UCL Computer Animation

Tim Weyrich
March 2010

Heavily based on slides by Marco Gillies

Computer Animation E Q

* “Making things move”

+ A key aspect of computer graphics

* Non-realtime for films

» Realtime for virtual worlds and games

Computer Animation: Bools —2 Q

* 2 books:

+ “Real-time 3D Character Animation” Nik
Lever — Focal Press
— Very good, but only handles characters

* “Advanced Animation and Rendering
Techniques: Theory and Practice” Alan
Watt and Mark Watt — Addison-Wesley

— More general but sometimes hard to follow
» Everything you need is in the slides

Computer Animation —}2 Q

* This course will:

* Outline the major techniques used in
animation

» Discuss general animation, character
animation and physical simulation

Go into detail on a few key methods

Computer Animation E Q

* 2 basic classes of computer animation:
+ Keyframe animation

— Data driven

— Hand animation or performance driven
» Simulation

— Procedural/algorithm driven

— Particle systems, physics, artificial life

Computer animation }"2 Q

» Keyframe animation relies on data
— from animators or actors

+ Simulation or procedural animation
takes a more algorithmic approach

— Animation is directly generated by an
algorithm or calculation

Course Outline

Traditional animation
+ Keyframe animation
Character animation
— Body

—Face

— Behaviour simulation
Physical systems

— Physics simulation

— Particle systems

— Integration techniques

Traditional Animation E Q

f\ -
Flip Books 2 Q

* The most basic form
of animation is the
flip book

* Presents a

sequence of images

in quick succession &2
* In film this becomes

a sequence of

frames

N\l
The Time Line 2 Q

» Animation is a sequence of frames (images)
arranged along a time-line

Lasseter ‘87

Frames

» Each frame is an image

+ Traditionally each image had to be hand
drawn individually

+ This potentially requires vast amounts
of work from a highly skilled animator

Layers ‘2 Q

» Have a background images that don’'t move

» Put foreground images on a transparent slide
in front of it

* Only have to animate bits that move

* Next time you watch an animation notice that
the background is always more detailed than
the characters

» Japanese animation often uses camera pans
across static images

Keyframing Q

» The head animator draws the most important
frames (Keyframes)

* An assistant draws the in-between frames
(inbetweening)

Lasseter ‘87

Other Techniques \?\ Q

» Squash and stretch
» Slow in slow out

" Lasseter ‘87

Other Techniques R Q

» Squash and stretch

— Change the shape of an object to emphasise its
motion

— In particular stretch then squash when changing
direction

Lasseter ‘87

Other Techniques ?\3 Q

« Slow in slow out

— Control the speed of an animation to make it seem
smoother

— Start slow, speed up in the middle and slow to a
stop

Lasseter ‘87

~
) (
(o

Keyframe animation

Keyframe animation

» Computer animation basics
» Computer based keyframing
* Interpolations methods

» Rotations and quaternions

Al
Keyframe Animation 2 Q

 The starting point for computer
animation is the automation of many of
the techniques of traditional animation

» The labour savings can be greatly
increased

» The following techniques are described
for the 3-D case; 2-D is often even
simpler

: D% @
Layering 2 Q

» The essence of layering is that objects
that move independently are animated
independently, and only what is actually
moving is animation

» This saving can be greatly increased
with computer animation

f\ -~
Properties of Objects 2 Q

+ In computer animation objects are now
3-D models rather than images

+ Selected properties of these objects are
animated rather than redefining the
whole object in each frame
— e.g. position, rotation, normal map, ...

* Only changing properties need
animation

—e.g. you can rotate an object without
having to do anything to the texture

e
Properties of Objects 2 Q

» These properties are mostly numerical
values

— E.g. vectors for positions of objects, colour
values, vertex positions for meshes

* Thus animation comes down to
manipulating these values
—directly, via GUI, or algorithmically

N\l
Keyframing 2 Q

» Keyframing is readily applicable to
computer animations

+ Keyframes are now settings for value at
a given time (a tuple)
< time,value >

The computer can do the inbetweening

(For now I'll just talk about animating
position)

: Yo'
Keyframing 2 Q

Linear Interpolation

N\l
Linear Interpolation ﬂz

Linear Interpolation

Z0

* The position is interpolated linearly between
keyframes

P(t) = tP(tk) + (1 - t)P(tk—l)

—\ -~
Linear Interpolation 1‘;2

» The position is interpolated linearly between
keyframes

P(t) =1P(t,)+(1-0)P(7,)

o.4

Linear Interpolation

Z0

» The position is interpolated linearly between
keyframes

P@t) =1P(1,) +(1-OP(_)

P(r)= %P(Q)"' (1 - ;_tkl)P(tk—l)

k Ykl k k-1

+ The animation can be jerky
* Need some equivalent of slow-in slow-out

P() =~ p(r) + (1 —"’“]P(rk-])
kY1 kT bk
. , Nt
Spline Interpolation ~'?;2 Q

» Use smooth curves to interpolate
positions

» Use curves similar to Bezier

N\ -~
Spline Interpolation 2 Q

N\l
Spline Interpolation 2 Q

1 -
Bezier Curves ;2 Q

» Smooth but don’t go through all the control
points, we need to go through all the
keyframes

—\ -~
Hermite Curves 2 Q

» Rather than specifying 4 control points specify
2 end points and tangents at these end points

* In the case of interpolating positions the
tangents are velocities

Hermite Curves 2 Q

* The maths is pretty much the same as Bezier

Curves
+ Bezier:
P(t)=(1-1)’P, +3t(1-1)’P, +3t°(1-1)P, + P,
* Mapping to Hermite:
P, = PB()’TO = 3(P30 -P,)P| = P33=T| = 3(P33 - PBz)
* Hermite:

P(¢) = (2 =32 +)P, + (£’ +2* +)T,
+(=262 + 3P, + (£ =T,

N\l
Tangents 2 Q

» That's fine, but where do we get the
tangents (velocities) from?

» We could directly set them, they act as
an extra control on the behaviour

* However often we want to generate
them automatically

Tangents

» Base the tangent as a keyframe on the
previous and next keyframe

Tangents 1”“2 Q

 Average the distance from the pervious
keyframe and to the next one

f\ -~
Tangents 2 Q

+ Average the distance from the previous
keyframe and to the next one

1 1
Tk = E(Pk - Pk—l)"' E(Pkn - Pk)

1
(Pk+] - Pk—l)

2

« If you set the tangents at the first and
last frame to zero you get slow in slow
out

f\ -
Almost perfect... 2 Q

» That’s pretty much it on keyframe
animation

 But there’s one last problem:

Almost perfect...

» That’s pretty much it on keyframe
animation

» But there’s one last problem: Rotations

Almost perfect... ‘2 Q

» That's pretty much it on keyframe
animation

» But there’s one last problem: Rotations
* Rotations are used a lot on animation

+ In fact human body animation is largely
based on animating rotations rather
than positions

. 1 d
Rotations 2 Q

» Rotations are very different from
positions

» They are essentially spherical rather
than linear

1 -~
Rotations 2 Q

* Rotations are very different from
positions

» They are essentially spherical rather
than linear

* You can split them into rotations about
the XY & Z axis (Euler angles), but:

— Then the order in which you do them
changes in final rotation

. D% @
Rotations 2 Q

 Rotations are very different from
positions

» They are essentially spherical rather
than linear

* You can split them into rotations about
the X,Y & Z axis (Euler angles), but:

Order of Rotations

Z0

* Rotating about XYZ

Order of Rotations

Z0

* Rotate about X

Order of Rotations

* Rotate about Y

Order of Rotations

* Rotate about Z

.4

AP
Order of Rotations 2 Q

+ Start again

Order of Rotations

* Rotate about Y

\ -
\gJ o °
2%

-‘ -~
Order of Rotations 2 Q

* Rotate about X

Order of Rotations

» Rotate about Z

Z0

\ »~
Rotations 2 Q

* Rotations are very different from
positions

» They are essentially spherical rather
than linear

* You can split them into rotations about
the X,Y & Z axis (Euler angles), but:

— If you rotate about Y so that the Z axis is
rotated onto the X axis you get stuck
(Gimbal lock) and are in trouble

Quaternions

» We need a representation of rotations
that doesn’t suffer these problems

* We use Quaternions

Invented by William Rowan Hamilton in
1843

Introduced into computer animation by
Ken Shoemake

- K. Shoemake, “Animating rotations with
quaternion curves”, ACM SIGGRAPH 1985
pp245-254

. D% @
Quaternions 2 Q

* Quaternions are a 4D generalisation of
complex numbers:

qQ=w+xi+yj+zk

. R
Quaternions 2 Q

* Quaternions are a 4D generalisation of
complex numbers:

q=w+vi+v j+v k

» The last three terms are the imaginary part
and are often written as a vector:

q=[w.v]

: D%
Quaternions 52 Q

» The conjugate of a quaternion is defined as:

q=[w-v]
* And multiplication is defined as:

q.q9; = [WIWZ VOV, WV, + W,V + VX Vz]

Quaternion Rotations

+ Arotation of angle 6 about an axis V is
represented as a quaterion with:

6

w=cos| —
2
v=Vsin(g)
2

« All rotations are represented by unit
quaternions (length 1)

Quaternion Rotations ‘2 Q

» A vector (V) is rotated by first converting it to a
quaternion:

V= [O,V]
» Premultiplying by the rotation and
postmultiplying by its inverse
-1 -1 _
qavq q =4

» And transforming back to a vector

Quaternion Properties ‘*2 Q

» The arithmetic operators on quaternions
don’t have the same meaning as they
do with vectors

» Concatenation and scale:
— Vector addition -> multiplication
— Vector subtraction -> multiplication by the
inverse
— Vector multiplication by a scalar -> multiply
the angle

. . %
Quaternion Properties 2 Q

* Vector addition (of translations) means
do 1 translation followed by another

» For Quaternions the equivalent
operation is multiplication
—-qg2*q1

* Order matters, q1 is performed first

Quaternion Properties —2 Q

 Vector subtraction (of translations)
means do the inverse of the first
translation followed by the other

» For Quaternions the equivalent
operation is multiplication by the inverse
— q2*q1-1

» Again order matters

Quaternion Properties —}2 Q

* For translations multiplcation by a scalar
means do more or less of the translation
* For Quaternions the equivalent
operation is scaling the angle of rotation
— Angle, axis = q.getAngleAxis)
— g.setAngleAxis(t*Angle, axis)

Interpolating Quaternions E Q

» As quaternions have unit length, they all
lie on a sphere with centre on the origin:

Interpolating Quaternions }"2 Q

* Interpolating normally will result in a
quaternion that is not unit length

Interpolating Quaternions

» Shomake introduced Spherical Linear
Interpolation (SLERP) which
interpolates based on the angle at the
centre

SLERP 72 Q

+ Calculate the angle between the 2 (4D)
quaternions g1 and g2 (6)
— Use 4D dot product

* Interpolate using the sin of 6:

sin((1-1)0) N sin(z0)

1 . 2 .
sin@ sin@

f\ -~
SLERP 2 Q

» The quaterions [s, v] and [-s, -v] specify
the same rotation

» So 2 quaternions on the opposite sides
of the hypersphere are the same
rotation

» Before doing SLERP we project the 2
quaternions onto the same side

* If cosf < 0 negate g2

f\ -~
Interpolating Quaternions 2 Q

» Shoemake also introduced a method of
spline interpolation based on
DeCasteljau’s method of calculating
Bezier splines

