
Computer Animation

Tim Weyrich
March 2010

Heavily based on slides by Marco Gillies

Physical simulation

Physical simulation

•! Animation is about things moving
•! The motion of “things” is governed by

the laws of physics
•! These laws of physics are very well

understood and normally have
computationally tractable mathematical
formulae

•! So to get things to move lets use
physics

Physical simulation: books

•!One book that is OK:
•! “Physics for Game Developers” David

M. Bourg – O’Reilly
•! A definitive guide is:
•! http://www2.cs.cmu.edu/~baraff/pbm/pbm.html

Newton’s third law

•! The basis of physical simulations is
Newton’s third law

!

f = ma

Newton’s third law

•! The basis of physical simulations is
Newton’s third law

!

f = ma

a=
dv

dt

v =
dp

dt

Newton’s third law

•! The basis of physical simulations is
Newton’s third law (vectors)

!

f = ma

a= dv
dt

v = dp
dt

Newton’s third law

•!Work out the forces acting on an object
–!Gravity
–!Impulse forces (collisions)
–!Forces from springs, friction, other objects

•!Use Newton’s law to work out the
position of an object at each time step

•!When we deal with forces and
accelerations it is called “Dynamics”

•!Up to now we’ve just used velocities
and positions “Kinematics”

Integrating Newton’s laws

•! The correct formulas

!

a= f
m

v = adt
t0

t
"

p= vdt
t0

t
"

Integrating Newton’s laws

•! The obvious approximation

!

at' =
ft'
m

vt' = vt +(t " t')at'

pt' = pt +(t " t')vt'

A projectile

•! As an example choose a ball launched from
the ground under gravity

•! Time step t=0.1
•! Has initial conditions

!

f = 0,"9.81m,0[]

v
0
= 10,10,0[]

p
0
= 0,0,0[]

A Projectile

•! a=-9.81

A Projectile

•! a=-9.81 v=[10,10-0.981,0]

A Projectile

•! a=-9.81 v=[10,9.019,0] p=[1,0.9019, 0]

A Projectile

•! a=-9.81 v=[10,8.038,0] p=[2,1.7057, 0]

A Projectile

•! a=-9.81 v=[10,7.057,0] p=[3,2.4114, 0]

A Projectile

•! a=-9.81 v=[10,6.076,0] p=[4,3.019, 0]

A Projectile

•! a=-9.81 v=[10,5.095,0] p=[5,3.528, 0]

Is the method valid?

•! Is this a reasonable method?

Is the method valid?

•! Is this a reasonable method?
•! Taylor expansion of a function

!

y(t +"t) = y(t)+"t
dy(t)

dt
+
("t)

2

2!

d
2
y(t)

dt
2
!

Is the method valid?

•! Is this a reasonable method?
•! Taylor expansion of a function

•! If !t is small we can ignore higher terms

!

y(t +"t) = y(t)+"t
dy(t)

dt
+
("t)

2

2!

d
2
y(t)

dt
2
!

Is the method valid?

•! Is this a reasonable method?
•! Taylor expansion of a function

•! If !t is small we can ignore higher terms
•! This is the same as our method
•! Called Euler’s method

!

y(t +"t) = y(t)+"t
dy(t)

dt

Step size

•! !t is called the step size
•! It is very important in this sort of

calculation
•! If it is too large then the solution will be

inaccurate
•! If it is too small then you will need a lot

of processing power

Step size

•!What is worse is that errors can build up
over time

•! So for long(ish) animations you need a
very small step size

•!Can get very expensive
•!Can make Euler’s method unusable

How can we improve it?

•!Dynamically change the step size as we
need it

•!Use a different method

Adaptive step sizes

•!Only use as small a step size as you
need

•! Every so often test the different
between using step size !t and !t /2

•! If the difference is big enough start
using !t /2

•!Do the same for !t *2

Other integration methods

•! This is a vast field
•! There are huge numbers of different

methods you can use
•!Using 2nd and higher derivatives
•! Evaluating the different derivatives for

different values of t
•! I will describe one

Midpoint method

t !t

•! Euler’s method evaluates the derivative
at t (The start of the step)

Midpoint method

t !t

•!Can get more accuracy by evaluating it
at t + !t/2 (the midpoint)

Midpoint method

•! The formula becomes:

!

p(t +"t) = p(t)+"t
dp

dt
(t +"t /2)

Midpoint method

•! The formula becomes:

•! This is one example from a many types of
improvement

•! Far more to go into but beyond the scope of
the course

!

p(t +"t) = p(t)+"t
dp

dt
(t +"t /2)

Summary

•! A physics simulation consists of
–!A set of particles
–!A set of forces on those particles
–!Initial position of those particles

•! The alogrithm:
–!Use the forces to update the acceleration
–!Integrate to update velocities and positions

•!We need appropriate forces

Springs

•! Springs are a common source of forces
•! The forces try to maintain a desired

length
•! Join two particles by a spring

L

Springs

•! Stretching the spring creates forces on
both particles to restore the desired
length

•! These forces are proportional to the
change in length

L !L

F(!L) F(!L)

Springs

•!Ditto for squashing

L

Springs

•!Ditto for squashing

L
!L

F(!L) F(!L)

Springs

•! The Formula for spring forces on the particles
are given by Hooke’s Law

•! Have a force pointing along the length of the
spring that depends on the change of length:

!

F = "k
s
#L

•! Where ks is a spring constant, which controls
how springy or rigid it is

Springs

•! The problem with this formula is that the
spring can bounce about too much and never
come to rest

•! We need to add a damping force
•! Damping forces reduce the motion of an

object (like friction)
•! They are proportional to the velocity of an

object (but opposite)

Springs

•! Introduce a damping force
•! Proportional to the relative velocity of the two

particles (and negative)

!

F = " k
s
#L " k

d
v
2
" v

1()[]

•! Where kd is a damping constant, which
controls how damped it is

Using springs

•! Springs are a very useful tool because
they can be used to build models of
interesting physical systems

Using springs

•! A string of springs can simulate hair,
grass etc.

Hair

•!Unfortunately there is nothing to stop
the hair bending

•!Need to add in extra forces to prevent
bending

•!Many approaches but you can just add
extra springs

Hair

•! Putting springs between every other
particle

•!Counteracts bending between 3
particles

Hair

•! Animating each hair would be hugely
expensive

•!Generally methods simulate a smallish
number of strands and render each one
as a clump of hair rather than an
individual hair

Hair

•!Many other methods
•!Often use more continuous

representation of hair

Using springs

•! A lattice can simulate cloth

Using springs

•! A lattice can simulate cloth

Cloth

•! This simple lattice allows you to
simulate the in plane stretching
properties of cloth well, but there are
other forces that go on in cloth

•! Bending can be handled in the same
way as for hair

Cloth

•! Shearing
•! This becomes an issue going from 1D

hair to 2D cloth
•! A force that prevents the cloth pulling

against itself

Cloth

•! Add in diagonal springs for shearing

Cloth

•! Add in diagonal springs for shearing

Cloth

•! And springs for bending

Cloth

•!Demo

Cloth

•! Springs aren’t all there is to physics,
hair and clothing

•! There are lots of other approaches,
more continuous methods, more
realistic force functions etc

Rigid bodies

•!Up to now we have dealt with forces on
particles (points)

•!What about more complex object?
•! A rigid body:

Rigid bodies

•!Can move around
•! But cannot deform

Rigid bodies

•!Could make it out of springs
•! But as you don’t want it to deform the

spring constant must be very high
•! Very expensive to integrate

Rigid bodies

•!Has a centre of mass that can be
treated as a particle

Rigid bodies

•! The movement of a rigid body can be
decomposed into 2:

•!Motion of the centre of mass
•!Rotation about the centre of mass

Rigid bodies

•! The motion of the centre of mass is
treated the same as the particle
dynamics discussed above

•! The rotation adds a new set of
components above the x,y,z position
components

•!Won’t go into much detail about the
maths here

Natural Phenomena

•! Simulation is also very useful for
modelling natural phenomena
–!Wind
–!Clouds
–!Water
–!Fire

Natural Phenomena

•! All of these are physical systems and so
can be simulated based on their physics

•!Generally the models needed are much
more complicated than the ones I’ve
described

•!However, there is one less physically
based method that is often used for this
sort of system

Particle Systems

•! A more ad-hoc simulation method
•!Good for phenomena that are not well

represented by solid, rigid surfaces/
bodies

•!Used for many different phenomena
–!Fire
–!Clouds
–!Explosions
–!Grass and plants

Particle Systems

•! These systems can all be modelled as
large sets of particles

•!Not (necessarily) physically modelled in
the way described above

•! The structure of all particle systems are
the same

•! The details of particle behaviour can
differ

Particle Systems – each frame

•! Particles are created
•! Attributes assigned to each particle
•!Old particles are deleted
•! Particles are moved and transformed

–!Can vary between different types of system
•! Particles are rendered

Particle Creation

•! Particles are randomly created
•! They are all created within a certain

area
•! The mean number of particles created

controls the size of the system
•! This mean can vary over time to have

the system grow or shrink

Particle Attributes

•! Each new particle is randomly assigned
a set of attributes

•! Again mean and variance control the
overall attributes of the system

•! The attributes used depend on the type
of system

•! Examples: Velocity, acceleration, mass,
colour

Particle deletion

•! Particles are also deleted
•! Particles have a certain lifetime, if the

particle has exceeded its lifetime it is
destroyed

•! Also sometimes particles are deleted if
they leave a certain area (visible area)

Particle motion and
transformation

•! This step controls what the particles
actually do

•! Varies depending on what you are
simulating (e.g. clouds vs fire)

•! Examples:
–!Particles move according to their velocity
–!Particles change colour (e.g. get brighter/

darker)

Particle rendering

•! Particles can be treated as light sources
–!Don’t have to worry about occulsion

•!Or particles are small primitives, often
partially transparent

•!Can apply motion blur or other types of
blurring to make individual particles less
visible

Example: Smoke generation

•! Particle Creation:
–!Particles are created at the source of the

smoke (often a point)
–!Particles mostly go upwards with some

sideways variation

Example: Smoke generation

•! Particle Attributes:
–!Velocity: Upwards, slightly to the side
–!Appearance, grey and transparent

Example: Smoke generation

•! Particle Deletion:
–!Delete at end of lifespan
–!Limited lifetime allows for smoke

dissipation
–!Delete if they go out of the view

Example: Smoke generation

•! Particle Motion and transformation:
–!Particles move according to their velocity
–!It is also useful to have a wind force

•!Accelerates the particles in the direction of the
wind

–!Turbulence makes the particles more
realistic

•!Random variation in wind force

–!Particles initially increase in size

Example: Smoke generation

•! Particle Rendering:
–!Particles are rendered as small polygons
–!The polygons are blurred at the edges so

that its less obvious that they are polygons
–!They are transparent

Example: Smoke generation

