Instant Radiosity

M074/GV14

© Jan Kautz 2009-2010

Overview

- Goal is to enable "interactive" global illumination in purely diffuse environments
- Approximate direct and indirect lighting with virtual point lights (VPL).
- Render scene with VPLs (with shadowing)
 - Sum up contributions from all VPLs.

Rendering Equation

• Defined as:

$$L(p,\omega_o) = L_e(p,\omega_o) + \int_{\Omega} f(p,\omega_i,\omega_o) L(p^*,-\omega_i) \cos\theta_i d\omega_i$$

• Using operator R:

$$(\mathbf{R}L)(p,\omega) = \int_{\Omega} f(p,\omega_i,\omega) L(p^*,-\omega_i) \cos \theta_i \, d\omega_i$$

• Equation becomes: $L = L_e + \mathbf{R}L$

Rendering Equation

- Solving for L: $L = L_e + \mathbf{R}L$ $(1 \mathbf{R})L = L_e$ $L = (1 \mathbf{R})^{-1}L_e$ $L = (1 + \mathbf{R} + \mathbf{R}^2 + \mathbf{R}^3 + ...)L_e$
- Radiance towards eye =
 - direct light from light source
 - plus light reflected once,
 - plus light reflected twice, ...

Instant Radiosity

• Assume BRDF is diffuse

$$f(p) = f(p, \omega_i, \omega_o) = \frac{k_d}{\pi}$$

 Rewrite rendering equation with explicit sampling of all possible paths (with length j=0, j=1, j=2, ...)

When and how to end a path?

- We start with N point lights on the area light
 - Reflect all N of them? Paths never end then...
 - Russian Roulette?
- Assume surfaces are not far from average reflectivity $\overline{\rho}$
 - Enables use of fractional absorption
 - Of the initial N: $\overline{\rho}N$ get reflected (1st bounce)

 - 2nd bounce: $\overline{\rho}^{\,2}N\,$ get reflected, etc... – Average path length: $\frac{1}{1-\overline{\rho}}N\,$

Code

- First, render all paths that immediately end on the light source (all $(1-\overline{\rho})N$ of them)
- Then, render all paths that are reflected ones, etc.

Problems • Difficult to extend to specular surfaces Instant Radiosity Path Tracing

Summary

- Instant Radiosity
 - Assume diffuse scenes (like Radiosity)
 - Approximate indirect illumination with VPLs
 - Similarities to photo mapping (path sampling)
 - Easy to implement on GPUs