

Approaches - Sampling

- dense sampling for each texel
 Reflectance Fields, BTF
- sparse sampling
 - image-based BRDF Measurement
 - combining samples from different surface points
- spatial variation
 - constant specular part vs. clustered BRDFs

Approaches - Illumination

- point light
 - controlled condition
 - interreflections most often neglected
- environment maps
 - still direct illumination only
- global inverse illumination

- Lu & Koenderink 1998, ...]
 - capture lots of BRDF samples at one shot by a sensor array / camera.

 homogeneous, isotropic materials only

Example Acquistion Setup

- The following demonstrates and imagespaced acquisition setup [Lensch 2002,2003]
- There are other possible variants

Light Source Position

detect highlights of light source reflections
 reconstruct light source position

Resampling

- Now at every location on the object:
 - Have several samples
 - For different view/light combinations
 - Number depends on number of images!
 - Using these samples, fit a BRDF now

Fitting a BRDF to the data

- Fitting a separate BRDF at every texel
 - Choose a BRDF model (say Cook-Torrance)
 - BRDF model has several "free" parameters
 - Perform non-linear fitting (Levenberg-Marquart for instance) of model to measured data
 - Can be done in Matlab
 - Yields parameters per pixel

Results

Results

Results

