
Introduction to Matlab
Course notes

Mark Herbster and Jason Kastanis
Copyright c©2006 M. Herbster and J.Kastanis

January 2006

CONTENTS i

Contents

I Interface Guide 1

1 Overview 1

2 Style of the guide 2

3 A brief history of Matlab 2

4 Basic elements of programming 3

5 Matlab main desktop 4
5.1 Title bar . 5
5.2 Menu bar . 5
5.3 Desktop toolbar . 6
5.4 Command window . 6
5.5 Command history . 8
5.6 Current directory (window) 8
5.7 Launch pad . 9
5.8 Workspace . 10

6 Opening and editing files 10
6.1 Opening files . 10
6.2 Editing files . 12

7 Getting help 15
7.1 Text based help . 15
7.2 Graphical interface help . 17
7.3 Web-based help . 23

8 Setting the desktop layout 24

II Lecture 1 25

9 Overview of Lecture 1 25

10 Style of notes 26

CONTENTS ii

11 Recommended reading 26

12 Introduction to Matlab 27

13 Building matrices 27

14 Addressing and assigning elements 31

15 Building special matrices 34

16 Matrix operations 39

17 Equation solving 43

18 User defined functions 45

19 Plotting 47

20 Utility commands 49

21 Summary table of functions 50

22 Lab exercises 1 51

III Lecture 2 60

23 Overview of Lecture 2 60

24 Relational operators 61

25 Logical operators 63

26 Control flow 65
26.1 for loops . 65
26.2 while loops . 69
26.3 if-else-end . 71
26.4 switch-case-otherwise-end . 74

27 Precision issues 76

CONTENTS iii

28 Additional data types 81
28.1 Strings . 81
28.2 Cell arrays . 83
28.3 Structures . 86

29 Input/Output (I/O) 88

30 Formatted Input/Output 89

31 Summary table of functions 108

32 Lab exercises 2 109

IV Lecture 3 121

33 Overview of Lecture 3 121

34 Matlab performance tuning 122

35 Set functions 128

36 User defined functions 2 130

37 Plotting 2 137

38 Summary table of functions 148

39 Lab exercises 3 149

1

Part I

Interface Guide

1 Overview

• Style of the guide

• A brief history of Matlab

• Basic elements of programming

• Matlab main desktop

Title bar

Menu bar

Desktop toolbar

Command window

Command history

Current directory (window)

Launch pad

Workspace

• Opening and editing files

Opening files

Editing files

• Getting help

Text based help

Graphical help interface

Web based help

• Setting the desktop layout

2 STYLE OF THE GUIDE 2

2 Style of the guide

This guide has been designed to offer a short introduction to programming
and the Matlab environment. The main functionality of the graphical user
interface is described using example images. These images were produced on
a PC running Windows and Matlab version 6.5. They might differ slightly
from the version of Matlab that you are running.

Bold is used for all the icons, tools, menu items and other parts of the
Matlab interface. The italic font is used for the introduction of basic elements
of programming. Elements, such as commands, that belong in the Matlab
programming language were written using the verbatim font.

3 A brief history of Matlab

MATrix LABoratory was originally developed by Cleve Moler in the 1970’s,
then chairman of the computer science department of the University of New
Mexico. It was an interface for the LINPACK and EISPACK libraries, which
were written in FORTRAN with the participation of Moler. Matlab was
originally intended for a linear algebra course. Its aim was to simplify the
use of these subroutine libraries by avoiding the complexities of FORTRAN.
Matlab began gaining popularity within the applied mathematics community.
The early versions were based on the command prompt and had no graphical
interface. In 1983 Moler, Jack Little and Steve Bangert rewrote Matlab in
C and the following year founded Mathworks to market it further. From
version 6 Matlab was based on the LAPACK library which has superseded
both LINPACK and EISPACK.

4 BASIC ELEMENTS OF PROGRAMMING 3

4 Basic elements of programming

A program is a collection of instructions for the computer to execute. It
is essentially an algorithm, in that sense it has to be deterministic. Each
instruction should be unambiguous. A programming language just like any
language has a set of rules. These rules describe the syntax and semantics of
the language. The basic elements of a programming language are described
below.

Variables are places to store values on the computer memory. The name
of the variable serves as the address in the memory, where the value of this
variable is held. e.g. x=5, x is the variable, it represents a particular loca-
tion in the memory, where the value 5 is stored. Variables can have types.
Types describe the kind of values a variable can accept and they are di-
vided in primitive and composite. Primitive types are the ones provided by
the programming language and they typically contain integers, floating-point
numbers and characters. Composite types are made from the combination
of primitive types with other primitive types or other composite types. For
example an integer variable is of primitive type and it can only store inte-
ger values. In some languages the declaration of the type and dimensions of
a variable is not required. Variables can be local or global, local ones are
only accessible in a particular part of the program, while global ones can be
accessed anywhere.

An array is the most basic data structure. It is a list of elements of
the same type. Individual elements of an array can be accessed using a
consecutive range of integers. This is referred to as the index. The index
denotes the position of an element in the list. One dimensional arrays are
called vectors and two dimensional are called matrices. Assignment is the
task of storing a value in a variable. It is commonly done using the equal sign
(=). Keep in mind that the equal sign in Mathematics stands for equality,
in programming it stands for assignment.

Expressions compute new values from old ones. The expression 5 + 3
will calculate the sum of the values 5 and 3. In the previous expression the
plus sign is an operator, which operates on the values 5 and 3. Statements,
or instructions, describe what the program will do. They can contain assign-
ments, expressions and control flow operations. Control flow operations are
divided in two main categories, conditionals and loops. Conditionals, as the
name suggests, condition the flow of the program, if a variable has a partic-
ular value (or belongs in a particular range of values), then a particular set

5 MATLAB MAIN DESKTOP 4

of statements will be executed, if not another set will. Loops are used for
repetition, their construction contains a rule determining how many times
a set of statements will be repeated. An entire set of statements grouped
together is called a function. A function takes variables, in this case called
arguments, and can return values. Calling a function transfers the control
over to the function, the group of statements which form it will be executed.
When this finishes it returns (with or without a result) to the original flow
of the program. Having specified these basic elements of programming, a
program can be redefined as an ordered collection of statements, functions
and variables.

5 Matlab main desktop

The Matlab main desktop, presented in fig. 1, has many areas and windows.
These are discussed in the following sections.

Figure 1: The default Matlab main desktop

5 MATLAB MAIN DESKTOP 5

5.1 Title bar

The title bar (fig. 2) contains the program’s name and logo as well as the
window control buttons. It is situated on the top of the main Matlab window.

Figure 2: The title bar

5.2 Menu bar

The menu bar (fig. 3) is underneath the title bar. It has commands for
opening, closing files, preferences, etc. Many of these commands have
keyboard shortcuts, but these vary between different operating systems. The
shortcut keys are commonly displayed next to the command, for example look
at fig. 4

Figure 3: The menu bar

Figure 4: Example of a menu item

5 MATLAB MAIN DESKTOP 6

5.3 Desktop toolbar

The desktop toolbar (fig. 5) is placed underneath the menu bar. It con-
tains many items found on the menus, new file, open, copy, paste,
To find out what each icon does, leave the mouse above it for a few seconds
and a small box with a tool tip will appear, e.g. fig. 6.

Figure 5: The desktop toolbar

Figure 6: A tooltip

On the left side of the desktop toolbar there is box, which can be edited,
called the current directory. This defines the location, where Matlab is
working. It is the folder at which the user is looking at. If Matlab (or the
user) can’t find a particular file, it means that the file is not in the current
directory. Commonly used or referenced directories can be setup from the
menu bar using File → Set Path... . The small arrow on the right of the
box will show past current directories (fig. 7). Next to that the browse tool,
the icon with the three dots, is used for finding a folder.

5.4 Command window

The command window (fig. 8) is the most important part of the Matlab
main desktop. It is the window where input and output appears. In this
window the user can enter commands and obtain results. Each new line on
the command prompt starts with the symbol >>. This defines where new
input can be entered. Input can be apart from Matlab commands, various
DOS or Linux prompt type of commands, e.g dir, ls.

5 MATLAB MAIN DESKTOP 7

Figure 7: Past directories

Figure 8: Command window

5 MATLAB MAIN DESKTOP 8

By pressing the up arrow on the keyboard the user can scroll through
all the previously entered commands. To scroll back the down arrow can be
used. If a letter (or more) is typed, then the up and down arrows can be
used to scroll through all the commands that have been previously typed and
begin with these letters. The tab button can be used to complete the name
of commands or functions. If a command does not exist or if more than one
commands with the same starting letters exist, then pressing the tab will
make a sound.

5.5 Command history

The command history window (fig. 9) contains the history of the com-
mands entered in the command window. It begins on each new session
with the starting date and time. Thus each session history is separated
by dates. Commands from the history window can be copied and pasted,
dragged and dropped.

Figure 9: Command history window

5.6 Current directory (window)

The current directory is also visible as a window inside the Matlab main
desktop (fig. 10). On the top of this window there is box, which contains
the location of the current directory, same as the one in the desktop
toolbar. File names appear on the left column, file types on the middle and
last date of modification on the right column.

On the same part of the Matlab main desktop, the next two windows
(launch pad, workspace) appear as tabs. All of these windows are sepa-
rable from the main desktop window.

5 MATLAB MAIN DESKTOP 9

Figure 10: Current directory window

5.7 Launch pad

The launch pad (fig. 11) is a way of accessing various Matlab resources,
such as the import wizard, the profiler, the Graphical User Interface
(GUI) builder, etc.

Figure 11: Launch pad

These windows appear as separate windows from the Matlab main desktop,
some of which can be docked, that is they can be a part of the main desktop,
and some which cannot be docked, they are called undockable windows.
The launch pad can also be used to launch the help and demo files of
the toolboxes. As it can be seen on fig. 11 it lives on the same window as the

6 OPENING AND EDITING FILES 10

current directory. Those two can be switched using the tabs on the lowest
part of the window, by pressing the one with the corresponding name.

5.8 Workspace

Another window that cohabits the same space as the launch pad and the
current directory is the workspace window (fig. 12). This window dis-
plays the loaded variables of the current Matlab session, these are variables
you have created and are currently loaded on the memory. It displays their
name, their size, that is their dimensions, the number of bytes they take on
memory and their class, that is the type of variable.

Figure 12: Workspace

On the top part of the workspace window there is toolbar with tools
associated to the variables. For example the open icon will launch a separate
window, the array editor (fig. 13), for viewing and editing the contents of
a variable.

6 Opening and editing files

6.1 Opening files

There are a few ways the user can open a file. From the menu bar, File
→ Open, from the desktop toolbar by clicking on the open file icon, by
typing the name of the file on the command prompt, selecting it, right-
clicking and choosing open selection. Matlab can deal with a variety of file

6 OPENING AND EDITING FILES 11

Figure 13: Array editor

formats, but only a few will be mentioned here. Workspace files store loaded
variables in to a .mat file, figure files (.fig) are graphic files, and M-files
contain code and finish with .m. Variables contained in a mat file will be
loaded on the workspace as soon as the mat file is opened. Figure files will
open on a separate window (fig. 14), this offers certain tools for editing and
manipulating the figure.

Figure 14: Figure window

6 OPENING AND EDITING FILES 12

6.2 Editing files

As soon as an M-file is opened the editor window fig. 15 will appear as a
separate window.

Figure 15: Editor window

6 OPENING AND EDITING FILES 13

This window can be docked in to the Matlab main desktop. Every file that
is opened will appear in the same window. Each file can be in its own editor
window, in most cases it is practical to keep them in one. Files are chosen
by the tabs on the lower part of the editor window (fig. 16).

Figure 16: Editor tabs

Of course one could use any editor, but Matlab’s editor offers color coding,
running and debugging facilities. Similar to the command prompt, the user
can select the name of a function file, right-click on it and open it. On the
bottom right of the editor window (fig. 17), information about the file is
displayed as well as the line and the column where the cursor is placed, this
can be very useful when debugging. On the left side of the editing area the
lines are numbered.

Figure 17: Information on the lower part of the editor

A toolbar (fig. 18) is displayed on the top of the editor window. The
standard buttons, New file, Open file, Save, Copy, Cut, Paste, Print
are placed here. Next to them the binocular icon represents the find tool.
This is used for searching the file for a particular keyword and replacing it
if required. Further to the right are the debugging tools for setting and
clearing breakpoints. The Run button is also situated on the right of the
debugging tools. This will execute the code contained in the active file.

Figure 18: The editor toolbar

Files can also be executed using the menu bar (fig. 19) on the upper
part of the editor window in Debug → Run. The menu bar contains all
of the toolbar commands and many others.

6 OPENING AND EDITING FILES 14

Figure 19: The editor menu bar

The name of the file is displayed on the top of the editor window on
the title bar (fig. 20).

Figure 20: The editor title bar

7 GETTING HELP 15

7 Getting help

It is an essential part of programming to be able to find out information
about syntax and functionality as well as to see working examples. There
are three ways the user can get help in Matlab, text based help, graphical
help interface and web based help.

7.1 Text based help

Text based help can be obtained from the command prompt by typing
help. The help topics then appear as in fig. 21.

Figure 21: Text based help topics

To see the subtopics of one of the topics of fig. 21 type the name of the
topic in the command prompt. For example:

7 GETTING HELP 16

>> help matlab\general

The command help can also be used to find out information about a specific
function. For example:

>> help sin

SIN Sine.

SIN(X) is the sine of the elements of X.

Overloaded methods

help sym/sin.m

In the case the function is unknown or the user wants to search for a
specific keyword, the command lookfor can be used.

>> lookfor infinity

INF Infinity.

CEIL Round towards plus infinity.

FLOOR Round towards minus infinity.

CHOLINC Sparse Incomplete Cholesky and Cholesky-Infinity factorizations.

ACTDEMO Demo of digital H-infinity hydraulic actuator design.

DHINF Discrete H-Infinity control synthesis (bilinear transform version).

DHINFOPT Discrete H-Infinity control synthesis via Gamma iteration.

DINTDEMO Demo of H-Infinity design of double integrator plant.

...

The command lookfor will search in all help entries. To find out the details
in one of the search results help can be used as previously:

>> help INF

INF Infinity.

INF returns the IEEE arithmetic representation for positive

infinity. Infinity is also produced by operations like dividing by

zero, eg. 1.0/0.0, or from overflow, eg. exp(1000).

See also NaN, ISFINITE, ISINF.

7 GETTING HELP 17

7.2 Graphical interface help

A more extensive and user friendly option to get help is the graphical in-
terface help window (fig. 22). This is a separate window and it is launched
from the menu bar, Help → Matlab help, the main desktop toolbar
by pressing the question mark or by typing helpbrowser in the command
prompt.

Figure 22: Help browser

The help browser has a menu bar on the top and it is divided into two
main areas. The area on the left is query area and the right one is where
information appears.

On the top of the information area (fig. 23) there is small toolbar with
back, forward and reload buttons, similar to a web browser, a print button
and a Find in page button for searching a keyword in the current page.

7 GETTING HELP 18

Figure 23: Information area

The query area on the left, also called the help navigator (fig. 24) has
five tabs, Contents, Index, Search, Demos and Favorites.

7 GETTING HELP 19

Figure 24: Help navigator

7 GETTING HELP 20

The Contents tab, shown in fig. 24, has a tree list of all the help information
in Matlab. By clicking on a particular item, the information appears on the
right area.

The next tab is the Index (fig. 25). This tab contains a searchable
alphabetical list of all topics in Matlab.

Figure 25: Help navigator, the Index tab

7 GETTING HELP 21

The Search tab (fig. 26) can prove very useful. It gives the ability to
search in various ways all the help information. In Matlab version 6 and 6.5
there is an option of searching for function names, unfortunately this has
been removed in version 7. On the search results the left column shows the
title of the topic and the right the section where this topic belongs.

Figure 26: Help navigator, the Search tab

7 GETTING HELP 22

The Demos tab (fig. 27) contains all of Matlab’s demo examples in a
tree list.

Figure 27: Help navigator, the Demos tab

7 GETTING HELP 23

The last tab on the right in the help navigator is the Favorites (fig. 28).
The Favorites can be used to link commonly used help topics. To create
a favorite click on the Add to Favorites button in the information area
(fig. 23).

Figure 28: Help navigator, the Favorites tab

7.3 Web-based help

Help in Matlab can also be obtained from the world wide web. This appears
in the graphical help interface by typing in the command prompt:

>> web http://www.mathworks.com

It can be of some interest that the graphical help interface can be used
as web browser by replacing http://www.mathworks.com in the previous
example. Alternatively one can launch the default system browser by typing
in the command prompt:

>> web http://www.mathworks.com -browser

8 SETTING THE DESKTOP LAYOUT 24

8 Setting the desktop layout

The setting of the desktop layout should be adjusted by each user according
to their preferences. In the previous sections the default Matlab desktop was
used as an example. There are various layouts available from the menu bar
of the main desktop, in View → Desktop Layout (fig. 29).

Figure 29: View menu

All these can be customized further to fit most needs. As mentioned previ-
ously most windows are dockable, this means that they can be part of the
main desktop or they can exist as separate windows. To undock a win-
dow press the small arrow icon next to the close icon or by dragging and
dropping it outside the main desktop area.

Figure 30: Undock button

To dock a window click on its menu bar on View -> Dock To make a
window reappear, if it is nowhere to be seen, click on View → in the menu
bar on the main desktop (fig. 29) and check if it is ticked. Keep in mind
that a desktop with many smaller windows can easily become cluttered and
unfriendly, as information will take longer to be found. The number and size
of screens of the workstation is also an important variable on the layout of
the desktop.

25

Part II

Lecture 1

9 Overview of Lecture 1

• Style of notes

• Recommended reading

• Introduction to Matlab

• Building matrices

• Addressing and assigning elements

• Building special matrices

• Matrix operations

• Equation solving

• User defined functions

• Plotting

• Utility commands

• Summary table of functions

10 STYLE OF NOTES 26

10 Style of notes

These notes have been prepared to be compatible with Matlab version 6.5,
for most cases this should be true for previous versions of Matlab as well
as version 7. Matlab version 7 offers new features, some of those will be
explained in comparison with version 6.5. It will be clearly stated, when a
feature from version 7 is used.

The verbatim font is used for everything that is written in the Matlab
programming language. For the names of variables we use small fonts for
scalars, vectors and strings and capital fonts for matrices. Throughout these
notes we will see examples that perform the same operation. This is intended
to present some of the different ways we can work in Matlab. At the end
of each set of notes we have provided a summary table of all newly intro-
duced functions with their corresponding page numbers. Many of Matlab’s
functions introduced can take a different number of arguments, we have only
included the basic arguments each function can take. For more details, you
should look in Matlab’s help.

11 Recommended reading

Matlab’s help contains all the built in functions with extensive details and
examples. These are well written and always worth looking at. More details
and examples can be found in:

Hanselman, Duane C.: Mastering MATLAB 6 : a comprehensive tutorial
and reference, Pearson Education

Kuncicky, David C.: Matlab programming, Pearson Education
Free alternatives similar to Matlab are
Scilab

http://www-rocq.inria.fr/scilab/
Rlab

http://rlab.sourceforge.net/
Octave

http://www.octave.org/

12 INTRODUCTION TO MATLAB 27

12 Introduction to Matlab

MATrix LABoratory is one of the most popular packages for scientific com-
puting. It offers extensive libraries of numerical methods and a variety of
tools for visualization. It is designed mainly for discrete computations with
focus on matrices. Even though it has the capability to perform analytical
tasks such as finding the derivative of a continuous function, it is not very
extensive on symbolic mathematics. A more suited tool for this job is an-
other mathematical programming package called Mathematica, developed by
Stephen Wolfram.

Matlab is an interpreted programming language. The statements are
translated in to machine code one by one by Matlab’s interpreter. In com-
parison, a compiled programming language like C has a program translated
as a whole in to machine code by the compiler. Interpreted languages are
faster for development as they have no need for compilation and errors in the
code can be found quickly. To run a piece of Matlab code on any computer
it has to have Matlab installed. In the case of compiled languages there is no
such requirement. Because of the interpretation Matlab tends to be slower
than compiled languages.

There are 3 ways in which you can work in Matlab, from the command
prompt of Matlab, writing scripts and writing functions. Matlab script and
function files are called M-files. A script file takes no arguments, it is just
a series of statements that will be executed sequentially. A function file can
take and return arguments. To begin with, we will start with writing directly
to the command prompt.

13 Building matrices

Manipulation of matrices is one of the most important tasks in Matlab.

Command Meaning
[] Matrix constructor
, Separates matrix columns
; Separates matrix rows
: from-to, all

Matrices can be used to represent images, systems of linear equations and
generally many types of data.

13 BUILDING MATRICES 28

>> A = [2, 4; 6, 8]

A =

2 4

6 8

The commas can be replaced by spaces.

>> A = [2 4; 6 8]

A =

2 4

6 8

Commas and semicolons can also be used to separate statements. Commas
will display the result, while the semicolon does not. It is practical to insert
a semicolon at the end of each statement, when working with large matrices.

>> A = [2 4; 6 8], B = [1 3; 5 7]; C = [12 13; 14 15]

A =

2 4

6 8

C =

12 13

14 15

Matrices can be combined by using the comma or the semicolon in conjunc-
tion with the matrix constructor [].

>> C = [A , B], D = [A ; B]

13 BUILDING MATRICES 29

C =

2 4 1 3

6 8 5 7

D =

2 4

6 8

1 3

5 7

If the matrices we are trying to combine are not of the correct ”shapes”, i.e.
the rows or columns that we are trying to combine do not match, then the
following error will be produced.

>> C, D

C =

2 4 1 3

6 8 5 7

D =

2 4

6 8

1 3

5 7

>> E = [C ; D]

??? Error using ==> vertcat All rows in the bracketed expression

must have the same number of columns.

The problem in the construction of matrix E is that we are using the row
separator (;), while the matrix C has 4 columns and matrix D has 2. The

13 BUILDING MATRICES 30

same problem would appear if we were trying to combine two matrices that
do not have the same number of rows using the column separator (, or space).

>> E = [C , D]

??? Error using ==> horzcat All matrices on a row in the bracketed

expression must have the same number of rows.

To combine matrices with the row separator (;) the number of columns of
each matrix has to be the same, that means the matrices will have to be
a × b and c × b. To combine matrices using the column separator (,) the
number of rows of each matrix has to be the same, that is a × b and a × c.

The operator : is used for building sequences of numbers. This is espe-
cially useful when building uniformly spaced vectors.

>> 1:1:5

ans =

1 2 3 4 5

In this example we have created a sequence of numbers starting from 1 and
ending at 5 with a step size of 1.

The generalization of the use of the colon operator (:) is start : step : end.
The start, step and end can be any real numbers as long as: start + (c ×
step) > end, c ∈ N.

The colon operator (:) can also be used in conjunction with the matrix
constructor ([]).

>> F = [1:1:5;11:2:20]

F =

1 2 3 4 5

11 13 15 17 19

14 ADDRESSING AND ASSIGNING ELEMENTS 31

14 Addressing and assigning elements

The first action we have to take in order to assign a value to a variable is
to address the element of the variable we want. To address an element of
a matrix the round brackets (a,b) are used. a and b are positive integers,
i.e. a, b ∈ N. The first element inside the brackets denotes the row and the
second denotes the column.

>> F

F =

1 2 3 4 5

11 13 15 17 19

>> F(2,3)

ans =

15

Vectors can also be used to address elements in a matrix.

>> F([1 ; 2] , 3)

ans =

3

15

>> F([1 2] , 3)

ans =

3

15

The colon : can be used to address all the elements of a row or column.

14 ADDRESSING AND ASSIGNING ELEMENTS 32

>> F(:,1)

ans =

1

11

>> F(1,:)

ans =

1 2 3 4 5

Matrices can also be addressed as if they were a vector. The elements are
numbered by first counting the elements of a column and then progressing
to the next column (as in fig. 31).

Figure 31: Numbering of a matrix as a vector

>> F

F =

1 2 3 4 5

11 13 15 17 19

>> F(3)

ans =

2

14 ADDRESSING AND ASSIGNING ELEMENTS 33

>> F(4)

ans =

13

Elements can be modified in a matrix simply by addressing the particular
element and then assigning it using the equal =.

>> F

F =

1 2 3 4 5

11 13 15 17 19

>> F(1,2) = 5

F =

1 5 3 4 5

11 13 15 17 19

>> F([1 2] , 3) = [21 ; 22]

F =

1 5 21 4 5

11 13 22 17 19

>> F(:,4) = [14 ; 16]

F =

1 5 21 14 5

11 13 22 16 19

15 BUILDING SPECIAL MATRICES 34

Note that if you are modifying more than one element the dimensions of
what is being addressed and what is being assigned have to agree.

>> F([1 2] , 3) = [21 22]

??? In an assignment A(matrix,matrix) = B, the number of rows in

B and the number of elements in the A row index matrix must be the

same.

In Matlab version 7 this will not return an error, as it is possible to assign
without the dimensions agreeing. If only one element is being assigned and
it does not belong to the matrix, then the matrix is filled with zeros and
expanded in order for this element to be inside the new matrix.

>> F

F =

1 5 21 14 5

11 13 22 16 19

>> F(3,4) = 20

F =

1 5 21 14 5

11 13 22 16 19

0 0 0 20 0

15 Building special matrices

It is convenient to be able to build special matrices without the necessity
of long procedures. The following table summarizes the functions to build
special matrices.

15 BUILDING SPECIAL MATRICES 35

Functions Meaning
ones(a,b) Creates an a x b matrix with all elements equal to 1
zeros(a,b) Creates an a x b matrix with all elements equal to 0

eye(a) Creates an a x a identity matrix
repmat(e,a,b) Replicates in a x b tiles the element e

rand(a,b) Creates an a x b random matrix (uniform distribution in [0,1])
randn(a,b) Creates an a x b random matrix (normal distribution)

linspace(s,e,nr) Creates a uniformly spaced array
logspace(s,e,nr) Creates a logarithmically spaced array

>> ones(3,5)

ans =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

>> zeros(5,3)

ans =

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

>> rand(2,3)

ans =

0.9501 0.6068 0.8913

0.2311 0.4860 0.7621

>> randn(3,3)

15 BUILDING SPECIAL MATRICES 36

ans =

1.1892 0.1746 -0.5883

-0.0376 -0.1867 2.1832

0.3273 0.7258 -0.1364

The functions ones(), zeros(), rand(), randn() can be simplified for
square matrices by only having one number inside the round brackets.

>> ones(3)

ans =

1 1 1

1 1 1

1 1 1

>> zeros(3)

ans =

0 0 0

0 0 0

0 0 0

>> randn(3)

ans =

-0.0592 0.5077 -0.6436

-1.0106 1.6924 0.3803

0.6145 0.5913 -1.0091

The function eye(a) constructs the identity matrix, which is by definition
square. The identity matrix has 1 in the elements on the diagonal and 0
everywhere else.

>> eye(3)

15 BUILDING SPECIAL MATRICES 37

ans =

1 0 0

0 1 0

0 0 1

repmat(e,x,y) can be used to replicate any element e (scalar, vector, or
matrix) in to a matrix. The matrix returned will have dimensions equal to
the first dimension of e times x by the second dimension of e times y. The
element e will be replicated x times in the x axis and y times in the y axis.

>> repmat(2,3,3)

ans =

2 2 2

2 2 2

2 2 2

>> A = repmat([7 8], 3, 4)

A =

7 8 7 8 7 8 7 8

7 8 7 8 7 8 7 8

7 8 7 8 7 8 7 8

>> size([7 8])

ans =

1 2

>> size(A)

ans =

15 BUILDING SPECIAL MATRICES 38

3 8

>> repmat([1 2],3,3)

ans =

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

>> repmat([1; 2],3,3)

ans =

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

>> repmat([1 3; 2 4],3,3)

ans =

1 3 1 3 1 3

2 4 2 4 2 4

1 3 1 3 1 3

2 4 2 4 2 4

1 3 1 3 1 3

2 4 2 4 2 4

The function size(A) returns the number of rows and columns of A. To create
uniformly spaced vectors, the function linspace(s,e,nr) can be used. The
first argument (s) inside the round brackets is the starting point, the second
(e) is the end point and the third one (nr) is the number of elements including
the starting and the end point. An equivalent operation can be performed
using the colon : notation, as discussed previously, with the same starting

16 MATRIX OPERATIONS 39

and ending points and a step size of e−s
nr−1

.

>> linspace(1,3,5)

ans =

1.0000 1.5000 2.0000 2.5000 3.0000

>> 1:0.5:3

ans =

1.0000 1.5000 2.0000 2.5000 3.0000

In the same way we can create logarithmically spaced vectors using the func-
tion logspace(s,e,nr). The difference is that the starting point s is defined

as 10s, the ending point as 10e and the size of the step is 10
e−s

nr−1

>> logspace(0,1,5)

ans =

1.0000 1.7783 3.1623 5.6234 10.0000

16 Matrix operations

The following table has the most important matrix operations.

Matrix operations Meaning
’ Transpose
+ Addition
- Subtraction
* Multiplication
^ Power

The transpose of a matrix A is a matrix AT (or A′), which has the rows
of A as columns and the columns as rows.

>> A = ones(3), B = rand(3)

16 MATRIX OPERATIONS 40

A =

1 1 1

1 1 1

1 1 1

B =

0.4660 0.5252 0.8381

0.4186 0.2026 0.0196

0.8462 0.6721 0.6813

>> B’

ans =

0.4660 0.4186 0.8462

0.5252 0.2026 0.6721

0.8381 0.0196 0.6813

>> A + B

ans =

1.4660 1.5252 1.8381

1.4186 1.2026 1.0196

1.8462 1.6721 1.6813

>> A - B

ans =

0.5340 0.4748 0.1619

0.5814 0.7974 0.9804

0.1538 0.3279 0.3187

Matrix multiplication is defined as follows: Given two matrices A and B, then

16 MATRIX OPERATIONS 41

their product C = AB is Crt = ArsBst and an element of matrix C is defined
as cij =

∑s

k=1 aikbkj, where aik, bkj are elements of A and B respectively.

>> A * B

ans =

1.7309 1.3999 1.5390

1.7309 1.3999 1.5390

1.7309 1.3999 1.5390

Power of matrix is defined as follows: Ak = A × A...A
︸ ︷︷ ︸

k times

>> B^2

ans =

1.1462 0.9145 0.9719

0.2965 0.2741 0.3682

1.2522 1.0385 1.1866

Vectorized operations are also useful. These operations are performed be-
tween two corresponding elements of the two matrices. The following table
contains a list of main operations.

Vectorized operations Meaning
.* Multiply corresponding elements
./ Divide corresponding elements
.^ Power of each element

>> A = [1 2; 4 6], B = [3 5; 7 9]

A =

1 2

4 6

16 MATRIX OPERATIONS 42

B =

3 5

7 9

>> A .* B

ans =

3 10

28 54

>> A ./ B

ans =

0.3333 0.4000

0.5714 0.6667

>> A .^ 2

ans =

1 4

16 36

Matrix and scalar operations can be stated similarly to matrix operations.
Also +, -, / and * are naturally defined between matrices and scalars.

>> A

A =

1 2

4 6

>> A + 2

17 EQUATION SOLVING 43

ans =

3 4

6 8

>> A - 2

ans =

-1 0

2 4

>> A * 2

ans =

2 4

8 12

>> A / 2

ans =

0.5000 1.0000

2.0000 3.0000

17 Equation solving

Consider the following system of equations.

2x1 + x2 − 2x3 = 10 (1)

6x1 + 4x2 + 4x3 = 2

10x1 + 8x2 + 6x3 = 8

This can be represented by a matrix equation Ax = b

17 EQUATION SOLVING 44

>> A = [2 1 -2; 6 4 4; 10 8 6], b = [10 ; 2 ; 8]

A =

2 1 -2

6 4 4

10 8 6

b =

10

2

8

The solution of this equation is to invert matrix A and multiply it with b,
x = A−1b. To invert a matrix we can use inv(A) or simply raise the matrix
to power of -1. These two are equivalent.

>> x = inv(A) * b

x =

1.0000

2.0000

-3.0000

>> x = A^-1 * b

x =

1.0000

2.0000

-3.0000

Another way of calculating the solution of this equation is to use the left
division sign \. This will invert the matrix and multiply to the left. The
difference of left division with the previous methods is that if the matrix is
singular, then it will calculate the least squares solution.

18 USER DEFINED FUNCTIONS 45

>> x = A \ b

x =

1.0000

2.0000

-3.0000

Another method of obtaining the least squares inverse also called Moore-
Penrose pseudoinverse is to use pinv(A).

>> x = pinv(A) * b

x =

1.0000

2.0000

-3.0000

The pseudoinverse should be used when we know that the matrix does not
have a proper inverse.

If the matrix is square and non-singular then the function pinv(A) is a
computationally expensive way of calculating the inverse. In this case we
should use the proper inverse (inv or raise to the power of -1).

18 User defined functions

To write our own function we will have to open a new M-file. This can be
done in Matlab’s editor or in any external editor, as discussed previously. An
M-file can contain a script or a function. A script is a series of statements
that will be executed sequentially and has the same effect as typing them in
the command prompt. The first line of a function should be in the following
form:

function [val1, val2, ...] = filename(arg1,arg2,...)

18 USER DEFINED FUNCTIONS 46

Note that the name of the function has to match the name of the file. The first
commented lines after the first line, which defines the function, are displayed
when requesting Matlab’s help. Create a function called my_function with
the following code.

function [rtn] = my_function(a,b)

% rtn = my_function(a,b) takes two variables and adds them

rtn = a + b;

>> my_function(2,4)

ans =

6

>> help my_function

rtn = my_function(a,b) takes two variables and adds them

Using the first lines for information on the function, explaining what the
function does, what arguments it takes, what variables it returns, version
number, etc. can prove to be very useful in large projects.

Remember that all variables inside a function are local and cannot be ac-
cessed from the command prompt or any other functions. All variables
inside a script file can be accessed from the command prompt and other
scripts.

Next is an example of a function myint that integrates a given function f on
an closed interval [a,b] according to accuracy n. The higher n is the more
samples myint will take in the interval [a,b] for the function f.

function s = myint(f,a,b,n)

% function s = myint(’f’,a,b,n)

%

% This function numerically integrates f from a to b

% by summing n approximating rectangles

invs = linspace(a,b,n+1) ;

fx = feval(f,invs(1:n)) ;

s =((b-a)/n)*sum(fx) ;

19 PLOTTING 47

On the command prompt we can type:

>> myint(’sin’,0,pi,100)

ans =

1.9998

The function feval(f,values) takes a string f defining the function and
an array values with the values of where the function f should be evalu-
ated. feval can take any predefined, both user created and built in Matlab,
function as the f argument.

19 Plotting

The main function for simple plots is plot(x,y), it takes two arguments, the
x values and the y values.

>> x_values = linspace(0,4*pi,100);y_values = sin(x_values);

>> plot(x_values,y_values);

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 32: Sin plot

3D plots can be performed using the plot3(X,Y,Z) function. This works
similar to plot(x,y) with the addition of the Z coordinates. 3D plots can
also be displayed using the mesh(X,Y,Z) function. X, Y and Z are the x, y
and z coordinate matrices. Define the following function:

19 PLOTTING 48

function rtn = funky(x,y)

% rtn = funky(x,y)

rtn = sin(sqrt(x.^2 + y.^2))./(x.^2 + y.^2 + 0.0001);

Note that we have used vectorized power in the function definition. If we pass
arrays to this functions the elements will be multiplied individually instead
of performing a matrix multiplication. On the command prompt we write
the following statements:

>> [X Y] = meshgrid(linspace(-8,8,30),linspace(-8,8,30));

>> Z = funky(X, Y);

>> mesh(X,Y,Z);

−10

−5

0

5

10

−10

−5

0

5

10
−0.5

0

0.5

1

1.5

2

2.5

Figure 33: Mesh plot of the funky function

The function [X Y] = meshgrid(A,B) will create the grids X and Y for a 3D
plot according to the vectors A and B.

20 UTILITY COMMANDS 49

20 Utility commands

Command Meaning
whos Gives the sizes and types of all loaded variables

save ’my_work’ Save the current workspace on to ’my_work’

load ’my_work’ Load ’my_work’ on to the current workspace
diary on Starts diary
diary off Stops diary
close all Closes all figure windows
clear all Clears from memory all loaded variables

clc Clear command window
Control + c Stops execution of a program
Control + i Smart indent selected text
Control + r Comment selected text
Control + t Uncomment selected text

quit Exit Matlab

21 SUMMARY TABLE OF FUNCTIONS 50

21 Summary table of functions

Function p. Meaning
[] 27 Matrix constructor
, 27 Separates matrix columns
; 27 Separates matrix rows
: 27 from-to, all
() 31 Addressing elements in matrix

ones(a,b) 35 Creates an a x b matrix with all elements equal to 1
zeros(a,b) 35 Creates an a x b matrix with all elements equal to 0

eye(a) 35 Creates an a x b identity matrix
repmat(A,a,b) 35 Replicates in a x b tiles the element A

rand(a,b) 35 Creates an a x b random matrix (uniform distribution in [0,1])
randn(a,b) 35 Creates an a x b random matrix (normal distribution)

linspace(s,e,nr) 35 Creates a uniformly spaced array
logspace(s,e,nr) 35 Creates a logarithmically spaced array

size(A) 38 Returns the number of rows and columns of A
’ 39 Transpose
+ 39 Addition
- 39 Subtraction
* 39 Multiplication
^ 39 Power
.* 41 Multiply corresponding elements
./ 41 Divide corresponding elements
.^ 41 Power of each element

inv(A) 44 Invert matrix A

A \ B 44 Invert the matrix A and multiply it with B

pinv(A) 45 Pseudoinverse of matrix a

feval(f,values) 47 Evaluate the string function f at values
plot(x,y) 47 Plot x and y values

plot3(X,Y,Z) 47 3D plot X, Y and Z values
mesh(X,Y,Z) 47 3D mesh plot of X,Y and Z values

meshgrid(A,B) 48 Create X and Y grid matrices for a 3D plot

22 LAB EXERCISES 1 51

22 Lab exercises 1

Programming exercises 1

A. Create the following matrices in Matlab:

A =

5 3 1 0

2 4 7 2

6 4 3 1

B =

1 7

3 4

2 3

C =

6 6 0 5

9 2 1 8

1. Combine matrices A, B and C in all possible ways (horizontally and
vertically) using the constructor [] and the operators ; and , .

2. Using the : create the following arrays:

a =

1 2 3 4 5 6

b =

2 2.5 3 3.5 4 4.5 5

c =

22 LAB EXERCISES 1 52

3 2.75 2.5 2.25 2 1.75 1.5 1.25 1

3. Write code that will add the 1st, 3rd and 6th element of the arrays a,
b and c. This sum should should be placed as an extra element at the
end of each array.

4. For matrix

D =

1 5 2 9 6

2 4 3 2 7

write code that will add the elements of the 1st row to elements of the
2nd row and place them on a 3rd row in matrix D.

5. Using the rand function add a maximum 10% random error on each
element of the matrices A, B and C. 10 % random error means that
you should add to each element a number that is at most 10 % of the
element’s value.

B. Create the matrix E as follows:

E =

4 6 0

5 1 3

1. Find at least 2 ways of adding the value 1 to each element of matrix E.

2. Using the linspace function create the following array:

d =

1 1.2 1.4 1.6 1.8 2

3. Using the repmat function create a 3x6 matrix with the array d as each
row.

22 LAB EXERCISES 1 53

4. Using the repmat function create a 6x4 matrix with the array d as each
column. Note you will have to transpose the array d.

5. Using the meshgrid function create two matrices X and Y with the array
d. Recreate those two matrices using the repmat function.

6. Type the function funky from the notes 1 on p.48 and save it. Con-
struct an array e starting at -5 and ending at 5. The step size is your
own choice. Using the array e and the repmat or the meshgrid func-
tion create the X and Y coordinate matrices for the calculation of the
funky function. Evaluate the function from -5 to 5 and plot it using
plot3 and mesh. Note how the plot changes if you change the step size
in the array e.

C. Using the : operator, element addressing and the matrix constructor []
create the following matrix. Note you might need to create an intermediate
array holding all of the values of the matrix.

F =

1 2 3 4

5 6 7 8

9 10 11 12

1. Using the reshape function and an intermediate array, that holds all
the values, create the matrix F with the same values as previously. Use
Matlab’s help to find out the syntax and functionality of reshape.

2. Using matrix multiplication multiply the 1st column of F with 3, the
2nd with 2, the 3rd with 5 and the 4th with 7.

3. Using matrix multiplication multiply the 1st row of F with 3, the 2nd
with 2 and the 3rd with 5.

4. Using vectorized multiplication perform the same operations to matrix
F as the previous two exercises.

5. Using matrix multiplication find the sum of each row and column of
the matrix F.

22 LAB EXERCISES 1 54

D. Given the following linear systems:

2x1 + 3x2 − x3 + 4x4 = 23 (2)

1x1 + 1x2 − 3x3 + 5x4 = 11

7x1 + x2 + 3x3 + 4x4 = 12

5x1 + 4x2 + 3x3 − 11x4 = 14

2x1 + 3x2 − x3 + 4x4 + 3x5 = 23 (3)

1x1 + 1x2 − 3x3 + 5x4 + 5x5 = 11

7x1 + x2 + 3x3 + 4x4 + 7x5 = 12

5x1 + 4x2 + 3x3 − 11x4 + 11x5 = 14

2x1 + 3x2 − x3 = 23 (4)

1x1 + 1x2 − 3x3 = 11

7x1 + x2 + 3x3 = 12

5x1 + 4x2 + 3x3 = 14

1. Solve all of the above systems.

2. Test how good your solutions are by replacing the x variables into the
equations.

E.

1. Write a function my_calculations that takes two variables, adds, sub-
tracts, multiplies and divides them and returns all these results.

2. Write a function my_cos_sin that calculates the following expression:

y = 2 cos(x) + 3 sin(2x)

given x and returns y. Keep in mind that the functions sin and cos

take radians as arguments.

22 LAB EXERCISES 1 55

3. Calculate the values of y for x ∈ [0, 2π).

4. Use the feval function to calculate y for x ∈ [0, 2π).

5. Plot the sin(), cos() and my_cos_sin() functions on the correct x-
axes.

22 LAB EXERCISES 1 56

Programming exercises 2

Files for this exercise are available from
http://www.cs.ucl.ac.uk/staff/M.Herbster/GI03/

1. In this first exercise we will produce a simple visualization of a gradient
descent algorithm. Consider the function,

f(x, y) = (x − 2)2 + 2(y − 3)2

>> [X,Y] = meshgrid(linspace(0,5,15),linspace(0,5,15)) ;

>> mesh(X,Y,fcarg(X,Y)) ;

0
1

2
3

4
5

0

1

2

3

4

5
0

5

10

15

20

25

30

Figure 1

Algebraically, we see that (2, 3) is the minima of this function. Nu-
merically we may use the matlab function graddesc.m to calculate the
minima.

>> graddesc(’fc’,’dfc’,[0,0],0.1,0.1)

ans =

1.9550 2.9995

Suppose we start a gradient descent algorithm at (0,0) on the way to
the minima we traverse a series of points,

{(0, 0, f(0, 0)), (x2, y2, f(x2, y2)), (x3, y3, f(x3, y3)), . . . ,∼ (2.0, 3.0, 0.0))}
(5)

Visualizing this path in three dimensions we have,

22 LAB EXERCISES 1 57

0

0.5

1

1.5

2

0
0.5

1
1.5

2
2.5

3
0

5

10

15

20

25

Figure 2

Projecting down to the xy plane we have,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

Figure 3

(a) Produce a plot similar to Figure 1.

(b) Modify the function graddesc.m to produce a sequence of points
as in Equation 1.

i. Modify the code.

ii. Produce a plot similar to Figure 2. (Hint: to do this it will
be necessary to massage the sequence of points into a form
usable by plot3(), then to produce the grid use the command
grid on.

iii. Produce a plot similar to Figure 3.

22 LAB EXERCISES 1 58

2. In this exercise we will use gradient descent to perform linear regression
(linear least squares). Consider the matrix equation,

Ax = b

if there is no exact solution then for any potential solution x we may
define a column vector of error terms

e = Ax − b.

The sum of the errors squared is then

eT e

in matlab this is just e′ ∗ e. Thus the least squares solution is the x

that minimizes
(Ax − b)T (Ax − b).

In Matlab

>> A\b

computes the least square solution directly.

(a) Give a matlab function to compute the least squares solution by
gradient descent. The arguments should include the matrix A, the
column vector b, an initial guess, a step size, and a tolerance (i.e., a
convergence criteria). For example: mydescent(A,b,guess,step,tol).
Note: that standard gradient is a very inefficient method to com-
pute the least squares solution to a set of equations. Also observe
in order to code mydescent.m you will need to determine the sym-
bolic solution of ∇x[(Ax − b)T (Ax − b)] where ∇x is the gradient
with respect to x.

(b) Use the above function to give a least squares solution to the
equations

x1 − x2 = 1

x1 + x2 = 1

x1 + 2x2 = 3

22 LAB EXERCISES 1 59

(c) Visualize the above solution with a plot as in Figure 3.

3. This exercise explores the convergence of gradient descent in a single
variable. Gradient descent can be defined as follows. Given f(x), let f ′

denote the first derivative, let λ denote the step size and let x0 denote
the initial point, hence gradient descent can be defined as a sequence
of iterates of Gf,λ(x) = x − λf ′(x) which we will denote as follows

G(0) = x0, G(1) = x0−λf ′(x0), G(2) = x0−λf ′(x0)−λf ′(x0−λf ′(x0)), . . .

(6)
hence gradient descent on f with step size λ and starting point x0

converges to x∗ if G(n) → x∗ as n → ∞.

For the following exercises experimental arguments will receive a some
credit however the best responses will give/include mathematical argu-
ments. Notation: let |x| denote the absolute value of x.

(a) Does there exist a nontrivial starting point x0 and step size λ such
that gradient descent on f(x) = |x − 1|3 converges to 1. What is
your evidence?

(b) Does there exist a nontrivial starting point x0 and step size λ such
that gradient descent on f(x) =

√

|x − 1| converges to 1. What
is your evidence?

(c) For what values of λ > 0 does there exist an x0 6= 0 such that
gradient descent on f(x) = x4 + 5x2 converges to 0. Why?

(d) Formulate a set of sufficient conditions for gradient descent to
converge in one variable.

60

Part III

Lecture 2

23 Overview of Lecture 2

• Relational operators

• Logical operators

• Control flow

for loops

while loops

if-else-end

switch-case-otherwise-end

• Precision issues

• Additional data types

Strings

Cell arrays

Structures

• Input/Output (I/O)

• Formatted Input/Output

• Summary table of functions

24 RELATIONAL OPERATORS 61

24 Relational operators

The following table contains a list of the relational operators in Matlab.

Operator Meaning
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

Relational operators return a Boolean value, that is 1 if true and 0 if false.

>> 4 > 5

ans =

0

>> 4 < 5

ans =

1

Relational operators can be applied to any size vectors. Next is an example
of how to compare two vectors of equal size.

>> a = [1:5], b = 5 - a

a =

1 2 3 4 5

b =

4 3 2 1 0

24 RELATIONAL OPERATORS 62

>> a > b

ans =

0 0 1 1 1

The answer is an array of the original size with each position representing
the result of the comparison between corresponding elements of the arrays.
Relational operators can also be used to compare arrays with scalars.

>> a > 4

ans =

0 0 0 0 1

The function find(A) finds indices and values of nonzero elements of an
array A.

>> b

b =

4 3 2 1 0

>> locs = find(b.^2 > 5)

locs =

1 2

>> b(locs)

ans =

4 3

25 LOGICAL OPERATORS 63

25 Logical operators

The following table lists the logical operators in Matlab. Note that A and B

are not considered purely as matrices but as logical expressions.

Operator Function Form Meaning
& and(A,B) and
| or(A,B) inclusive or

xor(A,B) exclusive or
~ not(A) not

The operator and (&) requires both expressions A, B to be true in order
to return true, all other combinations return false. The inclusive or (|)
returns true if one or both of the expressions are true, while the exclusive
or (xor(A,B)) returns true only if one expression is true and returns false if
both expressions are true or false. The operator not (~) returns true if the
expression is false and false if the expression is true. This can be summarized
in a truth table.

A B A&B A|B xor(A,B) ~A

0 0 0 0 0 1
1 0 0 1 1 0
0 1 0 1 1 1
1 1 1 1 0 0

These operators are used in the following way. Consider A and B to be two
logical expressions with a Boolean value, that is 1 for true and 0 for false.

>> A = 0; B = 1;

>> A & B

ans =

0

>> A | B

ans =

1

25 LOGICAL OPERATORS 64

>> xor(A , B)

ans =

1

>> ~A

ans =

1

Next are some examples on the use of these operators in combination with
the relational operators.

>> a = [1:8]

a =

1 2 3 4 5 6 7 8

>> a > 4 & a <= 6

ans =

0 0 0 0 1 1 0 0

>> a > 4 | mod(a,2) == 0

ans =

0 1 0 1 1 1 1 1

>> xor(a > 4, mod(a,2))

ans =

26 CONTROL FLOW 65

1 0 1 0 0 1 0 1

>> a > 4 & (~mod(a,2) == 0)

ans =

0 0 0 0 1 0 1 0

The mod(a,b) function calculates the modulus after the division a/b. The
not operator can usually be replaced by directly negating the expression.
The last expression on the previous example can be rewritten as:

>> a > 4 & (mod(a,2) ~= 0)

ans =

0 0 0 0 1 0 1 0

It is also possible to build expressions combining multiple logical operators.

>> (a > 4 & a <= 6) | (a == 1)

ans =

1 0 0 0 1 1 0 0

26 Control flow

In the following sections the control flow of loops (for, while - end) and
conditional statements (if - else, switch - case) will be introduced.

26.1 for loops

The most common way of repeating a sequence of statements for a specific
number of times is to use a for loop. Consider the following example:

26 CONTROL FLOW 66

>> for x=1:2

disp(’This statement is repeated’)

end

The statement between for and end will be repeated two times. The output
on the screen will be:

This statement is repeated

This statement is repeated

On the first line of the loop, starting with for, we define how many times
the statements will be repeated. If we simply change the 2 from the previous
example to 3, the statements will be repeated three times.

>> for x=1:3

disp(’This statement is repeated’)

end

The function disp(a) displays a on to the screen. The output on the screen
will be:

This statement is repeated

This statement is repeated

This statement is repeated

The first line of the loop contains an assignment of an array. The number
of columns of this array defines how many times the statements inside the
loop will be executed. On every repetition x will be equal to a column of
the array it was assigned to. The variable x will take consecutive values, the
columns, of the assigned array. Consider the following example:

>> for x = [1 3 5]

disp(’x equals’),disp(x)

end

The output on the screen will be:

26 CONTROL FLOW 67

x equals

1

x equals

3

x equals

5

The statement disp(’x equals’),disp(x) was repeated three times, that
is the number of columns of the array [1 3 5] used in the assignment, each
time taking the value of the column of the array [1 3 5]. A matrix can also
be used instead of vector. In this case x will be a column vector instead of a
single number.

>> for x = [1 2 3; 4 5 6]

disp(’x equals’),disp(x)

end

The output on the screen will be:

x equals

1

4

x equals

2

5

x equals

3

6

The general syntax of the for loop is as follows:

26 CONTROL FLOW 68

for x=array

statements % executed once for each column in array

% x is the columns consecutively

end

The first line defines how many times statements will be executed. If array
is a m × n matrix then statements will be executed n times. Each time x

will be equal to the corresponding column.
The following example calculates and displays the mean and the sum of

each column of a matrix.

>> A=[1:12]; B = reshape(A,4,3)

B =

1 5 9

2 6 10

3 7 11

4 8 12

>> for x=B

disp(’Mean:’); disp(mean(x)); disp(’Sum:’); disp(sum(x));

end

Mean:

2.5000

Sum:

10

Mean:

6.5000

Sum:

26

Mean:

10.5000

26 CONTROL FLOW 69

Sum:

42

The function reshape(A,r,c) reshapes A in to r rows and c columns. The
functions mean(a) and sum(a) calculated the mean and sum of a. If a is a
matrix then they calculate the mean or sum on each column of a.

In the case where x takes consecutive integer values it can be used as an
index in array.

>> a = [1,2,3];

>> for x=a

b(x) = x^2;

end

>> b

b =

1 4 9

>> x_values = [0:0.1:2*pi - 0.1];

>> for index=1:length(x_values)

y_values(index) = sin(x_values(index));

end

>> figure;plot(x_values,y_values);

Question: How can we simplify the above example and avoid using a for

loop?
The function length(a) returns the size of the largest dimension of a.

The last statement will produce the plot in fig. 34.

26.2 while loops

Often we wish to repeat a sequence of statements while a given condition
remains true. The general syntax for a while loop is the following.

while expression

statements % are executed while expression is true

26 CONTROL FLOW 70

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 34: Sin plot

% if the expression returns an array all

% must be true

end

The first line defines when the repetition is going to stop. statements

will be executed repeatedly, while expression remains true, that is while
expression returns the value 1.

The while loop can be used exactly as a for loop, if we define a variable
to count the number of repetitions. This variable is commonly referred to as
the counter.

>> a_counter = 0;

>> while a_counter < 3

a_counter = a_counter + 1;

disp(’The counter is equal to: ’),disp(a_counter);

end

The output on the screen will be:

The counter is equal to:

1

The counter is equal to:

2

The counter is equal to:

3

26 CONTROL FLOW 71

Next is an example that finds the first non zero entry of an array or a
matrix and stores its index.

>> A = zeros(10,1);

>> A(5) = 1;

>> m = 1;

>> while A(m) == 0

m = m + 1;

end

>> m

m =

5

Question: How can the above example be accomplished using the function
find()?

The difference between the two types of loops is that for loops can only
repeat statements based on the number of columns of the assigned array.
while loops can repeat statements based on any expression. Thus while
loops are more general than for loops. The most common use of for loops
is for counting type of repetitions, their advantage there is that they have
the counter build in to the syntax.

26.3 if-else-end

To execute different sequences of statements according to some conditions
we can use if-else-end. The general syntax is as follows:

if expression1

statements1 % executed if expression1 is true

elseif expression2

statements2 % executed if expression1 is false and expression2 is true

elseif expression3

statements3 % executed if all previous expressions are false

.... % and expression3 is true

else

statements4 % executed if no expression is true

end

26 CONTROL FLOW 72

Note that expression2 will only be checked if expression1 is false.

The next expression will only be checked if the previous one is false. That
means that if two or more expressions are true, only the first one is going
to be executed.

To demonstrate this a simple example of if-else follows next.

>>if 1<2

disp(’First condition’);

elseif 1<3

disp(’Second condition’);

end

First if-else

The following function uses if-else to separate an array of numbers into
numbers divisible by 2, divisible by 3 and not divisible by 2 or 3.

function [div_2, div_3, not_div] = myseparate(A)

% rtn = mysort(A) takes a scalar vector as input

% and sorts it out to numbers that are divisible by 2 (div_2),

% numbers that are divisible by 3 (div_3) and

% other numbers that are not divisible by 2 or 3.

% If a number is divisible by 2 and 3 then it will go to both lists.

count_div_2 = 0; count_div_3 = 0; count_not_div = 0;

for m=1:length(A)

if mod(A(m),2) == 0 & mod(A(m),3) == 0

count_div_2 = count_div_2 + 1;

div_2(count_div_2) = A(m);

count_div_3 = count_div_3 + 1;

div_3(count_div_3) = A(m);

elseif mod(A(m),2) == 0

count_div_2 = count_div_2 + 1;

div_2(count_div_2) = A(m);

elseif mod(A(m),3) == 0

count_div_3 = count_div_3 + 1;

26 CONTROL FLOW 73

div_3(count_div_3) = A(m);

else

count_not_div = count_not_div + 1;

not_div(count_not_div) = A(m);

end

end

Question: How can we accomplish the above without using if-else and for

loop in three statements?
On the command prompt we will type:

>> A = [2 3 4 45 53 42 1 3 9]

A =

2 3 4 45 53 42 1 3 9

>> [div2 div3 notdiv] = myseparate(A)

div2 =

2 4 42

div3 =

3 45 42 3 9

notdiv =

53 1

We can also have if-else statements inside an if-else sequence. The
previous function can be rewritten as:

function [div_2, div_3, not_div] = myseparate(A)

% rtn = mysort(A) takes a scalar vector as input

26 CONTROL FLOW 74

% and sorts it out to numbers that are divisible by 2 (div_2),

% numbers that are divisible by 3 (div_3) and

% other numbers that are not divisible by 2 or 3.

% If a number is divisible by 2 and 3 then it will go to both lists.

count_div_2 = 0; count_div_3 = 0; count_not_div = 0;

for m=1:length(A)

if mod(A(m),2) == 0

count_div_2 = count_div_2 + 1;

div_2(count_div_2) = A(m);

if mod(A(m),3) == 0

count_div_3 = count_div_3 + 1;

div_3(count_div_3) = A(m);

end

elseif mod(A(m),3) == 0

count_div_3 = count_div_3 + 1;

div_3(count_div_3) = A(m);

else

count_not_div = count_not_div + 1;

not_div(count_not_div) = A(m);

end

end

26.4 switch-case-otherwise-end

Another method of executing statements according to some conditions is to
use switch-case-otherwise-end.

switch expression

case result1

statements1 % executed if the result from expression

% is equal to result1

case result2

statements2 % executed if the result from expression is not equal

% to result1 and it is equal to result2

case result3

26 CONTROL FLOW 75

statements3 % executed if the result from expression is not equal to

% any of the previous results and is equal to result3

...

otherwise

statements4 % executed if the result from expression is

% not equal to any of the previous results

end

Similarly to if-else, further statementswill only be executed if the results
from the previous are not equal to the result of expression.

The following function converts the month number in to the name of the
month.

function [rtn] = disp_month (num_month)

% [rtn] = disp_month (num_month)

% takes a number as an argument (num_month), displays

% the equivalent month with each name and

% and returns 1 if the month exists and 0 otherwise

rtn = 1;

switch num_month

case 1

disp(’Month entered is January’);

case 2

disp(’Month entered is February’);

case 3

disp(’Month entered is March’);

case 4

disp(’Month entered is April’);

case 5

disp(’Month entered is May’);

case 6

disp(’Month entered is June’);

case 7

disp(’Month entered is July’);

case 8

disp(’Month entered is August’);

case 9

27 PRECISION ISSUES 76

disp(’Month entered is September’);

case 10

disp(’Month entered is October’);

case 11

disp(’Month entered is November’);

case 12

disp(’Month entered is December’);

otherwise

disp(’Month entered does not exist’);

rtn = 0;

end

On the command prompt we can type:

>> true_false = disp_month(8);

Month entered is August

>> true_false

true_false =

1

The main difference between if-else and switch-case is that the latter
can only decide on one expression, namely the one after switch.

27 Precision issues

By default Matlab declares variables as double precision and up to version 6.5
it can only perform double precision arithmetic. The computing precision is
not the displaying precision. Matlab will display results using short precision,
by default, which uses only 5 digits. This can be changed using format(type)
function.

>> 3/7

ans =

0.4286

27 PRECISION ISSUES 77

>> format(’long’)

>> 3/7

ans =

0.42857142857143

>> format(’long’, ’e’)

>> 3/7

ans =

4.285714285714286e-001

Variables can also be defined to be of a specific type (single(A), double(A),
int8, int16(A), int32(A), int64(A), uint8(A), uint16(A), ...). These are
all primitive types. int8 uses 8 bits and it can take any of the 28 possible
values of signed integers. That means that it can take values from -128(−27)
to 127(27 − 1). uint8 also uses 8 bit, but it can only take unsigned values
from 0 to 255(28 − 1). int16 uses 16 bits for signed integers from −215 to
215 − 1. uint16 also uses 16 bits for unsigned integers and takes values from
0 to 216 − 1. The rest of the integer data types are defined in the same way.

double is the only one, which can be used for mathematical operations up
to Matlab version 6.5.

In Matlab version 7 mathematical operations can be performed between
variables that belong to the same type, or between variables that belong to
double and variables that belong to one other type (that can be any type as
long as everything that is not double belongs to one type). Mathematical
operations between different types, with the exception of double mentioned
above, can not be performed.

The next example is in Matlab version 7:

>> a = int16(1); b = int16(2);

>> a_b = a + b

a_b =

27 PRECISION ISSUES 78

3

>> c = double(3);

>> b_c = b + c

b_c =

5

>> d = int8(4);

>> a_d = a + d

??? Error using ==> plus Integers can only be combined with

integers of the same class, or scalar doubles.

>> whos

Name Size Bytes Class

a 1x1 2 int16 array

a_b 1x1 2 int16 array

b 1x1 2 int16 array

b_c 1x1 2 int16 array

c 1x1 8 double array

d 1x1 1 int8 array

Grand total is 6 elements using 17 bytes

In Matlab version 6.5 we would get:

>> a = int16(1); b = int16(2);

>> a_b = a + b

??? Error using ==> + Function ’+’ is not defined for values of

class ’int16’.

>> c = double(3);

>> b_c = b + c

??? Error using ==> + Function ’+’ is not defined for values of

class ’int16’.

27 PRECISION ISSUES 79

This error can appear when reading in data from a file, like an image and
then trying to perform a mathematical operation. The solution is simply to
convert them to double.

>> a = double(a), b = double(b)

a =

2

b =

3

>> a + b

ans =

5

Matlab can be inexact sometimes. Consider the following example:

>> (-0.08 + 0.5 - 0.42) == (0.5 - 0.42 - 0.08)

ans =

0

>> (-0.08 + 0.5 - 0.42) ~= (0.5 - 0.42 - 0.08)

ans =

1

>> (-0.08 + 0.5 - 0.42) - (0.5 - 0.42 - 0.08)

ans =

27 PRECISION ISSUES 80

-1.387778780781446e-017

According to Matlab these two operations are not equal. We can define a
function

function rtn = toleq(A, B, e)

% Determines equality according to some precision

rtn = abs(A - B) < e;

This function determines whether two arrays (A, B) of equal size have equal
values according to some precision e.

>> toleq((-0.08 + 0.5 - 0.42), (0.5 - 0.42 - 0.08), eps)

ans =

1

This returns the correct result. eps is the smallest number in Matlab that
when added to 1 produces a larger number. The following is an example of
the properties of eps.

>> [eps eps 1 1 10 10 0.1 0.1] <

[eps 2*eps 1+eps 1+eps/2 10+4*eps 10+5*eps 0.1+eps/31 0.1+eps/32]

ans =

0 1 1 0 0 1 1 0

The first four results follow directly from the definition of eps. It is interesting
to see that when adding eps to numbers like 10 or 0.1 it does not behave as
it does with 1. In the case of 10 we need to add more than eps (4*eps) to
get a larger number. In the case of 0.1 we need to add less (eps/31) to get
a larger number.

28 ADDITIONAL DATA TYPES 81

28 Additional data types

So far we have used mainly arrays that hold scalar values. In Matlab we
can also define strings (arrays of characters), cell arrays and structures. Cell
arrays and structures are composite types.

28.1 Strings

A string is defined with the use of the ’’ operator. The general syntax is:

the_string = ’somecharacters’

An example of this is:

>> t = ’a string’

t =

a string

In a string the space is also considered to be a character.

Various functions that apply to scalar arrays also apply to strings.

>> length(t)

ans =

8

>> t == ’a string’

ans =

1 1 1 1 1 1 1 1

>> inv_t = t(length(t):-1:1)

28 ADDITIONAL DATA TYPES 82

inv_t =

gnirts a

A simpler way to invert a list of elements is to use end.

>> inv_t = t(end:-1:1)

inv_t =

gnirts a

A string can hold numbers, but they are considered to be characters.

>> t = ’1 2 3’

t =

1 2 3

>> eval([’sum([’ t ’])’])

ans =

6

The function eval(a) executes a Matlab expression held in the string a. To
convert strings to numbers we can use str2num(a).

>> t_scal = str2num(t)

t_scal =

1 2 3

>> sum(t_scal)

28 ADDITIONAL DATA TYPES 83

ans =

6

It is also possible to convert numbers to strings using num2str(a).

>> t_scal = [1 2 3]

t_scal =

1 2 3

>> t = num2str(t_scal)

t =

1 2 3

28.2 Cell arrays

Cell arrays can hold multiple data types. It is possible for example to have a
string, various types of matrices as well as a cell array inside a cell array. Cell
arrays are constructed with the use of the curly brackets {}, this is analogous
to the square bracket [] constructor of arrays.

>> A = {[1 2 3 ; 4 5 6] ’hello world’ ; 4 {’red’ [10 11 12]}}

A =

[2x3 double] ’hello world’

[4] {1x2 cell}

>> celldisp(A)

A{1,1} =

1 2 3

28 ADDITIONAL DATA TYPES 84

4 5 6

A{2,1} =

4

A{1,2} =

hello world

A{2,2}{1} =

red

A{2,2}{2} =

10 11 12

Space or comma defines the next column and semicolon defines the next row.
This works exactly the same way as in normal arrays. To display cell array
A we have to use the celldisp(A) function. To access a specific cell of a cell
array the curly brackets are used as in the next example.

>> A{1,1}

ans =

7 8 9

10 11 12

>> A{1,2}

28 ADDITIONAL DATA TYPES 85

ans =

hello world

>> A{2,2}

ans =

’red’ [1x3 double]

To access a specific element of any data type inside a cell, we will use the
equivalent operator immediately after the curly brackets. If it is an array or
a string we will use round brackets (), if it is another cell we will use curly
brackets {}.

>> A{1,1}

ans =

1 2 3

4 5 6

>> A{1,1}(2,2)

ans =

5

>> A{2,2}

ans =

’red’ [1x3 double]

>> A{2,2}{2}([1 3])

ans =

28 ADDITIONAL DATA TYPES 86

10 12

It is also possible to construct arrays of cell arrays and cell arrays of cell
arrays.

>> {A ; A}

ans =

{2x2 cell}

{2x2 cell}

>> [A ; A]

ans =

[2x3 double] ’hello world’

[4] {1x2 cell}

[2x3 double] ’hello world’

[4] {1x2 cell}

28.3 Structures

Another method of having multiple data types within a single variable is to
use structures. Structures have a field and each field can hold any data type.
A field is defined after the full stop(.) .

>> data.the_values = [1 2 3; 4 5 6; 7 8 9];

>> data.the_max = max(max(data.the_values));

>> data.the_min = min(min(data.the_values));

>> data.the_mean = mean(mean(data.the_values));

>> data

data =

the_values: [3x3 double]

28 ADDITIONAL DATA TYPES 87

the_max: 9

the_min: 1

the_mean: 5

It is also possible to build arrays of structures

>> data(2).the_values = randn(2,5);

>> data(2).the_max = max(max(data(2).the_values));

>> data(2).the_min = min(min(data(2).the_values));

>> data(2).the_mean = mean(mean(data(2).the_values));

>> data

data =

1x2 struct array with fields:

the_values

the_max

the_min

the_mean

To access a particular element of a field of the structure, we use the standard
notation as follows:

>> data(1).the_values

ans =

1 2 3

4 5 6

7 8 9

>> data(1).the_values(3,2)

ans =

8

We can construct arrays and cell arrays of all corresponding elements of a
field using the square brackets [] or the curly brackets {}, respectfully.

29 INPUT/OUTPUT (I/O) 88

>> [data.the_max], [data.the_mean]

ans =

9.0000 2.1832

ans =

5.0000 0.2310

>> {data.the_max}, {data.the_mean}

ans =

[9] [2.1832]

ans =

[5] [0.2310]

The difference between cell arrays and structures is mainly a conceptual
one. Structures are more organized because of the field names. Cell arrays
can be very useful because all the different cells can be accessed by number,
which makes them easy to use within a loop.

29 Input/Output (I/O)

We have already been introduced to the disp(a) function. disp(a) takes
one argument, which can be an array of numbers or a string.

>> disp(’a string’)

a string

>> disp([1 2 3])

1 2 3

>> a_str = ’a string’;

30 FORMATTED INPUT/OUTPUT 89

>> disp(a_str)

a string

>> a = [1 2 3];

>> disp(a)

1 2 3

>> disp([a_str, ’and ’ , num2str(a)])

a stringand 1 2 3

In the last example we have combined two strings and a numerical variable,
which was converted into a string using num2str. To obtain an input from
the user, we can use the input(a), where a is string. The user can input
any kind of data.

>> A = [1 2 3];

>> B = input(’Enter a matrix: ’);

Enter a matrix: [100:100:300]

>> A + B

ans =

101 202 303

>> B = input(’Enter a matrix: ’);

Enter a matrix: A

>> A + B

ans =

2 4 6

30 Formatted Input/Output

For formatted input/output and general file handling we have fopen, fclose,
fread, fwrite, fprintf, fscanf, sprintf, sscanf, ferror, feof and fseak.
All these functions are equivalent to the programming language ANSI C.
These functions will prove very useful when reading data from a file or writ-
ing data to a file.

30 FORMATTED INPUT/OUTPUT 90

Function Meaning
fopen(’filename’,’flag’) Open a file

fclose(fid) Close a file
fread(fid) Read binary data from a file

fwrite(fid,A,’precision’) Write binary data A to a file
fprintf(fid,format,A) Write formatted data to a file
fscanf(fid,format,A) Read formatted data from a file
sprintf(format,A) Write formatted data A to a string
sscanf(s,format,A) Read string s under format control

ferror(fid) Query about file I/O errors
feof(fid) Test for end of file

fseek(fid,offset,origin) Set the file position indicator

The functions fopen(’filename’,’flag’) and fclose(fid) open and
close a file. To be able to read data from a file, a file identifier (fid) is required.
fid is returned from fid=fopen(’filename’). Note that ’filename’ is a
string. The second argument of fopen(’filename’,’flag’) is a flag de-
termining how we are going to process the file we have opened (read only,
write,...). A file should be closed as soon as we are done reading or manipu-
lating data from this file. To close the file we will use fclose(fid).

The function fwrite(fid,A,’precision’) can be used to write data
in a file. The fid is obtained from the fopen function, A is the data to
be written and ’precision’ is a string defining the number of bits to be
written. ’precision’ defines the type of data. In the following example we
will use ’char’ to write characters on to a file. For more alternatives for the
’precision’ string look in Matlab’s help.

>> a = [1 2 3 8 4 5];

>> fid = fopen(’some_data_1.txt’,’w’);

>> fwrite(fid,num2str(a),’char’);

>> fclose(fid);

In the call of the fopen function the flag ’w’ was used. This defines that
the file will be opened, or created if it does not exist, for reading and writing
discarding any data stored in that file. We have converted the numerical
variable a to a string using num2str, in order to be compatible with the
’char’ type. The previous example created a file with the following contents:

1 2 3 8 4 5

30 FORMATTED INPUT/OUTPUT 91

To read in data from a file, we can use fread(fid). Note that the flag ’w’
in the fopen function call should not be used for reading files as it will delete
all contents of the file. If the second argument of fopen is omitted, a file will
be opened for reading only. This is exactly the same to the ’r’ flag. Next
is a simple example that reads in numbers from the file some_data_1.txt

created in the previous example.

1 2 3 8 4 5

>> fid = fopen(’some_data_1.txt’);

>> A = fread(fid);

>> fclose(fid);

>> b = char(A’);

>> b

b =

1 2 3 8 4 5

>> b_num = str2num(b);

>> b_num

b_num =

1 2 3 8 4 5

>> b_num + 3

ans =

4 5 6 11 7 8

It is important to close the file, using the fclose(fid) function, as soon as
we are done reading the data from the file to avoid any unwanted changes on
it. Note that A (returned from fread(fid)) has to be converted from binary
using char and then from characters to numbers using str2num(a) in order
to process it. The command fread is capable of reading data files with more
than one row. The commands are exactly the same as before and the data
file named some_data_2.txt has the following contents:

30 FORMATTED INPUT/OUTPUT 92

1 2 33 8 4 5

9 12 23 72 51 98

23 3 1 5 1 17

>> fid = fopen(’some_data_2.txt’);

>> A = fread(fid);

>> fclose(fid);

>> B = char(A’);

>> B = str2num(B);

>> B

B =

1 2 33 8 4 5

9 12 23 72 51 98

23 3 1 5 1 17

The function fscanf(fid,format,A) can be used instead of fread to
read data from a file. It offers a lot more control in what is being read. fid
is the file identifier, format is a string defining the format of the data. We
will only consider the main entries to format, width and precision field, and
conversion character. Width and precision field define the minimum number
of digits to be read left and right from the decimal point respectively. A
typical string for format is ’%6.3f’, the percentage sign denotes the start of
the conversion specification, 6 is the minimum number of digits to be read,
3 is the number of digits to be read on the right of the decimal point and
f implies fixed-point notation. We can also use i for signed integers and s

for characters. The final argument A defines the size of what we are reading.
In the next example we will read the file some_data_1.txt with the same
contents as before.

1 2 3 8 4 5

>> fid = fopen(’some_data_1.txt’);

>> a_1 = fscanf(fid,’%i’,1)

a_1 =

30 FORMATTED INPUT/OUTPUT 93

1

>> a_2 = fscanf(fid,’%i’,1)

a_2 =

2

>> a_3 = fscanf(fid,’%i’,1)

a_3 =

3

>> a_4 = fscanf(fid,’%i’,1)

a_4 =

8

>> a_5 = fscanf(fid,’%i’,1)

a_5 =

4

>> a_6 = fscanf(fid,’%i’,1)

a_6 =

5

>> fclose(fid);

Every time the fscanf function is called the file position indicator moves
one position, thus the next number on the file is read. The %i conversion
character indicates that we are reading an integer. To simplify the code we
can put this in a loop and read the data file in to an array.

30 FORMATTED INPUT/OUTPUT 94

>> fid = fopen(’some_data_1.txt’);

>> for m=1:6

a(m) = fscanf(fid,’%i’,1);

end

>> fclose(fid);

>> a

a =

1 2 3 8 4 5

This approach has the disadvantage that we have to know in advance how
many numbers we are reading from the data file. We can use the function
feof(fid) and test when the file position indicator has reached the end of
the file. This function returns 1 if the file position indicator is at the end of
the file and 0 otherwise.

>> the_counter = 0;

>> fid = fopen(’some_data_1.txt’);

>> while ~feof(fid)

the_counter = the_counter+1;

a(the_counter) = fscanf(fid,’%i’,1);

end

>> fclose(fid);

>> a

a =

1 2 3 8 4 5

In the same way we can read the file some_data_2.txt, which contains more
than one row.

>> the_counter = 0;

>> fid = fopen(’some_data_2.txt’);

>> while ~feof(fid)

the_counter = the_counter+1;

30 FORMATTED INPUT/OUTPUT 95

a(the_counter) = fscanf(fid,’%i’,1);

end

>> fclose(fid);

>> a

a =

Columns 1 through 10

1 2 33 8 4 5 9 12 23 72

Columns 11 through 18

51 98 23 3 1 5 1 17

If we wish to read the data from the file in to a matrix, we will need to know
the number of rows in the data file.

>> fid = fopen(’some_data_2.txt’);

>> a = fscanf(fid,’%i’,[3 inf]);

>> fclose(fid);

>> a

a =

1 8 9 72 23 5

2 4 12 51 3 1

33 5 23 98 1 17

The inf in the fscanf function call stands for infinite, and it is used in order
to read as many columns as there are in file.

The next example is a function that reads data from a file containing the
names of the columns and rows and the data and loads them in to three
arrays. The function is defined as follows:

function [column_name, row_name, data] = read_data(filename)

% [column_name row_name data] = read_data(filename)

% takes a string (filename) for the name

30 FORMATTED INPUT/OUTPUT 96

% and reads in the data in to three arrays. column_name is a

% string containing the names of the columns, row_name is a

% string containing the names of the rows and data is

% an array containing the data

fid = fopen(filename);

column_names_total = fscanf(fid, ’%s’,1);

start_pos = 0; end_pos = 0; count = 0;

for m=1:size(column_names_total,2)

if column_names_total(m) == ’,’

count = count + 1;

start_pos = end_pos + 1;

end_pos = m;

column_name(count,1:end_pos-start_pos)

= column_names_total(start_pos:end_pos-1);

end

end

nr_col = count;

count = 0;

while ~ feof(fid)

count = count + 1;

temp = fscanf(fid, ’%s’, 1);

row_name(count,1:length(temp)) = temp;

data(count,:) = fscanf(fid,’%g’,nr_col)’;

end

fclose(fid);

The %s and %g conversion characters are used for characters and floating-
point numbers respectively. The latter is capable of reading both integer and
floating-point numbers.

Given the following data file called grades.txt:

3C71,4C65,3C24,4C54,2C44,4D98,3C70,3C65,

John 58 48 74 58 76 43 65 68

30 FORMATTED INPUT/OUTPUT 97

Bob 72 63 59 51 60 54 62 52

Jane 58 74 84 81 76 59 76 63

Mark 45 51 73 75 74 61 52 59

Lisa 47 42 51 53 48 57 64 55

Dan 55 57 75 61 68 49 51 72

Phil 59 61 63 65 72 74 73 87

Daisy 77 81 79 75 71 70 76 84

Mary 56 61 55 68 64 78 72 71

Peter 54 68 81 47 49 51 58 59

Anna 81 73 69 63 73 71 62 55

Jason 43 50 52 41 38 33 48 37

We can type on the command prompt, which will display the following:

>> [column_name, row_name, data] = read_data(’grades.txt’);

>> whos

Name Size Bytes Class

column_name 8x4 64 char array

data 12x8 768 double array

row_name 12x5 120 char array

Grand total is 188 elements using 952 bytes

The function fprintf(fid,format,A) can be used for writing data to a
file or the screen. This function can take 3 arguments in the following syntax
fprintf(fid,format,A). fid and format have been introduced previously.
The final argument A are the variables to be printed. In the case of reading
in data (fscanf(fid,format,A), sscanf(str,format,A)) fid and format

are used in the same way. The only difference in the arguments between
fprintf and fscanf is the third argument A. In the case of fscanf A defines
the shape of the data we are reading in, while in fprintf A is the variable
to be printed.

Continuing from the previous example of reading data in from a file, we
can output maxima, minima and means of the data to the screen or a file.
Next is the print_data_screen function:

function print_data_screen(column_name, row_name, data_row)

30 FORMATTED INPUT/OUTPUT 98

% function print_data_screen(column_name, row_name, data_row)

% prints data on the screen

fid = 1;

disp(’--’);

for m=1:size(data_row,2)

the_mean = mean(data_row(:,m));

the_max = max(data_row(:,m));

the_min = min(data_row(:,m));

fprintf(fid,’Subject : %6s ’,column_name(m,:));

fprintf(fid,’Average: %.2f Best: %g Worst:

%g \n’, the_mean, the_max, the_min);

end

disp(’--’);

for m=1:size(data_row,1)

the_mean = mean(data_row(m,:));

the_max = max(data_row(m,:));

the_min = min(data_row(m,:));

fprintf(fid,’Student : %6s ’,row_name(m,:));

fprintf(fid,’Average: %.2f Best: %g Worst:

%g \n’, the_mean, the_max, the_min);

end

disp(’--’);

Note that the \n in the fprintf function is the symbol for new line. On the
command prompt we will type:

>> print_data_screen(column_name, row_name, data);

Subject : 3C71 Average: 58.75 Best: 81 Worst: 43

Subject : 4C65 Average: 60.75 Best: 81 Worst: 42

Subject : 3C24 Average: 67.92 Best: 84 Worst: 51

Subject : 4C54 Average: 61.50 Best: 81 Worst: 41

Subject : 2C44 Average: 64.08 Best: 76 Worst: 38

Subject : 4D98 Average: 58.33 Best: 78 Worst: 33

30 FORMATTED INPUT/OUTPUT 99

Subject : 3C70 Average: 63.25 Best: 76 Worst: 48

Subject : 3C65 Average: 63.50 Best: 87 Worst: 37

Student : John Average: 61.25 Best: 76 Worst: 43

Student : Bob Average: 59.13 Best: 72 Worst: 51

Student : Jane Average: 71.38 Best: 84 Worst: 58

Student : Mark Average: 61.25 Best: 75 Worst: 45

Student : Lisa Average: 52.13 Best: 64 Worst: 42

Student : Dan Average: 61.00 Best: 75 Worst: 49

Student : Phil Average: 69.25 Best: 87 Worst: 59

Student : Daisy Average: 76.63 Best: 84 Worst: 70

Student : Mary Average: 65.63 Best: 78 Worst: 55

Student : Peter Average: 58.38 Best: 81 Worst: 47

Student : Anna Average: 68.38 Best: 81 Worst: 55

Student : Jason Average: 42.75 Best: 52 Worst: 33

To output these tables on to a file we can modify the print_data_screen

function to accept a filename as an argument. This is defined as print_data_file.

function print_data_file(column_name, row_name, data_row,filename)

% function print_data_file(column_name, row_name, data_row) prints

% data on a file

fid = fopen(filename,’w’); % ’w’ used for writing in to a file

for m=1:size(data_row,2)

the_mean = mean(data_row(:,m));

the_max = max(data_row(:,m));

the_min = min(data_row(:,m));

fprintf(fid,’Subject : %6s ’,column_name(m,:));

fprintf(fid,’Average: %.2f Best: %g Worst:

%g \n’, the_mean, the_max, the_min);

end

for m=1:size(data_row,1)

30 FORMATTED INPUT/OUTPUT 100

the_mean = mean(data_row(m,:));

the_max = max(data_row(m,:));

the_min = min(data_row(m,:));

fprintf(fid,’Student : %6s ’,row_name(m,:));

fprintf(fid,’Average: %.2f Best: %g Worst:

%g \n’, the_mean, the_max, the_min);

end

fclose(fid);

We will type on the command prompt:

>> print_data_file(column_name, row_name, data,’grade_results.txt’);

This will generate a file called grade_results.txt in the current direc-
tory. Another example of output to the screen is the following script called
cel2far, which converts temperatures from Celsius to Fahreneit and uses
fprintf(fid,format,A) to print numbers to the screen.

bounds = input(’Enter start temp, end temp, increment [s e i] ’);

celsius = [bounds(1):bounds(3):bounds(2)];

fahr = (celsius .* 1.8) + 32;

temptable = [celsius ; fahr];

disp(’Temperature chart’);

disp(’-------------’);

for pair = temptable

fprintf(1,’%5.1fC %5.1fF\n’, pair(1), pair(2));

end

disp(’-------------’);

30 FORMATTED INPUT/OUTPUT 101

Note that fid is equal to 1 as in print_data_screen example, when the
fprintf(fid,format,A) is used. 1 is reserved for printing to the screen.
This function can easily be converted to write in a file by using fopen(filename),
obtaining a fid and then using that in fprintf(fid,format,A). On the com-
mand prompt we will type cel2far to start the script.

>> cel2far

Enter start temp, end temp, increment [s e i] [0 50 10]

Temperature chart

0.0C 32.0F

10.0C 50.0F

20.0C 68.0F

30.0C 86.0F

40.0C 104.0F

50.0C 122.0F

Next is a script file with a modified version of cel2far to output the
chart on to a file.

bounds = input(’Enter start temp, end temp, increment [s e i] ’);

celsius = [bounds(1):bounds(3):bounds(2)];

fahr = (celsius .* 1.8) + 32;

temptable = [celsius ; fahr];

fid = fopen(’C:\cel2far_data.txt’, ’w’);

for pair = temptable

fprintf(fid,’%5.1f %5.1f\n’, pair(1), pair(2));

end

fclose(fid);

30 FORMATTED INPUT/OUTPUT 102

From the command prompt we can read the data in the following way.

>> fid = fopen(’cel2far_data.txt’);

>> A = fscanf(fid, ’%g %g’, [2 inf]);

>> A’

ans =

0 32

10 50

20 68

30 86

40 104

50 122

>> fclose(fid);

Similarly to a previous example we have used [2 inf] as the third argu-
ment of fscanf(fid,format,A) for reading in the data. This will read 2 rows
and infinite number of columns. The function string = sprintf(format, A)

works exactly the same way as fprintf with the exception that it writes to a
string and therefore does not require a fid. sscanf also works very similarly
to fscanf.

>> str = sprintf(’%5.0f ’,[10:17])

str =

10 11 12 13 14 15 16 17

>> A = sscanf(str, ’%f’);

>> A’

ans =

10 11 12 13 14 15 16 17

>> A = sscanf(str, ’%f’,[2 4]);

30 FORMATTED INPUT/OUTPUT 103

>> A

A =

10 12 14 16

11 13 15 17

In this example we have read data is in 2 rows and 4 columns. If we want
to save variables that are already on the workspace we can use the function
save(’filename’,’var1’,’var2’,...). Remember that ’filename’ and
the variables are strings. If the variables var1,var2, ... are omitted, then
all variables on the workspace will be saved.

>> A = [1 2 3]; s = ’hello’; B = [1 2 ; 3 4];

>> save(’alles.mat’);

>> save(’some.mat’, ’s’, ’B’);

>> save(’B.mat’, ’B’);

>> whos -file alles.mat

Name Size Bytes Class

A 1x3 24 double array

B 2x2 32 double array

s 1x5 10 char array

Grand total is 12 elements using 66 bytes

>> whos -file some.mat

Name Size Bytes Class

B 2x2 32 double array

s 1x5 10 char array

Grand total is 9 elements using 42 bytes

>> whos -file B.mat

Name Size Bytes Class

30 FORMATTED INPUT/OUTPUT 104

B 2x2 32 double array

Grand total is 4 elements using 32 bytes

To load variables that have been saved using save we can use load. The
syntax of load(’filename’,’var1’,’var2’,...) is very similar to save.

>> load(’B.mat’);

>> B

B =

1 2

3 4

>> clear all;

>> load(’alles.mat’);

>> A, s, B

A =

1 2 3

s =

hello

B =

1 2

3 4

>> clear all;

>> load(’alles.mat’,’B’, ’s’);

>> s, B

30 FORMATTED INPUT/OUTPUT 105

s =

hello

B =

1 2

3 4

We can use load to read all the variables from a file into a structure.

>> c = load(’alles.mat’)

c =

B: [2x2 double]

s: ’hello’

A: [1 2 3]

>> c.B, c.s

ans =

1 2

3 4

ans =

hello

load can also be used to read data file. Consider a file called cel2far_data2.txt,
which has the following contents.

0.0 32.0

10.0 50.0

20.0 68.0

30 FORMATTED INPUT/OUTPUT 106

30.0 86.0

40.0 104.0

50.0 122.0

Then we can load it on to a variable d by typing the following on the command
prompt.

>> d = load(’cel2far_data2.txt’)

d =

0 32

10 50

20 68

30 86

40 104

50 122

There is a number of available functions to read specialized formats, e.g.
images.

>> copen = imread(’copenhagen.jpg’);

>> copen_inv = uint8(256 - double(copen));

>> imwrite(copen_inv, ’copenhagen_inv.tif’, ’TIFF’);

Images are loaded and saved as uint8. To be able to manipulate the image
we need to convert it to double. To write an image in to a file we need to
convert it back to uint8.

30 FORMATTED INPUT/OUTPUT 107

Figure 35: Copenhagen image (copenhagen.jpg)

Figure 36: Inverted Copenhagen image (copenhagen inv.tiff)

31 SUMMARY TABLE OF FUNCTIONS 108

31 Summary table of functions

Function p. Meaning
< 61 Less than
<= 61 Less than or equal to
> 61 Greater than
>= 61 Greater than or equal to
== 61 Equal to
~= 61 Not equal to

find(A) 62 Find indices of A that are nonzero
&, and(A,B) 63 AND
|, or(A,B) 63 inclusive OR
xor(A,B) 63 exclusive OR
~, not(A) 63 NOT
mod(a,b) 65 Modulus division of a and b

disp(a) 66 Display a to the screen
for - end 68 Execute statements a specified number of times

reshape(A,r,c) 69 Reshapes A in to r rows and c columns
mean(a) 69 Calculate the mean of the array a

sum(a) 69 Sum the elements of the array a

length(a) 69 Calculate the size of the largest dimension of a
while - end 70 Execute statements while some condition is true

if - else - end 72 Conditionally execute statements
switch - case - end 75 Conditionally execute statements

format(type) 76 Change the display format of numbers to type

double(A),uint8(A),... 77 Change the type of A
eval(a) 82 Execute a Matlab expression held in a

str2num(a) 82 Convert string a to a number
num2str(a) 83 Convert a number a to a string

{} 83 Cell array constructor
celldisp(A) 84 Display cell array

. 86 Defines the field in a structure
input(a) 89 User input

fopen(’filename’,’flag’) 90 Open a file
fclose(fid) 90 Close a file
fread(fid) 90 Read binary data from a file

fwrite(fid,A,’precision’) 90 Write binary data A to a file
fprintf(fid,format,A) 90 Write formatted data to a file
fscanf(fid,format) 90 Read formatted data from a file
sprintf(format,A) 90 Write formatted data A to a string
sscanf(s,format) 90 Read string s under format control

ferror(fid) 90 Query about file I/O errors
feof(fid) 90 Test for end of file

fseek(fid,offset,origin) 90 Set the file position indicator
save(’filename’, ’var1’,...) 103 Saves var1,... in to a file
load(’filename’,’var1’,...) 104 Load var1 from a file

imread(’filename’) 106 Read an image from a file
imwrite(A,’filename’,format) 106 Write an image A to a file

32 LAB EXERCISES 2 109

32 Lab exercises 2

Programming exercises 1

A. Given an array r:

>> r

r =

9 1 4 6 8

1. Write a for loop that will display 5 times the sentence ’This sentence is being

repeated’. Use the function disp to display the sentence. The output
should look like this:

This sentence is being repeated

This sentence is being repeated

This sentence is being repeated

This sentence is being repeated

This sentence is being repeated

2. Write a for loop that will display 5 times the sentence ’The number of repetitions

of this sentence is’ followed by how many times it has been re-
peated. Use the disp and the num2str functions. The output should
look like this:

The number of repetitions of this sentence is 1

The number of repetitions of this sentence is 2

The number of repetitions of this sentence is 3

The number of repetitions of this sentence is 4

The number of repetitions of this sentence is 5

3. Write a for loop that will display 5 times the sentence ’The number of repetitions

of this sentence left is’ followed by how many times it should be
repeated more. Use the disp and the num2str functions. The output
should look like this:

32 LAB EXERCISES 2 110

The number of repetitions of this sentence left is 4

The number of repetitions of this sentence left is 3

The number of repetitions of this sentence left is 2

The number of repetitions of this sentence left is 1

The number of repetitions of this sentence left is 0

4. Write a for loop that will display all the elements of the array r one at
a time (starting with the first element (9) and finishing with the last
element (8)).

5. Write a for loop that will display all the elements of the array r one at
a time in reverse order (starting with the last element (8) and finishing
with the first one (9)).

6. Write a for loop that will display elements of r that are larger than 5.
Use if-else to check if an element of r is larger than 5.

7. Repeat the previous using a while loop instead of a for loop.

32 LAB EXERCISES 2 111

B. Given vector a and matrix A as follows:

>> a

a =

4 1 3 2 1 0 7

>> A

A =

3 4 5 2 3 6

12 95 23 0 29 39

57 64 72 41 8 91

47 28 31 82 84 37

28 40 39 45 64 69

1. Use a for loop to check if any element of vector a is larger than 3.

2. Calculate the mean of vector a.

3. Use a for loop to check if any element of vector a differs more than 2
from the mean.

4. Use two for loops to check if any element of matrix A is larger than 5.

5. Calculate the mean of matrix A.

6. Use two for loops to check if any element of matrix A differs more than
50 from the mean.

C. Given the same matrix A as before.

1. Write code that will find all numbers in A larger than 5 and smaller
than 90. This has to be done in one statement. Hint: use the logical
operators to combine statements and the find function.

2. Write code that will find all numbers in A that are larger than 5 and
smaller than 90 or they differ less than 50 from the mean.

32 LAB EXERCISES 2 112

D. Given matrix A as before

1. Use for loops to display all the elements of A using the disp() com-
mand. Elements should be displayed with their corresponding locations
on the matrix. This should be in the following format:

Row :1 Column :1 Value :3

Row :1 Column :2 Value :4

Row :1 Column :3 Value :5

Row :1 Column :4 Value :2

Row :1 Column :5 Value :3

Row :1 Column :6 Value :6

Row :2 Column :1 Value :12

Row :2 Column :2 Value :95

Row :2 Column :3 Value :23

Row :2 Column :4 Value :0

Row :2 Column :5 Value :29

Row :2 Column :6 Value :39

...

2. Use for loops and if-else to find all elements that are larger than 5
and smaller than 90 or they differ less than 50 from the mean. Note
that you should not use the logical operators in this exercise. Can you
do this using switch-case instead of if-else?

3. Same as before but use while loops instead of for loops.

E. Given A as before and a function defined in a string as follows y = x2
1 +

4x2 + x3

2
+ x4x5 + x6. The index denotes the columns on the matrix, i.e.

x1 takes values from the first column of A, x2 takes values from the second
column of A, etc.

1. Define function y in a string. Using the eval(a) write a loop that will
calculate this function on each row of matrix A.

2. Given functions y1 = x2
1+4x2+

x3

2
+x4x5+x6, y2 = x1x2+x3x4+

x5

3
+x2

6

and y3 = x1x2x3 +5x4 + x5x6

2
save them as strings in a structure named

functs. It should have three fields y_1, y_2 and y_3, one for each
function. Write a loop that will calculate all functions on each row of
A.

32 LAB EXERCISES 2 113

3. Given functions y1, y2 and y3 as before, write a loop that saves results
in to three fields of functs structure as follows:

low if result >=10 and result < 1000

mid if result >=1000 and result < 10000

high if result >=10000 and result < 1000000

Use if-else for this exercise.

4. Same as before, but use switch-case instead of if-else. Hint you
might need to use the commands floor(a) and log10(a).

F. Create a file named functsdata.txt containing the definitions of the func-
tions (y1, y2 and y3) in the first row separated by commas without spaces
and underneath the elements of matrix A. This file should look like this:

x(1)^2+4*x(2)+x(3)/2+x(4)*x(5)+x(6),

x(1)*x(2)+x(3)*x(4)+x(5)/3+x(6)^2,

x(1)*x(2)*x(3)+5*x(4)+(x(5)*x(6))/2,

3 4 5 2 3 6

12 95 23 0 29 39

57 64 72 41 8 91

47 28 31 82 84 37

28 40 39 45 64 69

1. Read in the data from the file using fscanf. Functions and the data
matrix should be read in a cell array.

2. Using the code you written for the previous exercise evaluate all the
functions for each row of the data matrix and separate the results in
to three types as in the previous exercise.

3. Print the results using fprintf on to the screen. You should print
out the definition of the function, the row number and the type of the
result. The type of the result should be in words (low,mid,high).

Function : x(1)^2 + 4 * x(2) + x(3)/2 + x(4)*x(5) + x(6)

Row : 1 Type : low

Function : x(1)*x(2)+x(3)*x(4)+x(5)/3+x(6)^2

32 LAB EXERCISES 2 114

Row : 1 Type : low

Function : x(1)*x(2)*x(3)+5*x(4)+(x(5)*x(6))/2

Row : 1 Type : low

Function : x(1)^2 + 4 * x(2) + x(3)/2 + x(4)*x(5) + x(6)

Row : 2 Type : low

Function : x(1)*x(2)+x(3)*x(4)+x(5)/3+x(6)^2

Row : 2 Type : mid

...

4. Print the results in a file named results.txt.

5. Print the results in to three files named results1.txt, results2.txt and
results3.txt. Each file should contain results of one type (low,mid,high).
You might need to use the ’a’ flag in the command fopen(filename,’a’).
This flag will open (or create if it does not exist) a file, keep the contents
and append data to the end of the file.

6. Repeat the previous exercise without using any conditional operators
(if-else,switch-case).

G. Given any gray scale JPEG image.

1. Read it in using imread

2. Rotate the image 90 degrees clockwise.

3. Write the rotated image in to a JPEG file using imwrite.

32 LAB EXERCISES 2 115

Questions from the lecture

1. How can we simplify the next example and avoid using a for loop?

>> x_values = [0:0.1:2*pi - 0.1];

>> for index=1:length(x_values)

y_values(index) = sin(x_values(index));

end

2. How can the next example be accomplished using the command find()?

>> A = zeros(10,1);

>> A(5) = 1;

>> m = 1;

>> while A(m) == 0

m = m + 1;

end

>> m

m =

5

3. How can we accomplish the next function without using if-else and
for loop in three statements?

function [div_2, div_3, not_div] = myseparate(A)

% rtn = mysort(A) takes a scalar vector as input

% and sorts it out to numbers that are divisible by 2 (div_2),

% numbers that are divisible by 3 (div_3) and

% other numbers that are not divisible by 2 or 3.

% If a number is divisible by 2 and 3 then it will go to both lists.

count_div_2 = 0; count_div_3 = 0; count_not_div = 0;

for m=1:length(A)

if mod(A(m),2) == 0 & mod(A(m),3) == 0

32 LAB EXERCISES 2 116

count_div_2 = count_div_2 + 1;

div_2(count_div_2) = A(m);

count_div_3 = count_div_3 + 1;

div_3(count_div_3) = A(m);

elseif mod(A(m),2) == 0

count_div_2 = count_div_2 + 1;

div_2(count_div_2) = A(m);

elseif mod(A(m),3) == 0

count_div_3 = count_div_3 + 1;

div_3(count_div_3) = A(m);

else

count_not_div = count_not_div + 1;

not_div(count_not_div) = A(m);

end

end

32 LAB EXERCISES 2 117

Programming exercises 2

Aim: The aim of this exercise is to implement linear regression with basis
functions and to visualize the phenomena of overfitting.

Linear regression overview: Given a set of data:

{(x1, y1), (x2, y2), . . . , (xℓ, yℓ)} (7)

where x = (x1, . . . , xn) is a vector in ℜn and y is a real number. Linear
regression finds a vector u ∈ ℜn such that the sum of squared errors

SSE =
ℓ∑

t=1

(yt − u · xt)
2 (8)

is minimized. This is expressible in matrix form by defining X to be the ℓ×n

matrix

X =








x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xℓ,1 xℓ,2 . . . xℓ,n








, (9)

and defining y to be the column vector y = (y1, . . . , yℓ). The vector u then
minimizes

(Xu − y)T (Xu − y).

In linear regression with basis functions we fit the data sequence with a
linear combination of basis functions (f1, f2, . . ., fk). This is done by trans-
forming the data as follows

{((f1(x1), . . . , fk(x1)), y1), . . . , ((f1(xℓ), . . . , fk(xℓ)), yℓ)}, (10)

and then applying linear regression above to this transformed data set. Linear
regression on the transformed dataset thus finds a k-dimensional vector u =
(u1, . . . , uk) such that

ℓ∑

t=1

(yt −
k∑

i=1

uifi(xt))
2 (11)

is minimized.
A common basis used in practice is a polynomial basis {1, x, x2, x3, . . . , xk−1}

of dimension k (order k − 1) in the figure below we give a simple fit of four
points produced by a linear (k = 2) and cubic (k = 4) polynomial.

32 LAB EXERCISES 2 118

1 2 3 4 5

-4

-2

2

4

6

8

Figure 1: Data set {(1, 3), (2, 2), (3, 0), (4, 5)} fitted with basis {1, x}
and basis {1, x, x2, x3}

1. For each of the polynomial bases of dimension k = 1, 2, 3, 4 fit the data
set of Figure 1 {(1, 3), (2, 2), (3, 0), (4, 5)}.

(a) Produce a plot similar to Figure 1, superimposing the four dif-
ferent curves corresponding to each fit over the four data points.
(Use the matlab commands hold on and hold off to superim-
pose plots)

(b) Give the equations corresponding to the curves fitted for k =
1, 2, 3. The equation corresponding to k = 4 is −5 + 15.17x −
8.5x2 + 1.33x3.

(c) For each fitted curve k = 1, 2, 3, 4 give the mean square error

where MSE = SSE
ℓ

.

2. In this part we will illustrate the phenomena of overfitting. First we
need to define the normal distribution with mean µ and variance σ2.

N(µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (12)

(a) The matlab function randn generates random numbers with the
distribution N(0, 1). Write a function that takes µ and σ as
parameters and generates random numbers with a distribution
N(µ, σ).

(b) Define
gσ(x) = sin2(2πx) + N(0, σ). (13)

32 LAB EXERCISES 2 119

sample uniformly at random from the interval [0, 1] 30 times cre-
ating (x1, . . . , x30) and apply g0.07 to each x creating the data set

S0.07,30 = {(x1, g0.07(x1)), . . . , (x30, g0.07(x30)}. (14)

i. Plot the function sin2(2πx) from x = 0..1 with the points of
the above data set superimposed. The plot should resemble

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ii. Fit the data set with a polynomial bases of dimension k =
2, 5, 10, 15, 20 plot each of these 5 curves superimposed over a
plot of data points.

(c) Let the training error tek(S) denote the MSE of the fitting of the
data set S with polynomial basis of dimension k. Plot the log of
the training error versus the polynomial dimension k = 1, . . . , 25
(this should be a decreasing function).

(d) Generate a test set T of a thousand points,

T0.07,1000 = {(x1, g0.07(x1)), . . . , (x1000, g0.07(x1000)}. (15)

Define the test error tsek(S, T) to be the MSE of the test set
T on the polynomial of dimension k fitted from training set S.
Plot the log of the test error versus the polynomial dimension
k = 1, . . . , 20. Unlike the training error this is not a decreasing
function. This is the phenomena of overfitting. Although the
training error decreases with growing k the test error eventually
increases since rather than fitting the function, in a loose sense,
we begin to fit to the noise.

(e) For any given set of random numbers we will get slightly different
training curves and test curves. It is instructive to see these curves

32 LAB EXERCISES 2 120

smoothed out. For this part repeat items (c) and (d) but instead
of plotting the results of a single “run” plot the average results of
a 100 runs (note: plot the log(avg) rather than the avg(log)).

3. In this part we will use as a basis

sin(1πx), sin(2πx), sin(3πx), . . . , sin(kπx).

Repeat the experiments in 2 (c-e) with the above basis.

121

Part IV

Lecture 3

33 Overview of Lecture 3

• Matlab performance tuning

• Set functions

• User defined functions 2

• Plotting 2

• Summary table of functions

34 MATLAB PERFORMANCE TUNING 122

34 Matlab performance tuning

In order to assess the performance of our code we can use Matlab’s profiler.
The profiler gives details in html format of how much time was spent on each
function and how many times a functions was called. To enable the profiler
we must type profile on at the beginning of our code. To produce the
html report we will need to type profile report at the end of our code. To
switch off the profiler we will type profile off. Next is an example that
uses a user defined function graddesc for gradient descent. This function
uses another function called dfb.

>> profile on

>> sol = graddesc(’fb’, ’dfb’, [0.0 0.0], 0.001, 0.001);

>> profile report

>> profile off

>> profile resume % restarts profiler

>> profile clear % clears profiler

The command profile resume will resume the profiler and profile clear

will clear all the data that the profiler saved. The resulting report from the
profiler is shown in fig. 37. We can use this information to see how much
time is spent on each function and determine inefficiencies in our code. Note
that on the top of the summary report, the precision of the clock is displayed.
Any time lower than that will be displayed as 0.

A simpler way to time our functions is to use a pair of the commands tic
and toc.

Command Meaning
tic Starts timer
toc Returns time

We will type tic immediately before our function and then type toc imme-
diately after the function.

>> tic; a = [1:1000000]; toc

elapsed_time =

0.1210

34 MATLAB PERFORMANCE TUNING 123

Figure 37: Profile Report: Summary

Consider a simple example that calculates the sin function for 10000
points.

>> m = []; y_vals = []; % clears the variables

>> tic; for m=1:10000

y_vals(m) = sin(m);

end;toc

elapsed_time =

0.8010

The first thing we can do to speed up our code is to preallocate arrays.

34 MATLAB PERFORMANCE TUNING 124

Figure 38: Profile Report: Function details

>> m = []; y_vals = [];

>> tic; y_vals = zeros(1,10000); for m=1:10000

y_vals(m) = sin(m);

end;toc

elapsed_time =

0.0700

The second thing and most important is to vectorize the loop.

>> m = []; y_vals = [];

>> tic; m = 1:10000 ; y_vals(m) = sin(m);toc

34 MATLAB PERFORMANCE TUNING 125

elapsed_time =

0.0100

Loops in Matlab are very time consuming and should be vectorized when
possible. Using array preallocation and vectorization we achieved 80 times
speedup.

Method Time
Simple 0.8010

Preallocation 0.0700
Preallocation and vectorization 0.0100

To further improve the performance of our code, we can use sparse matri-
ces. A sparse matrix stores only the non-zero elements. As well as reducing
memory requirements, there are special algorithms for sparse matrices which
run faster than the equivalent full matrix. Sparse matrices make a noticeable
difference if we use large matrices with many elements equal to zero. To ini-
tialize a sparse matrix we will use the function sparse(a,b), which creates
an a x b sparse matrix.

>> A = sparse(10,10);

>> A

A =

All zero sparse: 10-by-10

>> B = eye(10);

>> B_spar = sparse(B);

>> whos B

Name Size Bytes Class

B 10x10 800 double array

Grand total is 100 elements using 800 bytes

>> whos B_spar

34 MATLAB PERFORMANCE TUNING 126

Name Size Bytes Class

B_spar 10x10 164 double array (sparse)

Grand total is 10 elements using 164 bytes

>> B_spar = speye(10); % A sparse identity matrix

>> C = sparse(1:10,1:10,ones(1,10))

C =

(1,1) 1

(2,2) 1

(3,3) 1

(4,4) 1

(5,5) 1

(6,6) 1

(7,7) 1

(8,8) 1

(9,9) 1

(10,10) 1

Elements of a sparse matrix can be accessed in the same way as a full
matrix. If we perform an operation between a sparse matrix and a full
matrix, the result will be a full matrix.

>> B_spar(1,1)

ans =

1

>> B_spar(1,3)

ans =

0

34 MATLAB PERFORMANCE TUNING 127

>> C = B_spar + zeros(10,10);

>> whos B_spar

Name Size Bytes Class

B_spar 10x10 164 double array (sparse)

Grand total is 10 elements using 164 bytes

>> whos C

Name Size Bytes Class

C 10x10 800 double array

Grand total is 100 elements using 800 bytes

A few useful functions for sparse matrices are listed in the following table.

Function Meaning
sparse(a,b) Create an a x b sparse matrix
speye(a) Create an a x a sparse identity matrix

spfun(function,A) Apply function to sparse matrix
nnz(A) Number of non-zero elements of A
full(A) Convert sparse matrix to full

The function spfun(function,A) applies a function to all the elements of a
sparse matrix. nnz(A) counts all the non-zero elements and full(A) converts
a sparse matrix in to a full one.

>> A = speye(10);

>> A_sin = spfun(’sin’, A);

>> nnz(A)

ans =

10

>> A_ful = full(A);

The function find(A) is also very useful with sparse matrices as it returns
all the non-zero elements.

35 SET FUNCTIONS 128

By default all numeric operands are double precision floats. In Matlab
version 7 we can use integer type (int8, int16, int32, uint8, uint16 and
uint32) variables. These will reduce both memory and computational re-
quirements. If the data we are using cannot be represented with integers, we
can also use single precision (by declaring variables with single) instead of
using the default double. Single precision uses 32 bits instead of 64 bits of
double precision. Arithmetic in Matlab 7 is only well-defined in the following
two cases,

1. all operands are of the same type or

2. the operands are double precision and one other type

35 Set functions

Next is a table of useful set functions in Matlab.

Function Meaning
unique(a) Find unique elements of a vector a
union(a,b) Set union of two vectors

intersect(a,b) Set intersection of two vectors
ismember(a,b) Detects members of a set
setdiff(a,b) Set difference of two vectors

The function unique(a) returns all the elements that belong to a without
repeating any of them. The function union(a,b) returns a vector of the
union of a and b. The function intersect(a,b) returns all the common
elements of a and b. The function ismember(a,b) returns a Boolean vector
that is the size of a with 1 if the corresponding element of a is in b. The
function setdiff(a,b) returns the elements of a that are not in b.

>> unique([4 2 2 4 7])

ans =

2 4 7

>> a = [1:5], b = [7:-1:4]

35 SET FUNCTIONS 129

a =

1 2 3 4 5

b =

7 6 5 4

>> union(a,b)

ans =

1 2 3 4 5 6 7

>> intersect(a,b)

ans =

4 5

>> ismember(a,b), a(ismember(a,b))

ans =

0 0 0 1 1

ans =

4 5

>> ismember(b,a), b(ismember(b,a))

ans =

0 0 1 1

36 USER DEFINED FUNCTIONS 2 130

ans =

5 4

>> setdiff(a,b), setdiff(b,a)

ans =

1 2 3

ans =

6 7

36 User defined functions 2

Variables inside functions are by default local, that means only the function,
where the variables were declared, can access them and as soon as the
function terminates they are deleted from memory. We can also define
variables inside a function to be global or persistent. persistent variables
can only be accessed from the function they are declared in, but they persist
in memory between function calls. global variables are both persistent
and they can be accessed by other functions which declare them global.

As an example we have created two functions mytic and mytoc:

function mytic

global my_time

my_time = cputime;

function rtn = mytoc

global my_time

36 USER DEFINED FUNCTIONS 2 131

rtn = cputime - my_time;

Then we can type on the command prompt:

>> m = [];

>> mytic;m=1:100000;sin(m);mytoc

ans =

0.0700

Next is an example of a persistent variable. The next function is called
counter

function rtn = counter

persistent count

if isempty(count)

count = 1;

else

count = count + 1;

end

rtn = count;

The function isempty(A) tests whether the variable held in A has been cre-
ated or not. On the command prompt we will type:

>> counter

ans =

1

>> counter

ans =

36 USER DEFINED FUNCTIONS 2 132

2

We can also create functions from strings via inline(expr_string,arg1,arg2,...),
where expr_string is a string which defines the function and arg1, arg2,
... are strings naming the arguments of the function.

>> h = inline(’A+2*B+4*C’,’A’,’B’,’C’)

h =

Inline function:

h(A,B,C) = A+2*B+4*C

>> h([1 0 ; 0 1],[1 0 ; 0 1],[0 1 ; 1 0])

ans =

3 4

4 3

>> g = inline(’(x(1)-5).^2 + 3*(x(2)-2).^2’,’x’)

g =

Inline function:

g(x) = (x(1)-5).^2 + 3*(x(2)-2).^2

>> g([1 , 2]), g([5 , 2])

ans =

16

ans =

0

36 USER DEFINED FUNCTIONS 2 133

The number of arguments in a function does not need to be predeter-
mined. We can use varargin as an argument that means we can have a
variable number of arguments of any type. To determine how many argu-
ments the user passed to the function we will use nargin. Note that nargin
counts the total number of input arguments, not just the ones corresponding
to varargin. The following example is a function that prints any number of
arguments on to the screen.

function print_various_arguments(head, varargin)

for m=1:nargin-1

fprintf(1,head,m);

disp(varargin{m});

end

Then on the command prompt we type:

>> print_various_arguments(’arg %d is ’,7,[1 2 3],’a string’)

arg 1 is 7

arg 2 is 1 2 3

arg 3 is a string

The examples print_data_screen and print_data_file in the previous
set of notes can be combined using varargin. The new function can take 3
or 4 arguments which determines whether it prints to the screen or to a file.

function print_data(column_name, row_name, data_row,varargin)

% function print_data(column_name, row_name, data_row,varargin)

if nargin == 3

fid = 1;

elseif nargin == 4

filename = varargin{1};

fid = fopen(filename,’w’);

end

36 USER DEFINED FUNCTIONS 2 134

if nargin == 3

disp(’---’);

end

for m=1:size(data_row,2)

the_mean = mean(data_row(:,m));

the_max = max(data_row(:,m));

the_min = min(data_row(:,m));

fprintf(fid,’Subject : %6s ’,column_name(m,:));

fprintf(fid,’Average: %.2f Best: %g Worst:

%g \n’, the_mean, the_max, the_min);

end

if nargin == 3

disp(’---’);

end

for m=1:size(data_row,1)

the_mean = mean(data_row(m,:));

the_max = max(data_row(m,:));

the_min = min(data_row(m,:));

fprintf(fid,’Student : %6s ’,row_name(m,:));

fprintf(fid,’Average: %.2f Best: %g Worst:

%g \n’, the_mean, the_max, the_min);

end

if nargin == 3

disp(’---’);

end

if nargin == 4;

fclose(fid);

end

On the command prompt we can type the following to print to the screen:

>> print_data(column_name, row_name, data);

Subject : 3C71 Average: 58.75 Best: 81 Worst: 43

Subject : 4C65 Average: 60.75 Best: 81 Worst: 42

Subject : 3C24 Average: 67.92 Best: 84 Worst: 51

Subject : 4C54 Average: 61.50 Best: 81 Worst: 41

36 USER DEFINED FUNCTIONS 2 135

Subject : 2C44 Average: 64.08 Best: 76 Worst: 38

Subject : 4D98 Average: 58.33 Best: 78 Worst: 33

Subject : 3C70 Average: 63.25 Best: 76 Worst: 48

Subject : 3C65 Average: 63.50 Best: 87 Worst: 37

Student : John Average: 61.25 Best: 76 Worst: 43

Student : Bob Average: 59.13 Best: 72 Worst: 51

Student : Jane Average: 71.38 Best: 84 Worst: 58

Student : Mark Average: 61.25 Best: 75 Worst: 45

Student : Lisa Average: 52.13 Best: 64 Worst: 42

Student : Dan Average: 61.00 Best: 75 Worst: 49

Student : Phil Average: 69.25 Best: 87 Worst: 59

Student : Daisy Average: 76.63 Best: 84 Worst: 70

Student : Mary Average: 65.63 Best: 78 Worst: 55

Student : Peter Average: 58.38 Best: 81 Worst: 47

Student : Anna Average: 68.38 Best: 81 Worst: 55

Student : Jason Average: 42.75 Best: 52 Worst: 33

In order to produce a file with these results we would simply type:

>> print_data(column_name, row_name, data,’grade_results.txt’);

Similarly to varargin we can use varargout to return any number of
variables. To count the number of variables that the user expects to be
returned, that is the number of variables in square brackets on the left side of
the equal sign in an assignment, we use nargout. Note that nargout counts
the total number of output arguments, not just the arguments corresponding
to varargout. Consider the following function, which can output any number
of variables.

function [varargout] = anynumber_varout

% [varargout] = anynumber_varout

for m=1:nargout

varargout{m} = m;

end

36 USER DEFINED FUNCTIONS 2 136

Note that the function takes no arguments as input. Its functionality is to set
any number of output variables equal to their location in the square brackets.
We can type on the command prompt:

>> [a] = anynumber_varout

a =

1

>> [a b] = anynumber_varout

a =

1

b =

2

>> [a b c] = anynumber_varout

a =

1

b =

2

c =

3

37 PLOTTING 2 137

37 Plotting 2

Next is a table with some useful plotting functions.

Function Meaning
figure New figure window

figure(n) Select figure window n
title(string) Give a title to the figure window
gtext(string) Add text with the mouse
legend(string) Add a legend
grid on/off Turn grid on/off

subplot(m,n,p) Create multiple plots
hold on/off Hold the current graph in the figure

figure opens up a new window for plotting and figure(n) will select
the nth figure window if it exists or open a new one otherwise. title will de-
fine the title on the top of the figure window. The function gtext(string)

will add text with mouse interaction. legend(string) will add legends.
grid on/off turns on and off a rectangular grid on the figure window. The
function subplot(m,n,p) will plot in a figure divided in to m by n plots
in the pth position. Using the hold command we can overlay plots in the
current figure window. When hold on is entered each successive plot func-
tion overlays the plots within the figure. When hold off is entered each
successive plot function replaces the previous plot.

>> x = 0:0.1:10;

>> f1 = sin(x); f2 = cos(x); f3 = exp(-x); f4 = 0.028 * x.*x;

>> figure;plot(x,f1,x,f2)

This code will generate fig. 39.
Fig. 39 can also be generated in the following way:

>> figure;plot(x,f1);

>> hold on;

>> plot(x,f2);

>> hold off;

If we type the following set of statements, fig. 39 will be changed to fig. 40.

37 PLOTTING 2 138

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 39: Sin and cos plot

>> title(’sin(x) and cos(x)’)

>> grid on

>> gtext(’sin(x)’)

>> legend(’sin(x)’, ’cos(x)’)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin(x) and cos(x)

sin(x)

sin(x)
cos(x)

Figure 40: Sin and cos plot with text

Next is an example on the use of subplot .

>> figure

37 PLOTTING 2 139

>> subplot(2,2,1);plot(x,f1);title(’sin(x)’)

>> subplot(2,2,2);plot(x,f2);title(’cos(x)’)

>> subplot(2,2,3);plot(x,f3);title(’exp(-x)’)

>> subplot(2,2,4);plot(x,f4);title(’scaled quadratic’)

These statements will generate the fig. 41.

0 2 4 6 8 10
−1

−0.5

0

0.5

1
sin(x)

0 2 4 6 8 10
−1

−0.5

0

0.5

1
cos(x)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
exp(−x)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
scaled quadratic

Figure 41: 4 plots in the same figure using subplot

Note that the subplot function counts the plots by first counting across a
row and then moving to the next one (see fig. 42).

Figure 42: Numbering of the subplots

We can also define the style of the lines in a plot by placing linestyle

as a third argument of plot(x,y,linestyle). The following table contains
different line styles.

37 PLOTTING 2 140

. point - solid
o circle : dotted
x cross -. dash-dot
+ plus -- dash-dash

The next example illustrates a number of linestyles (see fig. 43).

>> figure; plot(x,f1,’o’)

>> figure; plot(x,f1,’-’,x,f2,’:’);legend(’sin(x)’,’cos(x)’)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin(x)
cos(x)

Figure 43: Plot using different line styles

37 PLOTTING 2 141

A histogram plot presents a view of data by a partition into discrete
”bins”. The number of items in each bin is then plotted. For example, recall
the student grades data set, we will use a histogram to see the number of
students who achieved a certain grade class, in this case between 40 and 50,
50 and 60, etc. This function creates a histogram given the data and a set
of bins.

function display_histogram(data,bins)

% display_histogram(data,bins) displays

% the data in a histogram. bins is an array

% that defines the bins for the histogram

% e.g. bins = [20 30 40 50 60]. This will create

% 4 bins.

nr_bins = length(bins) - 1;

histogrm = zeros(nr_bins,1);

for m=1:size(data,1)

for n=1:size(data,2)

for bin_counter=1:nr_bins

if data(m,n)>=bins(bin_counter) & data(m,n) < bins(bin_counter+1)

histogrm(bin_counter) = histogrm(bin_counter) + 1;

end

end

end

end

x_axis = bins(1:end-1);

figure;

hold on;

for m=1:nr_bins

line([x_axis(m); x_axis(m)], [0 ; histogrm(m)], ’LineWidth’,7);

end

hold off;

On the command prompt we type:

37 PLOTTING 2 142

>> display_histogram(data,[40:10:100])

40 45 50 55 60 65 70 75 80 85 90
0

5

10

15

20

25

30

Figure 44: Histogram plot

This will create fig. 44. To make the plot clearer we have drawn horizontal
lines using line(X,Y), where X and Y are vectors holding the starting and
ending point in x and y. After X,Y we can define any of the style properties
of this line. In this particular example we have used ’LineWidth’, which
can also be used in the plot function. ’LineWidth’ is followed by a scalar
defining the width of the line.

To create 3D plots we can use meshgrid, which generates X and Y ma-
trices for the coordinates.

>> dualgauss

= inline(’exp(-(x.^2+y.^2))+0.66 .*exp(-3*((x-3).^2+(y+2.5).^2))’,’x’,’y’)

dualgauss =

Inline function:

dualgauss(x,y) = exp(-(x.^2+y.^2))+0.66 .*exp(-3*((x-3).^2+(y+2.5).^2))

>> [X Y] = meshgrid(linspace(-4,4,30),linspace(-4,4,30));

>> Z = dualgauss(X,Y);

>> figure;meshc(X,Y,Z);

>> figure;surfc(X,Y,Z);

>> figure;contour(X,Y,Z,15);

37 PLOTTING 2 143

The functions meshc(X,Y,Z), surfc(X,Y,Z) and contour(X,Y,Z) will cre-
ate a combined mesh and contour plot, a combined surface and contour plot
and a contour plot respectively, shown in figs. 45, 46 and 47.

−4

−2

0

2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

Figure 45: Colored mesh plot

−4

−2

0

2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

Figure 46: Surface plot

We can also create movie files from figures. Next is an example, which
takes two gray scale images of the same size and blends one in to the other
by linear interpolation.

blair = double(imread(’blair.bmp’));

37 PLOTTING 2 144

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 47: Contour plot

bush = double(imread(’bush.bmp’));

tic;

for frames=1:100

for m=1:size(blair,1)

for n=1:size(blair,2)

frame_array(m,n)=(bush(m,n) - blair(m,n))*(frames/100)+blair(m,n);

end

end

figure;imagesc(frame_array);colormap(gray);mov_frames(frames)=getframe;

end

figure;movie(mov_frames,1,25);

movie2avi(mov_frames,’blair2bush.avi’);

toc;

This takes approximately 45 sec on a regular PC. The problem is that we
have to display all the figures using imagesc(A) and then use getframe

to grab each frame from the current figure. colormap(map) specifies the
color map to be used by imagesc(A). movie(A,n,fps) displays the movie
A n times with fps frames per second. movie2avi(mov_frames,filename)

creates from the frames (mov_frames) a movie file named filename. Note
that filename is a string.

We can avoid using this method by creating a structure, which is com-
patible with the movie function and filling it in with the appropriate data.
We can also vectorize the loops to improve performance.

37 PLOTTING 2 145

tic;

frame_array = zeros(100,size(blair,1),size(blair,2));

for frames=1:100

frame_array(frames,:,:)=(bush(:,:) - blair(:,:)).*(frames/100)+blair(:,:);

end

for m=1:100

mov_frames(m).cdata(:,:,1) = uint8(frame_array(m,:,:));

mov_frames(m).cdata(:,:,2) = uint8(frame_array(m,:,:));

mov_frames(m).cdata(:,:,3) = uint8(frame_array(m,:,:));

end

mov_frames(1).colormap = [];

figure;movie(mov_frames,1,25);

movie2avi(mov_frames,’blair2bush.avi’);

toc;

This reduces the time to approximately 7 seconds. The initial images are
presented in fig. 48. Some intermediate steps of the blending are shown in
fig. 49.

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 48: (a) Initial image. (b) Final image

Smoothing an image or any data set can easily be performed in Matlab
using the built in convolution function. In the case of a 2D data set like an
image we can use conv2(A,B), which computes the 2D convolution between
A and B. The following script performs Gauss smoothing, using a Gauss mask
on the image.

37 PLOTTING 2 146

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 49: Intermediate steps of the linear interpolation movie example

data = double(imread(’lena.bmp’));

x = [-5.5:0.5:5.5];

y = [-5.5:0.5:5.5];

for m=1:length(x)

for n=1:length(y)

gauss_filter(m,n) = gauss2d(x(m),y(n),1);

end

end

blur_data = conv2(data,gauss_filter,’same’);

figure;imagesc(blur_data);colormap(gray)

The third argument (’same’) in the conv2 function retains the size of the
convolved matrix to that of the original. The previous script will produce
the right image in fig. 50.

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 50: (a) Original Lena image. (b) Gauss smoothed Lena image

With 2D convolution we can even calculate an edge map of an image. This
is done by approximating the gradient operator with a discrete convolution
mask such as the Sobel operator.

data = imread(’lena.bmp’);

37 PLOTTING 2 147

sobelx = [-1 0 1; -2 0 2; -1 0 1];

sobely = [1 2 1; 0 0 0; -1 -2 -1];

x_conv = conv2(data,sobelx);

y_conv = conv2(data,sobely);

edge_map = sqrt(x_conv.^2 + y_conv.^2);

figure;imagesc(data);colormap(gray);

figure;imagesc(x_conv);colormap(gray);

figure;imagesc(y_conv);colormap(gray);

figure;imagesc(edge_map);colormap(gray);

This script will produce the images in fig. 51.

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 51: (a) Original Lena image. (b) Convolved with the x direction filter.
(c) Convolved with the y direction filter. (d) Edge map

38 SUMMARY TABLE OF FUNCTIONS 148

38 Summary table of functions

Function p. Meaning
profile on/off 122 Turn profiler on/off
profile report 122 Generate profiler report
profile resume 122 Resume profiler

tic - toc 122 Timer
sparse(a,b) 125 Create an a x b sparse matrix
speye(a) 127 Create an a x a sparse identity matrix

spfun(function,A) 127 Apply function to sparse matrix
nnz(A) 127 Number of non-zero elements of A
full(A) 127 Convert sparse matrix to full

unique(A) 128 Find unique elements of a vector A
union(A,B) 128 Set union of two vectors

intersect(A,B) 128 Set intersection of two vectors
ismember(A,B) 128 Detects members of a set
setdiff(A,B) 128 Set difference of two vectors

global 130 Create global variable
persistent 130 Create persistent variable

inline(expr_string,arg1,...) 132 Create inline function
figure 137 New figure window

figure(n) 137 Select figure window n
title(string) 137 Give a title to the figure window
gtext(string) 137 Add text with the mouse
legend(string) 137 Add a legend
grid on/off 137 Turn grid on/off

subplot(m,n,p) 137 Create multiple plots
hold on/off 137 Hold the current graph in the figure
line(X,Y) 142 Draw a line in a figure

meshc(X,Y,Z) 143 Create a colored mesh plot
surfc(X,Y,Z) 143 Create a colored surface plot

contour(X,Y,Z) 143 Create a contour plot
imagesc(A) 144 Scale and display an image

colormap(map) 144 Specifies the color map to used by imagesc(A)

getframe 144 Grab a frame from the current figure
movie(A,n,fps) 144 Play movie A n times with fps frames per second

movie2avi(A,filename) 144 Create a movie file
conv2(A,B) 145 2D convolution between A and B

39 LAB EXERCISES 3 149

39 Lab exercises 3

Programming exercises 1

A. Given the 2D Gauss function z = e−
x
2+y

2

2
σ2

.

1. Write a function that accepts three arguments, an array holding x
values, an array holding y values and sigma, calculates the 2D Gauss
function given above and returns the z values.

2. Write a script which uses for loops to calculate the 2D Gauss function
for an array of x and y values.

3. Calculate the function for x = -2.5:0.01:2.5, y = -2.5:0.01:2.5

and sigma = 1. Use the profiler to find out how long it takes to
calculate this.

4. Use the tic-toc commands to time your function.

5. Use array preallocation and vectorize the loop. You might find the
meshgrid command useful. Check how long it takes to calculate this
function and compare it with the previous non-optimized version.

6. Extend this function using varargin to accept two or three arguments.
If only two arguments are entered then sigma will be equal to 1.

7. Write a function that makes use of persistent to count how many z
values are above 0.5. You might find useful the counter example from
the lecture notes.

B. Given the x,y values from the previous exercise.

1. Calculate the 2D Gauss function for sigma equals to 0.5, 1, 1.5, 2, 3, 4.

2. Using the subplot and the meshc command plot in one figure all six
graphs.

C. Two sets are equal if all of their elements correspond regardless of the
order. Keep in mind that multiplicity of elements in a set is ignored.

1. Write a function that determines whether two sets are equal using the
set functions.

39 LAB EXERCISES 3 150

2. Using varargin extend this function for any number of sets.

D. Given the display_histogram function in the lecture notes.

1. Modify the function to display the histogram horizontally as in fig. 52.

0 5 10 15 20 25 30
40

45

50

55

60

65

70

75

80

85

90

Figure 52: Horizontal histogram

2. Extend the function using varargin to be able to accept an additional
argument LineWidth to define a new width for the line command.

D. Given two gray scale images of the same sizes.

1. Create a movie that starts from one image and blends it to the other
image by linear interpolation.

2. Create a movie that starts from one image and moves it to the right,
while at the same time inserting the right part of the other image on
the empty space on the left. The effect should a scrolling marquee
between two images.

39 LAB EXERCISES 3 151

Programming exercises 2

1. It is common to represent the adjacency structure of graph

1 2

3

4 5

in an adjacency matrix A as follows,

A =









1 2 3 4 5

1 0 1 0 1 0
2 1 0 1 0 1
3 0 1 0 1 1
4 1 0 1 0 0
5 0 1 1 0 0









.

Give a Matlab function to compute the number of paths from a specified
vertex i to each other vertex in the graph of length n (a path may visit
the same vertex twice, e.g., a length three path from vertex 1 to 2 is 1-2-
1-2). For example,
>> allpaths(A,5,3) ;

The number of paths from vertex 5 to vertex 1 of length 3 is 2

The number of paths from vertex 5 to vertex 2 of length 3 is 4

The number of paths from vertex 5 to vertex 3 of length 3 is 4

The number of paths from vertex 5 to vertex 4 of length 3 is 2

The number of paths from vertex 5 to vertex 5 of length 3 is 2

39 LAB EXERCISES 3 152

Hint: the algorithm to compute all paths of length n between all vertices
may be expressed in under 10 characters.

2. In many machine learning algorithms it is important to generate a ran-
dom permutation of a dataset. Matlab provides a function randperm(n)
that returns a random permutation of the numbers 1 . . . n in an array
such that each of the n! permutations have equal probability (with the
usual proviso of pseudo-randomness of the base random number gen-
erator).

Write a function myrandperm(n) with functionally similar behavior also
assuring that each of the n! possible permutations have equal proba-
bility of being generated. The best marks will be given for a function
whose running time is linear in n.

3. In this problem you will implement some simple drawing functions.
The top-level function developed will be able to plot a figure consisting
of lines, triangles, rectangles, and circles. The function should take one
argument, the figure filename. In the file each line contains a single
character denoting the element to be drawn and the data needed to
specify the element, i.e.,

L x1 y1 x2 y2

T x1 y1 x2 y2 x3 y3

R x1 y1 x2 y2 % these are the opposite corners of the rectangle

C x1 y1 radius

Demonstrate your function with the following file afig.txt which may
also be found from the class web page.

C 5 17 0.5

R 6 0 8 1

L 1 9 1 7

C 4 15 4

T 3.5 15 4.5 15 4 16

L 4 4 4 11

L 4 4 6 1

C 3 17 0.5

R 0 0 2 1

39 LAB EXERCISES 3 153

L 1 2 4 4

L 1 19 7 19

T 3 19 4 22 5 19

R 3 12.5 5 13.5

