently performs better than the
classical path tracing with next event estimation, even with combined estimators. The algorithm
does trace more rays to obtain these results; 2 to 3 times as many in our test scenes. Compared
on the basis of the same total number of rays, bidirectional path tracing may perform worse if
the entire scene is only illuminated directly. It performs markedly better if there is at least some
indirect illumination in the scene. For typical interior scenes with indirectly illuminating lamp
shades the RMS errors are easily reduced by 50% or more.
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Summary and Conclusions

6.1 Summary

In this dissertation we have investigated the application of Monte Carlo techniques to physically
based rendering. We have attempted to show that Monte Carlo rendering can get a long way with
just standard numerical techniques and optimisations.

In Chapter 2 we have laid the basis for a systematic approach of the global illumination prob-
lem, which is the core problem of physically based rendering. The starting point is a particle
model of light. Light is emitted from light sources, reflected at surfaces and eventually absorbed.
The fundamental physical quantities that describe these phenomena are radiance and radiant flux.
Emittance of the light sources is described by the self-emittant radiance function, while the re-
flectance characteristics of the surfaces are described by the bidirectional reflectance distribution
function (BRDF).

Different mathematical frameworks formally describe the global interreflection in the scene.
They are equivalent, but each model presents a different point of view. The rendering equation is
the most well-known model, describing the behaviour of radiance. It depends on the self-emitted
radiance and on the geometry and reflectance characteristics of the surfaces in the scene. Taking
into account the self-emitted potential, the radiant flux can be expressed in terms of radiance.

The potential equation is adjoint to the rendering equation, describing the behaviour of the
potential function. The potential function is defined with respect to the self-emitted potential and
to the surfaces in the scene. Taking into account self-emitted radiance, radiant flux can now be
expressed in terms of potential.

We have then introduced the global reflectance distribution function (GRDF). This function
only depends on the surfaces in the scene and describes its global reflectance characteristics. As
such, it can be regarded as a generalisation of the bidirectional reflectance distribution function,
which describes the local reflectance characteristics. We have shown that the GRDF is defined
by two equivalent integral equations that correspond closely to the rendering equation and the
potential equation. Taking into account self-emitted radiance and self-emitted potential, radiant
flux can finally be expressed in terms of the GRDF.

We have chosen to apply Monte Carlo methods to these models to solve the global illumina-
tion problem, in the context of image-based rendering. This approach seems to fit our objectives
well, as we aim for versatile algorithms that correctly simulate a broad range of illumination
effects. The algorithms should not restrict the geometries and optical properties that can be ren-
dered. The illumination functions that have to be integrated are high-dimensional and generally
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not well-behaved. Given these observations and considering that physically based rendering only
requires a limited accuracy, Monte Carlo methods are a viable alternative.

In Chapter 3 we have given an overview of Monte Carlo techniques that can be relevant
to the global illumination problem. While the principle is simple and elegant, convergence is
slow. The emphasis therefore lies on variance reduction techniques that improve the results
for the same amount of work: stratified sampling, importance sampling, control variates, next
event estimation and other variance reduction techniques. The underlying idea of all variance
reduction techniques is to transform the original integrand to a function that is more constant
and thus easier to integrate. We have stressed the unbiasedness of the techniques, as a minimal
reassurance as to the correctness of the results. We have presented potential improvements to
recently developed strategies for combining estimators. We have also specifically investigated
the effects of combining importance sampling and Russian roulette with control variates. The
results indicate that control variates can reduce the variance further in this case, under certain
conditions which we have derived. They can therefore also be useful when solving the global
illumination problem.

In Chapter 4 we have applied the above Monte Carlo techniques to the mathematical models
of the global illumination problem. Each model naturally leads to a different algorithm. The
rendering equation gives rise to the well-known path tracing algorithm. Path tracing traces ran-
dom walks starting from the eye point, through a pixel, adding a contribution to the estimate
of the flux of the pixel each time a light source is hit. As such it is a light gathering approach.
The variance of the estimates shows up as random noise in the images. Standard Monte Carlo
optimisations such as importance sampling and next event estimation considerably reduce the
variance. We have also studied how control variates can be applied to good effect.

The potential equation on the other hand leads to light tracing algorithms. These trace ran-
dom walks starting from the light sources, adding contributions to the pixels as they pass through
them. This corresponds to a light shooting approach. In the case of image-based rendering it
is mostly of theoretical interest. It is only practical to simulate specific parts of the global illu-
mination solution, as the resulting images are too noisy in practice, even with variance reducing
techniques.

Finally, application of Monte Carlo methods to the GRDF and its integral equations leads to a
new algorithm, which we have called bidirectional path tracing. It traces light paths from the light
sources and eye paths from the eye point. Shadow rays that connect the points on the respective
random walks then determine the contributions to the estimate of the flux through the pixel. This
combined shooting and gathering approach seamlessly integrates the interesting properties of the
previous algorithms. Both a theoretical analysis and practical test results indicate its suitability
for rendering scenes with complex indirect illumination. Similar variance reduction techniques
as in path tracing and in light tracing are applicable.

In Chapter 5 we have measured the improvements from the different variance reduction tech-
niques and the different algorithms, for different types of scenes. The main improvements for
scenes with a lot of indirect illumination result from the bidirectional path tracing algorithm.
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6.2 Conclusions

In the introduction in Chapter 1 we have set our objectives for this work. We have researched
algorithms that are correct, flexible and efficient, in this order of priority. We believe that we
have met the first two conditions and made progress with regard to efficiency:

� Correctness. The concise physically based and mathematical approach of this work guar-
antees the correctness of the rendering algorithms that have been presented. At the same
time it allows to assess their limitations.

The starting point was a physical model of the behaviour of light. The particle model
describes most common optical effects, such as emission and reflection. It does not account
for more exotic phenomena such as interference and polarisation though, for which a wave
model would be required. This alternative point of view would lead to more complex
algorithms, while the effects are of marginal importance in practice. Furthermore, we
have only included the interaction of light with surfaces and neglected the influence of
participating media, such as smoke and fog. Again, this a reasonable approximation for
common scenes. The resulting physical model has been formalised in a mathematical
notation.

We have then applied standard Monte Carlo techniques to the mathematical models and
analysed the performances of the resulting algorithms. As a minimal reassurance as to
the mathematical correctness, we have adhered to the principle of unbiasedness for the
Monte Carlo techniques. While there is still an uncertainty on the results, the unbiasedness
guarantees that they converge to the exact solutions. The results can be computed to any
accuracy desired, given sufficient computation time. Although partly of theoretical interest,
this property can also be useful in practice when computation time is less of a concern than
accuracy. A typical example in the context of research on image synthesis is the rendering
of reference images for other rendering techniques.

� Versatility. We have taken care not to limit the geometric and optical characteristics of
the input scenes, nor the global illumination effects rendered in the output images. The
presented ray tracing-like algorithms are point-sampling techniques. They only probe the
surfaces by computing intersections with rays. As this can be done efficiently for most
types of surfaces or objects, the algorithms can handle arbitrary geometries. This approach
is somewhat more flexible than only allowing a boundary element representation using
polygons.

The optical characteristics can be described by any BRDF model. Although some mod-
els may be easier or more efficient to work with, the algorithms can handle any type of
BRDF. They can range from perfectly specular BRDFs, over glossy BRDFs, to perfectly
diffuse BRDFs. Again this is more flexible than only assuming perfectly diffuse BRDFs
or artificially separating BRDFs into diffuse and specular parts.

Within the given framework the algorithms can render all typical global illumination ef-
fects, such as glossy reflection and colour bleeding. Especially the new bidirectional path
tracing algorithm excels in rendering a wide range of simple and complex illumination
situations. Additionally, it can simulate camera effects such as depth of field and motion
blur without much additional effort. Figures 6.1 and 6.2 illustrate these effects.
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� Efficiency. Given the previous prerequisites we have concentrated on the efficiency of the
algorithms. The basic Monte Carlo algorithms are versatile, but generally very slow to
converge. First of all we have investigated the application of standard variance reduction
techniques to the rendering equation and the corresponding path tracing algorithm. Experi-
ments give an indication of the improvements that can be expected in practice from known
techniques such as stratified sampling, importance sampling and next event estimation.
Additionally we have shown how control variates can reduce the variance further.

The main improvements result from starting from a different mathematical model alto-
gether. More specifically the model containing the GRDF and the resulting bidirectional
path tracing algorithm augment the efficiency considerably for complex global illumina-
tion situations.

The low memory requirements of the Monte Carlo algorithms are a major advantage. The
memory needed to store the input scene aside, the requirements are actually negligible.
This allows for very complex and large scenes. With the proper optimisation techniques
the complexity of ray intersection tests is reported to be O�logN�, where N is the number
of primitives in the scene [24, 75]. The combination of low memory requirements and a
ray tracing approach thus yields an excellent scalability to render complex scenes. The
view-dependency and light source-dependency additionally ensures that most computa-
tional effort is spent on parts of the scene that matter for the final image.

Obviously, there are numerous techniques that are biased from a strict Monte Carlo point of
view, but that can improve the appearance of the images considerably, without much additional
work. Filtering techniques are an obvious example. Simple Gaussian filters or median filters
can be applied to the final image, to reduce the random noise and the disturbing bright spikes,
e.g. [51]. Rushmeier and Ward [97] suggest alternative and physically more sound filters. All
filters do however introduce a bias in each individual pixel, because the results of neighbouring
pixels now affect one another.

Additionally filtering and caching in object space can further reduce the required number
of samples. Rushmeier et al. [95] and Kok [59, 60] propose grouping the objects in simplified
primitives, for instance. In his illumination simulation system Ward [134, 133, 132] caches and
interpolates the diffuse component of the illumination in object space, to great success.

Adaptive sampling is another common technique. It concentrates the computational efforts on
regions of the image or of the scene that are considered particularly complex. Various strategies
have been presented, e.g. in [90, 99, 129, 110]. Adaptive sampling can be effective at reducing
the number of rays that have to be traced. Most of these techniques are biased, as shown by Kirk
and Arvo [56, 57]. Unbiased adaptive sampling is feasible but expensive, which explains the
greater popularity of the biased strategies.

In summary, we have researched versatile and unbiased Monte Carlo algorithms for physi-
cally based rendering. The versatility is obtained thanks to the Monte Carlo approach, at the cost
of higher computation times, for instance compared to optimised radiosity methods. We have
then concentrated on variance reduction techniques that improve the results in an unbiased way.
There is a substantial cost associated with maintaining the unbiasedness. Whenever an approxi-
mation is available, however accurate, unbiasedness always demands that the result be computed
explicitly. The approximation cannot replace the result, it can only help to reduce its variance.
This provided an interesting challenge. We have shown that substantial progress can be made,
even within these constraints.
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Figure 6.1: An example of the versatility of the algorithms developed. The office scene is
rendered with a finite camera aperture. This produces the depth of field: the foreground is in
focus, while the background is blurred, as with a real camera.

Figure 6.2: The office scene rendered with a finite exposure time, resulting in a motion blurred
image of the beach ball that bounces on the table.
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6.3 Future Work

Many directions remain to be explored in the field of Monte Carlo rendering. In the context of
this dissertation the following subjects seem worthwhile investigating:

� Bidirectional path tracing could also be applied to finite element representations of the
scene. As mentioned in Chapter 2 the expression for the radiant flux is valid for any set of
points and directions. In the algorithms discussed in Chapter 4 the sets consist of points and
directions pointing through the pixels. This starting point yields image-based algorithms.
Alternatively the sets could consist of the points and directions corresponding to finite ele-
ments. Section 4.2 on light tracing already mentioned that the technique is better suited to
compute the fluxes of finite elements, as in Pattanaik's particle tracing algorithm [83]. It is
a light shooting method and as such it efficiently takes into account the light sources. On
the other hand it may miss receiving elements, especially if they are small. Bidirectional
path tracing would be a way to ensure that each element gets sufficient reliable contribu-
tions for its estimate, by starting random walks from each element. Alternatively it could
be a way to include view-dependence in the computations, by starting random walks from
the eye point.

� Participating media have been disregarded in this work. Nothing precludes considering
them in the mathematical models however. The bidirectional path tracing algorithm can
then be extended fairly easily on the basis of the additional terms in the equations. The ap-
proach can be similar to the extension of the path tracing algorithm by Rushmeier [93, 94]
and the light tracing algorithm for foggy atmospheres by Rozé et al. [92]. By not only
scattering rays and casting shadow rays at surfaces, but also inside participating media the
resulting global illumination effects could be taken into account efficiently. Again bidirec-
tional path tracing would be most effective for complex global illumination situations, for
instance when a scene is illuminated indirectly by light scattered from inside a participating
medium.

� The bidirectional path tracing algorithm itself can no doubt be improved further. We have
not considered control variates or improved importance sampling as we have for the path
tracing algorithm. Although the basic principles would remain the same, the actual appli-
cation would become more difficult and more elaborate. Improved importance sampling
could also be a step in the right direction to handle large numbers of light sources. By
adaptively determining the importance of the light sources for the image less light paths
would be traced from possibly distant or irrelevant light sources and more from nearby and
important light sources. Additionally the directions of the light paths could be sampled
more intelligently, as discussed for light tracing in [28, 29].

� Finally, many other developments in Monte Carlo research remain to be investigated in the
context of physically based rendering. Pseudo-Monte Carlo methods with deterministic er-
ror bounds for instance, as proposed by Zaremba [136], look most attractive. Spanier [120]
has presented biased estimators that have a bias that rapidly decreases to 0, but a much
smaller variance than their unbiased counterparts. Further research should point out if
these techniques are useful for the rendering algorithms discussed in this dissertation.
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Appendix A

Camera Models

In our discussions we assume that the necessary data to compute synthetic imagery of a scene are
known: the geometry by means of the ray casting function r�x��x�, the reflective properties by
means of BRDFs fr�x��x��y�, the light sources by means of the self-emitted radiance Le�x��x�
and the viewing parameters by means of the self-emitted potential We�x��x�. The geometry,
the reflective properties and the self-emitted radiance can in principle be measured and then
modelled accordingly. The definition of the self-emitted potential is straightforward for radiosity-
like methods: the function is 1 for all points and directions of the patch under consideration and 0
elsewhere. For image-based rendering techniques it depends on the imaging process and is only
known indirectly. There are a few alternative approaches to start with, depending on whether one
strives for absolute realism or for photo-realism.

A first alternative goal of a synthetic image may be to recreate the same visual experience for
the viewer as if he were watching the actual scene [78]. Figure A.1 explains this approach. The
visual perception of the viewer of a scene is determined by the field of radiance values reaching
the eye point. When replacing the scene by a display a synthetic image may attempt to render
the same field of radiance values and thereby recreate the same perception. For digital imagery
the display is discretised into pixels that render averaged radiance values. If for a given pixel a

(a)
eye point

virtual screen

actual scene

(b)
eye point

actual screen

virtual scene

Figure A.1: Synthetic images may attempt to recreate the visual perception of an actual scene.
(a) The radiance values reaching the eye of the viewer determine the perception of the actual
scene. (b) The viewer has the same visual impression if the image emits the same radiance
values.
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normalised filter function f�z� is applied, the averaged radiance value can be expressed by

� �
Z
Ascreen

L�z��z�y�f�z�d�z�

where:

� Ascreen = the surface area of the virtual screen,

� y = the eye point.

The corresponding self-emitted potential for all surface points and directions consists of a sum
of Dirac functions, because each visible point has exactly one direction for which the function
differs from 0.

This goal of absolute realism is implicitly pursued by most implementations of ray tracing and
radiosity algorithms. Obviously several technological problems hamper this approach. Display
devices such as monitors, slide projectors and printers have limited dynamic ranges and limited
colour gamuts. The ranges of computed intensities and colours in an image need to be rescaled
on the basis of a perceptual model to approximate the actual range. Among others Hall [37]
presents solutions for the constraints of colour gamuts and Tumblin et al. [124] and Schlick [101]
suggest functions that map radiance values on displayed intensities. The images may need to
be corrected further for each specific display device. Consider for instance a point on a slide
projection screen that has been assigned a certain intensity depending on its computed radiance
value. For a given viewing position the same intensity is perceived brighter or darker depending
on its position on the screen, as the reflection is in general not perfectly diffuse. A simple image-
processing operation based on the characteristics of the device could overcome this effect. In
practice however the characteristics are rarely known and the effect is considered small enough
to be neglected.

An alternative goal may be photo-realism in the literal sense, where the computed image
should resemble a picture taken by an actual camera (Fig. A.2). Effects such as a small dynamic
range and a limited colour gamut then become inherent parts of the solution. Further effects

eye point

picture

actual scene

camera

Figure A.2: Alternatively, synthetic images may attempt to recreate a photographic image of the
scene, including all its artifacts and limitations.



129

such as depth of field and motion blur are obtained by modelling a physical camera, including
all its deficiencies and constraints. Consider the simple pin-hole camera of Fig. A.3 with a finite
aperture. The irradiance E [W�m�], flux per unit surface area, that reaches a point z on the film
plane is expressed by

E�z� �
Z
���z�aperture

L�x��x� j�x � V j d�x

�
Z
Aaperture

L�x��x� j�x � V j j�x � V j
ky � zk�d�y

�
Z
Aaperture

L�x��x�
j�x � V j�

f �
d�y�

where:

� ���z�aperture = the set of incoming directions to point z through the camera aperture,

� V = the general camera direction,

� x � r�z����
x � and �x � �y�z.

For a given shutter time the irradiance at each point on the film determines the eventual brightness
of that point. In a faithful simulation the irradiance is integrated over time. Any changes in the
scene or the viewing parameters during the exposure of the film will then show up as motion-
blur. Also note how the cosine factor to the fourth power can be regarded as an artifact of the
camera. The picture will be relatively darker further away from the centre of the image, even
in an environment with a uniform radiance field in all directions. One factor results from points
on the film further from the centre being more turned away from the incoming light. Another
factor results from the apparent aperture becoming smaller. The final two factors result from the
distance from the camera aperture becoming larger, thereby also reducing its apparent size.

film plane

camera

x

z

y

aperture

V

Nx

Θx

f

Figure A.3: A model of a pin-hole camera with a finite aperture and a film plane parallel to it.
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The finite aperture of the camera accounts for depth of field in the image as different points
in the scene contribute to the illumination of a single point on the film plane. Without additional
lenses the plane of focus is the film plane or the virtual screen itself. Again algorithms for
image synthesis can easily omit depth of field by using a perfect pin-hole point instead of a finite
aperture. Kolb et al. [61] discuss the modelling and application of more complex lens systems.

In image synthesis, the pin-hole and the film plane behind it correspond to the eye point and
the virtual screen in front of it. Filtering the irradiance over a pixel on the film plane with a
function f�z� yields an averaged irradiance value that determines the brightness of the pixel:

� �
Z
Afilm

Z
���z�aperture

L�x��x�f�z� j�x � V j d�xd�z�

In the simplest case the filter is a box filter which is constant within the pixel and 0 otherwise. The
expression can be unified with the general expression of the radiant flux in terms of radiance (2.6)
after a transformation. For each pixel the self-emitted potential for each point x and direction �x

is thus defined by the corresponding value of the filtering function on the film plane:

We�x��x� �



f�z� if x � r�z����

x �,

 otherwise.

�



List of Symbols

The following tables give an overview of the most important symbols used throughout the text.
Numbers between brackets refer to the definition or to the first equation the symbol occurs in.

x A point in the three-dimensional space or on a surface.

�x An outgoing direction in the hemisphere at point x.

���
x The opposite direction of �x.

A All surfaces in the scene.

�x The hemisphere of outgoing directions at point x.

���x The hemisphere of incoming directions at point x.

dAx� A differential surface area around point x, at a right angle to direction �x.

d�x A differential surface area around point x, on the surface.

d�x A differential solid angle around direction �x.

j�x �Nxj The absolute value of the cosine between direction �x and the surface nor-
mal at point x.

r�x��x� The ray casting function, yielding the nearest point on a surface from point
x along direction �x (2.4).

G�x� y� The geometry function (2.13).

S The set of pairs of points and directions that contribute directly to the flux
and for which the self-emitted potential is 1 (2.5).

� The radiant flux (2.6, 2.16, 2.22).

L�x��x� The radiance value for point x and direction �x (2.1).

Le�x��x� The self-emitted radiance at point x and in direction �x.

Lr�x��x� The radiance reflected at point x and in direction �x.

Ld�x��x� The radiance resulting from direct illumination reflected at point x and in
direction �x.

Li�x��x� The radiance resulting from indirect illumination reflected at point x and in
direction �x. Also the incoming radiance or field radiance for point x and
direction �x (2.2).

Lo�x��x� The outgoing radiance or surface radiance for point x and direction �x (2.3).

L A weighted average of the radiance function.

L The total self-emitted power in the scene (4.5).
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fr�x��i��o� The bidirectional reflectance distribution function (BRDF) at point x and for
incoming direction �i and outgoing direction �o (2.8).

��x��i� The directional-hemispherical reflectance for point x and direction �x (2.9).

W �x��x� The potential value for point x and direction �x (2.14).

We�x��x� The self-emitted potential at point x and in direction �x.

W The total self-emitted potential in the scene (4.2).

hf� gi A dot product of two functions, yielding a scalar number (2.7).

T The integral operator of the rendering equation (2.12).

T � The integral operator of the potential equation (2.19).

Fr�x��x� y��y� The global reflectance distribution function (GRDF) for point x and direc-
tion �x and point y and direction �y (2.21).

hIi An estimator for the value of I (3.2).

� The standard deviation of an estimator (3.3).

�� The variance of an estimator (3.3).

N The number of samples in a secondary estimator (3.4).

p�x� A probability density function (PDF) (3.9).

P �x� A probability distribution function (3.11).

w�x� A weight function ������.

P The probability of a Russian roulette process (3.29).
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[27] Ph. Dutré, E. Lafortune, and Y. Willems, “Monte Carlo light tracing with direct computation of
pixel intensities,” in Proceedings of CompuGraphics, (Alvor, Portugal), pp. 128–137, Dec. 1993.
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