
Computer Animation

Tim Weyrich

March 2010

Heavily based on slides by Marco Gillies

Computer Animation

•! “Making things move”

•! A key aspect of computer graphics

•! Non-realtime for films

•! Realtime for virtual worlds and games

Computer Animation: Bools

•! 2 books:

•! “Real-time 3D Character Animation” Nik

Lever – Focal Press

–!Very good, but only handles characters

•! “Advanced Animation and Rendering

Techniques: Theory and Practice” Alan

Watt and Mark Watt – Addison-Wesley

–!More general but sometimes hard to follow

•! Everything you need is in the slides

Computer Animation

•! This course will:

•! Outline the major techniques used in

animation

•! Discuss general animation, character

animation and physical simulation

•! Go into detail on a few key methods

Computer Animation

•! 2 basic classes of computer animation:

•! Keyframe animation

–!Data driven

–!Hand animation or performance driven

•! Simulation

–!Procedural/algorithm driven

–!Particle systems, physics, artificial life

Computer animation

•! Keyframe animation relies on data

–! from animators or actors

•! Simulation or procedural animation

takes a more algorithmic approach

–!Animation is directly generated by an

algorithm or calculation

Course Outline

•! Traditional animation

•! Keyframe animation

•! Character animation

–!Body

–!Face

–!Behaviour simulation

•! Physical systems

–!Physics simulation

–!Particle systems

–! Integration techniques

Traditional Animation

Flip Books

•! The most basic form

of animation is the

flip book

•! Presents a

sequence of images

in quick succession

•! In film this becomes

a sequence of

frames

The Time Line

Lasseter ‘87

Time

•! Animation is a sequence of frames (images)

arranged along a time-line

Frames

•! Each frame is an image

•! Traditionally each image had to be hand

drawn individually

•! This potentially requires vast amounts

of work from a highly skilled animator

Layers

•! Have a background images that don’t move

•! Put foreground images on a transparent slide

in front of it

•! Only have to animate bits that move

•! Next time you watch an animation notice that

the background is always more detailed than

the characters

•! Japanese animation often uses camera pans

across static images

Keyframing

•! The head animator draws the most important

frames (Keyframes)

•! An assistant draws the in-between frames

(inbetweening)

Lasseter ‘87

Other Techniques

•! Squash and stretch

•! Slow in slow out

Lasseter ‘87

Other Techniques

•! Squash and stretch

–! Change the shape of an object to emphasise its
motion

–! In particular stretch then squash when changing

direction

Lasseter ‘87

Other Techniques

•! Slow in slow out

–! Control the speed of an animation to make it seem
smoother

–! Start slow, speed up in the middle and slow to a

stop

Lasseter ‘87

Keyframe animation

Keyframe animation

•! Computer animation basics

•! Computer based keyframing

•! Interpolations methods

•! Rotations and quaternions

Keyframe Animation

•! The starting point for computer
animation is the automation of many of
the techniques of traditional animation

•! The labour savings can be greatly
increased

•! The following techniques are described
for the 3-D case; 2-D is often even
simpler

Layering

•! The essence of layering is that objects

that move independently are animated

independently, and only what is actually

moving is animation

•! This saving can be greatly increased

with computer animation

Properties of Objects

•! In computer animation objects are now
3-D models rather than images

•! Selected properties of these objects are
animated rather than redefining the
whole object in each frame

–!e.g. position, rotation, normal map, …

•! Only changing properties need
animation
–!e.g. you can rotate an object without

having to do anything to the texture

Properties of Objects

•! These properties are mostly numerical

values

–!E.g. vectors for positions of objects, colour

values, vertex positions for meshes

•! Thus animation comes down to

manipulating these values

–!directly, via GUI, or algorithmically

Keyframing

•! Keyframing is readily applicable to

computer animations

•! Keyframes are now settings for value at

a given time (a tuple)

•! The computer can do the inbetweening

•! (For now I’ll just talk about animating

position)
!

< time,value >

Keyframing

Linear Interpolation Linear Interpolation

Linear Interpolation

•! The position is interpolated linearly between

keyframes

Linear Interpolation

•! The position is interpolated linearly between

keyframes

Linear Interpolation

•! The position is interpolated linearly between

keyframes

•! The animation can be jerky

•! Need some equivalent of slow-in slow-out

Spline Interpolation

•! Use smooth curves to interpolate

positions

•! Use curves similar to Bezier

Spline Interpolation Spline Interpolation

Bezier Curves

•! Smooth but don’t go through all the control

points, we need to go through all the

keyframes

Hermite Curves

•! Rather than specifying 4 control points specify

2 end points and tangents at these end points

•! In the case of interpolating positions the

tangents are velocities

Hermite Curves

•! The maths is pretty much the same as Bezier

Curves

•! Bezier:

•! Mapping to Hermite:

•! Hermite:

Tangents

•! That’s fine, but where do we get the

tangents (velocities) from?

•! We could directly set them, they act as

an extra control on the behaviour

•! However often we want to generate

them automatically

Tangents

•! Base the tangent as a keyframe on the

previous and next keyframe

Tangents

•! Average the distance from the pervious

keyframe and to the next one

Tangents

•! Average the distance from the previous

keyframe and to the next one

•! If you set the tangents at the first and

last frame to zero you get slow in slow

out

Almost perfect…

•! That’s pretty much it on keyframe

animation

•! But there’s one last problem:

Almost perfect…

•! That’s pretty much it on keyframe

animation

•! But there’s one last problem: Rotations

Almost perfect…

•! That’s pretty much it on keyframe

animation

•! But there’s one last problem: Rotations

•! Rotations are used a lot on animation

•! In fact human body animation is largely

based on animating rotations rather

than positions

Rotations

•! Rotations are very different from

positions

•! They are essentially spherical rather

than linear

Rotations

•! Rotations are very different from

positions

•! They are essentially spherical rather

than linear

•! You can split them into rotations about

the X,Y & Z axis (Euler angles), but:

Rotations

•! Rotations are very different from

positions

•! They are essentially spherical rather

than linear

•! You can split them into rotations about

the X,Y & Z axis (Euler angles), but:

–!Then the order in which you do them

changes in final rotation

Order of Rotations

•! Rotating about XYZ

Order of Rotations

•! Rotate about X

Order of Rotations

•! Rotate about Y

Order of Rotations

•! Rotate about Z

Order of Rotations

•! Start again

Order of Rotations

•! Rotate about Y

Order of Rotations

•! Rotate about X

Order of Rotations

•! Rotate about Z

Rotations

•! Rotations are very different from
positions

•! They are essentially spherical rather
than linear

•! You can split them into rotations about
the X,Y & Z axis (Euler angles), but:
–! If you rotate about Y so that the Z axis is

rotated onto the X axis you get stuck
(Gimbal lock) and are in trouble

Quaternions

•! We need a representation of rotations

that doesn’t suffer these problems

•! We use Quaternions

•! Invented by William Rowan Hamilton in

1843

•! Introduced into computer animation by

Ken Shoemake
–! K. Shoemake, “Animating rotations with

quaternion curves”, ACM SIGGRAPH 1985

pp245-254

Quaternions

•! Quaternions are a 4D generalisation of

complex numbers:

Quaternions

•! Quaternions are a 4D generalisation of

complex numbers:

•! The last three terms are the imaginary part

and are often written as a vector:

Quaternions

•! The conjugate of a quaternion is defined as:

•! And multiplication is defined as:

Quaternion Rotations

•! A rotation of angle ! about an axis V is

represented as a quaterion with:

•! All rotations are represented by unit

quaternions (length 1)

Quaternion Rotations

•! A vector (V) is rotated by first converting it to a

quaternion:

•! Premultiplying by the rotation and

postmultiplying by its inverse

•! And transforming back to a vector

Quaternion Properties

•! The arithmetic operators on quaternions

don’t have the same meaning as they

do with vectors

•! Concatenation and scale:

–!Vector addition -> multiplication

–!Vector subtraction -> multiplication by the

inverse

–!Vector multiplication by a scalar -> multiply

the angle

Quaternion Properties

•! Vector addition (of translations) means

do 1 translation followed by another

•! For Quaternions the equivalent

operation is multiplication

–!q2*q1

•! Order matters, q1 is performed first

Quaternion Properties

•! Vector subtraction (of translations)

means do the inverse of the first

translation followed by the other

•! For Quaternions the equivalent

operation is multiplication by the inverse

–!q2*q1-1

•! Again order matters

Quaternion Properties

•! For translations multiplcation by a scalar

means do more or less of the translation

•! For Quaternions the equivalent

operation is scaling the angle of rotation

–!Angle, axis = q.getAngleAxis)

–!q.setAngleAxis(t*Angle, axis)

Interpolating Quaternions

•! As quaternions have unit length, they all

lie on a sphere with centre on the origin:

Interpolating Quaternions

•! Interpolating normally will result in a

quaternion that is not unit length

Interpolating Quaternions

•! Shomake introduced Spherical Linear

Interpolation (SLERP) which

interpolates based on the angle at the

centre

SLERP

•! Calculate the angle between the 2 (4D)

quaternions q1 and q2 (!)

–!Use 4D dot product

•! Interpolate using the sin of !:

!

q
1

sin((1" t)#)

sin#
+q

2

sin(t#)

sin#

SLERP

•! The quaterions [s, v] and [-s, -v] specify

the same rotation

•! So 2 quaternions on the opposite sides

of the hypersphere are the same

rotation

•! Before doing SLERP we project the 2

quaternions onto the same side

•! If cos! < 0 negate q2

Interpolating Quaternions

•! Shoemake also introduced a method of

spline interpolation based on

DeCasteljau’s method of calculating

Bezier splines

