
1

Visibility Techniques
V1.2.1

Anthony SteedAnthony Steed

Based on slides from Celine Loscos (v1.1), Anthony
Steed (v0.1), Several Others

Goals: The Visibility Problem

• The average number of polygons visible from a
view point is much smaller than the model size
– Select the (exact?) set of polygons from the model

which are visible from a given viewpointwhich are visible from a given viewpoint
• Review common techniques to do this
• Examine the suitability of different visibility

algorithms for different problem domains

Overview

1. Motivation & Introduction
• Definitions
• Examples

2 Vi F t C lli

3

2. View Frustum Culling
3. Occlusion Culling

1. Image Space
2. Object Spacej

2

4

1. Visibility culling

• What is it for?
– Avoid processing polygons which do not contribute to

the rendered image
• We have three different cases of non-visible

objects:
– those outside the view volume (view frustum/volume

culling)
– those which are facing away from the user (back face

culling)
– those occluded behind other visible objects (occlusion

culling)

Visibility culling

3

Visibility culling

View frustum
lliculling

Visibility culling

View frustum
lli

Occlusion
culling

culling

Visibility culling

View frustum
lli

Occlusion
culling

culling

Back-face
culling

4

Back-face culling

• Simplest version is to do it per polygon
– Just test the normal of each polygon against the view

direction (dot product)

3 types of visibility

• Exact visibility
– Include all polygons at least partially visible and only

those
• Approximate visibility• Approximate visibility

– Include most of the visible polygons plus some hidden
ones

• Conservative visibility
– Include at least all the visible polygons plus maybe

some additional hidden ones

Representation of the scene

• At pre-processing, the scene is placed in a
spatial data structure that allows fast queries to
the complex geometry

Space partitioning Hierarchical
bounding volumes

Regular grid

5

2. View frustum culling

• Purpose: cull the polygons that are not inside the
cone defined by
– The viewpoint

The view direction– The view direction
– The two angles defining the field of view

• Easiest way
– Test bounding box of object against the view volume

(planes)

View frustum culling

• Compare the scene hierarchically against the view
volume:
– Test the root node against the view volume

If node is outside then stop and discard everything– If node is outside then stop and discard everything
below it

– If node is fully inside then render without clipping
– Otherwise,

• If leaf node render it,
• Else recursively test each of its children

Example

1 2 54
3

6
1

2
3

5

4
6

6

View frustum culling

• Easy to implement
• A very fast computation
• Very effective result
• Therefore it is included in almost all current

rendering systems

3. Occlusion culling

• By far the most complex of the three, both in
terms of algorithmic complexity and in terms of
implementation

• This is because it depends on the inter-relation ofThis is because it depends on the inter relation of
the objects

• Many different algorithms have been proposed,
each one is better for different types of models

Occlusion culling

• Occlusion culling algorithms can be
– Exact
– ApproximativeApproximative
– Conservative

• Difficulty:
– Find as quickly as possible the ‘good’ occluders

• Different cases
– View point / view cell /view volume
– 2.5D /3D

7

Point visibility

From this point only the red
objects are visible

Cell visibility

• Compute the set of all
polygons visible from
every possible viewpoint
from a region (view-cell)

From this cell the red objects are visible
as well as white ones

Hierarchical Test

O

8

Algorithms

• Two types of approaches
– Image space
– Object space

3.1 Image-Space Methods

• Those where the decision to cull or render is done
after projection (in image space)

View volume

Object space
hierarchy

Decision
to cull

General outline of image-space methods

• During the in-order traversal of the scene
hierarchy do:
– compare each node against the view volume

if not culled test node for occlusion– if not culled, test node for occlusion
– if still not culled, render objects/occluders augmenting

the image space occlusion
• Most often done in 2 passes

– render occluders – create occlusion structure
– traverse hierarchy and classify/render

9

An image space representation of the
occlusion information
• Discrete

– Z-hierarchy
– Occlusion map hierarchy

C ti• Continuous
– BSP tree
– Image space extends

Testing a Node for Occlusion

• If the box representing a node is not visible then
nothing in it is either

• The faces of the box are projected onto the image
plane and tested for occlusionp

occluder

hierarchical
representation

Testing a Node for Occlusion

• If the box representing a node is not visible then
nothing in it is either

• The faces of the box are projected onto the image
plane and tested for occlusionplane and tested for occlusion

occluder

hierarchical
representation

10

Visibility Culling using Hierarchical
Occlusion Maps

• Idea: Building occlusion
maps with different
resolution

• Make use of the occluder
fusion

Construction of the Occlusion Map Hierarchy

• View-frustum culling
• Occluder selection
• Occluder rendering and depth estimation
• Building the hierarchical occlusion maps

Occluder Selection

• Building the occluder database
– Size
– Redundancy
– Rendering complexity

• Dynamic selection

11

Visibility Culling with HOM

• Consider a simple case, 2 stages:
– Overlap test
– Depth test

Occlusion map

• 2D array recording the opacity of occlusion

Hierarchical Occlusion Maps

• Image pyramid

• Fast construction of the hierarchy
– The occlusion map hierarchy is built by recursive filtering, which

stops after reaching some minimal map resolution (e.g. 4X4)

• Desirable properties
– Occluder fusion
– Hierarchical overlap test
– High-level opacity estimate

12

Image pyramid

Visibility Culling with HOM

• Overlap test with occlusion maps
• Depth comparison

– Single Z plane
– Depth estimation buffer

• Construction of depth estimation buffer
• Conservative depth test

Single Z-plane

13

Depth estimation buffer

Remarks

• Approximate Visibility Culling
• Dynamic Environments
• Can use graphics hardware to generate occlusion

map hierarchy, using texture map filtering.

Example of results

Blue – Objects selected as
occulders

Gray – Objects not culledGray Objects not culled

Red – Objects culled

87% of model culled

14

Discussion on image-space methods

• Advantages (not for all methods)
– hardware acceleration
– generality (anything that can be rendered can be used

as an occluder)as an occluder)
– robustness, ease of programming
– option of approximate culling

• Disadvantages
– hardware requirements
– overheads

3.2 Object space methods

• The decision to cull is made in the object space

View volume

Object space
hierarchy

Decision
to cull

Occlusion Using Shadow Frustum

AViewpoint

Occluder

C
B

p

15

Assuming we can find good occluders

• For each frame
– form shadow volumes from likely occluders
– do view-volume cull and shadow-volume occlusion test

in one pass across the spatial subdivision of the scenein one pass across the spatial subdivision of the scene
– each cell of the subdivision is tested for inclusion in

view-volume and non-inclusion in each shadow volume

Temporally Coherent Visibility (Coorg and Teller, SoCG 96)

• Nice theoretical method
• Based on the idea that visibility changes when the

view plane crosses specific planes (visual event)
• These planes partition space into regions of

constant visibility – subset of an aspect graph
• Compute the critical planes dynamically using

hierarchical structures, no need to pre-compute
and store the entire arrangement

When does A occludes B ?

16

Occluder Fusion (Coorg and Teller, I3D 97)

T

Added the capability to
join the effect of connected
occluders, that is, a form
of occluder fusion

A

B

of occluder fusion

Occlusion Trees (Bittner et al, CGI 98)

• Just as before
– scene represented by a hierarchy (kd-tree)
– for each viewpoint

• select a set of potential occluders• select a set of potential occluders
• compare the scene hierarchy for occlusion

• However, unlike the previous method
– the occlusion is accumulated into a binary tree
– the scene hierarchy is compared for occlusion against

the tree

Create shadow volume of occluder 1

View
point

O2
Tree

1

2outpoint

O1

O3

2

O1

IN

out

out

out1

2

17

Insert occluder 2 and augment tree with its shadow volume

View
point

O2

Tree
1

2

O1

out

3

4

point

O1

O3

1

IN
out

3

4

O2

IN

out

out

out

1

2

And so on until all occluders are added

View
point

O2

Tree
1

2

O13

4

point

O1

O3

1

IN
out

3

4

O2

IN

out

out

out

1

2

5

6

O3

IN

out

out

out

Check occlusion of objects T1 and T2 by inserting them in tree

View
point

O2

Tree
1

2

O13

4

point

O1

O3

1

IN
out

3

4

O2

IN

out

out

out

1

2

5

6

O3

IN

out

out

outT1

T2

18

Occluder selection

• This is a big issue relevant to most occlusion culling
algorithms but particularly to the last two

• At pre-processing
– Identify likely occluders for a cellIdentify likely occluders for a cell

• they subtend a large solid-angle
– Test likely occluders

• use a sample of viewpoints and compute actual shadow volumes
resulting

• At run time
– locate the viewpoint in the hierarchy and use the occluders

associated with that node

Using the occlusion tree

Aggregation of occlusion
Nodes classified as

Visible

VISIBLEINVISIBLE
PARTIALLY

VISIBLE

Visible
Occluded
Partially visible

Refinement of
partially visible
regions CULLED

Example

19

Metric for Comparing Occluder Quality

Occluder quality: (-A *(N • V)) / ||D||2

A : the occluder’s area
N : normal
V : viewing direction
D : the distance between the viewpoint and the

occluder center

V
A

N

D O

Detail Occluders

• Smaller occluders that are close to objects could
also be chosen

Cells and Portals(Teller and Sequin, SIG 91)

• Decompose space into convex cells
• For each cell, identify its boundary edges into two

sets: opaque or portal
• Precompute visibility among cells• Precompute visibility among cells
• During viewing (eg, walkthrough phase), use the

precomputed potentially visible polygon set (PVS)
of each cell to speed-up rendering

20

Three basic steps:

• 1 - The scene space is subdivided along its major
opaque features

• 2 – cell to cell visibility is computed
• 3 – Culling is computed

• Steps 1 and 2 are pre-computations
• Step 3 is done during the simulation

Assumptions

• The input scene has:
– All faces are axial (orthogonal)
– On a uniform grid (comparison of areas, lengths)

Convex cells– Convex cells

Step 1: Scene partitioning

• Cells are subdivided along
wall faces

• Scene data stored in tree
structure

Wall faces classified as:
Disjoint:

if outside the cell, then discard
Spanning:

if it fully partitions the cell
Covering:

if on the cell boundary
Incident:

otherwise

21

Algorithm

At each step in
subdivision:

1 Split cell on median spanning1. Split cell on median spanning
face (if it exists)

2. Otherwise split on face which
cleaves minimal set of
orthogonal faces

3. If cell has no interior faces, then
STOP. This is a ‘leaf node’ of
the tree.

Cell to cell visibility

• Unobstructed sight
line between cells
is any line which
‘stabs’ a portal
sequence

• Portals are the
transparent section
of cell divisions

Choosing the portal sequences

• Candidates are chosen from neighbours in the
subdivision

1. Divide endpoints of portal lists p p
L & R depending on
orientation

2. Sight line S exists if sets are
linearly seperable

S · L ≥ 0 ∀ L ∈ L
S · R ≤ 0 ∀ R ∈ R

22

Recursive algorithm

Find_Visible_Cells (cell C, portal sequence P,
visible cell set V)
V = V ⋃ C

for each neighbour N of Cg
for each portal p connecting C and N

orient p from C to N
P’ = P concatenate p
if Stabbing_Line (P’) exists then

Find_Visible_Cells (N, P’, V)

Eye to cell visibility

• Now we have the cells that an unconstrained observer can see from
each particular cell.

• When the model is displayed interactively the view cone is known, and
can be used to further reduce the number of visible cells, to those that
can be seen from the current viewpoint

• Let C be the view cone, O the cell containing the observer, S the stab
tree for that cell, and V the set of cells visible from O.

• We want to cull S & V against C

Overestimating

– Disjoint cell:
• All cells intersecting viewcone.
• Fails in Fig. a.

– Connected Component:
• “In the cell adjacency graph, the visible cells

must form a single connected componentmust form a single connected component,
each cell of which has a non-empty
intersection with C”.

• Depth-first search from O in S. Every cell
traversed must intersect interior of C.

• Fails in Fig. b.

– Incident portals:
• Refined: searching only through cells

reachable via portals that intersect C’s interior.
• Fails in Fig. c.

23

Exact

• “For a cell to be visible, some portal sequence to that cell
must admit a sightline that lies inside C and contains the
view position”.

U i S thi b l d l ti l i kl W h i• Using S, this can be solved relatively quickly. We search in
S for a stabbing ray containing the observers view point,
and lying within C.

• Works well for both Fig. a, b, c.

Consider frame-to-frame coherence during walkthrough

• Stab tree for current cell can be cached for
additional speed up.

• Possible to prefetch polygons for cells adjacent to
current one, since user must exit to one of them.
Gives additional speedup, but with cost of
memory.

Cells and Portals

24

Discussion on Object Space

• Visibility culling with large occluders
– good for outdoor urban scenes where occluders are

large and depth complexity can be very high
– not good for general scenes with small occluders

• Cells and portals
– gives excellent results IF you can find the cells and

portals
– good for interior scenes
– identifying cells and portals is often done by hand

• General polygons models “leak”

Conclusion

• 3 ways of reducing the number of polygons using
visibility, with different level of precision

• Backface culing and view frustum culling are the
i t t i l teasiest to implement

• Occlusion culling improves efficiency but is more
complex to implement and use

Occlusion culling

• Properties
– Depends on the choice of the occluders
– The technique used needs to adapt with the model
– Often from-point methodsO e o po e ods
– Image-based method attractive
– Attention needs to be taken to control the time spent on

the computation so that the chosen technique IS an
accelerating method

25

Occlusion culling

• Classifications
– Point vs area visibility
– Image-based vs object based

Exact vs conservative– Exact vs conservative
– online vs precomputed

