Advanced Modelling, Rendering and
Animation
Coursework I

Tim Weyrich and James Tompkin
March 23, 2010

Assignment due: 12:00 noon 9th April 2010

Framework

We provide a simple GLUT /OpenGL framework to run and visualise a particle and boids
simulation, as described in the lecture. The framework should compile on Windows,
Linux and MacOS X. (For MacOS X: you’ll have to add ”-1gl and -lglut” to the Makefile
as denoted in the Makefile comment.)

Part I: Particle Simulation

1. The framework provides an (incomplete) C struct Particle that contains the phys-
ical state of a particle for a particle simulation. Part of this state should be a cre-
ation time stamp (double creationTimeStamp) denoted in seconds since program
start. Organise all particles in your system in the provided global ps.particles.

2. A small GLUT application framework is provided for you. The idle() function
receives program control at regular intervals. The display() function draws to
the screen, and is notified to draw at the end of the idle () function. Two mouse
functions are provided: mouse() and mouseActiveMotion(). mouse() is called
whenever the mouse is clicked, and mouseActiveMotion() is called whenever the
mouse is dragged.

3. Use the idle() function to call a particle simulation: this simulation will be a
function simulate() that simulates the time duration between the previous and
the current call to simulate() and updates the particles’ states accordingly. (The
stubsimulate () shows how the provided function myclock () can be used to obtain
the seconds since the first call to myclock()).



4.

D.

Implement this simulate():

a) The particle simulation should create particles at the centre of the screen at
a constant rate, with a constant velocity in the direction of an initial vector.
The only force acting on the particles shall be gravity (defined as a vector in
ParticleSystem).

b) Use the “explicit Euler” integration scheme described in the lecture.

c¢) Depending on the time passed since the last invocation of simulate(), perform
multiple integration steps before returning.

d) Particles older than 5 seconds shall be removed from the simulation (check
creation date).

Each particle shall be assigned an intensity of 1.0 at the beginning. (The display
should show all particles at their intensities.) Reduce the intensities over time, so
that a particle’s intensity reaches 0.0 after 5 seconds. A particle whose intensity
reached zero shall be removed from the simulation. (This can be done very easily
with the deque data type used for ps.particles).

. Both gravity and the initial velocity vector should be controllable with the mouse.

The magnitude and direction of both these vectors should be controllable.

Additional marks are available for creative particle effects — blending, motion
blur, etc.

Total marks: 40 + 10 additional.

Part Il: Boids

1.

Using the same framework, implement a Boids solution. Fill in the function,
simulateBoids (), which should be togglable by some key (use the keyboard func-
tion to control the boids variable).

. Some elements of the simulation from Part I are no longer needed: boids should

not decay after 5 seconds, and the number of boids in the simulation will likely be
less.

. Boids are simulated using three functions as explained in the notes: separation,

alignment, and cohesion. Obstacle avoidance should also be included. Clarifica-
tion: obstacles should be visualised on the screen. Note that a disc or
sphere obstacle is sufficient for this part. Implement these functions as you
see fit.

. Realistic sensing (within some radius) should also be included.

. Allow the direction of your boids to be controlled by using the mouse.



6. Additional marks are available for improved boid rendering (e.g., as birds ;-),
and for experimenting with creative boid behaviour. Clarification: additional
marks are also available for implementing object avoidance of more com-
plicated shapes.

Total marks: 40 + 10 additional.

Please write a short report on your work, detailing how you solved each
part of the coursework. Include all relevant code along with screenshots to
demonstrate your solution. Make sure that your report shows examples of all
the required simulation effects. Submit all of it electronically, as described
on the web page.

Good luck!



