Introduction to Matlab Course notes

Mark Herbster and Jason Kastanis
Copyright © 2006 M. Herbster and J.Kastanis

January 2006

Contents

I Interface Guide 1
1 Overview 1
2 Style of the guide 2
3 A brief history of Matlab 2
4 Basic elements of programming 3
5 Matlab main desktop 4
5.1 Title bar 5
5.2 Menu bar 5
5.3 Desktop toolbar 6
5.4 Command window 6
5.5 Command history 8
5.6 Current directory (window) 8
5.7 Launch pad 9
5.8 Workspace 10
6 Opening and editing files 10
6.1 Opening files 10
6.2 Editing files 12
7 Getting help 15
7.1 Text based help 15
7.2 Graphical interface help 17
7.3 Web-based help 23
8 Setting the desktop layout 24
II Lecture 1 25
9 Overview of Lecture 1 25
10 Style of notes 26
11 Recommended reading 26
12 Introduction to Matlab 27
13 Building matrices 27
14 Addressing and assigning elements 31
15 Building special matrices 34
16 Matrix operations 39
17 Equation solving 43
18 User defined functions 45
19 Plotting 47
20 Utility commands 49
21 Summary table of functions 50
22 Lab exercises 1 51
III Lecture 2 60
23 Overview of Lecture 2 60
24 Relational operators 61
25 Logical operators 63
26 Control flow 65
26.1 for loops 65
26.2 while loops 69
26.3 if-else-end 71
26.4 switch-case-otherwise-end 74
27 Precision issues 76
28 Additional data types 81
28.1 Strings 81
28.2 Cell arrays 83
28.3 Structures 86
29 Input/Output (I/O) 88
30 Formatted Input/Output 89
31 Summary table of functions 108
32 Lab exercises 2 109
IV Lecture 3 121
33 Overview of Lecture 3 121
34 Matlab performance tuning 122
35 Set functions 128
36 User defined functions 2 130
37 Plotting 2 137
38 Summary table of functions 148
39 Lab exercises 3 149

Part I

Interface Guide

1 Overview

- Style of the guide
- A brief history of Matlab
- Basic elements of programming
- Matlab main desktop

Title bar
Menu bar
Desktop toolbar
Command window
Command history
Current directory (window)
Launch pad
Workspace

- Opening and editing files

Opening files
Editing files

- Getting help

Text based help
Graphical help interface
Web based help

- Setting the desktop layout

2 Style of the guide

This guide has been designed to offer a short introduction to programming and the Matlab environment. The main functionality of the graphical user interface is described using example images. These images were produced on a PC running Windows and Matlab version 6.5. They might differ slightly from the version of Matlab that you are running.

Bold is used for all the icons, tools, menu items and other parts of the Matlab interface. The italic font is used for the introduction of basic elements of programming. Elements, such as commands, that belong in the Matlab programming language were written using the verbatim font.

3 A brief history of Matlab

MATrix LABoratory was originally developed by Cleve Moler in the 1970's, then chairman of the computer science department of the University of New Mexico. It was an interface for the LINPACK and EISPACK libraries, which were written in FORTRAN with the participation of Moler. Matlab was originally intended for a linear algebra course. Its aim was to simplify the use of these subroutine libraries by avoiding the complexities of FORTRAN. Matlab began gaining popularity within the applied mathematics community. The early versions were based on the command prompt and had no graphical interface. In 1983 Moler, Jack Little and Steve Bangert rewrote Matlab in C and the following year founded Mathworks to market it further. From version 6 Matlab was based on the LAPACK library which has superseded both LINPACK and EISPACK.

4 Basic elements of programming

A program is a collection of instructions for the computer to execute. It is essentially an algorithm, in that sense it has to be deterministic. Each instruction should be unambiguous. A programming language just like any language has a set of rules. These rules describe the syntax and semantics of the language. The basic elements of a programming language are described below.

Variables are places to store values on the computer memory. The name of the variable serves as the address in the memory, where the value of this variable is held. e.g. $\mathrm{x}=5$, x is the variable, it represents a particular location in the memory, where the value 5 is stored. Variables can have types. Types describe the kind of values a variable can accept and they are divided in primitive and composite. Primitive types are the ones provided by the programming language and they typically contain integers, floating-point numbers and characters. Composite types are made from the combination of primitive types with other primitive types or other composite types. For example an integer variable is of primitive type and it can only store integer values. In some languages the declaration of the type and dimensions of a variable is not required. Variables can be local or global, local ones are only accessible in a particular part of the program, while global ones can be accessed anywhere.

An array is the most basic data structure. It is a list of elements of the same type. Individual elements of an array can be accessed using a consecutive range of integers. This is referred to as the index. The index denotes the position of an element in the list. One dimensional arrays are called vectors and two dimensional are called matrices. Assignment is the task of storing a value in a variable. It is commonly done using the equal sign (=). Keep in mind that the equal sign in Mathematics stands for equality, in programming it stands for assignment.

Expressions compute new values from old ones. The expression $5+3$ will calculate the sum of the values 5 and 3 . In the previous expression the plus sign is an operator, which operates on the values 5 and 3. Statements, or instructions, describe what the program will do. They can contain assignments, expressions and control flow operations. Control flow operations are divided in two main categories, conditionals and loops. Conditionals, as the name suggests, condition the flow of the program, if a variable has a particular value (or belongs in a particular range of values), then a particular set
of statements will be executed, if not another set will. Loops are used for repetition, their construction contains a rule determining how many times a set of statements will be repeated. An entire set of statements grouped together is called a function. A function takes variables, in this case called arguments, and can return values. Calling a function transfers the control over to the function, the group of statements which form it will be executed. When this finishes it returns (with or without a result) to the original flow of the program. Having specified these basic elements of programming, a program can be redefined as an ordered collection of statements, functions and variables.

5 Matlab main desktop

The Matlab main desktop, presented in fig. 1, has many areas and windows. These are discussed in the following sections.

Figure 1: The default Matlab main desktop

5.1 Title bar

The title bar (fig. 2) contains the program's name and logo as well as the window control buttons. It is situated on the top of the main Matlab window.
-1. matlab
-

Figure 2: The title bar

5.2 Menu bar

The menu bar (fig. 3) is underneath the title bar. It has commands for opening, closing files, preferences, etc. Many of these commands have keyboard shortcuts, but these vary between different operating systems. The shortcut keys are commonly displayed next to the command, for example look at fig. 4

Figure 3: The menu bar

Figure 4: Example of a menu item

5.3 Desktop toolbar

The desktop toolbar (fig. 5) is placed underneath the menu bar. It contains many items found on the menus, new file, open, copy, paste, To find out what each icon does, leave the mouse above it for a few seconds and a small box with a tool tip will appear, e.g. fig. 6.

Figure 5: The desktop toolbar

Figure 6: A tooltip

On the left side of the desktop toolbar there is box, which can be edited, called the current directory. This defines the location, where Matlab is working. It is the folder at which the user is looking at. If Matlab (or the user) can't find a particular file, it means that the file is not in the current directory. Commonly used or referenced directories can be setup from the menu bar using File \rightarrow Set Path... . The small arrow on the right of the box will show past current directories (fig. 7). Next to that the browse tool, the icon with the three dots, is used for finding a folder.

5.4 Command window

The command window (fig. 8) is the most important part of the Matlab main desktop. It is the window where input and output appears. In this window the user can enter commands and obtain results. Each new line on the command prompt starts with the symbol >>. This defines where new input can be entered. Input can be apart from Matlab commands, various DOS or Linux prompt type of commands, e.g dir, ls.

Figure 7: Past directories

| Command Window | |
| :--- | :--- | :--- |
| ans $=984-932$ | |
| 52 | |
| \gg | |

Figure 8: Command window

By pressing the up arrow on the keyboard the user can scroll through all the previously entered commands. To scroll back the down arrow can be used. If a letter (or more) is typed, then the up and down arrows can be used to scroll through all the commands that have been previously typed and begin with these letters. The tab button can be used to complete the name of commands or functions. If a command does not exist or if more than one commands with the same starting letters exist, then pressing the tab will make a sound.

5.5 Command history

The command history window (fig. 9) contains the history of the commands entered in the command window. It begins on each new session with the starting date and time. Thus each session history is separated by dates. Commands from the history window can be copied and pasted, dragged and dropped.

Command History	$\pi \times$
$\begin{aligned} & \%--7 / 300512: 05 \mathrm{PM}-\% \\ & \text { avariable }=5 ; \\ & \%--7 / 30 j 0512: 37 \mathrm{PM}--\% \\ & \text { anothervariable }=6 ; \end{aligned}$	

Figure 9: Command history window

5.6 Current directory (window)

The current directory is also visible as a window inside the Matlab main desktop (fig. 10). On the top of this window there is box, which contains the location of the current directory, same as the one in the desktop toolbar. File names appear on the left column, file types on the middle and last date of modification on the right column.

On the same part of the Matlab main desktop, the next two windows (launch pad, workspace) appear as tabs. All of these windows are separable from the main desktop window.

Current Directory			区
C：LDocuments and SettingsiWasonim \vee ．．．围 er			${ }_{4}$
All Files	File Type	Last Modified	
國 area＿fill．m	M－file	08－Jun－2005 08：56 PM	\wedge
［ b ext1．bik	BIK File	08－Jun－2005 08：57 PM	
（a）b＿ext16．mat	MAT－file	08－Jun－2005 08：57 PM	
［ b＿ext2．bik	BIK File	08－Jun－2005 08：57 PM	
－1b＿ext3．bik	BIK File	08－Jun－2005 08：57 PM	
［ b＿ext＿5＿1k5＿5．bik	BIK File	08－Jun－2005 08：57 PM	
－b＿int1．bik	EIK File	08－Jun－2005 08：57 PM	
Cb＿int2．bik	BIK File	08－Jun－2005 08：57 PM	
T h int3 hik	AIK File	ก8－．lın－2nn5 n8．57 PM	

Figure 10：Current directory window

5．7 Launch pad

The launch pad（fig．11）is a way of accessing various Matlab resources， such as the import wizard，the profiler，the Graphical User Interface （GUI）builder，etc．

Figure 11：Launch pad

These windows appear as separate windows from the Matlab main desktop， some of which can be docked，that is they can be a part of the main desktop， and some which cannot be docked，they are called undockable windows． The launch pad can also be used to launch the help and demo files of the toolboxes．As it can be seen on fig． 11 it lives on the same window as the
current directory. Those two can be switched using the tabs on the lowest part of the window, by pressing the one with the corresponding name.

5.8 Workspace

Another window that cohabits the same space as the launch pad and the current directory is the workspace window (fig. 12). This window displays the loaded variables of the current Matlab session, these are variables you have created and are currently loaded on the memory. It displays their name, their size, that is their dimensions, the number of bytes they take on memory and their class, that is the type of variable.

Figure 12: Workspace

On the top part of the workspace window there is toolbar with tools associated to the variables. For example the open icon will launch a separate window, the array editor (fig. 13), for viewing and editing the contents of a variable.

6 Opening and editing files

6.1 Opening files

There are a few ways the user can open a file. From the menu bar, File \rightarrow Open, from the desktop toolbar by clicking on the open file icon, by typing the name of the file on the command prompt, selecting it, rightclicking and choosing open selection. Matlab can deal with a variety of file

Figure 13: Array editor
formats, but only a few will be mentioned here. Workspace files store loaded variables in to a .mat file, figure files (.fig) are graphic files, and M-files contain code and finish with .m. Variables contained in a mat file will be loaded on the workspace as soon as the mat file is opened. Figure files will open on a separate window (fig. 14), this offers certain tools for editing and manipulating the figure.

Figure 14: Figure window

6.2 Editing files

As soon as an M-file is opened the editor window fig. 15 will appear as a separate window.

Figure 15: Editor window

This window can be docked in to the Matlab main desktop. Every file that is opened will appear in the same window. Each file can be in its own editor window, in most cases it is practical to keep them in one. Files are chosen by the tabs on the lower part of the editor window (fig. 16).
|<1> read_grades.m cel2far.m display_histogram.m
Figure 16: Editor tabs

Of course one could use any editor, but Matlab's editor offers color coding, running and debugging facilities. Similar to the command prompt, the user can select the name of a function file, right-click on it and open it. On the bottom right of the editor window (fig. 17), information about the file is displayed as well as the line and the column where the cursor is placed, this can be very useful when debugging. On the left side of the editing area the lines are numbered.

$$
\begin{array}{lll}
\hline \text { display_histogram } & \text { Ln } 1 & \text { Col } 1 \\
\hline
\end{array}
$$

Figure 17: Information on the lower part of the editor

A toolbar (fig. 18) is displayed on the top of the editor window. The standard buttons, New file, Open file, Save, Copy, Cut, Paste, Print are placed here. Next to them the binocular icon represents the find tool. This is used for searching the file for a particular keyword and replacing it if required. Further to the right are the debugging tools for setting and clearing breakpoints. The Run button is also situated on the right of the debugging tools. This will execute the code contained in the active file.

Figure 18: The editor toolbar

Files can also be executed using the menu bar (fig. 19) on the upper part of the editor window in Debug \rightarrow Run. The menu bar contains all of the toolbar commands and many others.

File Edit View Text Debug Breakpoints Web Window Help

Figure 19: The editor menu bar

The name of the file is displayed on the top of the editor window on the title bar (fig. 20).
5) C:Documents and Settings WasonMy DocumentsWCLHerbsterMatlabMatlab filesldisplay_histogram.m \quad X

Figure 20: The editor title bar

7 Getting help

It is an essential part of programming to be able to find out information about syntax and functionality as well as to see working examples. There are three ways the user can get help in Matlab, text based help, graphical help interface and web based help.

7.1 Text based help

Text based help can be obtained from the command prompt by typing help. The help topics then appear as in fig. 21.

Figure 21: Text based help topics

To see the subtopics of one of the topics of fig. 21 type the name of the topic in the command prompt. For example:

```
>> help matlab\general
```

The command help can also be used to find out information about a specific function. For example:

```
>> help sin
    SIN Sine.
    SIN(X) is the sine of the elements of X.
    Overloaded methods
        help sym/sin.m
```

In the case the function is unknown or the user wants to search for a specific keyword, the command lookfor can be used.

```
>> lookfor infinity
INF Infinity.
CEIL Round towards plus infinity.
FLOOR Round towards minus infinity.
CHOLINC Sparse Incomplete Cholesky and Cholesky-Infinity factorizations.
ACTDEMO Demo of digital H-infinity hydraulic actuator design.
DHINF Discrete H-Infinity control synthesis (bilinear transform version).
DHINFOPT Discrete H-Infinity control synthesis via Gamma iteration.
DINTDEMO Demo of H-Infinity design of double integrator plant.
```

The command lookfor will search in all help entries. To find out the details in one of the search results help can be used as previously:
>> help INF
INF Infinity.
INF returns the IEEE arithmetic representation for positive infinity. Infinity is also produced by operations like dividing by zero, eg. 1.0/0.0, or from overflow, eg. exp(1000).

See also NaN, ISFINITE, ISINF.

7.2 Graphical interface help

A more extensive and user friendly option to get help is the graphical interface help window (fig. 22). This is a separate window and it is launched from the menu bar, Help \rightarrow Matlab help, the main desktop toolbar by pressing the question mark or by typing helpbrowser in the command prompt.

Figure 22: Help browser

The help browser has a menu bar on the top and it is divided into two main areas. The area on the left is query area and the right one is where information appears.

On the top of the information area (fig. 23) there is small toolbar with back, forward and reload buttons, similar to a web browser, a print button and a Find in page button for searching a keyword in the current page.

Figure 23: Information area

The query area on the left, also called the help navigator (fig. 24) has five tabs, Contents, Index, Search, Demos and Favorites.

Help Navigator				
Product filter：© All \bigcirc Selected Sel				
Cortents	Inde	Search		
Begin Here Release Notes for Release 13 Installation MATLAB $\pm->$ Getting Started Examples ＋－Development Environment ＋－Mathematics ＋亩 Programming and Data Types ©固 Graphics ＋－固 3－D Visualization \＃－Creating Graphical User Interfaces －－Functions－By Category －Development Environment －Starting and Quitting －Command Window －Getting Help Workspace，File，and Search P －Programming Tools －System Performance Improvement Tool				

Figure 24：Help navigator

The Contents tab, shown in fig. 24, has a tree list of all the help information in Matlab. By clicking on a particular item, the information appears on the right area.

The next tab is the Index (fig. 25). This tab contains a searchable alphabetical list of all topics in Matlab.

Help Navigator				
Product fitter: \bigcirc All \bigcirc Selected Select...				
Contents	Index	Search	Denos	Favorites
Search index for:				
A			Product	
A-law companders [1]			Communications ${ }^{\wedge}$	
A-law companders [2]			Communications	
A-Law Compressor block			Communications	
A-Law Expander block			Communications	
AND				
See analog-to-digital			Real-Time Windc	
AID conversion			Signal Processin	
AD converter			Data Acquisition -	
input range			Data Acquisition ${ }^{\text {- }}$	
sampling rate			Data Acquisition ${ }^{\text {- }}$	
A16/A24/A32 memory sp...			Instrument Contrı	
abbreviate property names			MATLAB Link for 4	
abbreviating property na			Filter Design Too	
abc_to_dq0 Transformati...			SimPowerSysterr	
ahnoit MATI AR I ink fnr C $<$			MATI AR I ink for (>	

Figure 25: Help navigator, the Index tab

The Search tab (fig. 26) can prove very useful. It gives the ability to search in various ways all the help information. In Matlab version 6 and 6.5 there is an option of searching for function names, unfortunately this has been removed in version 7. On the search results the left column shows the title of the topic and the right the section where this topic belongs.

Figure 26: Help navigator, the Search tab

The Demos tab (fig. 27) contains all of Matlab's demo examples in a tree list.

Help Navigator				
Product fitter: © All \bigcirc Selected Select...				
Contents	Index	Search	Demos	Favorites

Figure 27: Help navigator, the Demos tab

The last tab on the right in the help navigator is the Favorites (fig. 28). The Favorites can be used to link commonly used help topics. To create a favorite click on the Add to Favorites button in the information area (fig. 23).

Figure 28: Help navigator, the Favorites tab

7.3 Web-based help

Help in Matlab can also be obtained from the world wide web. This appears in the graphical help interface by typing in the command prompt:
>> web http://www.mathworks.com
It can be of some interest that the graphical help interface can be used as web browser by replacing http://www.mathworks.com in the previous example. Alternatively one can launch the default system browser by typing in the command prompt:
>> web http://www.mathworks.com -browser

8 Setting the desktop layout

The setting of the desktop layout should be adjusted by each user according to their preferences. In the previous sections the default Matlab desktop was used as an example. There are various layouts available from the menu bar of the main desktop, in View \rightarrow Desktop Layout (fig. 29).

Figure 29: View menu

All these can be customized further to fit most needs. As mentioned previously most windows are dockable, this means that they can be part of the main desktop or they can exist as separate windows. To undock a window press the small arrow icon next to the close icon or by dragging and dropping it outside the main desktop area.

주

Figure 30: Undock button

To dock a window click on its menu bar on View -> Dock To make a window reappear, if it is nowhere to be seen, click on View \rightarrow in the menu bar on the main desktop (fig. 29) and check if it is ticked. Keep in mind that a desktop with many smaller windows can easily become cluttered and unfriendly, as information will take longer to be found. The number and size of screens of the workstation is also an important variable on the layout of the desktop.

Part II

Lecture 1

9 Overview of Lecture 1

- Style of notes
- Recommended reading
- Introduction to Matlab
- Building matrices
- Addressing and assigning elements
- Building special matrices
- Matrix operations
- Equation solving
- User defined functions
- Plotting
- Utility commands
- Summary table of functions

10 Style of notes

These notes have been prepared to be compatible with Matlab version 6.5, for most cases this should be true for previous versions of Matlab as well as version 7. Matlab version 7 offers new features, some of those will be explained in comparison with version 6.5. It will be clearly stated, when a feature from version 7 is used.

The verbatim font is used for everything that is written in the Matlab programming language. For the names of variables we use small fonts for scalars, vectors and strings and capital fonts for matrices. Throughout these notes we will see examples that perform the same operation. This is intended to present some of the different ways we can work in Matlab. At the end of each set of notes we have provided a summary table of all newly introduced functions with their corresponding page numbers. Many of Matlab's functions introduced can take a different number of arguments, we have only included the basic arguments each function can take. For more details, you should look in Matlab's help.

11 Recommended reading

Matlab's help contains all the built in functions with extensive details and examples. These are well written and always worth looking at. More details and examples can be found in:

Hanselman, Duane C.: Mastering MATLAB 6 : a comprehensive tutorial and reference, Pearson Education

Kuncicky, David C.: Matlab programming, Pearson Education
Free alternatives similar to Matlab are

Scilab

http://www-rocq.inria.fr/scilab/
Rlab
http://rlab.sourceforge.net/
Octave
http://www.octave.org/

12 Introduction to Matlab

MATrix LABoratory is one of the most popular packages for scientific computing. It offers extensive libraries of numerical methods and a variety of tools for visualization. It is designed mainly for discrete computations with focus on matrices. Even though it has the capability to perform analytical tasks such as finding the derivative of a continuous function, it is not very extensive on symbolic mathematics. A more suited tool for this job is another mathematical programming package called Mathematica, developed by Stephen Wolfram.

Matlab is an interpreted programming language. The statements are translated in to machine code one by one by Matlab's interpreter. In comparison, a compiled programming language like C has a program translated as a whole in to machine code by the compiler. Interpreted languages are faster for development as they have no need for compilation and errors in the code can be found quickly. To run a piece of Matlab code on any computer it has to have Matlab installed. In the case of compiled languages there is no such requirement. Because of the interpretation Matlab tends to be slower than compiled languages.

There are 3 ways in which you can work in Matlab, from the command prompt of Matlab, writing scripts and writing functions. Matlab script and function files are called M-files. A script file takes no arguments, it is just a series of statements that will be executed sequentially. A function file can take and return arguments. To begin with, we will start with writing directly to the command prompt.

13 Building matrices

Manipulation of matrices is one of the most important tasks in Matlab.

Command	Meaning
[]	Matrix constructor
,	Separates matrix columns
$;$	Separates matrix rows
$:$	from-to, all

Matrices can be used to represent images, systems of linear equations and generally many types of data.

```
>> A = [2, 4; 6, 8]
A =
    2 4
    6
```

The commas can be replaced by spaces.

```
>> A = [2 4; 6 8]
A =
    2 4
    6
```

Commas and semicolons can also be used to separate statements. Commas will display the result, while the semicolon does not. It is practical to insert a semicolon at the end of each statement, when working with large matrices.

```
>> A = [2 4; 6 8], B = [1 3; 5 7]; C = [12 13; 14 15]
```

$\mathrm{A}=$
24
68
C =
$12 \quad 13$
1415

Matrices can be combined by using the comma or the semicolon in conjunction with the matrix constructor [].
>> $C=[A, B], D=[A ; B]$
$C=$

2	4	1	3
6	8	5	7

D =

2	4
6	8
1	3
5	7

If the matrices we are trying to combine are not of the correct "shapes", i.e. the rows or columns that we are trying to combine do not match, then the following error will be produced.

```
>> C, D
C =
\begin{tabular}{llll}
2 & 4 & 1 & 3
\end{tabular}
        6
D =
    2 4
        6
        3
        5
>> E = [C ; D]
??? Error using ==> vertcat All rows in the bracketed expression
must have the same number of columns.
```

The problem in the construction of matrix E is that we are using the row separator (;), while the matrix C has 4 columns and matrix D has 2. The
same problem would appear if we were trying to combine two matrices that do not have the same number of rows using the column separator (, or space).

```
>> E = [C , D]
??? Error using ==> horzcat All matrices on a row in the bracketed
expression must have the same number of rows.
```

To combine matrices with the row separator (;) the number of columns of each matrix has to be the same, that means the matrices will have to be $a \times b$ and $c \times b$. To combine matrices using the column separator (,) the number of rows of each matrix has to be the same, that is $a \times b$ and $a \times c$.

The operator : is used for building sequences of numbers. This is especially useful when building uniformly spaced vectors.
>> 1:1:5
ans $=$

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}
$$

In this example we have created a sequence of numbers starting from 1 and ending at 5 with a step size of 1 .

The generalization of the use of the colon operator (:) is start : step : end. The start, step and end can be any real numbers as long as: start $+(c \times$ step) $>$ end, $c \in \mathbb{N}$.

The colon operator (:) can also be used in conjunction with the matrix constructor ([]).
$\gg F=[1: 1: 5 ; 11: 2: 20]$

F =

1	2	3	4	5
11	13	15	17	19

14 Addressing and assigning elements

The first action we have to take in order to assign a value to a variable is to address the element of the variable we want. To address an element of a matrix the round brackets (a, b) are used. a and b are positive integers, i.e. $a, b \in \mathbb{N}$. The first element inside the brackets denotes the row and the second denotes the column.

```
>> F
F =
\begin{tabular}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
11 & 13 & 15 & 17 & 19
\end{tabular}
>> F(2,3)
ans =
```

15

Vectors can also be used to address elements in a matrix.

```
>> F([1 ; 2] , 3)
ans =
    3
    15
>> F([1 2] , 3)
ans =
    3
    1 5
```

The colon : can be used to address all the elements of a row or column.

```
>> F(:,1)
ans =
    1
    1 1
>> F(1,:)
ans =
    1 2 3 4 4
```

Matrices can also be addressed as if they were a vector. The elements are numbered by first counting the elements of a column and then progressing to the next column (as in fig. 31).

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16

Figure 31: Numbering of a matrix as a vector

```
>> F
F =
\begin{tabular}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
11 & 13 & 15 & 17 & 19
\end{tabular}
>> F(3)
ans =
```

```
>> F(4)
ans =
    1 3
```

Elements can be modified in a matrix simply by addressing the particular element and then assigning it using the equal $=$.

```
>> F
```

F =

1	2	3	4	5
11	13	15	17	19

> $\mathrm{F}(1,2)=5$
F =

1	5	3	4	5
11	13	15	17	19

> $F\left(\left[\begin{array}{ll}1 & 2\end{array}\right], 3\right)=[21 ; 22]$
$\mathrm{F}=$

1	5	21	4	5
11	13	22	17	19

>> $F(:, 4)=[14$; 16]
$F=$

1	5	21	14	5
11	13	22	16	19

Note that if you are modifying more than one element the dimensions of what is being addressed and what is being assigned have to agree.

```
>> F([ll 2] , 3) = [21 22]
??? In an assignment A(matrix,matrix) = B, the number of rows in
B and the number of elements in the A row index matrix must be the
same.
```

In Matlab version 7 this will not return an error, as it is possible to assign without the dimensions agreeing. If only one element is being assigned and it does not belong to the matrix, then the matrix is filled with zeros and expanded in order for this element to be inside the new matrix.

```
>> F
F =
\begin{tabular}{rrrrr}
1 & 5 & 21 & 14 & 5 \\
11 & 13 & 22 & 16 & 19
\end{tabular}
>> F(3,4) = 20
F =
\begin{tabular}{rrrrr}
1 & 5 & 21 & 14 & 5 \\
11 & 13 & 22 & 16 & 19 \\
0 & 0 & 0 & 20 & 0
\end{tabular}
```


15 Building special matrices

It is convenient to be able to build special matrices without the necessity of long procedures. The following table summarizes the functions to build special matrices.

Functions	Meaning
ones (a, b)	Creates an a x b matrix with all elements equal to 1
zeros (a, b)	Creates an a x b matrix with all elements equal to 0
eye (a)	Creates an a x a identity matrix
repmat $(\mathrm{e}, \mathrm{a}, \mathrm{b})$	Replicates in a x b tiles the element e
$\operatorname{rand}(\mathrm{a}, \mathrm{b})$	Creates an a x b random matrix (uniform distribution in $[0,1])$
$\operatorname{randn}(\mathrm{a}, \mathrm{b})$	Creates an a x b random matrix (normal distribution)
$\operatorname{linspace}(\mathrm{s}, \mathrm{e}, \mathrm{nr})$	Creates a uniformly spaced array
$\operatorname{logspace}(\mathrm{s}, \mathrm{e}, \mathrm{nr})$	Creates a logarithmically spaced array

```
>> ones(3,5)
ans =
\begin{tabular}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular}
>> zeros(5,3)
ans =
    0 0 0
    0 0 0
    0}0
    0 0 0
    0 0 0
>> rand(2,3)
ans =
\(0.9501 \quad 0.6068 \quad 0.8913\)
\(0.2311 \quad 0.4860 \quad 0.7621\)
>> randn(3,3)
```

```
ans =
    1.1892 0.1746 -0.5883
    -0.0376 -0.1867 2.1832
    0.3273 0.7258 -0.1364
```

The functions ones(), zeros(), rand(), randn() can be simplified for square matrices by only having one number inside the round brackets.

```
>> ones(3)
ans =
\(1 \quad 1 \quad 1\)
    1 1 1
    1 1 1
>> zeros(3)
ans =
    0 0 0
    0 0 0
    0 0
>> randn(3)
ans =
    -0.0592 0.5077 -0.6436
    -1.0106 1.6924 0.3803
    0.6145 0.5913 -1.0091
```

The function eye (a) constructs the identity matrix, which is by definition square. The identity matrix has 1 in the elements on the diagonal and 0 everywhere else.
>> eye(3)
ans $=$

1	0	0
0	1	0
0	0	1

repmat (e, x,y) can be used to replicate any element e (scalar, vector, or matrix) in to a matrix. The matrix returned will have dimensions equal to the first dimension of e times x by the second dimension of e times y. The element e will be replicated x times in the x axis and y times in the y axis.

```
>> repmat(2,3,3)
ans =
    2 2 2
    2 2 2
    2 2 2
>> A = repmat([7 8], 3, 4)
A =
\begin{tabular}{llllllll}
7 & 8 & 7 & 8 & 7 & 8 & 7 & 8 \\
7 & 8 & 7 & 8 & 7 & 8 & 7 & 8 \\
7 & 8 & 7 & 8 & 7 & 8 & 7 & 8
\end{tabular}
>> size([7 8])
ans =
    2
>> size(A)
ans =
```

```
    3
>> repmat([1 2],3,3)
ans =
\begin{tabular}{llllll}
1 & 2 & 1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 & 2
\end{tabular}
>> repmat([1; 2],3,3)
ans =
\begin{tabular}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{tabular}
>> repmat([1 3; 2 4],3,3)
ans =
\begin{tabular}{llllll}
1 & 3 & 1 & 3 & 1 & 3 \\
2 & 4 & 2 & 4 & 2 & 4 \\
1 & 3 & 1 & 3 & 1 & 3 \\
2 & 4 & 2 & 4 & 2 & 4 \\
1 & 3 & 1 & 3 & 1 & 3 \\
2 & 4 & 2 & 4 & 2 & 4
\end{tabular}
```

The function size (A) returns the number of rows and columns of A. To create uniformly spaced vectors, the function linspace ($\mathrm{s}, \mathrm{e}, \mathrm{nr}$) can be used. The first argument (s) inside the round brackets is the starting point, the second (e) is the end point and the third one (nr) is the number of elements including the starting and the end point. An equivalent operation can be performed using the colon : notation, as discussed previously, with the same starting
and ending points and a step size of $\frac{e-s}{n r-1}$.
>> linspace $(1,3,5)$
ans $=$
1.0000
1.5000
2.0000
2.5000
3.0000
>> 1:0.5:3
ans =
1.0000
1.5000
2.0000
2.5000
3.0000

In the same way we can create logarithmically spaced vectors using the function logspace ($\mathrm{s}, \mathrm{e}, \mathrm{nr}$). The difference is that the starting point s is defined as 10^{s}, the ending point as 10^{e} and the size of the step is $10^{\frac{e-s}{n-1}}$
>> logspace $(0,1,5)$
ans $=$
1.0000
1.7783
3.1623
$5.6234 \quad 10.0000$

16 Matrix operations

The following table has the most important matrix operations.

Matrix operations	Meaning
'	Transpose
+	Addition
-	Subtraction
$*$	Multiplication
\sim	Power

The transpose of a matrix A is a matrix A^{T} (or A^{\prime}), which has the rows of A as columns and the columns as rows.
>> $A=\operatorname{ones}(3), B=\operatorname{rand}(3)$

```
A =
\begin{tabular}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular}
B =
    0.4660 0.5252 0.8381
    0.4186 0.2026 0.0196
    0.8462 0.6721 0.6813
>> B'
ans =
\(0.4660 \quad 0.4186 \quad 0.8462\)
    0.5252 0.2026 0.6721
    0.8381 0.0196 0.6813
>> A + B
ans =
    1.4660 1.5252 1.8381
    1.4186 1.2026 1.0196
    1.8462 1.6721 1.6813
>> A - B
ans =
    0.5340 0.4748 0.1619
    0.5814 0.7974 0.9804
    0.1538 0.3279 0.3187
```

Matrix multiplication is defined as follows: Given two matrices A and B, then
their product $C=A B$ is $C_{r t}=A_{r s} B_{s t}$ and an element of matrix C is defined as $c_{i j}=\sum_{k=1}^{s} a_{i k} b_{k j}$, where $a_{i k}, b_{k j}$ are elements of A and B respectively.

```
>> A * B
```

ans =

1.7309	1.3999	1.5390
1.7309	1.3999	1.5390
1.7309	1.3999	1.5390

Power of matrix is defined as follows: $\underbrace{A^{k}=A \times A \ldots A}_{k \text { times }}$
>> $\mathrm{B}^{\wedge} 2$
ans $=$

1.1462	0.9145	0.9719
0.2965	0.2741	0.3682
1.2522	1.0385	1.1866

Vectorized operations are also useful. These operations are performed between two corresponding elements of the two matrices. The following table contains a list of main operations.

Vectorized operations	Meaning
.$*$	Multiply corresponding elements
.$/$	Divide corresponding elements
.\sim	Power of each element

$\gg A=[12 ; 46], B=[35 ; 79]$
$\mathrm{A}=$

1	2
4	6

```
B =
    5
    7 9
>> A .* B
ans =
    3 10
    28 54
>> A ./ B
ans =
    0.3333 0.4000
    0.5714 0.6667
>> A .^ 2
ans =
    1 4
    16 36
```

Matrix and scalar operations can be stated similarly to matrix operations. Also,,$+- /$ and $*$ are naturally defined between matrices and scalars.
>> A
$\mathrm{A}=$
12
46
>> A + 2

```
ans =
    3 4
    6
>> A - 2
ans =
    -1 0
    2 4
>> A * 2
ans =
    2 4
    8 12
>> A / 2
ans =
    0.5000 1.0000
    2.0000 3.0000
```


17 Equation solving

Consider the following system of equations.

$$
\begin{align*}
2 x_{1}+x_{2}-2 x_{3} & =10 \tag{1}\\
6 x_{1}+4 x_{2}+4 x_{3} & =2 \\
10 x_{1}+8 x_{2}+6 x_{3} & =8
\end{align*}
$$

This can be represented by a matrix equation $A x=b$

```
>> A = [2 1 -2; 6 4 4; 10 8 6], b = [10 ; 2 ; 8]
A =
        2 1 -2
        6 4 4
        10 8 6
b =
    10
        2
        8
```

The solution of this equation is to invert matrix A and multiply it with b, $x=A^{-1} b$. To invert a matrix we can use inv(A) or simply raise the matrix to power of -1 . These two are equivalent.

```
>> x = inv(A) * b
x =
            1.0000
            2.0000
            -3.0000
>> x = A^-1 * b
x =
    1.0000
    2.0000
    -3.0000
```

Another way of calculating the solution of this equation is to use the left division sign \backslash. This will invert the matrix and multiply to the left. The difference of left division with the previous methods is that if the matrix is singular, then it will calculate the least squares solution.

```
>> x = A \ b
```

$\mathrm{x}=$
1.0000
2.0000
-3.0000

Another method of obtaining the least squares inverse also called MoorePenrose pseudoinverse is to use pinv(A).

```
>> x = pinv(A) * b
```

$x=$
1.0000
2.0000
-3.0000

The pseudoinverse should be used when we know that the matrix does not have a proper inverse.

If the matrix is square and non-singular then the function $\operatorname{pinv}(A)$ is a computationally expensive way of calculating the inverse. In this case we should use the proper inverse (inv or raise to the power of -1).

18 User defined functions

To write our own function we will have to open a new M-file. This can be done in Matlab's editor or in any external editor, as discussed previously. An M-file can contain a script or a function. A script is a series of statements that will be executed sequentially and has the same effect as typing them in the command prompt. The first line of a function should be in the following form:
function [val1, val2, ...] = filename(arg1,arg2,...)

Note that the name of the function has to match the name of the file. The first commented lines after the first line, which defines the function, are displayed when requesting Matlab's help. Create a function called my_function with the following code.

```
function [rtn] = my_function(a,b)
% rtn = my_function(a,b) takes two variables and adds them
rtn = a + b;
>> my_function(2,4)
ans =
    6
>> help my_function
    rtn = my_function(a,b) takes two variables and adds them
```

Using the first lines for information on the function, explaining what the function does, what arguments it takes, what variables it returns, version number, etc. can prove to be very useful in large projects.

Remember that all variables inside a function are local and cannot be accessed from the command prompt or any other functions. All variables inside a script file can be accessed from the command prompt and other scripts.

Next is an example of a function myint that integrates a given function f on an closed interval [a,b] according to accuracy n. The higher n is the more samples myint will take in the interval $[a, b]$ for the function f.

```
function s = myint(f,a,b,n)
% function s = myint('f',a,b,n)
%
% This function numerically integrates f from a to b
% by summing n approximating rectangles
invs = linspace(a,b,n+1) ;
fx = feval(f,invs(1:n)) ;
s =((b-a)/n)*sum(fx) ;
```

On the command prompt we can type:

```
>> myint('sin',0,pi,100)
ans =
```

1.9998

The function feval(f,values) takes a string f defining the function and an array values with the values of where the function f should be evaluated. feval can take any predefined, both user created and built in Matlab, function as the f argument.

19 Plotting

The main function for simple plots is plot (x, y), it takes two arguments, the x values and the y values.
>> x_values = linspace(0,4*pi,100);y_values = sin(x_values);
>> plot(x_values,y_values);

Figure 32: Sin plot

3D plots can be performed using the plot3(X,Y,Z) function. This works similar to $\mathrm{plot}(\mathrm{x}, \mathrm{y})$ with the addition of the Z coordinates. 3D plots can also be displayed using the mesh $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ function. X, Y and Z are the x, y and z coordinate matrices. Define the following function:
function rtn $=$ funky (x, y)
\% rtn = funky (x,y)
$r \operatorname{tn}=\sin (\operatorname{sqrt}(x . \wedge 2+y . \wedge 2)) . /\left(x . \wedge 2+y .{ }^{\wedge} 2+0.0001\right) ;$
Note that we have used vectorized power in the function definition. If we pass arrays to this functions the elements will be multiplied individually instead of performing a matrix multiplication. On the command prompt we write the following statements:
>> [X Y] = meshgrid(linspace $(-8,8,30)$,linspace $(-8,8,30))$;
>> Z = funky(X, Y);
>> mesh(X,Y,Z);

Figure 33: Mesh plot of the funky function

The function $[\mathrm{X} Y$] $=$ meshgrid (A, B) will create the grids X and Y for a 3D plot according to the vectors A and B.

20 Utility commands

Command	Meaning
whos	Gives the sizes and types of all loaded variables
save 'my_work'	Save the current workspace on to 'my_work'
load 'my_work'	Load 'my_work' on to the current workspace
diary on	Starts diary
diary off	Stops diary
close all	Closes all figure windows
clear all	Clears from memory all loaded variables
clc	Clear command window
Control + c	Stops execution of a program
Control +i	Smart indent selected text
Control +r	Comment selected text
Control +t	Uncomment selected text
quit	Exit Matlab

21 Summary table of functions

Function	p.	Meaning
[]	27	Matrix constructor
,	27	Separates matrix columns
;	27	Separates matrix rows
:	27	from-to, all
()	31	Addressing elements in matrix
ones (a, b)	35	Creates an a x b matrix with all elements equal to 1
zeros (a, b)	35	Creates an a x b matrix with all elements equal to 0
eye(a)	35	Creates an a x b identity matrix
repmat ($\mathrm{A}, \mathrm{a}, \mathrm{b}$)	35	Replicates in a x b tiles the element A
rand (a, b)	35	Creates an a x b random matrix (uniform distribution in [0,1])
randn (a, b)	35	Creates an a x b random matrix (normal distribution)
linspace(s,e,nr)	35	Creates a uniformly spaced array
logspace(s,e,nr)	35	Creates a logarithmically spaced array
size(A)	38	Returns the number of rows and columns of A
,	39	Transpose
+	39	Addition
-	39	Subtraction
*	39	Multiplication
-	39	Power
.*	41	Multiply corresponding elements
./	41	Divide corresponding elements
.	41	Power of each element
$\operatorname{inv}(\mathrm{A})$	44	Invert matrix A
$A \backslash B$	44	Invert the matrix A and multiply it with B
pinv(A)	45	Pseudoinverse of matrix a
feval(f,values)	47	Evaluate the string function f at values
plot (x,y)	47	Plot x and y values
plot3(X,Y,Z)	47	3D plot X, Y and Z values
mesh(X,Y, Z)	47	3 D mesh plot of X, Y and Z values
meshgrid(A, B)	48	Create X and Y grid matrices for a 3D plot

22 Lab exercises 1

Programming exercises 1

A. Create the following matrices in Matlab:
$\mathrm{A}=$

5	3	1	0
2	4	7	2
6	4	3	1

$B=$

1	7
3	4
2	3

6	6	0	5
9	2	1	8

1. Combine matrices A, B and C in all possible ways (horizontally and vertically) using the constructor [] and the operators ; and , .
2. Using the : create the following arrays:

3	2.75	2.5	2.25	2	1.75	1.5	1.25	1

3. Write code that will add the 1st, 3rd and 6 th element of the arrays a, b and c. This sum should should be placed as an extra element at the end of each array.
4. For matrix

D =

1	5	2	9	6
2	4	3	2	7

write code that will add the elements of the 1st row to elements of the 2nd row and place them on a 3rd row in matrix D.
5. Using the rand function add a maximum 10% random error on each element of the matrices A, B and C. 10% random error means that you should add to each element a number that is at most 10% of the element's value.
B. Create the matrix E as follows:
$\mathrm{E}=$

4	6	0
5	1	3

1. Find at least 2 ways of adding the value 1 to each element of matrix E.
2. Using the linspace function create the following array:
```
d =
    1 1.2 1.4 1.6 1.8
```

3. Using the repmat function create a 3×6 matrix with the array d as each row.
4. Using the repmat function create a 6×4 matrix with the array d as each column. Note you will have to transpose the array d.
5. Using the meshgrid function create two matrices X and Y with the array d. Recreate those two matrices using the repmat function.
6. Type the function funky from the notes 1 on p. 48 and save it. Construct an array e starting at -5 and ending at 5 . The step size is your own choice. Using the array e and the repmat or the meshgrid function create the X and Y coordinate matrices for the calculation of the funky function. Evaluate the function from -5 to 5 and plot it using plot3 and mesh. Note how the plot changes if you change the step size in the array e.
C. Using the : operator, element addressing and the matrix constructor [] create the following matrix. Note you might need to create an intermediate array holding all of the values of the matrix.
$\mathrm{F}=$

1	2	3	4
5	6	7	8
9	10	11	12

1. Using the reshape function and an intermediate array, that holds all the values, create the matrix F with the same values as previously. Use Matlab's help to find out the syntax and functionality of reshape.
2. Using matrix multiplication multiply the 1st column of F with 3 , the 2nd with 2 , the 3 rd with 5 and the 4 th with 7 .
3. Using matrix multiplication multiply the 1st row of F with 3 , the 2 nd with 2 and the 3rd with 5.
4. Using vectorized multiplication perform the same operations to matrix F as the previous two exercises.
5. Using matrix multiplication find the sum of each row and column of the matrix F .
D. Given the following linear systems:

$$
\begin{align*}
2 x_{1}+3 x_{2}-x_{3}+4 x_{4} & =23 \tag{2}\\
1 x_{1}+1 x_{2}-3 x_{3}+5 x_{4} & =11 \\
7 x_{1}+x_{2}+3 x_{3}+4 x_{4} & =12 \\
5 x_{1}+4 x_{2}+3 x_{3}-11 x_{4} & =14 \\
& \tag{3}\\
2 x_{1}+3 x_{2}-x_{3}+4 x_{4}+3 x_{5} & =23 \\
1 x_{1}+1 x_{2}-3 x_{3}+5 x_{4}+5 x_{5} & =11 \\
7 x_{1}+x_{2}+3 x_{3}+4 x_{4}+7 x_{5} & =12 \\
5 x_{1}+4 x_{2}+3 x_{3}-11 x_{4}+11 x_{5} & =14
\end{align*}
$$

1. Solve all of the above systems.
2. Test how good your solutions are by replacing the x variables into the equations.
E.
3. Write a function my_calculations that takes two variables, adds, subtracts, multiplies and divides them and returns all these results.
4. Write a function my_cos_sin that calculates the following expression:

$$
y=2 \cos (x)+3 \sin (2 x)
$$

given x and returns y . Keep in mind that the functions sin and cos take radians as arguments.
3. Calculate the values of y for $x \in[0,2 \pi)$.
4. Use the feval function to calculate y for $x \in[0,2 \pi)$.
5. Plot the $\sin (), \cos ()$ and my_cos_sin() functions on the correct x axes.

Programming exercises 2

Files for this exercise are available from
http://www.cs.ucl.ac.uk/staff/M.Herbster/GI03/

1. In this first exercise we will produce a simple visualization of a gradient descent algorithm. Consider the function,

$$
f(x, y)=(x-2)^{2}+2(y-3)^{2}
$$

>> [X,Y] = meshgrid(linspace(0,5,15),linspace (0,5,15)) ;
>> mesh(X,Y,fcarg(X,Y)) ;

Figure 1

Algebraically, we see that $(2,3)$ is the minima of this function. Numerically we may use the matlab function graddesc.m to calculate the minima.

```
>> graddesc('fc','dfc',[0,0],0.1,0.1)
ans =
    1.9550 2.9995
```

Suppose we start a gradient descent algorithm at $(0,0)$ on the way to the minima we traverse a series of points,
$\left.\left\{(0,0, f(0,0)),\left(x_{2}, y_{2}, f\left(x_{2}, y_{2}\right)\right),\left(x_{3}, y_{3}, f\left(x_{3}, y_{3}\right)\right), \ldots, \sim(2.0,3.0,0.0)\right)\right\}$
Visualizing this path in three dimensions we have,

Figure 2
Projecting down to the xy plane we have,

Figure 3
(a) Produce a plot similar to Figure 1.
(b) Modify the function graddesc.m to produce a sequence of points as in Equation 1.
i. Modify the code.
ii. Produce a plot similar to Figure 2. (Hint: to do this it will be necessary to massage the sequence of points into a form usable by plot3(), then to produce the grid use the command grid on.
iii. Produce a plot similar to Figure 3.
2. In this exercise we will use gradient descent to perform linear regression (linear least squares). Consider the matrix equation,

$$
A x=b
$$

if there is no exact solution then for any potential solution x we may define a column vector of error terms

$$
e=A x-b
$$

The sum of the errors squared is then

$$
e^{T} e
$$

in matlab this is just $e^{\prime} * e$. Thus the least squares solution is the x that minimizes

$$
(A x-b)^{T}(A x-b)
$$

In Matlab
>> $A \backslash b$
computes the least square solution directly.
(a) Give a matlab function to compute the least squares solution by gradient descent. The arguments should include the matrix A, the column vector b, an initial guess, a step size, and a tolerance (i.e., a convergence criteria). For example: mydescent (A, b, guess, step, tol). Note: that standard gradient is a very inefficient method to compute the least squares solution to a set of equations. Also observe in order to code mydescent.m you will need to determine the symbolic solution of $\nabla_{x}\left[(A x-b)^{T}(A x-b)\right]$ where ∇_{x} is the gradient with respect to x.
(b) Use the above function to give a least squares solution to the equations

$$
\begin{aligned}
x_{1}-x_{2} & =1 \\
x_{1}+x_{2} & =1 \\
x_{1}+2 x_{2} & =3
\end{aligned}
$$

(c) Visualize the above solution with a plot as in Figure 3.
3. This exercise explores the convergence of gradient descent in a single variable. Gradient descent can be defined as follows. Given $f(x)$, let f^{\prime} denote the first derivative, let λ denote the step size and let x_{0} denote the initial point, hence gradient descent can be defined as a sequence of iterates of $G_{f, \lambda}(x)=x-\lambda f^{\prime}(x)$ which we will denote as follows
$G^{(0)}=x_{0}, G^{(1)}=x_{0}-\lambda f^{\prime}\left(x_{0}\right), G^{(2)}=x_{0}-\lambda f^{\prime}\left(x_{0}\right)-\lambda f^{\prime}\left(x_{0}-\lambda f^{\prime}\left(x_{0}\right)\right), \ldots$
hence gradient descent on f with step size λ and starting point x_{0} converges to x^{*} if $G^{(n)} \rightarrow x^{*}$ as $n \rightarrow \infty$.

For the following exercises experimental arguments will receive a some credit however the best responses will give/include mathematical arguments. Notation: let $|x|$ denote the absolute value of x.
(a) Does there exist a nontrivial starting point x_{0} and step size λ such that gradient descent on $f(x)=|x-1|^{3}$ converges to 1 . What is your evidence?
(b) Does there exist a nontrivial starting point x_{0} and step size λ such that gradient descent on $f(x)=\sqrt{|x-1|}$ converges to 1 . What is your evidence?
(c) For what values of $\lambda>0$ does there exist an $x_{0} \neq 0$ such that gradient descent on $f(x)=x^{4}+5 x^{2}$ converges to 0 . Why?
(d) Formulate a set of sufficient conditions for gradient descent to converge in one variable.

Part III

Lecture 2

23 Overview of Lecture 2

- Relational operators
- Logical operators
- Control flow
for loops
while loops
if-else-end
switch-case-otherwise-end
- Precision issues
- Additional data types

Strings
Cell arrays
Structures

- Input/Output (I/O)
- Formatted Input/Output
- Summary table of functions

24 Relational operators

The following table contains a list of the relational operators in Matlab.

Operator	Meaning
$<$	Less than
$<=$	Less than or equal to
$>$	Greater than
$>=$	Greater than or equal to
$==$	Equal to
$\sim=$	Not equal to

```
Relational operators return a Boolean value, that is 1 if true and 0 if false.
>> 4 > 5
ans \(=\)
    0
>> \(4<5\)
ans \(=\)
1
```

Relational operators can be applied to any size vectors. Next is an example of how to compare two vectors of equal size.
>> a = [1:5], b = 5 - a
a $=$
1
2 3 4
5
b =
$\begin{array}{lllll}4 & 3 & 2 & 1 & 0\end{array}$

```
>> a > b
ans =
    0
```

The answer is an array of the original size with each position representing the result of the comparison between corresponding elements of the arrays. Relational operators can also be used to compare arrays with scalars.

```
>> a > 4
ans =
    0 0 0 0 0
```

The function find(A) finds indices and values of nonzero elements of an array A.
>> b
b =
$\begin{array}{lllll}4 & 3 & 2 & 1 & 0\end{array}$
>> locs = find(b.^2 > 5)
locs $=$
12
>> b(locs)
ans $=$
43

25 Logical operators

The following table lists the logical operators in Matlab. Note that A and B are not considered purely as matrices but as logical expressions.

Operator	Function Form	Meaning
$\&$	$\operatorname{and}(A, B)$	and
I	$\operatorname{or}(A, B)$	inclusive or
	$\operatorname{xor}(A, B)$	exclusive or
\sim	$\operatorname{not}(A)$	not

The operator and (\&) requires both expressions A, B to be true in order to return true, all other combinations return false. The inclusive or (I) returns true if one or both of the expressions are true, while the exclusive or ($\operatorname{xor}(A, B))$ returns true only if one expression is true and returns false if both expressions are true or false. The operator not (${ }^{\sim}$) returns true if the expression is false and false if the expression is true. This can be summarized in a truth table.

A	B	$\mathrm{A} \& \mathrm{~B}$	$\mathrm{~A} \mid \mathrm{B}$	$\operatorname{xor}(\mathrm{A}, \mathrm{B})$	${ }^{\sim} \mathrm{A}$
0	0	0	0	0	1
1	0	0	1	1	0
0	1	0	1	1	1
1	1	1	1	0	0

These operators are used in the following way. Consider A and B to be two logical expressions with a Boolean value, that is 1 for true and 0 for false.

```
>> A = 0; B = 1;
>> A & B
ans =
0
>> A | B
ans =
```

```
>> xor(A , B)
ans =
    1
>> ~A
ans =
    1
```

Next are some examples on the use of these operators in combination with the relational operators.

```
>> a = [1:8]
a =
    1
>> a > 4 & a <= 6
ans =
    0
>> a > 4 | mod(a,2) == 0
ans =
    0
>> xor(a > 4, mod(a,2))
ans =
```

```
    1 0
>> a > 4 & (~ mod}(a,2) == 0 )
ans =
```


The $\bmod (\mathrm{a}, \mathrm{b})$ function calculates the modulus after the division a / b. The not operator can usually be replaced by directly negating the expression. The last expression on the previous example can be rewritten as:

```
>> a > 4 & (mod(a,2) ~ = 0 )
ans =
```


It is also possible to build expressions combining multiple logical operators.

```
>> (a > 4 & a <= 6) | (a == 1)
ans =
```

1	0	0	0	1	1	0	0

26 Control flow

In the following sections the control flow of loops (for, while - end) and conditional statements (if - else, switch - case) will be introduced.

26.1 for loops

The most common way of repeating a sequence of statements for a specific number of times is to use a for loop. Consider the following example:

```
>> for x=1:2
disp('This statement is repeated')
end
```

The statement between for and end will be repeated two times. The output on the screen will be:

```
This statement is repeated
This statement is repeated
```

On the first line of the loop, starting with for, we define how many times the statements will be repeated. If we simply change the 2 from the previous example to 3 , the statements will be repeated three times.

```
>> for x=1:3
disp('This statement is repeated')
end
```

The function disp (a) displays a on to the screen. The output on the screen will be:

```
This statement is repeated
This statement is repeated
This statement is repeated
```

The first line of the loop contains an assignment of an array. The number of columns of this array defines how many times the statements inside the loop will be executed. On every repetition x will be equal to a column of the array it was assigned to. The variable x will take consecutive values, the columns, of the assigned array. Consider the following example:

```
> for x = [lllll}
disp('x equals'), disp(x)
end
```

The output on the screen will be:

```
x equals
    1
x equals
    3
x equals
    5
```

The statement disp('x equals'), disp(x) was repeated three times, that is the number of columns of the array [lllllll $\left.\begin{array}{ll}1 & 3\end{array}\right]$ used in the assignment, each time taking the value of the column of the array $\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]$. A matrix can also be used instead of vector. In this case x will be a column vector instead of a single number.

```
>> for x = [1 2 3; 4 5 6]
disp('x equals'),disp(x)
end
```

The output on the screen will be:
x equals
1
4
x equals
2
5
x equals
3
6

The general syntax of the for loop is as follows:

```
for x=array
    statements % executed once for each column in array
                        % x is the columns consecutively
end
```

The first line defines how many times statements will be executed. If array is a $m \times n$ matrix then statements will be executed n times. Each time \mathbf{x} will be equal to the corresponding column.

The following example calculates and displays the mean and the sum of each column of a matrix.

```
>> A=[1:12]; B = reshape(A,4,3)
B =
\begin{tabular}{lrr}
1 & 5 & 9 \\
2 & 6 & 10 \\
3 & 7 & 11 \\
4 & 8 & 12
\end{tabular}
>> for x=B
disp('Mean:'); disp(mean(x)); disp('Sum:'); disp(sum(x));
end
Mean:
    2.5000
Sum:
    1 0
Mean:
    6.5000
Sum:
    2 6
Mean:
    10.5000
```

Sum:
42
The function reshape ($\mathrm{A}, \mathrm{r}, \mathrm{c}$) reshapes A in to r rows and c columns. The functions mean (a) and sum(a) calculated the mean and sum of a. If a is a matrix then they calculate the mean or sum on each column of a.

In the case where x takes consecutive integer values it can be used as an index in array.

```
>> a = [1,2,3];
>> for x=a
b(x) = x^2;
end
>> b
b =
    1 4 9
>> x_values = [0:0.1:2*pi - 0.1];
>> for index=1:length(x_values)
y_values(index) = sin(x_values(index));
end
>> figure;plot(x_values,y_values);
```

Question: How can we simplify the above example and avoid using a for loop?

The function length(a) returns the size of the largest dimension of a. The last statement will produce the plot in fig. 34 .

26.2 while loops

Often we wish to repeat a sequence of statements while a given condition remains true. The general syntax for a while loop is the following.

```
while expression
    statements % are executed while expression is true
```


Figure 34: Sin plot

```
% if the expression returns an array all
% must be true
```

end
The first line defines when the repetition is going to stop. statements will be executed repeatedly, while expression remains true, that is while expression returns the value 1.

The while loop can be used exactly as a for loop, if we define a variable to count the number of repetitions. This variable is commonly referred to as the counter.

```
>> a_counter = 0;
>> while a_counter < 3
a_counter = a_counter + 1;
disp('The counter is equal to: '),disp(a_counter);
end
```

The output on the screen will be:

```
The counter is equal to:
```

 1
 The counter is equal to:
2
The counter is equal to:
3

Next is an example that finds the first non zero entry of an array or a matrix and stores its index.

```
>> A = zeros(10,1);
>> A(5) = 1;
>> m = 1;
>> while A(m) == 0
m = m + 1;
end
>> m
m =
```

5
Question: How can the above example be accomplished using the function find()?

The difference between the two types of loops is that for loops can only repeat statements based on the number of columns of the assigned array. while loops can repeat statements based on any expression. Thus while loops are more general than for loops. The most common use of for loops is for counting type of repetitions, their advantage there is that they have the counter build in to the syntax.

26.3 if-else-end

To execute different sequences of statements according to some conditions we can use if-else-end. The general syntax is as follows:

```
if expression1
    statements1 % executed if expression1 is true
elseif expression2
    statements2 % executed if expression1 is false and expression2 is true
elseif expression3
    statements3 % executed if all previous expressions are false
        % and expression3 is true
else
    statements4 % executed if no expression is true
end
```

Note that expression2 will only be checked if expression1 is false.
The next expression will only be checked if the previous one is false. That means that if two or more expressions are true, only the first one is going to be executed.

To demonstrate this a simple example of if-else follows next.

```
>>if 1<2
disp('First condition');
elseif 1<3
disp('Second condition');
end
```

First if-else

The following function uses if-else to separate an array of numbers into numbers divisible by 2 , divisible by 3 and not divisible by 2 or 3 .
function [div_2, div_3, not_div] = myseparate(A)
\% rtn = mysort(A) takes a scalar vector as input
\% and sorts it out to numbers that are divisible by 2 (div_2),
\% numbers that are divisible by 3 (div_3) and
\% other numbers that are not divisible by 2 or 3 .
\% If a number is divisible by 2 and 3 then it will go to both lists.

```
count_div_2 = 0; count_div_3 = 0; count_not_div = 0;
for m=1:length(A)
    if mod(A(m),2) == 0 & mod(A(m),3) == 0
        count_div_2 = count_div_2 + 1;
        div_2(count_div_2) = A(m);
        count_div_3 = count_div_3 + 1;
        div_3(count_div_3) = A(m);
    elseif mod(A(m),2) == 0
        count_div_2 = count_div_2 + 1;
        div_2(count_div_2) = A(m);
    elseif mod(A(m),3) == 0
        count_div_3 = count_div_3 + 1;
```

```
    div_3(count_div_3) = A(m);
    else
    count_not_div = count_not_div + 1;
    not_div(count_not_div) = A(m);
    end
end
```

Question: How can we accomplish the above without using if-else and for loop in three statements?

On the command prompt we will type:
>> $A=\left[\begin{array}{lllllllll}2 & 3 & 4 & 45 & 53 & 42 & 1 & 3 & 9\end{array}\right]$
$\mathrm{A}=$
$\begin{array}{lllllllll}2 & 3 & 4 & 45 & 53 & 42 & 1 & 3 & 9\end{array}$
>> [div2 div3 notdiv] = myseparate(A)
div2 $=$

2442
div3 =
$\begin{array}{lllll}3 & 45 & 42 & 3 & 9\end{array}$
notdiv =

531
We can also have if-else statements inside an if-else sequence. The previous function can be rewritten as:

```
function [div_2, div_3, not_div] = myseparate(A)
% rtn = mysort(A) takes a scalar vector as input
```

\% and sorts it out to numbers that are divisible by 2 (div_2),
\% numbers that are divisible by 3 (div_3) and
$\%$ other numbers that are not divisible by 2 or 3 .
\% If a number is divisible by 2 and 3 then it will go to both lists.

```
count_div_2 = 0; count_div_3 = 0; count_not_div = 0;
```

for $m=1$:length (A)
if $\bmod (A(m), 2)=0$
count_div_2 = count_div_2 + 1;
div_2(count_div_2) = A(m);
if $\bmod (A(m), 3)=0$
count_div_3 = count_div_3 + 1;
div_3(count_div_3) = A(m);
end
elseif $\bmod (A(m), 3)=0$
count_div_3 = count_div_3 + 1;
div_3(count_div_3) = A(m);
else
count_not_div = count_not_div + 1;
not_div(count_not_div) = A(m) ;
end
end

26.4 switch-case-otherwise-end

Another method of executing statements according to some conditions is to use switch-case-otherwise-end.

```
switch expression
    case result1
        statements1 % executed if the result from expression
                % is equal to result1
    case result2
        statements2 % executed if the result from expression is not equal
                % to result1 and it is equal to result2
    case result3
```

statements3 \% executed if the result from expression is not equal to $\%$ any of the previous results and is equal to result3
otherwise
statements 4 \% executed if the result from expression is \% not equal to any of the previous results
end

Similarly to if-else, further statements will only be executed if the results from the previous are not equal to the result of expression.

The following function converts the month number in to the name of the month.

```
function [rtn] = disp_month (num_month)
% [rtn] = disp_month (num_month)
% takes a number as an argument (num_month), displays
% the equivalent month with each name and
% and returns 1 if the month exists and 0 otherwise
```

```
rtn = 1;
switch num_month
    case 1
        disp('Month entered is January');
    case 2
        disp('Month entered is February');
    case 3
        disp('Month entered is March');
    case 4
        disp('Month entered is April');
    case 5
        disp('Month entered is May');
    case 6
        disp('Month entered is June');
    case 7
        disp('Month entered is July');
    case 8
        disp('Month entered is August');
    case 9
```

```
    disp('Month entered is September');
    case 10
    disp('Month entered is October');
case 11
    disp('Month entered is November');
case 12
    disp('Month entered is December');
otherwise
    disp('Month entered does not exist');
    rtn = 0;
end
```

On the command prompt we can type:

```
>> true_false = disp_month(8);
Month entered is August
>> true_false
true_false =
    1
```

The main difference between if-else and switch-case is that the latter can only decide on one expression, namely the one after switch.

27 Precision issues

By default Matlab declares variables as double precision and up to version 6.5 it can only perform double precision arithmetic. The computing precision is not the displaying precision. Matlab will display results using short precision, by default, which uses only 5 digits. This can be changed using format (type) function.
>> $3 / 7$
ans =
0.4286

```
>> format('long')
>> 3/7
ans =
    0.42857142857143
>> format('long', 'e')
>> 3/7
ans =
```

$4.285714285714286 \mathrm{e}-001$
Variables can also be defined to be of a specific type (single(A), double(A), $\operatorname{int8}, \operatorname{int16}(A), \operatorname{int32}(A), \operatorname{int64}(A)$, uint8(A), uint16(A), ...). These are all primitive types. int8 uses 8 bits and it can take any of the 2^{8} possible values of signed integers. That means that it can take values from $-128\left(-2^{7}\right)$ to $127\left(2^{7}-1\right)$. uint8 also uses 8 bit, but it can only take unsigned values from 0 to $255\left(2^{8}-1\right)$. int16 uses 16 bits for signed integers from -2^{15} to $2^{15}-1$. uint16 also uses 16 bits for unsigned integers and takes values from 0 to $2^{16}-1$. The rest of the integer data types are defined in the same way.
double is the only one, which can be used for mathematical operations up to Matlab version 6.5.

In Matlab version 7 mathematical operations can be performed between variables that belong to the same type, or between variables that belong to double and variables that belong to one other type (that can be any type as long as everything that is not double belongs to one type). Mathematical operations between different types, with the exception of double mentioned above, can not be performed.

The next example is in Matlab version 7:

```
>> a = int16(1); b = int16(2);
>> a_b = a + b
a_b =
```

3

```
>> c = double(3);
>> b_c = b + c
b_c =
    5
>> d = int8(4);
>> a_d = a + d
??? Error using ==> plus Integers can only be combined with
integers of the same class, or scalar doubles.
>> whos
    Name Size Bytes Class
\begin{tabular}{llll} 
a & 1 x 1 & 2 & int16 array \\
a_b & 1 x 1 & 2 & int16 array \\
b & 1 x 1 & 2 & int16 array \\
b_c & 1 x 1 & 2 & int16 array \\
c & 1 x 1 & 8 & double array \\
d & 1 x 1 & 1 & int8 array
\end{tabular}
Grand total is 6 elements using 17 bytes
```

In Matlab version 6.5 we would get:

```
>> a = int16(1); b = int16(2);
>> a_b = a + b
??? Error using ==> + Function '+' is not defined for values of
class 'int16'.
>> c = double(3);
>> b_c = b + c
??? Error using ==> + Function '+' is not defined for values of
class 'int16'.
```

This error can appear when reading in data from a file, like an image and then trying to perform a mathematical operation. The solution is simply to convert them to double.

```
>> a = double(a), b = double(b)
a =
    2
b =
    3
>> a + b
ans =
    5
```

Matlab can be inexact sometimes. Consider the following example:

```
>> (-0.08 + 0.5 - 0.42) == (0.5 - 0.42 - 0.08)
```

ans =
0
>> ($-0.08+0.5-0.42)^{\sim}=(0.5-0.42-0.08)$
ans =
1
>> ($-0.08+0.5-0.42)-(0.5-0.42-0.08)$
ans =
$-1.387778780781446 \mathrm{e}-017$
According to Matlab these two operations are not equal. We can define a function

```
function rtn = toleq(A, B, e)
% Determines equality according to some precision
rtn = abs(A - B ) < e;
```

This function determines whether two arrays (A, B) of equal size have equal values according to some precision e.

```
>> toleq((-0.08 + 0.5-0.42),(0.5-0.42-0.08), eps)
ans =
```

 1
 This returns the correct result. eps is the smallest number in Matlab that when added to 1 produces a larger number. The following is an example of the properties of eps.

```
>> [eps eps 1 1 10 10 0.1 0.1] <
[eps 2*eps 1+eps 1+eps/2 10+4*eps 10+5*eps 0.1+eps/31 0.1+eps/32]
ans =
```

 \(\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}\)
 The first four results follow directly from the definition of eps. It is interesting to see that when adding eps to numbers like 10 or 0.1 it does not behave as it does with 1. In the case of 10 we need to add more than eps ($4 * \mathrm{eps}$) to get a larger number. In the case of 0.1 we need to add less (eps/31) to get a larger number.

28 Additional data types

So far we have used mainly arrays that hold scalar values. In Matlab we can also define strings (arrays of characters), cell arrays and structures. Cell arrays and structures are composite types.

28.1 Strings

A string is defined with the use of the '' operator. The general syntax is:

```
the_string = 'somecharacters'
```

An example of this is:

```
>> t = 'a string'
t =
a string
```

In a string the space is also considered to be a character.
Various functions that apply to scalar arrays also apply to strings.
>> length (t)
ans $=$
8
>> $\mathrm{t}==$ 'a string'
ans =
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
>> inv_t = t(length(t):-1:1)

```
inv_t =
gnirts a
```

A simpler way to invert a list of elements is to use end.

```
>> inv_t = t(end:-1:1)
inv_t =
gnirts a
A string can hold numbers, but they are considered to be characters.
>> t = '1 2 3'
t =
123
>> eval(['sum([' t '])'])
ans =
    6
```

The function eval (a) executes a Matlab expression held in the string a. To convert strings to numbers we can use str2num (a).

```
>> t_scal = str2num(t)
t_scal =
    1 2
>> sum(t_scal)
```

```
ans =
```

6

It is also possible to convert numbers to strings using num2str(a).

```
>> t_scal = [llll}12\mp@code{3}
t_scal =
    1 2
>> t = num2str(t_scal)
t =
1 3
```


28.2 Cell arrays

Cell arrays can hold multiple data types. It is possible for example to have a string, various types of matrices as well as a cell array inside a cell array. Cell arrays are constructed with the use of the curly brackets \{\}, this is analogous to the square bracket [] constructor of arrays.

```
>> A = {[1 2 3 ; 4 5 6] 'hello world' ; 4 {'red' [10 11 12]}}
A =
    [2x3 double] 'hello world'
    [ 4] {1x2 cell}
>> celldisp(A)
A{1,1} =
    1 2
```

```
    4 5
A{2,1} =
    4
A{1,2} =
hello world
A{2,2}{1}=
red
A{2,2}{2} =
    10}111
```

Space or comma defines the next column and semicolon defines the next row. This works exactly the same way as in normal arrays. To display cell array A we have to use the celldisp(A) function. To access a specific cell of a cell array the curly brackets are used as in the next example.
>> $A\{1,1\}$
ans $=$

7	8	9
10	11	12

>> $A\{1,2\}$

```
ans =
hello world
>> A{2,2}
ans =
'red' [1x3 double]
```

To access a specific element of any data type inside a cell, we will use the equivalent operator immediately after the curly brackets. If it is an array or a string we will use round brackets (), if it is another cell we will use curly brackets \{\}.

```
>> A{1,1}
ans =
    1 2 
    4 5 6
>> A{1,1}(2,2)
ans =
    5
>> A{2,2}
ans =
    'red' [1x3 double]
>> A{2,2}{2}([1 3])
ans =
```

It is also possible to construct arrays of cell arrays and cell arrays of cell arrays.
>> $\{\mathrm{A} ; \mathrm{A}\}$
ans =
\{2x2 cell\}
\{2x2 cell\}
>> [A ; A]
ans =

$[2 \times 3$ double]	'hello world
$\left[\begin{array}{lr}{[} & 4]\end{array}\right.$	$\{1 \mathrm{x} 2$ cell $\}$
$[2 \times 3$ double]	'hello world'
$\left[\begin{array}{lr}{[} & 4]\end{array}\right.$	$\{1 \times 2$ cell $\}$

28.3 Structures

Another method of having multiple data types within a single variable is to use structures. Structures have a field and each field can hold any data type. A field is defined after the full stop(.).

```
>> data.the_values = [1 2 3; 4 5 6; 7 8 9];
>> data.the_max = max(max(data.the_values));
>> data.the_min = min(min(data.the_values));
>> data.the_mean = mean(mean(data.the_values));
>> data
data =
    the_values: [3x3 double]
```

```
    the_max: 9
    the_min: 1
the_mean: 5
```

It is also possible to build arrays of structures

```
>> data(2).the_values = randn (2,5);
>> data(2).the_max = max(max(data(2).the_values));
>> data(2).the_min = min(min(data(2).the_values));
>> data(2).the_mean = mean(mean(data(2).the_values));
>> data
data =
1x2 struct array with fields:
    the_values
    the_max
    the_min
    the_mean
```

To access a particular element of a field of the structure, we use the standard notation as follows:

```
>> data(1).the_values
```

ans $=$
123
$4 \quad 5 \quad 6$
$7 \quad 89$
>> data(1).the_values $(3,2)$
ans $=$
8

We can construct arrays and cell arrays of all corresponding elements of a field using the square brackets [] or the curly brackets \{\}, respectfully.
>> [data.the_max], [data.the_mean]
ans =
9.0000 2.1832
ans =
5.0000 0.2310
>> {data.the_max}, {data.the_mean}
ans =
[9] [2.1832]
ans =
[5] [0.2310]

```

The difference between cell arrays and structures is mainly a conceptual one. Structures are more organized because of the field names. Cell arrays can be very useful because all the different cells can be accessed by number, which makes them easy to use within a loop.

\section*{29 Input/Output (I/O)}

We have already been introduced to the disp(a) function. disp(a) takes one argument, which can be an array of numbers or a string.
```

>> disp('a string')
a string
>> disp([llll}12%
1 2 3
>> a_str = 'a string';

```
```

>> disp(a_str)
a string
>> a = [1 2 3];
>> disp(a)
1 2 3
>> disp([a_str, 'and ' , num2str(a)])
a stringand 1 2 3

```

In the last example we have combined two strings and a numerical variable, which was converted into a string using num2str. To obtain an input from the user, we can use the input (a), where a is string. The user can input any kind of data.
```

>> A = [1 2 3 3}]
>> B = input('Enter a matrix: ');
Enter a matrix: [100:100:300]
>> A + B
ans =
1 0 1 2 0 2
3 0 3
>> B = input('Enter a matrix: ');
Enter a matrix: A
>> A + B
ans =
2 4 6

```

\section*{30 Formatted Input/Output}

For formatted input/output and general file handling we have fopen, fclose, fread, fwrite, fprintf, fscanf, sprintf, sscanf, ferror, feof and fseak. All these functions are equivalent to the programming language ANSI C. These functions will prove very useful when reading data from a file or writing data to a file.
\begin{tabular}{|c|c|}
\hline Function & Meaning \\
\hline fopen('filename','flag') & Open a file \\
\hline fclose(fid) & Close a file \\
\hline fread(fid) & Read binary data from a file \\
\hline fwrite(fid,A,'precision') & Write binary data A to a file \\
\hline fprintf(fid,format,A) & Write formatted data to a file \\
\hline fscanf(fid,format,A) & Read formatted data from a file \\
\hline sprintf(format,A) & Write formatted data A to a string \\
\hline sscanf(s,format,A) & Read string s under format control \\
\hline ferror(fid) & Query about file I/O errors \\
\hline feof(fid) & Test for end of file \\
\hline fseek(fid,offset,origin) & Set the file position indicator \\
\hline
\end{tabular}

The functions fopen('filename','flag') and fclose(fid) open and close a file. To be able to read data from a file, a file identifier (fid) is required. fid is returned from fid=fopen('filename'). Note that 'filename' is a string. The second argument of fopen('filename','flag') is a flag determining how we are going to process the file we have opened (read only, write, ...). A file should be closed as soon as we are done reading or manipulating data from this file. To close the file we will use fclose(fid).

The function fwrite(fid,A,'precision') can be used to write data in a file. The fid is obtained from the fopen function, A is the data to be written and 'precision' is a string defining the number of bits to be written. 'precision' defines the type of data. In the following example we will use 'char' to write characters on to a file. For more alternatives for the 'precision' string look in Matlab's help.
```

>> a = [11 2 3 8 8 4 5];
>> fid = fopen('some_data_1.txt','w');
>> fwrite(fid,num2str(a),'char');
>> fclose(fid);

```

In the call of the fopen function the flag 'w' was used. This defines that the file will be opened, or created if it does not exist, for reading and writing discarding any data stored in that file. We have converted the numerical variable a to a string using num2str, in order to be compatible with the 'char' type. The previous example created a file with the following contents:

123845

To read in data from a file, we can use fread (fid). Note that the flag 'w' in the fopen function call should not be used for reading files as it will delete all contents of the file. If the second argument of fopen is omitted, a file will be opened for reading only. This is exactly the same to the 'r' flag. Next is a simple example that reads in numbers from the file some_data_1.txt created in the previous example.
```

123845
>> fid = fopen('some_data_1.txt');
>> A = fread(fid);
>> fclose(fid);
>> b = char(A');
>> b
b}
123845
>> b_num = str2num(b);
>> b_num
b_num =
1 2
>> b_num + 3
ans =
4

```

It is important to close the file, using the fclose(fid) function, as soon as we are done reading the data from the file to avoid any unwanted changes on it. Note that A (returned from fread (fid)) has to be converted from binary using char and then from characters to numbers using str2num(a) in order to process it. The command fread is capable of reading data files with more than one row. The commands are exactly the same as before and the data file named some_data_2.txt has the following contents:
```

1233845
9 12 23 72 51 98
23 3
>> fid = fopen('some_data_2.txt');
>> A = fread(fid);
>> fclose(fid);
>> B = char(A');
>> B = str2num(B);
>> B
B =

1	2	33	8	4	5
9	12	23	72	51	98
23	3	1	5	1	17

```

The function fscanf(fid,format,A) can be used instead of fread to read data from a file. It offers a lot more control in what is being read. fid is the file identifier, format is a string defining the format of the data. We will only consider the main entries to format, width and precision field, and conversion character. Width and precision field define the minimum number of digits to be read left and right from the decimal point respectively. A typical string for format is '\%6.3f', the percentage sign denotes the start of the conversion specification, 6 is the minimum number of digits to be read, 3 is the number of digits to be read on the right of the decimal point and f implies fixed-point notation. We can also use i for signed integers and s for characters. The final argument A defines the size of what we are reading. In the next example we will read the file some_data_1.txt with the same contents as before.

123845
```

>> fid = fopen('some_data_1.txt');
>> a_1 = fscanf(fid,'%%',1)

```

1
>> \(a_{-} 2=\) fscanf(fid, \({ }^{\prime} \% \mathrm{i}^{\prime}, 1\) )
a_2 =

2
>> a_3 = fscanf(fid, \({ }^{\prime} \% \mathrm{i}^{\prime}, 1\) )
a_3 =

3
>> a_4 = fscanf(fid, \({ }^{\prime} \% i^{\prime}, 1\) )
a_4 =

8
>> a_5 = fscanf(fid, \({ }^{\prime} \% \mathrm{i}^{\prime}, 1\) )
a_5 =

4
>> a_6 = fscanf(fid, \({ }^{\prime} \% \mathrm{i}^{\prime}, 1\) )
a_6 =

5
>> fclose(fid);
Every time the fscanf function is called the file position indicator moves one position, thus the next number on the file is read. The \%i conversion character indicates that we are reading an integer. To simplify the code we can put this in a loop and read the data file in to an array.
```

>> fid = fopen('some_data_1.txt');
>> for m=1:6
a(m) = fscanf(fid, '%i',1);
end
>> fclose(fid);
>> a
a =
1 2 % 3

```

This approach has the disadvantage that we have to know in advance how many numbers we are reading from the data file. We can use the function feof (fid) and test when the file position indicator has reached the end of the file. This function returns 1 if the file position indicator is at the end of the file and 0 otherwise.
```

>> the_counter = 0;
>> fid = fopen('some_data_1.txt');
>> while ~feof(fid)
the_counter = the_counter+1;
a(the_counter) = fscanf(fid,'%i',1);
end
>> fclose(fid);
>> a
a =
1

```

In the same way we can read the file some_data_2.txt, which contains more than one row.
```

>> the_counter = 0;
>> fid = fopen('some_data_2.txt');
>> while ~feof(fid)
the_counter = the_counter+1;

```
```

a(the_counter) = fscanf(fid,'%i',1);
end
>> fclose(fid);
>> a
a =

```
    Columns 1 through 10
    \(\begin{array}{llllllllll}1 & 2 & 33 & 8 & 4 & 5 & 9 & 12 & 23 & 72\end{array}\)
    Columns 11 through 18
    \(\begin{array}{llllllll}51 & 98 & 23 & 3 & 1 & 5 & 1 & 17\end{array}\)

If we wish to read the data from the file in to a matrix, we will need to know the number of rows in the data file.
```

>> fid = fopen('some_data_2.txt');
>> a = fscanf(fid,'%i',[3 inf]);
>> fclose(fid);
>> a
a =

1	8	9	72	23	5
2	4	12	51	3	1
33	5	23	98	1	17

```

The inf in the fscanf function call stands for infinite, and it is used in order to read as many columns as there are in file.

The next example is a function that reads data from a file containing the names of the columns and rows and the data and loads them in to three arrays. The function is defined as follows:
```

function [column_name, row_name, data] = read_data(filename)
% [column_name row_name data] = read_data(filename)
% takes a string (filename) for the name

```
```

% and reads in the data in to three arrays. column_name is a
% string containing the names of the columns, row_name is a
% string containing the names of the rows and data is
% an array containing the data
fid = fopen(filename);
column_names_total = fscanf(fid, '%s',1);
start_pos = 0; end_pos = 0; count = 0;
for m=1:size(column_names_total,2)
if column_names_total(m) == ','
count = count + 1;
start_pos = end_pos + 1;
end_pos = m;
column_name(count,1:end_pos-start_pos)
= column_names_total(start_pos:end_pos-1);
end
end
nr_col = count;
count = 0;
while ~ feof(fid)
count = count + 1;
temp = fscanf(fid, '%s', 1);
row_name(count,1:length(temp)) = temp;
data(count,:) = fscanf(fid,'%g',nr_col)';
end
fclose(fid);

```

The \(\%\) s and \(\%\) conversion characters are used for characters and floatingpoint numbers respectively. The latter is capable of reading both integer and floating-point numbers.

Given the following data file called grades.txt:
3C71, 4C65, 3C24, 4C54, 2C44, 4D98, 3C70, 3C65,
John 5848745876436568

Bob \(72 \quad 63 \quad 5951 \quad 6054 \quad 6252\)
Jane \(\begin{array}{llllllllll}58 & 74 & 84 & 81 & 76 & 59 & 76 & 63\end{array}\)
Mark \(45 \begin{array}{llllllll}51 & 73 & 75 & 74 & 61 & 52 & 59\end{array}\)
Lisa \(474251534857 \quad 6455\)
Dan \(55 \quad 57 \quad 75 \quad 61 \quad 68 \quad 49 \quad 5172\)
Phil 5961636572747387
Daisy \(77 \quad 81 \quad 79 \quad 75 \quad 71 \quad 70 \quad 7684\)
Mary \(5661 \quad 556864787271\)
Peter 5468814749515859
Anna 8173696373716255
Jason \(43 \quad 50 \quad 5241 \quad 38 \quad 334837\)
We can type on the command prompt, which will display the following:
>> [column_name, row_name, data] = read_data('grades.txt');
>> whos
Name


column_name
data
Size
row_name

Grand total is 188 elements using 952 bytes
The function fprintf(fid,format, \(A\) ) can be used for writing data to a file or the screen. This function can take 3 arguments in the following syntax fprintf(fid,format,A). fid and format have been introduced previously. The final argument A are the variables to be printed. In the case of reading in data (fscanf(fid,format,A), sscanf (str,format,A)) fid and format are used in the same way. The only difference in the arguments between fprintf and fscanf is the third argument A. In the case of fscanf A defines the shape of the data we are reading in, while in fprintf \(A\) is the variable to be printed.

Continuing from the previous example of reading data in from a file, we can output maxima, minima and means of the data to the screen or a file. Next is the print_data_screen function:
function print_data_screen(column_name, row_name, data_row)
\% function print_data_screen(column_name, row_name, data_row)
\% prints data on the screen
```

fid = 1;
disp('--
for m=1:size(data_row,2)
the_mean = mean(data_row(:,m));
the_max = max(data_row(:,m));
the_min = min(data_row(:,m));
fprintf(fid,'Subject : %6s ',column_name(m,:));
fprintf(fid,'Average: %.2f Best: %g Worst:
%g \n', the_mean, the_max, the_min);
end

```

for \(m=1:\) size (data_row,1)
    the_mean \(=\) mean(data_row \((m,:))\);
    the_max \(=\) max (data_row \((m,:)\) );
    the_min \(=\) min(data_row \((m,:))\);
    fprintf(fid,'Student : \%6s ',row_name(m,:) );
    fprintf(fid,'Average: \%.2f Best: \%g Worst:
    \(\% \mathrm{~g} \backslash \mathrm{n}\), the_mean, the_max, the_min);
end


Note that the \(\backslash \mathrm{n}\) in the fprintf function is the symbol for new line. On the command prompt we will type:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Subject & 3C71 & Average: & 58.75 & Best: 81 & Worst: 43 \\
\hline Subject & \(4 \mathrm{C65}\) & Average: & 60.75 & Best: 81 & Worst: 42 \\
\hline Subject & 3C24 & Average: & 67.92 & Best: 84 & Worst: 51 \\
\hline Subject & 4C54 & Average: & 61.50 & Best: 81 & Worst: 41 \\
\hline Subject & 2C44 & Average: & 64.08 & Best: 76 & Worst: 38 \\
\hline Subject & 4D98 & Average: & 58.33 & Best: 78 & Worst: 33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Subject & 3 C 70 & Average: & 63.25 & Best: 76 & Worst: 48 \\
\hline Subject & 3C65 & Average: & 63.50 & Best: 87 & Worst: 37 \\
\hline Student & John & Average: & 61.25 & Best: 76 & Worst: 43 \\
\hline Student & Bob & Average: & 59.13 & Best: 72 & Worst: 51 \\
\hline Student & Jane & Average: & 71.38 & Best: 84 & Worst: 58 \\
\hline Student & Mark & Average: & 61.25 & Best: 75 & Worst: 45 \\
\hline Student & Lisa & Average: & 52.13 & Best: 64 & Worst: 42 \\
\hline Student & Dan & Average: & 61.00 & Best: 75 & Worst: 49 \\
\hline Student & Phil & Average: & 69.25 & Best: 87 & Worst: 59 \\
\hline Student & Daisy & Average: & 76.63 & Best: 84 & Worst: 70 \\
\hline Student & Mary & Average: & 65.63 & Best: 78 & Worst: 55 \\
\hline Student & Peter & Average: & 58.38 & Best: 81 & Worst: 47 \\
\hline Student & Anna & Average: & 68.38 & Best: 81 & Worst: 55 \\
\hline Student & Jason & Average: & 42.75 & Best: 52 & Worst: 33 \\
\hline
\end{tabular}

To output these tables on to a file we can modify the print_data_screen function to accept a filename as an argument. This is defined as print_data_file.
function print_data_file(column_name, row_name, data_row,filename)
\% function print_data_file(column_name, row_name, data_row) prints
\% data on a file
fid \(=\) fopen(filename, 'w'); \% 'w' used for writing in to a file
for m=1:size(data_row,2)
the_mean \(=\) mean(data_row \((:, m)\) );
the_max \(=\) max (data_row (: ,m));
the_min \(=\) min(data_row \((:, m)\) );
fprintf(fid,'Subject : \%6s ',column_name(m,:) );
fprintf(fid,'Average: \%.2f Best: \%g Worst:
\(\% \mathrm{~g} \backslash \mathrm{n}\), the_mean, the_max, the_min);
end
for m=1:size(data_row,1)
```

 the_mean = mean(data_row(m,:));
 the_max = max(data_row(m,:));
 the_min = min(data_row(m,:));
 fprintf(fid,'Student : %6s ',row_name(m,:));
 fprintf(fid,'Average: %.2f Best: %g Worst:
 %g \n', the_mean, the_max, the_min);
 fclose(fid);

```
end

We will type on the command prompt:
>> print_data_file(column_name, row_name, data,'grade_results.txt');

This will generate a file called grade_results.txt in the current directory. Another example of output to the screen is the following script called cel2far, which converts temperatures from Celsius to Fahreneit and uses fprintf(fid,format,A) to print numbers to the screen.
```

bounds = input('Enter start temp, end temp, increment [s e i] ');
celsius = [bounds(1):bounds(3):bounds(2)];
fahr = (celsius .* 1.8) + 32;
temptable = [celsius ; fahr];
disp('Temperature chart');
disp('-------------');
for pair = temptable
fprintf(1,'%5.1fC %5.1fF\n', pair(1), pair(2));
end
disp('-------------');

```

Note that fid is equal to 1 as in print_data_screen example, when the fprintf(fid,format,A) is used. 1 is reserved for printing to the screen. This function can easily be converted to write in a file by using fopen(filename), obtaining a fid and then using that in fprintf (fid,format, A). On the command prompt we will type cel2far to start the script.
```

>> cel2far
Enter start temp, end temp, increment [s e i] [0 50 10]
Temperature chart

0.0C 32.0F
10.0C 50.0F
20.0C 68.0F
30.0C 86.0F
40.0C 104.0F
50.0C 122.0F

```

Next is a script file with a modified version of cel2far to output the chart on to a file.
```

bounds = input('Enter start temp, end temp, increment [s e i] ');
celsius = [bounds(1):bounds(3):bounds(2)];
fahr = (celsius .* 1.8) + 32;
temptable = [celsius ; fahr];
fid = fopen('C:\cel2far_data.txt', 'w');
for pair = temptable
fprintf(fid,'%5.1f %5.1f\n', pair(1), pair(2));
end
fclose(fid);

```

From the command prompt we can read the data in the following way.
```

>> fid = fopen('cel2far_data.txt');
>> A = fscanf(fid, '%g %g', [2 inf]);
>> A'
ans =
0 32
10 50
20 68
30 86
40 104
50 122
>> fclose(fid);

```

Similarly to a previous example we have used [2 inf] as the third argument of fscanf (fid,format, \(A\) ) for reading in the data. This will read 2 rows and infinite number of columns. The function string \(=\) sprintf (format, A) works exactly the same way as fprintf with the exception that it writes to a string and therefore does not require a fid. sscanf also works very similarly to fscanf.
```

>> str = sprintf(%%5.0f ',[10:17])

```
str =
    \(\begin{array}{llllllll}10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}\)
>> A \(=\operatorname{sscanf}(\) str,,\(\% f\) ');
>> A'
ans \(=\)
\begin{tabular}{llllllll}
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{tabular}
>> A \(=\operatorname{sscanf}\left(\operatorname{str}, \quad \% f^{\prime},\left[\begin{array}{ll}24]) ;\end{array}\right.\right.\)
```

>> A

```
\(\mathrm{A}=\)
\begin{tabular}{llll}
10 & 12 & 14 & 16 \\
11 & 13 & 15 & 17
\end{tabular}

In this example we have read data is in 2 rows and 4 columns. If we want to save variables that are already on the workspace we can use the function save('filename', 'var1', 'var2', ...). Remember that 'filename' and the variables are strings. If the variables var1, var2, ... are omitted, then all variables on the workspace will be saved.
```

>> A = [1 2 3]; s = 'hello'; B = [1 2 ; 3 4];
>> save('alles.mat');
>> save('some.mat', 's', 'B');
>> save('B.mat', 'B');
>> whos -file alles.mat
Name Size Bytes Class

A	1 x 3	24	double array
B	2 x 2	32	double array
s	1 x 5	10	char array

```

Grand total is 12 elements using 66 bytes
>> whos -file some.mat
\begin{tabular}{llrl} 
Name & Size & Bytes & Class \\
B & \(2 \times 2\) & 32 & double array \\
s & \(1 \times 5\) & 10 & char array
\end{tabular}
Grand total is 9 elements using 42 bytes
>> whos -file B.mat
    Name Size Bytes Class
B \(2 x 2 \quad 32\) double array

Grand total is 4 elements using 32 bytes
To load variables that have been saved using save we can use load. The syntax of load('filename', 'var1', 'var2', ...) is very similar to save.
```

>> load('B.mat');
>> B
B =
1 2
3 4
>> clear all;
>> load('alles.mat');
>> A, s, B
A =
1 2
s =
hello
B =
1 2
3 4
>> clear all;
>> load('alles.mat','B', 's');
>> s, B

```
s =
hello

B \(=\)
\(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\)
We can use load to read all the variables from a file into a structure.
```

>> c = load('alles.mat')
c =
B: [2x2 double]
s: 'hello'
A: [1 2 3}
>> c.B, c.s
ans =
1 2
3 4
ans =
hello

```
load can also be used to read data file. Consider a file called cel2far_data2.txt, which has the following contents.
\(0.0 \quad 32.0\)
\(10.0 \quad 50.0\)
\(20.0 \quad 68.0\)
\(30.0 \quad 86.0\)
40.0104 .0
50.0122 .0

Then we can load it on to a variable \(d\) by typing the following on the command prompt.
```

>> d = load('cel2far_data2.txt')
d =
0 32
10 50
20 68
30 86
40 104
50 122

```

There is a number of available functions to read specialized formats, e.g. images.
```

>> copen = imread('copenhagen.jpg');
>> copen_inv = uint8(256 - double(copen));
>> imwrite(copen_inv, 'copenhagen_inv.tif', 'TIFF');

```

Images are loaded and saved as uint8. To be able to manipulate the image we need to convert it to double. To write an image in to a file we need to convert it back to uint8.


Figure 35: Copenhagen image (copenhagen.jpg)


Figure 36: Inverted Copenhagen image (copenhagen_inv.tiff)

\section*{31 Summary table of functions}
\begin{tabular}{|c|c|c|}
\hline Function & p. & Meaning \\
\hline < & 61 & Less than \\
\hline <= & 61 & Less than or equal to \\
\hline > & 61 & Greater than \\
\hline >= & 61 & Greater than or equal to \\
\hline == & 61 & Equal to \\
\hline ~ \(=\) & 61 & Not equal to \\
\hline find(A) & 62 & Find indices of A that are nonzero \\
\hline \&, and ( \(\mathrm{A}, \mathrm{B}\) ) & 63 & AND \\
\hline I, or ( \(A, B\) ) & 63 & inclusive OR \\
\hline xor (A, B) & 63 & exclusive OR \\
\hline \(\sim, \operatorname{not}(\mathrm{A})\) & 63 & NOT \\
\hline \(\bmod (\mathrm{a}, \mathrm{b})\) & 65 & Modulus division of a and b \\
\hline disp(a) & 66 & Display a to the screen \\
\hline for - end & 68 & Execute statements a specified number of times \\
\hline reshape(A,r, c) & 69 & Reshapes A in to r rows and c columns \\
\hline mean(a) & 69 & Calculate the mean of the array a \\
\hline sum(a) & 69 & Sum the elements of the array a \\
\hline length(a) & 69 & Calculate the size of the largest dimension of a \\
\hline while - end & 70 & Execute statements while some condition is true \\
\hline if - else - end & 72 & Conditionally execute statements \\
\hline switch - case - end & 75 & Conditionally execute statements \\
\hline format(type) & 76 & Change the display format of numbers to type \\
\hline double(A), uint8(A),... & 77 & Change the type of A \\
\hline eval (a) & 82 & Execute a Matlab expression held in a \\
\hline str2num(a) & 82 & Convert string a to a number \\
\hline num2str (a) & 83 & Convert a number a to a string \\
\hline \{\} & 83 & Cell array constructor \\
\hline celldisp(A) & 84 & Display cell array \\
\hline . & 86 & Defines the field in a structure \\
\hline input(a) & 89 & User input \\
\hline fopen('filename','flag') & 90 & Open a file \\
\hline fclose(fid) & 90 & Close a file \\
\hline fread(fid) & 90 & Read binary data from a file \\
\hline fwrite(fid,A,'precision') & 90 & Write binary data A to a file \\
\hline fprintf(fid,format,A) & 90 & Write formatted data to a file \\
\hline fscanf (fid,format) & 90 & Read formatted data from a file \\
\hline sprintf(format,A) & 90 & Write formatted data A to a string \\
\hline sscanf (s,format) & 90 & Read string s under format control \\
\hline ferror(fid) & 90 & Query about file I/O errors \\
\hline feof(fid) & 90 & Test for end of file \\
\hline fseek(fid,offset,origin) & 90 & Set the file position indicator \\
\hline save('filename', 'var1',...) & 103 & Saves var1,... in to a file \\
\hline load('filename', 'var1',...) & 104 & Load var1 from a file \\
\hline imread('filename') & 106 & Read an image from a file \\
\hline imwrite(A,'filename',format) & 106 & Write an image A to a file \\
\hline
\end{tabular}

\section*{32 Lab exercises 2}

\section*{Programming exercises 1}
A. Given an array r:
>> r
\(\mathrm{r}=\)
\(\begin{array}{lllll}9 & 1 & 4 & 6 & 8\end{array}\)
1. Write a for loop that will display 5 times the sentence 'This sentence is being repeated'. Use the function disp to display the sentence. The output should look like this:

This sentence is being repeated
2. Write a for loop that will display 5 times the sentence 'The number of repetitions of this sentence is' followed by how many times it has been repeated. Use the disp and the num2str functions. The output should look like this:

The number of repetitions of this sentence is 1
The number of repetitions of this sentence is 2
The number of repetitions of this sentence is 3
The number of repetitions of this sentence is 4
The number of repetitions of this sentence is 5
3. Write a for loop that will display 5 times the sentence 'The number of repetitions of this sentence left is' followed by how many times it should be repeated more. Use the disp and the num2str functions. The output should look like this:
```

The number of repetitions of this sentence left is 4
The number of repetitions of this sentence left is 3
The number of repetitions of this sentence left is 2
The number of repetitions of this sentence left is 1
The number of repetitions of this sentence left is 0

```
4. Write a for loop that will display all the elements of the array r one at a time (starting with the first element (9) and finishing with the last element (8)).
5. Write a for loop that will display all the elements of the array \(r\) one at a time in reverse order (starting with the last element (8) and finishing with the first one (9)).
6. Write a for loop that will display elements of \(r\) that are larger than 5 . Use if-else to check if an element of \(r\) is larger than 5 .
7. Repeat the previous using a while loop instead of a for loop.
B. Given vector a and matrix A as follows:
```

>> a
a =
4
>> A
A =

3	4	5	2	3	6
12	95	23	0	29	39
57	64	72	41	8	91
47	28	31	82	84	37
28	40	39	45	64	69

```
1. Use a for loop to check if any element of vector a is larger than 3.
2. Calculate the mean of vector a.
3. Use a for loop to check if any element of vector a differs more than 2 from the mean.
4. Use two for loops to check if any element of matrix A is larger than 5.
5. Calculate the mean of matrix A.
6. Use two for loops to check if any element of matrix A differs more than 50 from the mean.
C. Given the same matrix A as before.
1. Write code that will find all numbers in A larger than 5 and smaller than 90 . This has to be done in one statement. Hint: use the logical operators to combine statements and the find function.
2. Write code that will find all numbers in A that are larger than 5 and smaller than 90 or they differ less than 50 from the mean.
D. Given matrix A as before
1. Use for loops to display all the elements of A using the disp() command. Elements should be displayed with their corresponding locations on the matrix. This should be in the following format:
```

Row :1 Column :1 Value :3
Row :1 Column :2 Value :4
Row :1 Column :3 Value :5
Row :1 Column :4 Value :2
Row :1 Column :5 Value :3
Row :1 Column :6 Value :6
Row :2 Column :1 Value :12
Row :2 Column :2 Value :95
Row :2 Column :3 Value :23
Row :2 Column :4 Value :0
Row :2 Column :5 Value :29
Row :2 Column :6 Value :39

```
2. Use for loops and if-else to find all elements that are larger than 5 and smaller than 90 or they differ less than 50 from the mean. Note that you should not use the logical operators in this exercise. Can you do this using switch-case instead of if-else?
3. Same as before but use while loops instead of for loops.
E. Given A as before and a function defined in a string as follows \(y=x_{1}^{2}+\) \(4 x_{2}+\frac{x_{3}}{2}+x_{4} x_{5}+x_{6}\). The index denotes the columns on the matrix, i.e. \(x_{1}\) takes values from the first column of \(\mathrm{A}, x_{2}\) takes values from the second column of A, etc.
1. Define function \(y\) in a string. Using the eval (a) write a loop that will calculate this function on each row of matrix \(A\).
2. Given functions \(y_{1}=x_{1}^{2}+4 x_{2}+\frac{x_{3}}{2}+x_{4} x_{5}+x_{6}, y_{2}=x_{1} x_{2}+x_{3} x_{4}+\frac{x_{5}}{3}+x_{6}^{2}\) and \(y_{3}=x_{1} x_{2} x_{3}+5 x_{4}+\frac{x_{5} x_{6}}{2}\) save them as strings in a structure named functs. It should have three fields \(y_{-} 1, y_{\_} 2\) and \(y_{-} 3\), one for each function. Write a loop that will calculate all functions on each row of A.
3. Given functions \(y_{1}, y_{2}\) and \(y_{3}\) as before, write a loop that saves results in to three fields of functs structure as follows:
```

low if result >=10 and result < 1000
mid if result >=1000 and result < 10000
high if result >=10000 and result < 1000000

```

Use if-else for this exercise.
4. Same as before, but use switch-case instead of if-else. Hint you might need to use the commands floor(a) and \(\log 10(a)\).
F. Create a file named functsdata.txt containing the definitions of the functions \(\left(y_{1}, y_{2}\right.\) and \(\left.y_{3}\right)\) in the first row separated by commas without spaces and underneath the elements of matrix A. This file should look like this:
```

x(1) ^2+4*x(2)+x(3)/2+x(4)*x(5)+x(6),
x(1)*x(2)+x(3)*x(4)+x(5)/3+x(6)~2,
x(1)*x(2)*x(3)+5*x(4)+(x(5)*x(6))/2,

3	4	5	2	3	6

12	95	23	0	29	39

57	64	72	41	8	91

47
28}4040 39 45 64 69

```
1. Read in the data from the file using fscanf. Functions and the data matrix should be read in a cell array.
2. Using the code you written for the previous exercise evaluate all the functions for each row of the data matrix and separate the results in to three types as in the previous exercise.
3. Print the results using fprintf on to the screen. You should print out the definition of the function, the row number and the type of the result. The type of the result should be in words (low,mid,high).
```

Function : x(1)^2 + 4* x(2) + x(3)/2 + x(4)*x(5) + x(6)
Row : 1 Type : low
Function : x (1)*x(2)+x(3)*x(4)+x(5)/3+x(6)^2

```

Row : 1 Type : low
Function : \(\mathrm{x}(1) * \mathrm{x}(2) * \mathrm{x}(3)+5 * \mathrm{x}(4)+(\mathrm{x}(5) * \mathrm{x}(6)) / 2\)
Row : 1 Type : low
Function : \(x(1)^{\wedge} 2+4 * x(2)+x(3) / 2+x(4) * x(5)+x(6)\)
Row : 2 Type : low
Function : \(x(1) * x(2)+x(3) * x(4)+x(5) / 3+x(6) \wedge 2\)
Row : 2 Type : mid
...
4. Print the results in a file named results.txt.
5. Print the results in to three files named results1.txt, results2.txt and results3.txt. Each file should contain results of one type (low,mid,high). You might need to use the 'a' flag in the command fopen (filename, 'a'). This flag will open (or create if it does not exist) a file, keep the contents and append data to the end of the file.
6. Repeat the previous exercise without using any conditional operators (if-else,switch-case).
G. Given any gray scale JPEG image.
1. Read it in using imread
2. Rotate the image 90 degrees clockwise.
3. Write the rotated image in to a JPEG file using imwrite.

\section*{Questions from the lecture}
1. How can we simplify the next example and avoid using a for loop?
```

>> x_values = [0:0.1:2*pi - 0.1];
>> for index=1:length(x_values)
y_values(index) = sin(x_values(index));
end

```
2. How can the next example be accomplished using the command find()?
```

>> A = zeros(10,1);
>> A(5) = 1;
>> m = 1;
>> while A(m) == 0
m = m + 1;
end
>> m
m =

```

5
3. How can we accomplish the next function without using if-else and for loop in three statements?
```

function [div_2, div_3, not_div] = myseparate(A)
% rtn = mysort(A) takes a scalar vector as input
% and sorts it out to numbers that are divisible by 2 (div_2),
% numbers that are divisible by 3 (div_3) and
% other numbers that are not divisible by 2 or 3.
% If a number is divisible by 2 and 3 then it will go to both lists.
count_div_2 = 0; count_div_3 = 0; count_not_div = 0;
for m=1:length(A)
if mod(A(m),2) == 0 \& mod(A(m),3) == 0

```
```

 count_div_2 = count_div_2 + 1;
 div_2(count_div_2) = A(m);
 count_div_3 = count_div_3 + 1;
 div_3(count_div_3) = A(m);
 elseif mod(A(m),2) == 0
 count_div_2 = count_div_2 + 1;
 div_2(count_div_2) = A(m);
 elseif mod(A(m),3) == 0
 count_div_3 = count_div_3 + 1;
 div_3(count_div_3) = A(m);
 else
 count_not_div = count_not_div + 1;
 not_div(count_not_div) = A(m);
 end
 end

```

\section*{Programming exercises 2}

Aim: The aim of this exercise is to implement linear regression with basis functions and to visualize the phenomena of overfitting.

Linear regression overview: Given a set of data:
\[
\begin{equation*}
\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \ldots,\left(\boldsymbol{x}_{\ell}, y_{\ell}\right)\right\} \tag{7}
\end{equation*}
\]
where \(\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)\) is a vector in \(\Re^{n}\) and \(y\) is a real number. Linear regression finds a vector \(\boldsymbol{u} \in \Re^{n}\) such that the sum of squared errors
\[
\begin{equation*}
\mathrm{SSE}=\sum_{t=1}^{\ell}\left(y_{t}-\boldsymbol{u} \cdot \boldsymbol{x}_{t}\right)^{2} \tag{8}
\end{equation*}
\]
is minimized. This is expressible in matrix form by defining \(X\) to be the \(\ell \times n\) matrix
\[
X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \ldots & x_{1, n}  \tag{9}\\
x_{2,1} & x_{2,2} & \ldots & x_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{\ell, 1} & x_{\ell, 2} & \ldots & x_{\ell, n}
\end{array}\right)
\]
and defining \(\boldsymbol{y}\) to be the column vector \(\boldsymbol{y}=\left(y_{1}, \ldots, y_{\ell}\right)\). The vector \(\boldsymbol{u}\) then minimizes
\[
(X \boldsymbol{u}-\boldsymbol{y})^{T}(X \boldsymbol{u}-\boldsymbol{y}) .
\]

In linear regression with basis functions we fit the data sequence with a linear combination of basis functions \(\left(f_{1}, f_{2}, \ldots, f_{k}\right)\). This is done by transforming the data as follows
\[
\begin{equation*}
\left\{\left(\left(f_{1}\left(\boldsymbol{x}_{1}\right), \ldots, f_{k}\left(\boldsymbol{x}_{1}\right)\right), y_{1}\right), \ldots,\left(\left(f_{1}\left(\boldsymbol{x}_{\ell}\right), \ldots, f_{k}\left(\boldsymbol{x}_{\ell}\right)\right), y_{\ell}\right)\right\} \tag{10}
\end{equation*}
\]
and then applying linear regression above to this transformed data set. Linear regression on the transformed dataset thus finds a \(k\)-dimensional vector \(\boldsymbol{u}=\) \(\left(u_{1}, \ldots, u_{k}\right)\) such that
\[
\begin{equation*}
\sum_{t=1}^{\ell}\left(y_{t}-\sum_{i=1}^{k} u_{i} f_{i}\left(\boldsymbol{x}_{t}\right)\right)^{2} \tag{11}
\end{equation*}
\]
is minimized.
A common basis used in practice is a polynomial basis \(\left\{1, x, x^{2}, x^{3}, \ldots, x^{k-1}\right\}\) of dimension \(k\) (order \(k-1\) ) in the figure below we give a simple fit of four points produced by a linear \((k=2)\) and cubic \((k=4)\) polynomial.


Figure 1: Data set \(\{(1,3),(2,2),(3,0),(4,5)\}\) fitted with basis \(\{1, x\}\) and basis \(\left\{1, x, x^{2}, x^{3}\right\}\)
1. For each of the polynomial bases of dimension \(k=1,2,3,4\) fit the data set of Figure \(1\{(1,3),(2,2),(3,0),(4,5)\}\).
(a) Produce a plot similar to Figure 1, superimposing the four different curves corresponding to each fit over the four data points. (Use the matlab commands hold on and hold off to superimpose plots)
(b) Give the equations corresponding to the curves fitted for \(k=\) \(1,2,3\). The equation corresponding to \(k=4\) is \(-5+15.17 x-\) \(8.5 x^{2}+1.33 x^{3}\).
(c) For each fitted curve \(k=1,2,3,4\) give the mean square error where \(\mathrm{MSE}=\frac{\mathrm{SSE}}{\ell}\).
2. In this part we will illustrate the phenomena of overfitting. First we need to define the normal distribution with mean \(\mu\) and variance \(\sigma^{2}\).
\[
\begin{equation*}
N(\mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{12}
\end{equation*}
\]
(a) The matlab function randn generates random numbers with the distribution \(N(0,1)\). Write a function that takes \(\mu\) and \(\sigma\) as parameters and generates random numbers with a distribution \(N(\mu, \sigma)\).
(b) Define
\[
\begin{equation*}
g_{\sigma}(x)=\sin ^{2}(2 \pi x)+N(0, \sigma) . \tag{13}
\end{equation*}
\]
sample uniformly at random from the interval \([0,1] 30\) times creating \(\left(x_{1}, \ldots, x_{30}\right)\) and apply \(g_{0.07}\) to each \(x\) creating the data set
\[
\begin{equation*}
S_{0.07,30}=\left\{\left(x_{1}, g_{0.07}\left(x_{1}\right)\right), \ldots,\left(x_{30}, g_{0.07}\left(x_{30}\right)\right\} .\right. \tag{14}
\end{equation*}
\]
i. Plot the function \(\sin ^{2}(2 \pi x)\) from \(x=0 . .1\) with the points of the above data set superimposed. The plot should resemble

ii. Fit the data set with a polynomial bases of dimension \(k=\) \(2,5,10,15,20\) plot each of these 5 curves superimposed over a plot of data points.
(c) Let the training error \(\mathrm{te}_{k}(S)\) denote the MSE of the fitting of the data set \(S\) with polynomial basis of dimension \(k\). Plot the log of the training error versus the polynomial dimension \(k=1, \ldots, 25\) (this should be a decreasing function).
(d) Generate a test set T of a thousand points,
\[
\begin{equation*}
T_{0.07,1000}=\left\{\left(x_{1}, g_{0.07}\left(x_{1}\right)\right), \ldots,\left(x_{1000}, g_{0.07}\left(x_{1000}\right)\right\} .\right. \tag{15}
\end{equation*}
\]

Define the test error \(\operatorname{tse}_{k}(S, T)\) to be the MSE of the test set \(T\) on the polynomial of dimension \(k\) fitted from training set \(S\). Plot the \(\log\) of the test error versus the polynomial dimension \(k=1, \ldots, 20\). Unlike the training error this is not a decreasing function. This is the phenomena of overfitting. Although the training error decreases with growing \(k\) the test error eventually increases since rather than fitting the function, in a loose sense, we begin to fit to the noise.
(e) For any given set of random numbers we will get slightly different training curves and test curves. It is instructive to see these curves
smoothed out. For this part repeat items (c) and (d) but instead of plotting the results of a single "run" plot the average results of a 100 runs (note: plot the \(\log (\operatorname{avg})\) rather than the \(\operatorname{avg}(\log )\) ).
3. In this part we will use as a basis
\[
\sin (1 \pi x), \sin (2 \pi x), \sin (3 \pi x), \ldots, \sin (k \pi x)
\]

Repeat the experiments in 2 (c-e) with the above basis.

\section*{Part IV}

\section*{Lecture 3}

\section*{33 Overview of Lecture 3}
- Matlab performance tuning
- Set functions
- User defined functions 2
- Plotting 2
- Summary table of functions

\section*{34 Matlab performance tuning}

In order to assess the performance of our code we can use Matlab's profiler. The profiler gives details in html format of how much time was spent on each function and how many times a functions was called. To enable the profiler we must type profile on at the beginning of our code. To produce the html report we will need to type profile report at the end of our code. To switch off the profiler we will type profile off. Next is an example that uses a user defined function graddesc for gradient descent. This function uses another function called dfb.
```

>> profile on
>> sol = graddesc('fb', 'dfb', [0.0 0.0], 0.001, 0.001);
>> profile report
>> profile off
>> profile resume % restarts profiler
>> profile clear % clears profiler

```

The command profile resume will resume the profiler and profile clear will clear all the data that the profiler saved. The resulting report from the profiler is shown in fig. 37. We can use this information to see how much time is spent on each function and determine inefficiencies in our code. Note that on the top of the summary report, the precision of the clock is displayed. Any time lower than that will be displayed as 0 .

A simpler way to time our functions is to use a pair of the commands tic and toc.
\begin{tabular}{|c|c|}
\hline Command & Meaning \\
\hline tic & Starts timer \\
\hline toc & Returns time \\
\hline
\end{tabular}

We will type tic immediately before our function and then type toc immediately after the function.
>> tic; \(\mathrm{a}=\) [1:1000000]; toc
elapsed_time =
0.1210

Sommary 1 Paucton Detals

\section*{MATLAB Profile Report: Summary}

\begin{tabular}{|c|c|}
\hline Total excorded tir & 0.75: \\
\hline Namber of M-fia & 3 \\
\hline Cliode preciaion & 0,0000002 ; \\
\hline Clack Spent & 5 St 4 Mhs \\
\hline
\end{tabular}

\section*{Function List}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Nomes & \multicolumn{2}{|l|}{These} & \multirow[t]{2}{*}{Calls} & \multirow[t]{2}{*}{\begin{tabular}{l}
Timekall \\
03530000000
\end{tabular}} & \multicolumn{2}{|l|}{Selfities} & \multirow[t]{2}{*}{Lacatias
\(\qquad\)} \\
\hline  & 0.530000 & 1000\% & & & 0.7010000 & 9336 & \\
\hline  & 10 Astrues & 6.7\% & \%r7 & afrcousensel & b090\%ico & 67\% &  \\
\hline  & 0.000000 & b0\% & & 0.000000000 & 00000000 & 困 &  \\
\hline
\end{tabular}

Figure 37: Profile Report: Summary

Consider a simple example that calculates the sin function for 10000 points.
```

>> m = []; y_vals = []; % clears the variables
>> tic; for m=1:10000
y_vals(m) = sin(m);
end;toc
elapsed_time =
0.8010

```

The first thing we can do to speed up our code is to preallocate arrays.

\section*{MATLAB Profile Report: Function Details}

```

Tme 0.7510000 \& (300005)
Calle 1
Selftme 0.7010000% (100.0/6)

```
\begin{tabular}{|c|c|c|}
\hline Fuerteme & Tiner & Calls Timenteall \\
\hline gradiese & arsuceos & 1 19355000000 \\
\hline \multicolumn{3}{|l|}{Patereflaciags:} \\
\hline \multicolumn{3}{|l|}{¢0008} \\
\hline \multicolumn{3}{|l|}{Caill darerimas:} \\
\hline afie & \(10.05000006 .7 \%\) & 3877 000000c6320 \\
\hline
\end{tabular}
\(100 \%\) of the total tme in thir furctive was गpent on the fobowng thes
```

 7% it - tuluranem
 0.0100uan lk E: gi = =nval(g.1);
0.03gocon -4t D; while(marm(gi)>e) \& urude terwinatian eanditisin
|.3310not| 44E 10: i=1-* +* Eeval(g.1) =
0.3amonon51t 11: 昨= Erval (a, 1) ;
1\Sigma1 end
0,0000099-04,121 301% = 1, f

```

Figure 38: Profile Report: Function details
```

>> m = []; y_vals = [];
>> tic; y_vals = zeros(1,10000); for m=1:10000
y_vals(m) = sin(m);
end;toc
elapsed_time =
0.0700

```

The second thing and most important is to vectorize the loop.
```

>> m = []; y_vals = [];
>> tic; m = 1:10000 ; y_vals(m) = sin(m);toc

```
```

elapsed_time =
0.0100

```

Loops in Matlab are very time consuming and should be vectorized when possible. Using array preallocation and vectorization we achieved 80 times speedup.
\begin{tabular}{|c|c|}
\hline Method & Time \\
\hline Simple & 0.8010 \\
\hline Preallocation & 0.0700 \\
\hline Preallocation and vectorization & 0.0100 \\
\hline
\end{tabular}

To further improve the performance of our code, we can use sparse matrices. A sparse matrix stores only the non-zero elements. As well as reducing memory requirements, there are special algorithms for sparse matrices which run faster than the equivalent full matrix. Sparse matrices make a noticeable difference if we use large matrices with many elements equal to zero. To initialize a sparse matrix we will use the function \(\operatorname{sparse}(a, b)\), which creates an a x b sparse matrix.
```

>> A = sparse(10,10);
>> A
A =
All zero sparse: 10-by-10
>> B = eye(10);
>> B_spar = sparse(B);
>> whos B
Name Size Bytes Class
B 10x10 800 double array
Grand total is 100 elements using 800 bytes
>> whos B_spar

```
```

 Name Size Bytes Class
 B_spar 10x10 164 double array (sparse)
 Grand total is 10 elements using 164 bytes
>> B_spar = speye(10); % A sparse identity matrix
>> C = sparse(1:10,1:10,ones(1,10))
C =
$(1,1) \quad 1$
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1
(6,6) 1
(7,7) 1
(8,8) 1
(9,9) 1
(10,10) 1

```
Elements of a sparse matrix can be accessed in the same way as a full
matrix. If we perform an operation between a sparse matrix and a full
matrix, the result will be a full matrix.
>> B_spar \((1,1)\)
ans =
    1
>> B_spar \((1,3)\)
ans \(=\)
    0
```

>> C = B_spar + zeros(10,10);
>> whos B_spar
Name Size Bytes Class
B_spar 10x10 164 double array (sparse)

```
Grand total is 10 elements using 164 bytes
>> whos C
    Name Size
                                    Bytes Class
    C \(\quad 10 \times 10\)
                                800 double array

Grand total is 100 elements using 800 bytes
A few useful functions for sparse matrices are listed in the following table.
\begin{tabular}{|c|c|}
\hline Function & Meaning \\
\hline sparse (a,b) & Create an a x b sparse matrix \\
\hline speye (a) & Create an a x a sparse identity matrix \\
\hline spfun(function,A) & Apply function to sparse matrix \\
\hline \(\mathrm{nnz}(\mathrm{A})\) & Number of non-zero elements of A \\
\hline full(A) & Convert sparse matrix to full \\
\hline
\end{tabular}

The function spfun(function, A) applies a function to all the elements of a sparse matrix. nnz(A) counts all the non-zero elements and full (A) converts a sparse matrix in to a full one.
```

>> A = speye(10);
>> A_sin = spfun('sin', A);
>> nnz(A)
ans =
1 0
>> A_ful = full(A);

```

The function find(A) is also very useful with sparse matrices as it returns all the non-zero elements.

By default all numeric operands are double precision floats. In Matlab version 7 we can use integer type (int8, int16, int32, uint8, uint16 and uint32) variables. These will reduce both memory and computational requirements. If the data we are using cannot be represented with integers, we can also use single precision (by declaring variables with single) instead of using the default double. Single precision uses 32 bits instead of 64 bits of double precision. Arithmetic in Matlab 7 is only well-defined in the following two cases,
1. all operands are of the same type or
2. the operands are double precision and one other type

\section*{35 Set functions}

Next is a table of useful set functions in Matlab.
\begin{tabular}{|c|c|}
\hline Function & Meaning \\
\hline unique \((\mathrm{a})\) & Find unique elements of a vector a \\
\hline union \((\mathrm{a}, \mathrm{b})\) & Set union of two vectors \\
\hline intersect \((\mathrm{a}, \mathrm{b})\) & Set intersection of two vectors \\
\hline ismember \((\mathrm{a}, \mathrm{b})\) & Detects members of a set \\
\hline setdiff \((\mathrm{a}, \mathrm{b})\) & Set difference of two vectors \\
\hline
\end{tabular}

The function unique (a) returns all the elements that belong to a without repeating any of them. The function union \((a, b)\) returns a vector of the union of a and b . The function intersect \((\mathrm{a}, \mathrm{b})\) returns all the common elements of a and b . The function ismember ( \(\mathrm{a}, \mathrm{b}\) ) returns a Boolean vector that is the size of \(a\) with 1 if the corresponding element of \(a\) is in \(b\). The function \(\operatorname{setdiff}(\mathrm{a}, \mathrm{b})\) returns the elements of a that are not in b .
```

>> unique([[4 2 2 2 4 7 7])

```
ans \(=\)
\(\begin{array}{lll}2 & 4 & 7\end{array}\)
>> \(a=[1: 5], b=[7:-1: 4]\)
```

a =
1 2 % 3 % 4 5
b =
7 6 5 5 4
>> union(a,b)
ans =
1
>> intersect(a,b)
ans =
4 5
>> ismember(a,b), a(ismember(a,b))
ans =
0 0
ans =
4
>> ismember(b,a), b(ismember(b,a))
ans =
0

```
```

ans =
5 4
>> setdiff(a,b), setdiff(b,a)
ans =
1 2
ans =
6

```

\section*{36 User defined functions 2}

Variables inside functions are by default local, that means only the function, where the variables were declared, can access them and as soon as the function terminates they are deleted from memory. We can also define variables inside a function to be global or persistent. persistent variables can only be accessed from the function they are declared in, but they persist in memory between function calls. global variables are both persistent and they can be accessed by other functions which declare them global.

As an example we have created two functions mytic and mytoc:
```

function mytic
global my_time
my_time = cputime;
function rtn = mytoc
global my_time

```
```

rtn = cputime - my_time;

```

Then we can type on the command prompt:
```

>> m = [];
>> mytic;m=1:100000;sin(m);mytoc
ans =
0.0700

```

Next is an example of a persistent variable. The next function is called counter
function rtn \(=\) counter
persistent count
if isempty(count)
    count = 1;
else
    count = count + 1;
end
rtn = count;

The function isempty (A) tests whether the variable held in A has been created or not. On the command prompt we will type:
```

>> counter
ans =
1
>> counter
ans =

```

2

We can also create functions from strings via inline (expr_string, arg1, arg2, ...), where expr_string is a string which defines the function and \(\arg 1, \arg 2\), \(\ldots\) are strings naming the arguments of the function.
>> h = inline('A \(\left.+2 * B+4 * C^{\prime}, A^{\prime}, B^{\prime},{ }^{\prime} C^{\prime}\right)\)
\(\mathrm{h}=\)

Inline function: \(h(A, B, C)=A+2 * B+4 * C\)
>> h([1 0 ; 0 1],[1 0 ; 0 1],[0 1 ; 1 0])
ans =
```

 3 4
 4
 >> g = inline('(x(1)-5).^2 + 3*(x(2)-2).^2', 'x')
g =

```
    Inline function:
    \(g(x)=(x(1)-5) \cdot \wedge 2+3 *(x(2)-2) \cdot \wedge 2\)
>> \(g([1,2]), g([5,2])\)
ans \(=\)
    16
ans =
    0

The number of arguments in a function does not need to be predetermined. We can use varargin as an argument that means we can have a variable number of arguments of any type. To determine how many arguments the user passed to the function we will use nargin. Note that nargin counts the total number of input arguments, not just the ones corresponding to varargin. The following example is a function that prints any number of arguments on to the screen.
```

function print_various_arguments(head, varargin)
for m=1:nargin-1
fprintf(1,head,m);
disp(varargin{m});
end

```

Then on the command prompt we type:
```

>> print_various_arguments('arg %d is ',7,[1 2 3],'a string')
arg 1 is 7
arg 2 is 1 2 3
arg 3 is a string

```

The examples print_data_screen and print_data_file in the previous set of notes can be combined using varargin. The new function can take 3 or 4 arguments which determines whether it prints to the screen or to a file.
```

function print_data(column_name, row_name, data_row,varargin)
% function print_data(column_name, row_name, data_row,varargin)
if nargin == 3
fid = 1;
elseif nargin == 4
filename = varargin{1};
fid = fopen(filename,'W');
end

```
```

if nargin == 3
disp('---);
end
for m=1:size(data_row,2)
the_mean = mean(data_row(:,m));
the_max = max(data_row(:,m));
the_min = min(data_row(:,m));
fprintf(fid,'Subject : %6s ',column_name(m,:));
fprintf(fid,'Average: %.2f Best: %g Worst:
%g \n', the_mean, the_max, the_min);
end
if nargin == 3
disp('---');
end
for m=1:size(data_row,1)
the_mean = mean(data_row(m,:));
the_max = max(data_row (m,:));
the_min = min(data_row(m,:));
fprintf(fid,'Student : %6s ',row_name(m,:));
fprintf(fid,'Average: %.2f Best: %g Worst:
%g \n', the_mean, the_max, the_min);
end
if nargin == 3
disp('--);
end
if nargin == 4;
fclose(fid);
end

```

On the command prompt we can type the following to print to the screen:
```

>> print_data(column_name, row_name, data);

Subject : 3C71 Average: 58.75 Best: 81 Worst: 43
Subject : 4C65 Average: 60.75 Best: 81 Worst: 42
Subject : 3C24 Average: 67.92 Best: }84\mathrm{ Worst: 51
Subject : 4C54 Average: 61.50 Best: 81 Worst: 41

```
\begin{tabular}{lrllll} 
Subject : & 2 C44 & Average: & 64.08 & Best: 76 & Worst: 38 \\
Subject : & 4 D98 & Average: & 58.33 & Best: 78 & Worst: 33 \\
Subject : & \(3 C 70\) & Average: & 63.25 & Best: 76 & Worst: 48 \\
Subject : & 3C65 & Average: & 63.50 & Best: 87 & Worst: 37 \\
---------------------------------------------- \\
Student : & John & Average: & 61.25 & Best: 76 & Worst: 43 \\
Student : & Bob & Average: & 59.13 & Best: 72 & Worst: 51 \\
Student : & Jane & Average: & 71.38 & Best: 84 & Worst: 58 \\
Student : & Mark & Average: & 61.25 & Best: 75 & Worst: 45 \\
Student : & Lisa & Average: & 52.13 & Best: 64 & Worst: 42 \\
Student : & Dan & Average: & 61.00 & Best: 75 & Worst: 49 \\
Student : & Phil & Average: & 69.25 & Best: 87 & Worst: 59 \\
Student : & Daisy & Average: & 76.63 & Best: 84 & Worst: 70 \\
Student : & Mary & Average: & 65.63 & Best: 78 & Worst: 55 \\
Student : & Peter & Average: & 58.38 & Best: 81 & Worst: 47 \\
Student : & Anna & Average: & 68.38 & Best: 81 & Worst: 55 \\
Student : & Jason & Average: & 42.75 & Best: 52 & Worst: 33
\end{tabular}

In order to produce a file with these results we would simply type:
>> print_data(column_name, row_name, data,'grade_results.txt');
Similarly to varargin we can use varargout to return any number of variables. To count the number of variables that the user expects to be returned, that is the number of variables in square brackets on the left side of the equal sign in an assignment, we use nargout. Note that nargout counts the total number of output arguments, not just the arguments corresponding to varargout. Consider the following function, which can output any number of variables.
```

function [varargout] = anynumber_varout
% [varargout] = anynumber_varout
for m=1:nargout
varargout{m} = m;
end

```

Note that the function takes no arguments as input. Its functionality is to set any number of output variables equal to their location in the square brackets. We can type on the command prompt:
```

>> [a] = anynumber_varout

```
a =

1
>> [a b] = anynumber_varout
a \(=\)

1
b =

2
>> [a b c] = anynumber_varout
a =

1
b =

2
c =

\section*{37 Plotting 2}

Next is a table with some useful plotting functions.
\begin{tabular}{|c|c|}
\hline Function & Meaning \\
\hline figure & New figure window \\
\hline figure(n) & Select figure window \(n\) \\
\hline title(string) & Give a title to the figure window \\
\hline gtext(string) & Add text with the mouse \\
\hline legend(string) & Add a legend \\
\hline grid on/off & Turn grid on/off \\
\hline subplot(m,n,p) & Create multiple plots \\
\hline hold on/off & Hold the current graph in the figure \\
\hline
\end{tabular}
figure opens up a new window for plotting and figure(n) will select the nth figure window if it exists or open a new one otherwise. title will define the title on the top of the figure window. The function gtext (string) will add text with mouse interaction. legend (string) will add legends. grid on/off turns on and off a rectangular grid on the figure window. The function subplot ( \(\mathrm{m}, \mathrm{n}, \mathrm{p}\) ) will plot in a figure divided in to m by n plots in the pth position. Using the hold command we can overlay plots in the current figure window. When hold on is entered each successive plot function overlays the plots within the figure. When hold off is entered each successive plot function replaces the previous plot.
\(\gg x=0: 0.1: 10 ;\)
\(\gg f 1=\sin (x) ; f 2=\cos (x) ; f 3=\exp (-x) ; f 4=0.028 * x . * x ;\)
>> figure;plot(x,f1,x,f2)
This code will generate fig. 39 .
Fig. 39 can also be generated in the following way:
```

>> figure;plot(x,f1);
>> hold on;
>> plot(x,f2);
>> hold off;

```

If we type the following set of statements, fig. 39 will be changed to fig. 40 .


Figure 39: Sin and cos plot
```

>> title('sin(x) and cos(x)')
>> grid on
>> gtext('sin(x)')
>> legend('sin(x)', 'cos(x)')

```


Figure 40: Sin and cos plot with text

Next is an example on the use of subplot.
>> figure
```

>> subplot(2,2,1);plot(x,f1);title('sin(x)')
>> subplot(2,2,2);plot(x,f2);title('cos(x)')
>> subplot(2,2,3);plot(x,f3);title('exp(-x)')
>> subplot(2,2,4);plot(x,f4);title('scaled quadratic')

```

These statements will generate the fig. 41.


Figure 41: 4 plots in the same figure using subplot

Note that the subplot function counts the plots by first counting across a row and then moving to the next one (see fig. 42).
\begin{tabular}{c|c|c|c}
1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16
\end{tabular}

Figure 42: Numbering of the subplots

We can also define the style of the lines in a plot by placing linestyle as a third argument of plot ( \(\mathrm{x}, \mathrm{y}\), linestyle). The following table contains different line styles.
\begin{tabular}{|c|c|c|c|}
\hline. & point & - & solid \\
\hline o & circle & \(:\) & dotted \\
\hline x & cross &.- & dash-dot \\
\hline+ & plus & -- & dash-dash \\
\hline
\end{tabular}

The next example illustrates a number of linestyles (see fig. 43).
```

>> figure; plot(x,f1,'o')
>> figure; plot(x,f1,'-',x,f2,':');legend('sin(x)','\operatorname{cos(x)')}

```


Figure 43: Plot using different line styles

A histogram plot presents a view of data by a partition into discrete "bins". The number of items in each bin is then plotted. For example, recall the student grades data set, we will use a histogram to see the number of students who achieved a certain grade class, in this case between 40 and 50, 50 and 60, etc. This function creates a histogram given the data and a set of bins.
function display_histogram(data,bins)
\% display_histogram(data,bins) displays
\% the data in a histogram. bins is an array
\% that defines the bins for the histogram
\(\%\) e.g. bins \(=\left[\begin{array}{ll}20 & 30 \\ 40 & 50 \\ 60\end{array}\right]\). This will create \% 4 bins.
```

nr_bins = length(bins) - 1;

```
histogrm = zeros(nr_bins,1);
for m=1:size(data,1)
    for \(\mathrm{n}=1:\) size(data, 2)
        for bin_counter=1:nr_bins
            if data(m,n)>=bins(bin_counter) \& data(m,n) < bins(bin_counter+1)
                histogrm(bin_counter) = histogrm(bin_counter) +1 ;
            end
        end
    end
end
x_axis = bins(1:end-1);
figure;
hold on;
for \(m=1: n r\) _bins
    line([x_axis(m); x_axis(m)], [0 ; histogrm(m)], 'LineWidth', 7);
end
hold off;

On the command prompt we type:
>> display_histogram(data, [40:10:100])


Figure 44: Histogram plot

This will create fig. 44. To make the plot clearer we have drawn horizontal lines using line( \(\mathrm{X}, \mathrm{Y}\) ), where X and Y are vectors holding the starting and ending point in x and y . After \(\mathrm{X}, \mathrm{Y}\) we can define any of the style properties of this line. In this particular example we have used 'LineWidth', which can also be used in the plot function. 'LineWidth' is followed by a scalar defining the width of the line.

To create 3D plots we can use meshgrid, which generates X and Y matrices for the coordinates.
```

>> dualgauss
= inline('exp(-(x.^2+y.^2))+0.66 .*exp(-3*((x-3).^2+(y+2.5).^2))','x','y')
dualgauss =
Inline function:
dualgauss(x,y) = exp(-(x.^2+y.^2))+0.66 .*exp(-3*((x-3).^2+(y+2.5).^2))
>> [X Y] = meshgrid(linspace(-4,4,30),linspace(-4,4,30));
>> Z = dualgauss(X,Y);
>> figure;meshc(X,Y,Z);
>> figure;surfc(X,Y,Z);
>> figure;contour(X,Y,Z,15);

```

The functions meshc \((X, Y, Z), \operatorname{surfc}(X, Y, Z)\) and contour \((X, Y, Z)\) will create a combined mesh and contour plot, a combined surface and contour plot and a contour plot respectively, shown in figs. 45, 46 and 47.


Figure 45: Colored mesh plot


Figure 46: Surface plot

We can also create movie files from figures. Next is an example, which takes two gray scale images of the same size and blends one in to the other by linear interpolation.
blair = double(imread('blair.bmp'));


Figure 47: Contour plot
```

bush = double(imread('bush.bmp'));
tic;
for frames=1:100
for m=1:size(blair,1)
for n=1:size(blair,2)
frame_array(m,n)=(bush(m,n) - blair(m,n))*(frames/100)+blair(m,n);
end
end
figure;imagesc(frame_array);colormap(gray);mov_frames(frames)=getframe;
end
figure;movie(mov_frames,1,25);
movie2avi(mov_frames,'blair2bush.avi');
toc;

```

This takes approximately 45 sec on a regular PC. The problem is that we have to display all the figures using imagesc(A) and then use getframe to grab each frame from the current figure. colormap(map) specifies the color map to be used by imagesc (A). movie (A, \(\mathrm{n}, \mathrm{fps}\) ) displays the movie Antimes with fps frames per second. movie2avi(mov_frames,filename) creates from the frames (mov_frames) a movie file named filename. Note that filename is a string.

We can avoid using this method by creating a structure, which is compatible with the movie function and filling it in with the appropriate data. We can also vectorize the loops to improve performance.
```

tic;
frame_array = zeros(100,size(blair,1),size(blair,2));
for frames=1:100
frame_array(frames,:,:)=(bush(:,:) - blair(:,:)).*(frames/100)+blair(:,:);
end
for m=1:100
mov_frames(m).cdata(:,:,1) = uint8(frame_array(m,:,:));
mov_frames(m).cdata(:,:,2) = uint8(frame_array(m,:,:));
mov_frames(m).cdata(:,:,3) = uint8(frame_array(m,:,:));
end
mov_frames(1).colormap = [];
figure;movie(mov_frames,1,25);
movie2avi(mov_frames,'blair2bush.avi');
toc;

```

This reduces the time to approximately 7 seconds. The initial images are presented in fig. 48. Some intermediate steps of the blending are shown in fig. 49.


Figure 48: (a) Initial image. (b) Final image

Smoothing an image or any data set can easily be performed in Matlab using the built in convolution function. In the case of a 2D data set like an image we can use conv2(A,B), which computes the 2D convolution between A and B. The following script performs Gauss smoothing, using a Gauss mask on the image.


Figure 49: Intermediate steps of the linear interpolation movie example
```

data = double(imread('lena.bmp'));
x = [-5.5:0.5:5.5];
y = [-5.5:0.5:5.5];
for m=1:length(x)
for n=1:length(y)
gauss_filter(m,n) = gauss2d(x(m),y(n),1);
end
end
blur_data = conv2(data,gauss_filter,'same');
figure;imagesc(blur_data);colormap(gray)

```

The third argument ('same') in the conv2 function retains the size of the convolved matrix to that of the original. The previous script will produce the right image in fig. 50 .


Figure 50: (a) Original Lena image. (b) Gauss smoothed Lena image

With 2D convolution we can even calculate an edge map of an image. This is done by approximating the gradient operator with a discrete convolution mask such as the Sobel operator.
```

data = imread('lena.bmp');

```
```

sobelx = [-1 0 1; -2 0 2; -1 0 1];
sobely = [1 2 1; 0 0 0; -1 -2 -1];
x_conv = conv2(data,sobelx);
y_conv = conv2(data,sobely);
edge_map = sqrt(x_conv.^2 + y_conv.^2);
figure;imagesc(data);colormap(gray);
figure;imagesc(x_conv);colormap(gray);
figure;imagesc(y_conv);colormap(gray);
figure;imagesc(edge_map);colormap(gray);

```

This script will produce the images in fig. 51.


Figure 51: (a) Original Lena image. (b) Convolved with the x direction filter. (c) Convolved with the y direction filter. (d) Edge map

\section*{38 Summary table of functions}
\begin{tabular}{|c|c|c|}
\hline Function & p. & Meaning \\
\hline profile on/off & 122 & Turn profiler on/off \\
\hline profile report & 122 & Generate profiler report \\
\hline profile resume & 122 & Resume profiler \\
\hline tic - toc & 122 & Timer \\
\hline sparse(a, b) & 125 & Create an a x b sparse matrix \\
\hline speye(a) & 127 & Create an a x a sparse identity matrix \\
\hline spfun(function, A) & 127 & Apply function to sparse matrix \\
\hline nnz (A) & 127 & Number of non-zero elements of A \\
\hline full (A) & 127 & Convert sparse matrix to full \\
\hline unique(A) & 128 & Find unique elements of a vector A \\
\hline union(A, B) & 128 & Set union of two vectors \\
\hline intersect (A, B) & 128 & Set intersection of two vectors \\
\hline ismember (A, B) & 128 & Detects members of a set \\
\hline setdiff (A, B) & 128 & Set difference of two vectors \\
\hline global & 130 & Create global variable \\
\hline persistent & 130 & Create persistent variable \\
\hline inline(expr_string,arg1,...) & 132 & Create inline function \\
\hline figure & 137 & New figure window \\
\hline figure(n) & 137 & Select figure window n \\
\hline title(string) & 137 & Give a title to the figure window \\
\hline gtext(string) & 137 & Add text with the mouse \\
\hline legend(string) & 137 & Add a legend \\
\hline grid on/off & 137 & Turn grid on/off \\
\hline subplot(m,n,p) & 137 & Create multiple plots \\
\hline hold on/off & 137 & Hold the current graph in the figure \\
\hline line(X,Y) & 142 & Draw a line in a figure \\
\hline meshc (X,Y, Z ) & 143 & Create a colored mesh plot \\
\hline surfc (X,Y,Z) & 143 & Create a colored surface plot \\
\hline contour (X, Y, Z) & 143 & Create a contour plot \\
\hline imagesc(A) & 144 & Scale and display an image \\
\hline colormap(map) & 144 & Specifies the color map to used by imagesc (A) \\
\hline getframe & 144 & Grab a frame from the current figure \\
\hline movie(A, \(\mathrm{n}, \mathrm{fps}\) ) & 144 & Play movie A n times with fps frames per second \\
\hline movie2avi(A,filename) & 144 & Create a movie file \\
\hline conv2(A, B) & 145 & 2 D convolution between A and B \\
\hline
\end{tabular}

\section*{39 Lab exercises 3}

\section*{Programming exercises 1}
A. Given the 2D Gauss function \(z=e^{-\frac{x^{2}+y^{2}}{2} \sigma^{2}}\).
1. Write a function that accepts three arguments, an array holding \(x\) values, an array holding y values and sigma, calculates the 2D Gauss function given above and returns the z values.
2. Write a script which uses for loops to calculate the 2D Gauss function for an array of x and y values.
3. Calculate the function for \(\mathrm{x}=-2.5: 0.01: 2.5, \mathrm{y}=-2.5: 0.01: 2.5\) and sigma \(=1\). Use the profiler to find out how long it takes to calculate this.
4. Use the tic-toc commands to time your function.
5. Use array preallocation and vectorize the loop. You might find the meshgrid command useful. Check how long it takes to calculate this function and compare it with the previous non-optimized version.
6. Extend this function using varargin to accept two or three arguments. If only two arguments are entered then sigma will be equal to 1 .
7. Write a function that makes use of persistent to count how many z values are above 0.5 . You might find useful the counter example from the lecture notes.
B. Given the \(x, y\) values from the previous exercise.
1. Calculate the 2 D Gauss function for sigma equals to \(0.5,1,1.5,2,3,4\).
2. Using the subplot and the meshc command plot in one figure all six graphs.
C. Two sets are equal if all of their elements correspond regardless of the order. Keep in mind that multiplicity of elements in a set is ignored.
1. Write a function that determines whether two sets are equal using the set functions.
2. Using varargin extend this function for any number of sets.
D. Given the display_histogram function in the lecture notes.
1. Modify the function to display the histogram horizontally as in fig. 52 .


Figure 52: Horizontal histogram
2. Extend the function using varargin to be able to accept an additional argument LineWidth to define a new width for the line command.
D. Given two gray scale images of the same sizes.
1. Create a movie that starts from one image and blends it to the other image by linear interpolation.
2. Create a movie that starts from one image and moves it to the right, while at the same time inserting the right part of the other image on the empty space on the left. The effect should a scrolling marquee between two images.

\section*{Programming exercises 2}
1. It is common to represent the adjacency structure of graph

in an adjacency matrix \(A\) as follows,
\[
A=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
\]

Give a Matlab function to compute the number of paths from a specified vertex \(i\) to each other vertex in the graph of length \(n\) (a path may visit the same vertex twice, e.g., a length three path from vertex 1 to 2 is 1-2-1-2). For example, \(\gg\) allpaths(A,5,3);

The number of paths from vertex 5 to vertex 1 of length 3 is 2 The number of paths from vertex 5 to vertex 2 of length 3 is 4 The number of paths from vertex 5 to vertex 3 of length 3 is 4 The number of paths from vertex 5 to vertex 4 of length 3 is 2 The number of paths from vertex 5 to vertex 5 of length 3 is 2

Hint: the algorithm to compute all paths of length \(n\) between all vertices may be expressed in under 10 characters.
2. In many machine learning algorithms it is important to generate a random permutation of a dataset. Matlab provides a function randperm ( \(n\) ) that returns a random permutation of the numbers \(1 \ldots n\) in an array such that each of the \(n\) ! permutations have equal probability (with the usual proviso of pseudo-randomness of the base random number generator).
Write a function myrandperm ( \(n\) ) with functionally similar behavior also assuring that each of the \(n\) ! possible permutations have equal probability of being generated. The best marks will be given for a function whose running time is linear in \(n\).
3. In this problem you will implement some simple drawing functions. The top-level function developed will be able to plot a figure consisting of lines, triangles, rectangles, and circles. The function should take one argument, the figure filename. In the file each line contains a single character denoting the element to be drawn and the data needed to specify the element, i.e.,

L x1 y1 x2 y2
T x1 y1 x2 y2 x3 y3
R x1 y1 x2 y2 \% these are the opposite corners of the rectangle
C x1 y1 radius
Demonstrate your function with the following file afig.txt which may also be found from the class web page.
\(\begin{array}{lll}C & 17 & 0.5\end{array}\)
R 6081
L \(19 \begin{array}{ll}17\end{array}\)
C 4154
\(\begin{array}{llllll}\mathrm{T} & 3.5 & 15 & 4.5 & 15 & 4\end{array} 16\)
L 44411
L 4461
C 3170.5
R 0021

L 1244
\(\begin{array}{lllll}\text { L } & 1 & 19 & 7 & 19\end{array}\)
\(\begin{array}{llllll}\text { T } & 3 & 19 & 4 & 22 & 5\end{array}\)
R 312.5513 .5```

