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Introduction

Matlab code is interpreted during runtime. Languages like C and Fortran are faster because they are
first compiled into the computer’s native language. Interpreting in realtime enables better platform
independence, greater language flexibility, and interactive debugging, but at the cost of slower speed,
increased overhead, and limited low-level control.

This article discusses strategies for improving the speed of Matlab code. Keep in mind that speed
depends heavily on the computation platform and that the fastest method on one system is not neces-
sarily the fastest on another. Second, Matlab has gone through many version and continues to evolve:
a slow method may become fast in a newer version. This article provides methods that are generally
fast, but makes no claim on what is fastest.

Caution!

� Learn the language first. Optimization requires comfort with the syntax and features of the
language. This article is not a tutorial on MATLAB.

� Use comments. Optimized code tends to be terse and cryptic. Help others and yourself by
remembering to comment.

� Don’t optimize code before its time. Is optimization worth the effort? If the code will soon
be revised or extended, it will be rewritten anyway.

� Only optimize where necessary. Focus your efforts on bottlenecks.
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1 The Profiler

Matlab 5.0 (R10) and newer versions include a tool called the profiler that helps identify bottlenecks
in a program. Use it with the profile command:
profile on Turn the profiler on
profile off Turn it back off
profile clear Clear profile statistics
profile report View the results from the profiler

For example, consider profiling the following function:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function result = example1(Count)

for k = 1:Count

result(k) = sin(k/50);

if result(k) < −0.9
result(k) = gammaln(k);

end

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To analyze the efficiency this function, first enable and clear the profiler, run the function, and then
view the profile report:

>> profile on, profile clear

>> example1(5000);

>> profile report

There is some overhead when running code for the first time; to remove this overhead from the timing,
run example1 once before profiling. The profiler report command shows a report. Depending on
the system, profiler results may differ from this example.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MATLAB Profile Report: Summary
Report generated 30-Jul-2004 16:57:01

Total recorded time: 3.09 s

Number of M-functions: 4

Clock precision: 0.016 s

Function List
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Name Time Time Time/call Self time Location

example1 3.09 100.0% 1 3.094000 2.36 76.3% ~/example1.m

gammaln 0.73 23.7% 3562 0.000206 0.73 23.7% ../toolbox/matlab/specfun/gammaln.m

profile 0.00 0.0% 1 0.000000 0.00 0.0% ../toolbox/matlab/general/profile.m

profreport 0.00 0.0% 1 0.000000 0.00 0.0% ../toolbox/matlab/general/profreport.m

Clicking the “example1” link gives more details:

Lines where the most time was spent

Line Number Code Calls Total Time % Time
4 result(k) = sin(k/50); 5000 2.11 s 68%
7 result(k) = gammaln(k); 721 0.84 s 27%
6 if result(k) < -0.9 5000 0.14 s 5%
Totals 3.09 s 100%

The most time-consuming lines are displayed, along with time, time percentage, and line number. The
most costly lines are the computations on lines 4 and 7.

Another helpful section of the profile report is “M-Lint Results,” which gives analysis from the M-Lint
code analyzer. Potential problems and suggested improvements are listed here.

M-Lint results
Line number Message
4 ‘result’ might be growing inside a loop. Consider preallocating for speed.

7 ‘result’ might be growing inside a loop. Consider preallocating for speed.

For this example, M-Lint recommends using preallocation to improve lines 4 and 7 (preallocation is
discussed in the next section). You can also run M-Lint on its own using the mlint command.

The profiler has limited time resolution, so to profile a piece of code that runs too quickly, run it multiple
times with a loop:

>> profile on, profile clear

>> for k = 1:100, example; end

>> profile report

Adjust the number of loop iterations so that the time it takes to run is noticeable. More iterations
yields better time resolution.
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2 Array Preallocation

Matlab’s matrix variables have the ability to dynamically augment rows and columns. For example,

>> a = 2

a =

2

>> a(2,6) = 1

a =

2 0 0 0 0 0

0 0 0 0 0 1

Matlab automatically resizes the matrix. Internally, the matrix data memory must be reallocated
with larger size. If a matrix is resized repeatedly—like within a loop—this overhead can be significant.
To avoid frequent reallocations, preallocate the matrix with the zeros command.
Consider the code:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(1) = 1;

b(1) = 0;

for k = 2:8000

a(k) = 0.99803 * a(k − 1) − 0.06279 * b(k − 1);

b(k) = 0.06279 * a(k − 1) + 0.99803 * b(k − 1);

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The profiler timed this code to take 0.47 seconds. After the for loop, both arrays are row vectors of
length 8000, thus to preallocate, create empty a and b row vectors each with 8000 elements.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a = zeros(1,8000); % Preallocation

b = zeros(1,8000);

a(1) = 1;

b(1) = 0;

for k = 2:8000

a(k) = 0.99803 * a(k − 1) − 0.06279 * b(k − 1);

b(k) = 0.06279 * a(k − 1) + 0.99803 * b(k − 1);

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
With this modification, the code takes only 0.14 seconds (over three times faster). Preallocation is often
easy to do, in this case it was only necessary to determine the right preallocation size and add two lines.
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What if the final array size can vary? Here is an example:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a = zeros(1,10000); % Preallocate

count = 0;

for k = 1:10000

v = exp(rand*rand);

if v > 0.5 % Conditionally add to array

count = count + 1;

a(count) = v;

end

end

a = a(1:count); % Trim the results to keep elements 1 to count

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The average run time of this program is 0.42 seconds without preallocation and 0.18 seconds with it.

Preallocation can also be done with cell arrays, using the cell command to create the desired size.
Using preallocation with a frequently resizing cell array is even more beneficial than with double arrays.
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3 JIT Acceleration

Matlab 6.5 (R13) and later feature the Just-In-Time (JIT) Accelerator, improving the speed of M-code
functions and scripts, particularly self-contained loops. By knowing a few things about the accelerator,
you can improve its performance.

The JIT Accelerator is enabled by default. To disable it, type “feature accel off” in the console,
and “feature accel on” to enable it again.

As of Matlab 7.5 (R2007b), only a subset of the Matlab language is supported for acceleration. Upon
encountering an unsupported feature, acceleration processing is interrupted to handle it using non-
accelerated evaluation. The greatest acceleration improvements are gained when significant contiguous
portions of code are supported.

� Data types: Code must use supported data types for acceleration: double (both real and
complex), logical, char, int8, uint8, int16, uint16, int32, uint32. Code that uses other
data types (for example, cell, struct, and function handles) is not accelerated. Sparse arrays
are also not accelerated.

� Array shapes: Array shapes of any size with 3 or fewer dimensions are supported. Changing
the shape or data type of an array interrupts acceleration.

� Function calls: Only calls to built-in functions are accelerated. Calling M-file and MEX functions
interrupts acceleration. (See also page 13 on inlining simple functions.)

� Conditionals and loops: The conditional statements if, elseif, while, and switch are sup-
ported if the conditional expression evaluates to a scalar. Loops are accelerated if all the code
within the loop is supported. Additionally, for statements must have scalar loop indices.

In future releases, JIT Accelerator may support more of the language and reduce these restrictions.
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For example, the following code is supported for acceleration:

function B = bilateral(A,sd,sr,R)

% The bilateral image denoising filter

B = zeros(size(A));

for i = 1:size(A,1)

for j = 1:size(A,2)

zsum = 0;

for m = −R:R
if i+m >= 1 && i+m <= size(A,1)

for n = −R:R
if j+n >= 1 && j+n <= size(A,2)

z = exp(−(A(i+m,j+n) − A(i,j))ˆ2/(2*sdˆ2))...

* exp(−(mˆ2 + nˆ2)/(2*srˆ2));

zsum = zsum + z;

B(i,j) = B(i,j) + z*A(i+m,j+n);

end

end

end

end

B(i,j) = B(i,j)/zsum;

end

end

For a 128 × 128 input image and R = 3, the run time is 53.3 seconds without acceleration and 0.68
seconds with acceleration.

Multithreaded Computation
Matlab 7.4 (R2007a) introduced multithreaded computation for multi-core processors. Multithreaded
computation accelerates some per-element functions when applied to large arrays (for example, .^, sin,
exp) and certain linear algebra functions in the BLAS library.

Multithreaded computation is disabled by default. To enable it, select File → Preferences → General
→ Multithreading and select “Enable multithreaded computation.” As of Matlab 7.5 (R2007b), it
seems that most Matlab code gains no improvement from multithreaded computation. In fact, some
code is slightly slower with it enabled. (When comparing, beware that there is overhead when running
code for the first time; run the test code twice and time the second run.) Hopefully, the multithreaded
computation feature will be developed further in future releases.
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4 Vectorization

A computation is vectorized by taking advantage of vector operations. A variety of programming
situations can be vectorized, and often improving speed to 10 times faster or even better. Vectorization
is one of the most general and effective techniques for writing fast M-code.

4.1 Vectorized Computations

Many standard Matlab functions are “vectorized”: they can operate on an array as if the function
had been applied individually to every element.

>> sqrt([1,4;9,16])

ans =

1 2

3 4

>> abs([0,1,2,−5,−6,−7])

ans =

0 1 2 5 6 7

Consider the following function:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function d = minDistance(x,y,z)

% Find the min distance between a set of points and the origin

nPoints = length(x);

d = zeros(nPoints,1); % Preallocate

for k = 1:nPoints % Compute distance for every point

d(k) = sqrt(x(k)ˆ2 + y(k)ˆ2 + z(k)ˆ2);

end

d = min(d); % Get the minimum distance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For every point, the distance between it and the origin is computed and stored in d. The minimum
distance is then found with min. To vectorize the distance computation, replace the for loop with
vector operations:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function d = minDistance(x,y,z)

% Find the min distance between a set of points and the origin

d = sqrt(x.ˆ2 + y.ˆ2 + z.ˆ2); % Compute distance for every point

d = min(d); % Get the minimum distance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The modified code performs the distance computation with vector operations. The x, y and z arrays
are first squared using the per-element power operator, .^ (the per-element operators for multiplication
and division are .* and ./). The squared components are added with vector addition. Finally, the
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square root of the vector sum is computed per element, yielding an array of distances. (A further
improvement: it is equivalent to compute d = sqrt(min(x.^2 + y.^2 + z.^2))).

The first version of the minDistance program takes 0.73 seconds on 50000 points. The vectorized
version takes less than 0.04 seconds, more than 18 times faster.

Some useful functions for vectorizing computations:
min, max, repmat, meshgrid, sum, cumsum, diff, prod, cumprod, accumarray, filter

4.2 Vectorized Logic

The previous section shows how to vectorize pure computation. Bottleneck code often involves condi-
tional logic. Like computations, Matlab’s logic operators are vectorized:

>> [1,5,3] < [2,2,4]

ans =

1 0 1

Two arrays are compared per-element. Logic operations return “logical” arrays with binary values.
How is this useful? Matlab has a few powerful functions for operating on logical arrays:

>> find([1,5,3] < [2,2,4]) % Find indices of nonzero elements

ans =

1 3

>> any([1,5,3] < [2,2,4]) % True if any element of a vector is nonzero

% (or per−column for a matrix)

ans =

1

>> all([1,5,3] < [2,2,4]) % True if all elements of a vector are nonzero

% (or per−column for a matrix)

ans =

0

Vectorized logic also works on arrays.

>> find(eye(3) == 1) % Find which elements == 1 in the 3x3 identity matrix

ans =

1 % (element locations given as indices)

5

9

By default, find returns element locations as indices (see page 15 for indices vs. subscripts).
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Example 1: Vector Normalization

To normalize a single vector v to unit length, one can use v = v/norm(v). However, to use norm for
set of vectors v(:,1), v(:,2), . . . requires computing v(:,k)/norm(v(:,k)) in a loop. Alternatively,

vMag = sqrt(sum(v.ˆ2));

v = v./vMag(ones(1,size(v,1)),:);

The speed gain over a for loop is more significant as the number of vectors increases and as the number
of dimensions decreases. For several thousand vectors of length 3, the vectorized approach is around 10
times faster.

Example 2: Removing elements

The situation often arises where array elements must be removed on some per-element condition. For
example, this code removes all NaN and infinite elements from an array x:

i = find(isnan(x) | isinf(x)); % Find bad elements in x

x(i) = []; % and delete them

Alternatively,

i = find(˜isnan(x) & ˜isinf(x)); % Find elements that are not NaN and not infinite

x = x(i); % Keep those elements

Both of these solutions can be further streamlined by using logical indexing:

x(isnan(x) | isinf(x)) = []; % Delete bad elements

or

x = x(˜isnan(x) & ˜isinf(x)); % Keep good elements

Example 3: Piecewise functions

The sinc function has a piecewise definition,

sinc(x) =

{
sin(x)/x, x 6= 0
1, x = 0

This code uses find with vectorized computation to handle the two cases separately:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function y = sinc(x)

% Computes the sinc function per−element for a set of x values.

y = ones(size(x)); % Set y to all ones, sinc(0) = 1

i = find(x ˜= 0); % Find nonzero x values

y(i) = sin(x(i)) ./ x(i); % Compute sinc where x ˜= 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An interesting alternative is y = (sin(x) + (x == 0))./(x + (x == 0)).
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Example 4: Drawing images with meshgrid

The meshgrid function takes two input vectors and converts them to matrices by replicating the first
over the rows and the second over the columns.

>> [x,y] = meshgrid(1:5,1:3)

x =

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

y =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

The matrices above work like a map for a width 5, height 3 image. For each pixel, the x-location can
be read from x and the y-location from y. This may seem like a gratuitous use of memory as x and y

simply record the column and row positions, but this is useful. For example, to draw an ellipse,

% Create x and y for a width 150, height 100 image

[x,y] = meshgrid(1:150,1:100);

% Ellipse with origin (60,50) of size 15 x 40

Img = sqrt(((x−60).ˆ2 / 15ˆ2) + ((y−50).ˆ2 / 40ˆ2)) > 1;

% Plot the image

imagesc(Img); colormap(copper);

axis image, axis off

Drawing lines is just a change in the formula.

[x,y] = meshgrid(1:150,1:100);

% The line y = x*0.8 + 20

Img = (abs((x*0.8 + 20) − y) > 1);

imagesc(Img); colormap(copper);

axis image, axis off

Polar functions can be drawn by first converting x and y variables with the cart2pol function.

[x,y] = meshgrid(1:150,1:100);

[th,r] = cart2pol(x − 75,y − 50); % Convert to polar

% Spiral centered at (75,50)

Img = sin(r/3 + th);

imagesc(Img); colormap(hot);

axis image, axis off
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Example 5: Polynomial interpolation

Given n points x1, x2, . . . xn and corresponding function values y1, y2, . . . yn, the coefficients c0, c1, . . . cn−1

of the interpolating polynomial of degree n− 1 can be found by solving
x1
n−1 x1

n−2 · · · x1
2 x1 1

x2
n−1 x2

n−2 · · · x2
2 x2 1

...
...

xn
n−1 xn

n−2 · · · xn
2 xn 1



cn−1

cn−2

...
c0

 =


y1

y2

...
yn


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function c = polyint(x,y)

% Given a set of points and function values x and y,

% computes the interpolating polynomial.

x = x(:); % Make sure x and y are both column vectors

y = y(:);

n = length(x); % n = Number of points

% Construct the left−hand side matrix

xMatrix = repmat(x, 1, n); % Make an n by n matrix with x on every column

powMatrix = repmat(n−1:−1:0, n, 1); % Make another n by n matrix of exponents

A = xMatrix .ˆ powMatrix; % Compute the powers

c = A\y; % Solve matrix equation for coefficients

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The strategy to construct the left-hand side matrix is to first make two n×n matrices of bases and
exponents and then put them together using the per element power operator, .^ . The repmat function
(“replicate matrix”) is used to make the base matrix xMatrix and the exponent matrix powMatrix.

xMatrix =


x(1) x(1) · · · x(1)
x(2) x(2) · · · x(2)

...
...

x(n) x(n) · · · x(n)

 powMatrix =


n− 1 n− 2 · · · 0

n− 1 n− 2 · · · 0
...

...
n− 1 n− 2 · · · 0


The xMatrix is made by repeating the column vector x over the columns n times. The powMatrix is a
row vector with elements n− 1, n− 2, n− 3, . . . , 0 repeated down the rows n times. The two matrices
could also have been created with [powMatrix, xMatrix] = meshgrid(n-1:-1:0, x).

This function is only an example; use the standard polyfit function for serious use.
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5 Inlining Simple Functions

Every time an M-file function is called, the Matlab interpreter incurs some overhead. Additionally,
many M-file functions begin with conditional code that checks the input arguments for errors or deter-
mines the mode of operation.

Of course, this overhead is negligible for a single function call. It should only be considered when the
function being called is an M-file, the function itself is “simple,” that is, implemented with only a few
lines, and called frequently from within a loop.

For example, this code calls the M-file function median repeatedly to perform median filtering:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Apply the median filter of size 5 to signal x

y = zeros(size(x)); % Preallocate

for k = 3:length(x)−2
y(k) = median(x(k−2:k+2));

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given a 2500-sample array for x, the overall run time is 0.42 seconds.

“Inlining a function” means to replace a call to the function with the function code itself. Beware that
inlining should not be confused with Matlab’s “inline” function datatype. Studying median.m (type
“edit median” on the console) reveals that most of the work is done using the built-in sort function.
The median call can be inlined as
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Apply the median filter of size 5 to signal x

y = zeros(size(x)); % Preallocate

for k = 3:length(x)−2
tmp = sort(x(k−2:k+2));
y(k) = tmp(3); % y(k) = median(x(k−2:k+2));

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now the overall run time is 0.047 seconds, nearly 9 times faster. Furthermore, by inlining median, it
can be specifically tailored to evaluating 5-sample medians. But this is only an example; if the Signal
Processing Toolbox is available, y = medfilt1(x,5) is much faster.

A surprising number of Matlab’s functions are implemented as M-files, of which many can be inlined
in just a few lines. In Matlab 5.3 (R11), the following functions are worth inlining:
conv, cross, fft2, fliplr, flipud, ifft, ifft2, ifftn, ind2sub, ismember, linspace, logspace,
mean, median, meshgrid, poly, polyval, repmat, roots, rot90, setdiff, setxor, sortrows, std,
sub2ind, union, unique, var
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The list above is for Matlab R11; some of these functions have since become built-in. Use the which

command or try “edit function name” to determine whether a function is implemented as an M-file.

For example, in Matlab R11 and earlier, ifft was implemented by simply calling fft and conj. If x
is a one-dimensional array, y = ifft(x) can be inlined with y = conj(fft(conj(x)))/length(x).

Another example: b = unique(a) can be inlined with

b = sort(a(:)); b( b((1:end−1)') == b((2:end)') ) = [];

While repmat has the generality to operate on matrices, it is often only necessary to tile a vector or
just a scalar. To repeat a column vector y over the columns n times,

A = y(:,ones(1,n)); % Equivalent to A = repmat(y,1,n);

To repeat a row vector x over the rows m times,

A = x(ones(1,m),:); % Equivalent to A = repmat(x,m,1);

To repeat a scalar s into an m×n matrix,

A = s(ones(m,n)); % Equivalent to A = repmat(s,m,n);

This method avoids the overhead of calling an M-file function. It is never slower than repmat (critics
should note that repmat.m itself uses this method to construct mind and nind). For constructing
matrices with constant value, there are other efficient methods, for example, s+zeros(m,n).

Warning: Don’t go overboard. Inlining functions is only beneficial when the function is simple and
when it is called frequently. Doing it unnecessarily obfuscates the code.

14



6 Referencing Operations

Referencing in Matlab is varied and powerful enough to deserve a section of discussion. Good under-
standing of referencing enables vectorizing a broader range of programming situations.

Subscripts vs. Indices

Subscripts are the most common method used to refer to matrix elements, for example, A(3,9) refers
to row 3, column 9. Indices are an alternative referencing method. Consider a 10 × 10 matrix A.
Internally, Matlab stores the matrix data linearly as a one-dimensional, 100-element array of data in
column-major order. 

1 11 21 · · · 81 91
2 12 22 82 92
3 13 23 83 93
...

...
...

...
...

10 20 30 · · · 90 100


An index refers to an element’s position in this one-dimensional array. Using an index, A(83) also refers
to the element on row 3, column 9.

It is faster to scan down columns than over rows. The column-major order means that elements
of a column are closer together in memory than elements of a row, which promotes cache efficiency.

Conversion between subscripts and indices can be done with the sub2ind and ind2sub functions.
However, because these are M-file functions rather than fast built-in operations, it is more efficient to
compute conversions directly. For a two-dimensional matrix A of size M×N, the conversions between
subscript (i,j) and index (index) are

A(i,j) ↔ A(i + (j-1)*M)

A(index) ↔ A(rem(index-1,M)+1, floor((index-1)/M)+1)

Indexing extends to N-D matrices as well, with indices increasing first through the columns, then
through the rows, through the third dimension, and so on. Subscript notation extends intuitively,

A(. . . , dim4, dim3, row, col).

Vectorized Subscripts

It is useful to work with submatrices rather than individual elements. This is done with a vector of
indices or subscripts. If A is a two-dimensional matrix, a vector subscript reference has the syntax

A(rowv, colv)

where rowv is a vector of rows with M elements and colv is a vector of columns with N elements. Both
may be of any length and their elements may be in any order. If either is a matrix, it is reshaped to a
vector. There is no difference between using row vectors or column vectors in vector subscripts.
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On the right-hand side of an operation (that is, on the right side of the =), a vector subscript reference
returns a submatrix of elements of size M×N:

A(rowv(1), colv(1)) A(rowv(1), colv(2)) A(rowv(1), colv(3)) · · · A(rowv(1), colv(N))
A(rowv(2), colv(1)) A(rowv(2), colv(2)) A(rowv(2), colv(3)) · · · A(rowv(2), colv(N))

...
...

A(rowv(M), colv(1)) A(rowv(M), colv(2)) A(rowv(M), colv(3)) · · · A(rowv(M), colv(N))


If the vector subscripted matrix is on the left-hand side, the right-hand side result must M×N or scalar
size. If any elements in the destination reference are repeated, for example, this ambiguous assignment
of A(1,2) and A(2,2),

A([1,2],[2,2]) = [1,2;3,4][
A(1, 2) A(1, 2)
A(2, 2) A(2, 2)

]
=

[
1 2
3 4

]
it is the value in the source array with the greater index that dominates.

>> A = zeros(2); A([1,2],[2,2]) = [1,2;3,4]

A =

0 2

0 4

Vector subscript references extend intuitively in higher dimensions.

Vector Indices

Multiple elements can also be referenced with vector indices.
A(indexv)

where indexv is an array of indices. On the right-hand side, a vector index reference returns a matrix
the same size as indexv. For example, if indexv is a 3× 4 matrix, A(indexv) is the 3× 4 matrix

A(indexv) =

 A(indexv(1, 1)) A(indexv(1, 2)) A(indexv(1, 3)) A(indexv(1, 4))
A(indexv(2, 1)) A(indexv(2, 2)) A(indexv(2, 3)) A(indexv(2, 4))
A(indexv(3, 1)) A(indexv(3, 2)) A(indexv(3, 3)) A(indexv(3, 4))


While vector subscripts are limited to referring to block-shaped submatrices, vector indices can refer to
any shape.

If a vector index reference is on the left-hand side, the right-hand side must return a matrix of the same
size as indexv or a scalar. As with vector subscripts, ambiguous duplicate assignments use the value
with greater source index.

>> A = zeros(2); A([3,4,3,4]) = [1,2,3,4]

A =

0 3

0 4
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Reference Wildcards

Using the wildcard, :, in a subscript refers to an entire row or column. For example, A(:,1) refers
to every row in column one–the entire first column. This can be combined with vector subscripts,
A([2,4],:) refers to the second and fourth rows.

When the wildcard is used in a vector index, the entire matrix is referenced. On the right-hand side,
this always returns a column vector.

A(:) = column vector
This is frequently useful: for example, if a function input must be a row vector, the user’s input can be
quickly reshaped into row vector with A(:).’ (make a column vector and transpose to a row vector).

A(:) on the left-hand side assigns all the elements of A, but does not change its size. For example,
A(:) = 8 changes all elements of matrix A to 8.

Logical Indexing

Given a logical array mask with the same size as A,

A(mask)

refers to all elements of A where the corresponding element of mask is 1 (true). It is equivalent to
A(find(mask)). A common usage of logical indexing is to refer to elements based on a per-element
condition, for example,

A(abs(A) < 1e−3) = 0

sets all elements with magnitude less than 10−3 to zero. Logical indexing is also useful to select non-
rectangular sets of elements, for example,

A(logical(eye(size(A))))

references the diagonal elements of A. Note that for a right-hand side reference, it is faster to use
diag(A) to get the diagonal of A.

Deleting Submatrices with [ ]

Elements in a matrix can be deleted by assigning the empty matrix. For example, A([3,5]) = [ ]

deletes the third and fifth element from A. If this is done with index references, the matrix is reshaped
into a row vector.

It is also possible to delete with subscripts if all but one subscript are the wildcard. A(2,:) = [ ]

deletes the second row. Deletions like A(2,1) = [ ] or even A(2,1:end) = [ ] are illegal.
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7 Numerical Integration

Numerical approximation of integrals is usually done with quadrature formulas, which have the form∫ b

a

f(x) dx ≈
∑
k

wkf(xk),

where the xk are called the nodes or abscissas and wk are the associated weights. Simpson’s rule is∫ b

a

f(x) dx ≈ h

3
[f(a) + 4f(a+ h) + f(b)] , h =

b− a
2

.

Simpson’s rule is a quadrature formula with nodes a, a+ h, b and node weights h
3 , 4h

3 , h
3 .

Matlab offers quad and quadl for quadrature in one dimension. These functions are robust and precise,
however, they are not very efficient. Both use an adaptive refinement procedure to reduce the number
of function calls. However, as quad and quadl are recursive M-file functions, the algorithmic overhead
is significant. Furthermore, the adaptive algorithm gains little from vectorization.

If an application requires approximating an integral whose integrand can be efficiently vectorized, using
nonadaptive quadrature may improve speed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Approximate Fourier series coefficients for exp(sin(x)ˆ6) for frequencies −20 to 20

for n = −20:20
c(n + 21) = quad(inline('exp(sin(x).ˆ6).*exp(−i*x*n)','x','n'),0,pi,1e−4,[],n);

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This code runs in 5.16 seconds. In place of quad, using Simpson’s composite rule with N = 199 nodes
yields results with comparable accuracy and allows for vectorized computation. Since the integrals are
all over the same interval, the nodes and weights only need to be constructed once.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N = 199; h = pi/(N−1);
x = (0:h:pi).'; % Nodes

w = ones(1,N); w(2:2:N−1) = 4; w(3:2:N−2) = 2; w = w*h/3; % Weights

for n = −20:20
c(n + 21) = w * ( exp(sin(x).ˆ6).*exp(−i*x*n) );

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This version of the code runs in 0.02 seconds (200 times faster). The quadrature is performed by the
dot product multiplication with w. It can be further optimized by replacing the for loop with one
vector-matrix multiply:

[n,x] = meshgrid(−20:20, 0:h:pi);

c = w * ( exp(sin(x).ˆ6).*exp(−i*x.*n) );
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7.1 One-Dimensional Integration∫ b
a
f(x) dx is approximated by composite Simpson’s rule with

h = (b − a)/(N−1);
x = (a:h:b).';

w = ones(1,N); w(2:2:N−1) = 4; w(3:2:N−2) = 2; w = w*h/3;

I = w * f(x); % Approximately evaluate the integral

where N is an odd integer specifying the number of nodes.

A good higher-order choice is composite 4th-order Gauss-Lobatto [3], based on the approximation∫ 1

−1

f(x) dx ≈ 1
6f(−1) + 5

6f(− 1√
5
) + 5

6f( 1√
5
) + 1

6f(1).

N = max(3*round((N−1)/3),3) + 1; % Adjust N to the closest valid choice

h = (b − a)/(N−1);
d = (3/sqrt(5) − 1)*h/2;

x = (a:h:b).'; x(2:3:N−2) = x(2:3:N−2) − d; x(3:3:N−1) = x(3:3:N−1) + d;

w = ones(1,N); w(4:3:N−3) = 2; w([2:3:N−2,3:3:N−1]) = 5; w = w*h/4;

I = w * f(x); % Approximately evaluate the integral

The number of nodes N must be such that (N − 1)/3 is an integer. If not, the first line adjusts N to
the closest valid choice. It is usually more accurate than Simpson’s rule when f has six continuous
derivatives, f ∈ C6(a, b).

A disadvantage of this nonadaptive approach is that the accuracy of the result is only indirectly con-
trolled by the parameter N. To guarantee a desired accuracy, either use a generously large value for N

or if possible determine the error bounds [5, 6]

Simpson’s rule error ≤ (b− a)h4

180
max
a≤η≤b

∣∣∣f (4)(η)
∣∣∣ provided f ∈ C4(a, b),

4 th -order Gauss-Lobatto error ≤ 27(b− a)h6

56000
max
a≤η≤b

∣∣∣f (6)(η)
∣∣∣ provided f ∈ C6(a, b),

where h = b−a
N−1 . Note that these bounds are valid only when the integrand is sufficiently differentiable: f

must have four continuous derivatives for the Simpson’s rule error bound, and six continuous derivatives
for Gauss-Lobatto.

For most purposes, composite Simpson’s rule is a sufficient default choice. Depending on the integrand,
other choices can improve accuracy:

� Use higher-order quadrature formulas if the integrand has many continuous derivatives.

� Use lower-order if the integrand function is not smooth.

� Use the substitution u = 1
1−x or Gauss-Laguerre quadrature for infinite-domain integrals like

∫∞
0

.

19



7.2 Multidimensional Integration

An approach for evaluating double integrals of the form
∫ b
a

∫ d
c
f(x, y) dy dx is to apply one-dimensional

quadrature to the outer integral
∫ b
a
F (x) dx and then for each x use one-dimensional quadrature over

the inner dimension to approximate F (x) =
∫ d
c
f(x, y) dy. The following code does this with composite

Simpson’s rule with Nx×Ny nodes:

%%% Construct Simpson nodes and weights over x %%%

h = (b − a)/(Nx−1);
x = (a:h:b).';

wx = ones(1,Nx); wx(2:2:Nx−1) = 4; wx(3:2:Nx−2) = 2; wx = w*h/3;

%%% Construct Simpson nodes and weights over y %%%

h = (d − c)/(Ny−1);
y = (c:h:d).';

wy = ones(1,Ny); wy(2:2:Ny−1) = 4; wy(3:2:Ny−2) = 2; wy = w*h/3;

%%% Combine for two−dimensional integration %%%

[x,y] = meshgrid(x,y); x = x(:); y = y(:);

w = wy.'*wx; w = w(:).';

I = w * f(x,y); % Approximately evaluate the integral

Similarly for three-dimensional integrals, the weights are combined with

[x,y,z] = meshgrid(x,y,z); x = x(:); y = y(:); z = z(:);

w = wy.'*wx; w = w(:)*wz; w = w(:).';

When the integration region is complicated or of high dimension, Monte Carlo integration techniques
are appropriate. The disadvantage is that an N -point Monte Carlo quadrature has error on the order
O( 1√

N
), so many points are necessary even for moderate accuracy. Nevertheless, the basic Monte Carlo

idea is straightforward and of practical value. Suppose that N points, x1, x2, . . . , xN , are uniformly
randomly selected in a multidimensional volume Ω. Then∫

Ω

f dV ≈
∫

Ω
dV
N

N∑
n=1

f(xn).

To integrate a complicated volume W that is difficult to sample uniformly, find an easier volume Ω that
contains W and can be sampled [4]. Then∫

W

f dV =
∫
Ω

f · χW dV ≈
∫

Ω
dV
N

N∑
n=1

f(xn)χW (xn), χW (x) =

{
1, x ∈W,
0, x /∈W.

χW (x) is the indicator function of W : χW (x) = 1 when x is within volume W and χW (x) = 0 otherwise.
Multiplying the integrand by χW sets contributions from outside of W to zero.

For example, consider finding the center of mass of the shape W defined by cos
(

2
√
x2 + y2

)
x ≤ y

and x2 + y2 ≤ 4. Given the integrals M =
∫
W

dA, Mx =
∫
W
xdA, and My =

∫
W
y dA, the center of
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mass is (Mx

M ,
My

M ). The region is contained in the rectangle Ω defined by −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2.
The following code estimates M , Mx, and My:

%%% Uniformly randomly sample points (x,y) in Ω %%%

x = 4*rand(N,1) − 2;

y = 4*rand(N,1) − 2;

%%% Restrict the points to region W %%%

i = (cos(2*sqrt(x.ˆ2 + y.ˆ2)).*x <= y & x.ˆ2 + y.ˆ2 <= 4);

x = x(i); y = y(i);

%%% Approximately evaluate the integrals %%%

area = 4*4; % The area of rectangle Ω

M = (area/N) * length(x);

Mx = (area/N) * sum(x);

My = (area/N) * sum(y);

-2 0 2
-2

0

2

Region W sampled with N = 1500.

The center of mass is ≈ (0.5, 0.7).

More generally, if W is a two-dimensional region contained in the rectangle defined by a ≤ x ≤ b and
c ≤ y ≤ d, the following code approximates

∫
W
f dA:

x = a + (b−a)*rand(N,1);
y = c + (d−c)*rand(N,1);
i = logical(indicatorW(x,y));

x = x(i); y = y(i);

area = (b−a)*(d−c);
I = (area/N) * sum(f(x,y)); % Approximately evaluate the integral

where indicatorW(x,y) is the indicator function χW (x, y) for region W .

For refinements and variations of Monte Carlo integration, see for example [1].
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8 Signal Processing

Even without the Signal Processing Toolbox, Matlab is quite capable in signal processing computa-
tions. This section lists code snippets to perform several common operations efficiently.

Locating zero-crossings and extrema

To obtain the indices where signal x crosses zero:

i = find(diff(sign(x)));

% The kth zero−crossing lies between x(i(k)) and x(i(k)+1)

Linear interpolation can be used for subsample estimates of zero-crossing locations:

i = find(diff(sign(x)));

i = i − x(i)./(x(i+1) − x(i)); % Linear interpolation

Since local maximum and minimum points of a signal have zero derivative, their locations can be
estimated from the zero-crossings of diff(x), provided the signal is sampled with sufficiently fine
resolution. For a coarsely sampled signal, a better estimate is

iMax = find(sign(x(2:end−1)−x(1:end−2)) ...

+ sign(x(2:end−1)−x(3:end)) > 0) + 1;

iMin = find(sign(x(2:end−1)−x(1:end−2)) ...

+ sign(x(2:end−1)−x(3:end)) < 0) + 1;

Moving-average filter

To compute an N-sample moving average of x with zero padding:

y = filter(ones(N,1)/N,1,x);

For large N, it is faster to use

y = cumsum(x)/N;

y(N+1:end) = y(N+1:end) − y(1:end−N);

FFT-based convolution

This line performs FFT-based circular convolution, equivalent to y = filter(b,1,x) except near the
boundaries, provided that length(b) < length(x):

y = ifft(fft(b,length(x)).*fft(x));

For FFT-based zero-padded convolution, equivalent to y = filter(b,1,x),

N = length(x)+length(b)−1;
y = ifft(fft(b,N).*fft(x,N));

y = y(1:length(x));

In both code snippets above, y will be complex-valued, even if x and b are both real. To force y to be
real, follow the computation with y = real(y). If you have the Signal Processing Toolbox, it is faster
to use fftfilt for FFT-based, zero-padded filtering.

22



Noncausal filtering and other boundary extensions

For its intended use, the filter command is limited to causal filters, that is, filters that do not involve
“future” values to the right of the current sample. Furthermore, filter is limited to zero-padded
boundary extension; data beyond the array boundaries are assumed zero as if the data were padded
with zeros.

For two-tap filters, noncausal filtering and other boundary extensions are possible through filter’s
fourth initial condition argument. Given a boundary extension value padLeft for x(0), the filter
yn = b1xn + b2xn−1 may be implemented as

y = filter(b,1,x,padLeft*b(2));

Similarly, given a boundary extension value padRight for x(end+1), the filter yn = b1xn+1 + b2xn is
implemented as

y = filter(b,1,[x(2:end),padRight],x(1)*b(2));

Choices for padLeft and padRight for various boundary extensions are

Boundary extension padLeft padRight

Periodic x(end) x(1)

Whole-sample symmetric x(2) x(end-1)

Half-sample symmetric x(1) x(end)

Antisymmetric 2*x(1)-x(2) 2*x(end)-x(end-1)

It is in principle possible to use a similar approach for longer filters, but ironically, computing the initial
conditions itself requires filtering. To implement noncausal filtering and filtering with other boundary
handling, it is usually fastest to pad the input signal, apply filter, and then truncate the result.

Upsampling and Downsampling

Upsample x (insert zeros) by factor p:

y = zeros(length(x)*p−p+1,1); % For trailing zeros, use y = zeros(length(x)*p,1);

y(1:p:length(x)*p) = x;

Downsample x by factor p, where 1 ≤ q ≤ p:

y = x(q:p:end);
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Haar Wavelet

This code performs K stages of the Haar wavelet transform on the input data x to produce wavelet
coefficients y. The input array x must have length divisible by 2K.

Forward transform:

y = x(:); N = length(y);

for k = 1:K

tmp = y(1:2:N) + y(2:2:N);

y([1:N/2,N/2+1:N]) = ...

[tmp;y(1:2:N) − 0.5*tmp]/sqrt(2);

N = N/2;

end

Inverse transform:

x = y(:); N = length(x)*pow2(−K);

for k = 1:K

N = N*2;

tmp = x(N/2+1:N) + 0.5*x(1:N/2);

x([1:2:N,2:2:N]) = ...

[tmp;x(1:N/2) − tmp]*sqrt(2);

end

Daubechies 4-Tap Wavelet

This code implements the Daubechies 4-tap wavelet in lifting scheme form [2]. The input array x must
have length divisible by 2K. Filtering is done with symmetric boundary handling.

Forward transform:

U = 0.25*[2−sqrt(3),−sqrt(3)];
ScaleS = (sqrt(3) − 1)/sqrt(2);

ScaleD = (sqrt(3) + 1)/sqrt(2);

y = x(:); N = length(y);

for k = 1:K

N = N/2;

y1 = y(1:2:2*N);

y2 = y(2:2:2*N) + sqrt(3)*y1;

y1 = y1 + filter(U,1,...

y2([2:N,max(N−1,1)]),y2(1)*U(2));
y(1:2*N) = [ScaleS*...

(y2 − y1([min(2,N),1:N−1]));ScaleD*y1];
end

Inverse transform:

U = 0.25*[2−sqrt(3),−sqrt(3)];
ScaleS = (sqrt(3) − 1)/sqrt(2);

ScaleD = (sqrt(3) + 1)/sqrt(2);

x = y(:); N = length(x)*pow2(−K);

for k = 1:K

y1 = x(N+1:2*N)/ScaleD;

y2 = x(1:N)/ScaleS + y1([min(2,N),1:N−1]);
y1 = y1 − filter(U,1,...

y2([2:N,max(N−1,1)]),y2(1)*U(2));
x([1:2:2*N,2:2:2*N]) = [y1;y2 − sqrt(3)*y1];

N = 2*N;

end

To use periodic boundary handling rather than symmetric boundary handling, change appearances of
[2:N,max(N-1,1)] to [2:N,1] and [min(2,N),1:N-1] to [N,1:N-1].
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9 Miscellaneous Tricks

9.1 Clip a value without using if statements

To clip (or clamp, bound, or saturate) a value to within a range, the straightforward implementation is

if x < lowerBound

x = lowerBound;

elseif x > upperBound

x = upperBound;

end

Unfortunately, this is slow. A faster method is to use the min and max functions:

x = max(x,lowerBound); % Clip elements from below, force x >= lowerBound

x = min(x,upperBound); % Clip elements from above, force x <= upperBound

Moreover, it works per-element if x a matrix of any size.

9.2 Convert any array into a column vector

It is often useful to force an array to be a column vector, for example, when writing a function expecting
a column vector as an input. This simple trick will convert the input array of any shape and number
of dimensions to a column vector, even if the input is already a column vector.

x = x(:); % convert x to a column vector

By following this operation with a transpose .’, it is possible to convert an array to a row vector.

9.3 Find the min/max of a matrix or N-d array

Given a matrix input (with no other inputs), the min and max functions operate along the columns,
finding the extreme element in each column. To find the extreme element over the entire matrix, one
way for a two-dimensional matrix is min(min(A)). A better method that works regardless of the number
of dimensions and determines the extreme element’s location is

[MinValue, MinIndex] = min(A(:)); % Find the minimum element in A

% The minimum value is MinValue, the index is MinIndex

MinSub = ind2sub(size(A), MinIndex); % Convert MinIndex to subscripts

The minimum element is A(MinIndex) or A(MinSub(1), MinSub(2), . . .) as a subscript reference.
(Similarly, replace min with max for maximum value.)
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9.4 Flood filling

Flood filling, like the “bucket” tool in image editors, can be elegantly written as a recursive function:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function I = flood1(I,c,x,y)

% Flood fills image I from point (x,y) with color c.

c2 = I(y,x);

I(y,x) = c;

if x > 1 & I(y,x−1) == c2 & I(y,x−1) ˜= c, I = flood1(I,c,x−1,y); end

if x < size(I,2) & I(y,x+1) == c2 & I(y,x+1) ˜= c, I = flood1(I,c,x+1,y); end

if y > 1 & I(y−1,x) == c2 & I(y−1,x) ˜= c, I = flood1(I,c,x,y−1); end

if y < size(I,1) & I(y+1,x) == c2 & I(y+1,x) ˜= c, I = flood1(I,c,x,y+1); end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Being a highly recursive function, this is inefficient in Matlab. The following code is faster:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function I = flood2(I,c,x,y)

% Flood fills image I from point (x,y) with color c.

LastFlood = zeros(size(I));

Flood = LastFlood;

Flood(y,x) = 1;

Mask = (I == I(y,x));

FloodFilter = [0,1,0; 1,1,1; 0,1,0];

while any(LastFlood(:) ˜= Flood(:))

LastFlood = Flood;

Flood = conv2(Flood,FloodFilter,'same') & Mask;

end

I(find(Flood)) = c;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The key is the conv2 two-dimensional convolution function. Flood filling a 40×40-pixel region takes
1.168 seconds with flood1 and 0.067 seconds with flood2.

9.5 Vectorized use of set on GUI objects

While not a speed improvement, a trick for cleaner code is vectorized use of set on GUI objects. A
serious graphical user interface (GUI) can have dozens of objects like text labels, buttons, and sliders.
For example, to define three edit boxes with white text background and left text alignment:

uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);
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A vectorized call to set reduces this to

h(1) = uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05]);

h(2) = uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05]);

h(3) = uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05]);

set(h, 'HorizontalAlignment', 'left', 'Style', 'edit','BackgroundColor', [1,1,1]);

10 Further Reading

For more reading on vectorization, see the MathWorks vectorization guide:
http://www.mathworks.com/support/tech-notes/1100/1109.shtml

For further details and examples on JIT Acceleration, see
http://www.mathworks.com/access/helpdesk_r13/help/techdoc/matlab_prog/ch7_perf.html

For a thorough guide on efficient array manipulation, see MATLAB array manipulation tips and tricks:
http://home.online.no/~pjacklam/matlab/doc/mtt

For numerical methods with Matlab, see Numerical Computing with MATLAB:
http://www.mathworks.com/moler

MEX

In a coding situation that cannot be optimized any further, keep in mind that the Matlab language is
intended primarily for easy prototyping rather than large-scale high-speed computation. In some cases,
an appropriate solution is Matlab Executable (MEX) external interface functions. With a C or Fortran
compiler, it is possible to produce fast MEX functions that can be called within Matlab just like M-file
functions. The typical speed improvement over equivalent M-code is easily ten-fold.

Installations of Matlab include an example of MEX under directory <MATLAB>/extern/examples/mex.
In this directory, a function “yprime” is written as M-code (yprime.m) and equivalent C (yprime.c)
and Fortran (yprime.f) MEX source code. For more information, see the MathWorks MEX-files guide

http://www.mathworks.com/support/tech-notes/1600/1605.html

For information on compiling MEX files with the GNU compiler collection (GCC), see
http://gnumex.sourceforge.net

Beware, MEX is an ambitious alternative to M-code. Writing MEX-files requires solid understanding
of Matlab and comfort with C or Fortran, and takes more time to develop than M-code.
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Matlab Compiler

The Matlab Compiler generates C and C++ code from M-code, producing MEX-files and standalone
executables. For product information and documentation, see

http://www.mathworks.com/access/helpdesk/help/toolbox/compiler
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