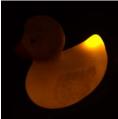
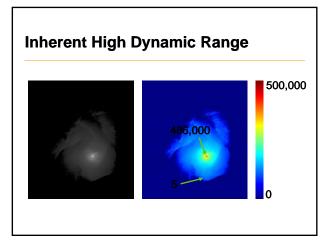
Realistic Materials

Translucent Materials


Translucent Objects

- light is scattered through the object
- incident illumination smoothed due to diffuse scattering inside media


Inhomogeneous Translucent Objects

caused by material variation or internal structure

required for realistic appearance

Overview

- models for translucent objects
- the BSSRDF
- dipole approximation

Models for Translucent Objects

- basic physical properties
 - e.g., absorption and scattering cross sections σ_a and σ_s [Ishimaru78]
 - defined for the whole object volume
- rendering possible with variety of techniques such as
 - finite element methods [Rushmeier90, Sillion95, Blasi93]

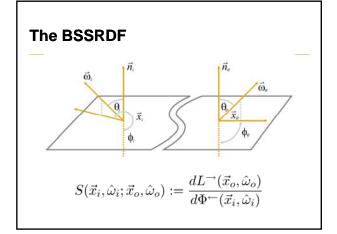
Models for Translucent Objects

- rendering techniques (contd.)
 - finite element methods [Rushmeier90, Sillion95, Blasi93]
 - bidirectional path tracing [Hanrahan93, Lafortune96]
 - photon mapping [Jensen98, Dorsey99]
 - Monte Carlo simulations [Pharr00, Jensen99]
 - diffusion [Stam95, Stam01]
 - precomputed radiance transfer [Sloan03a]

Models for Translucent Objects

- specialized models
 - BSSRDF [Nicodemus 1977]
 - dipole approximation [Jensen et al. 2001]
 - includes measurements of physical parameters for homogeneous materials

Overview


- models for translucent objects
- the BSSRDF

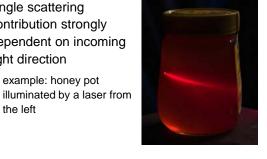
dipole approximation

The **BSSRDF**

- bidirectional scattering-surface reflectance distribution function [Nicodemus 1977]
 - general model of light transport inside an object
 - (almost) equivalent to a reflectance field
 [Debevec et al. 2000]
 - ratio of reflected radiance to incident flux
 - 8 dimensional function

The **BSSRDF**

 outgoing radiance computed by integrating over the whole surface and all incoming directions


$$L^{\rightarrow}(\vec{x}_{o}, \hat{\omega}_{o}) = \int_{A} \int_{\Omega} L^{\leftarrow}(\vec{x}_{i}, \hat{\omega}_{i}) \cdot S(\vec{x}_{i}, \hat{\omega}_{i}; \vec{x}_{o}, \hat{\omega}_{o}) \langle \hat{n}_{i} \cdot \hat{\omega}_{i} \rangle d\hat{\omega}_{i} d\vec{x}_{i}$$

Single Scattering vs. Multiple Scattering

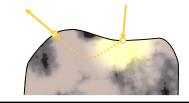
 single scattering contribution strongly dependent on incoming light direction

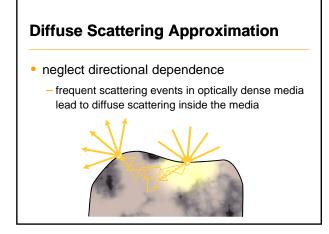
- example: honey pot

the left

Single Scattering vs. Multiple Scattering

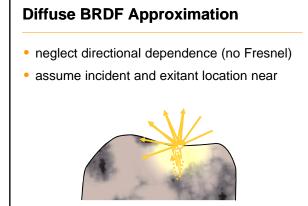
- multiple scattering (almost) independent of incident light direction
 - example: alabaster block illuminated by a laser from the left


Single Scattering vs. Multiple Scattering


- often modeled independently, e.g.,
 - single scattering using ray tracing
 - multiple scattering using a less complex model with diffuse approximation

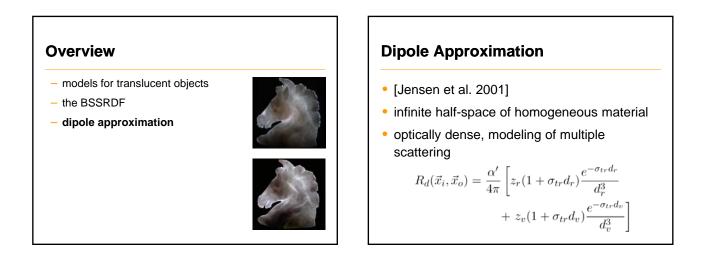
BSSRDF Approximation

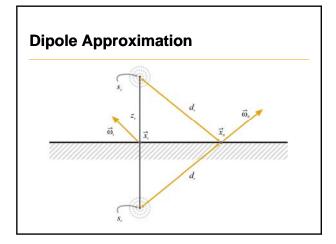
- BSSRDF too complex for many application
 - acquisition, storage, ...
 - all combinations of directions and positions

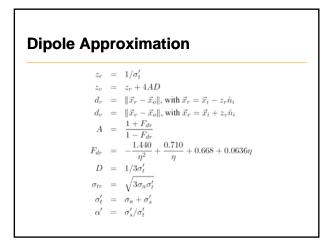


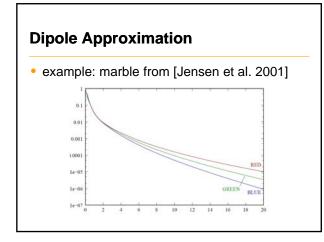
Diffuse Scattering Approximation

- approximate BSSRDF by diffuse reflectance
 - only 4 dimensions
 - requires Fresnel terms at incoming and outgoing locations
 - simplifies handling drastically commonly used

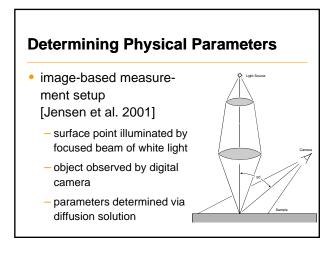

$$S(\vec{x}_i, \hat{\omega}_i; \vec{x}_o, \hat{\omega}_o) = \frac{1}{\pi} F_t(\eta, \hat{\omega}_i) R_d(\vec{x}_i, \vec{x}_o) F_t(\eta, \hat{\omega}_o)$$




Diffuse BRDF Approximation


- approximate BSSRDF by diffuse BRDF
 - assume incident and outgoing locations are very close to each other
 - neglect Fresnel effect

$$S(\vec{x}_i, \hat{\omega}_i; \vec{x}_o, \hat{\omega}_o) = \frac{1}{\pi} k_d$$



Determining Physical Parameters

- required for dipole approximation

 scattering and absorption coefficient
 - relative index of refraction
- also required for evaluation of single scattering term

Results

photograph

rendering

Overview

- models for translucent objects
- the BSSRDF
- dipole approximation

