
Writing Efficient MATLAB® Codes

Reza Sameni∗

November 23rd, 2006

1 Introduction

MATLAB1 is nowadays one of the most practical software used for numerical calculations
and system design. It is a programming language which has been optimized for matrix
computations. The computational core of MATLAB is the LAPACK and BLAS libraries
which were originally written for matrix calculations in Fortran. The first versions of
MATLAB were just an interface to these libraries. Since then, MATLAB has evolved
very much and many functions and toolboxes have been added to it.
In this short article we present some general rules for writing more efficient MATLAB
codes. By efficient we mean more compact code size, better memory access, and shorter
execution time. Note that some of these properties are machine dependent concepts. The
presented benchmarking results have been achieved on a 1.5GHz Centrino Notebook with
512MBytes of RAM, and 1MBytes of Cache memory.

2 Some general features of MATLAB

General rules for improving your MATLAB codes:

1. Improve the algorithm before attempting to optimize the code.

2. Benefit from the matrix abilities of MATLAB and its built-in functions.

3. Avoid writing all your codes in a single m-file script. Break down your code into
separate m-file functions. This will also help you reuse your functions and create
your own toolboxes.

4. Use comments as much as possible.

5. Recent versions of MATLAB (version 6.5 and later) support Object Oriented
Programming. You can benefit from this feature in your codes.

MATLAB is an ‘interpreter’ language which can also use pre-compiled components.
This is a good feature for debugging your programs and system development. But at the

∗School of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
Web: http://mehr.sharif.edu/∼r sameni Email: reza.sameni @ gmail.com

1MATLAB stands for ‘Matrix Laboratory’.



same time it makes MATLAB rather slow. So it’s better to use its very efficient
components – known as built-in functions– as much as possible, rather than using long
scripts with nested for-loops and if-conditions.
All the predefined MATLAB constants are in fact built-in functions. For example:

- pi is 4*atan(1)

- i and j are sqrt(-1). You can redefine i = sqrt(-1) if you think that it might
have been overloaded by a previous m-file script.

- eps(x) and eps(single(x)) are the positive distance from abs(x) to the next
larger in magnitude floating point number of the same precision as x.

- realmin and realmax are machine dependent single- or double-precision positive
floating point numbers.

- inf returns the IEEE arithmetic representation for positive infinity, which is also
produced by operations like dividing by zero, e.g. 1.0/0.0, or from overflow, e.g.
exp(1000). It may also be used in matrix form:

>> a = inf(2,2)
a =

Inf Inf
Inf Inf

- NaN is the IEEE arithmetic representation for Not-a-Number. A NaN is obtained
as a result of mathematically undefined operations like 0.0/0.0 or inf-inf. It may
be used in matrix form as follows:

>> nan(3)
ans =

NaN NaN NaN
NaN NaN NaN
NaN NaN NaN

All of these parameters are in fact built-in functions. You can check whether a variable
or function is a built-in or not as follows:

>> type i
i is a built−in function.

or:

>> exist('i')
ans =

5

Built-ins may be overloaded by constants or functions. For example, i=1 or:

function F= fft(x)
F = x.ˆ2

2



You can clear the over-loaded values to retrieve the original built-in values:

>> clear i j

It is possible to use recursive functions in MATLAB. Try the following function for the
calculation of n!:

function f = fact(i),

if i<2,
f = 1;

else
f = i*fact(i−1);

end

3 Memory access

MATLAB can dynamically allocate memory:

>> a(1,3) = 5

a =
0 0 5

>> a(2,4) = 6

a =
0 0 5 0
0 0 0 6

However you can also pre-allocate the required memory:

>> a = zeros(1000,200);

This makes your codes run much faster especially for large arrays:

N = 50000;
a(1) = 1;
a(2) = 2;
t = cputime; % tic
for i = 3:N,

a(i) = .9*a(i−1)−.3*a(i−2);
end
dt1 = cputime − t % toc

clear a;

a = zeros(1,N);
a(1) = 1;
a(2) = 2;
t = cputime; % tic
for i = 3:N,

3



a(i) = .9*a(i−1)−.3*a(i−2);
end
dt2 = cputime − t % toc
dt1/dt2

which results in:

dt1 = 5.6406
dt2 = 0.0469
dt1/dt2 = 120.3333 !

In similar examples – depending on the CPU, RAM, Cache, required memory, and the
type of computation– your code can run up-to 700 or 800 times faster when you
pre-allocate the memories.
Pre-allocation may also be used for variable length vectors which have an upper-bound
of required memory:

% Note: This code is just for memory allocation illustration but it's
% not efficient in speed. You will see the reason in later sections.
N = 1000;
a = rand(N,1);
b = zeros(size(a));
k = 0;
for i = 1:N,

if(a(i)>0.5)
k = k+1;
b(k) = a(i);

end
end
b = b(1:k);

The only drawback of pre-allocation is when huge amounts of memory are required
which may not be allocated in a single memory block:

>> % compare the following codes:
>> A = zeros(5000,10000); % sometimes too big to be allocated!
>> for i = 1:10000, % this one is allocated easier.

B(:,i) = zeros(5000,1);
end

You can also use the function pack which performs memory garbage collection by saving
the current workspace on the hard disc, clearing the workspace, and reloading the
workspace from the hard disc. It is very useful for defragmentation of the memory in
long-running programs that continuously allocate and clear variables. Note that it’s not
efficient to use pack so frequently, since it slows down the code.

for i = 1:N,
if (mod(i,100)==0), % perform packing every 100 iterations

pack;
end
f(i); % a specific function which fragments the memory

end

4



4 Speed optimization

As mentioned before, MATLAB has been optimized for matrix calculations. So it is very
important to use its matrix abilities rather than using for-loops or if-conditions which
operate on single entries of vectors and matrices.

4.1 Array indexing

There are three ways of array indexing in MATLAB:

1. Subscripted

>> A = [11 14 17;...
12 15 18;...
13 16 19];

>> A(1,2)

ans =

14

>> A([1 2],2)

ans =

14
15

>> A(1:3,1)'

ans =

11 12 13

>> A(1:end,2)

ans =

14
15
16

2. Linear

>> A(1)

ans =

11

>> A(4)

5



ans =

14

MATLAB matrices are stored in column order (unlike C where matrices are stored
in row order). So for an M ×N matrix A, subscripted and linear indexings may be
related to each other as follows: A(i, j) ≡ A(i, (j − 1) ∗M) and
A(index) ≡ A(rem(index− 1, M) + 1, f loor((index− 1)/M) + 1)

By using the colon operator (:) you can convert a multi-dimensional matrix to a
column vector:

>> A(:)

or you can change its entries without reshaping it:

>> A(:) = 1;

3. Logical

‘logical’ is a specific data-type in MATLAB which is returned by many of the
comparative operators. This feature can help you write compact and fast codes
without using if-conditions. Take a look at the following examples:

>> [4 5 3] > [1 2 6]

ans =

1 1 0

>> whos
Name Size Bytes Class

ans 1x3 3 logical array

Grand total is 3 elements using 3 bytes

>> A = 6:10;
>> A(logical([0 0 1 0 1]))

ans =

8 10

>> A(A>7)

ans =

8 9 10

>> B = randn(3)

6



B =

−0.0956 −1.3362 −0.6918
−0.8323 0.7143 0.8580
0.2944 1.6236 1.2540

>> C = rand(3)

C =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

>> C(B>0)

ans =

0.6068
0.8913
0.7621
0.0185
0.8214

The indexing features of MATLAB are very useful for making duplicates of a vector or a
matrix:

>> A = [1 5]

A =

1 5

>> A([1 2 1])

ans =

1 5 1

>> V = [1:5]';
>> V(:,ones(3,1)) % This is known as the "Tony's trick"!

ans =

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

Suppose we want to make a 5×5 matrix with all entries equal to 10. Try the following
two ways:

>> A = 10*ones(5); % first method

7



>> a = 10; A = a(ones(5)); % second method

Another example:

>> a = magic(3)

a =

8 1 6
3 5 7
4 9 2

>> N = 2;
>> a(:,N(ones(1,3)))

ans =

1 1 1
5 5 5
9 9 9

We can use a similar approach for eliminating some of the matrix entries. For example
in order to remove the NaN and Inf entries of a matrix try the following three equivalent
methods:

>> % first method:
>> i = find(isnan(x) | isinf(x));
>> x(i) = [];
>> % second method:
>> x(isnan(x) | isinf(x)) = [];
>> % third method:
>> x = x(∼isnan(x) & ∼isinf(x));

Take a look at the helps for the following MATLAB functions: meshgrid, repmat,
reshape, find, any, and all.
By combining the array indexing features with logical data-types, many of the matrix
manipulations may be done without the need of for-loops and if-conditions.

4.2 Vectorized computations

We will now use some of the mentioned properties in some computational examples.
Remember to take a look at the helps of the following special matrices: zeros, ones,
toeplitz, pascal, and hankel.
Example 1 : Signal generation

>> N = 5000;
>> fs = 500; % Hz
>> f0 = 3.8; % Hz
>> t = [0:N−1]/fs;
>> x = sin(2*pi*f0*t) .* exp(−t.ˆ2/2);

Example 2 : inner product

8



>> a = [1 2 3];
>> b = [4 5 6];
>> a*b' % first method

ans =

32

>> sum(a.*b) % second method

ans =

32

Scalars may be added, subtracted or multiplied by vectors or matrices using their
corresponding operators. Vectors and matrices may also be divided by scalars in the
same manner; but in order to divide a scalar by a vector or matrix, one should use the
./ operator instead of the / operator.
When both of the operands are nonscalar (vectors or matrices), *, ^, and / are used for
matrix operations and .*, .^, and ./ are used for operations on the entries.
Example 3 : clipping a signal

>> x = max(x,LOWER BOUND); % clip from the bottom
>> x = min(x,UPPER BOUND); % clip from the top

Example 4 : subtraction of a vector from all the columns of a matrix

>> a = [1:5]';
>> b = eye(5);
>> b − a(:,ones(5,1))

ans =

0 −1 −1 −1 −1
−2 −1 −2 −2 −2
−3 −3 −2 −3 −3
−4 −4 −4 −3 −4
−5 −5 −5 −5 −4

Example 5 : Multiplying vectors in matrices. Try the following four methods

>> N = 3000;
>> x = randn(N,1);
>> F = randn(N);
>> Y1 = x(:,ones(N,1)).*F; % 1st in speed
>> Y2 = diag(sparse(x)) * F; % 2nd in speed
>> Y3 = sparse(diag(x)) * F; % 3rd in speed
>> Y4 = diag(x) * F; % 4th in speed

‘sparse’ is a special data-type in MATLAB which is efficient for manipulating matrices
with many zero entries. Check the help for the sparse and full functions.
Example 6 : Normalization of the columns of a matrix

9



>> vmag = sqrt(sum(v.ˆ2));
>> v = v./vmag(ones(1,size(v,1)),:);

Example 7 : First order difference

>> d = sin(2*pi*[0:999]*15/1000);
>> df = d(1:end−1) − d(2:end);

Example 8 : Using the built-in filter function for vectorizing recursive calculations

>> L = 1000;
>> A = 1;
>> for i = 1:L−1, % bad code!
>> A(i+1) = 2*A(i) + 1;
>> end
>> A = filter(1,[1 −2],ones(1,L)); % good code!

Example 9 : Zero-order holding of uniformly sampled data

>> N = 4;
>> x = [1 5 3];
>> x = upsample(x,N); % x = [1 0 0 0 5 0 0 0 3 0 0 0];
>> x = filter(ones(N,1),1,x);
x =

1 1 1 1 5 5 5 5 3 3 3 3

Example 10 : Zero-order holding of non-uniformly sampled data

>> a = 1; b = 5; c = 3;
>> x = [a 0 0 0 b 0 0 c 0 0 0 0]; % => y = [a a a a b b b c c c c c];
>> validin = find(x);
>> x(validin(2:end)) = diff(x(validin));
>> x = cumsum(x)
x =

1 1 1 1 5 5 5 3 3 3 3 3

Example 11 : Median filter of order N

>> x = randn(1000,1);
>> N = 20;
>> y = x;
>> if(mod(N,2)==1),
>> for i = (N+1)/2:length(x)−(N−1)/2,
>> tmp = sort(x(i−(N−1)/2:i+(N−1)/2));
>> y(i) = tmp((N+1)/2);
>> end
>> else
>> for i = N/2:length(x)−N/2,
>> tmp = sort(x(i−N/2+1:i+N/2));
>> y(i) = (tmp(N/2) + tmp(N/2+1))/2;
>> end
>> end

Example 12 : Moving average filter of order N

10



>> % first method
>> x = randn(1000,1);
>> N = 20;
>> y = filter(ones(N,1)/N,1,x);
>> % second method
>> y = cumsum(x)/N;
>> y(N+1:end) = y(N+1:end) − y(1:end−N);

The second method in this example has used the following property:

H(z) = 1 + z−1 + z−2... + z−N+1 =
1− z−N

1− z−1
(1)

This filter is known as the Cascaded Integrator Comb (CIC) filter, which is a very
practical filter for DSP and FPGA implementation of down-converters and
up-converters in receivers and transmitters, respectively. Its efficiency is due to the fact
that it only needs summations and subtractions for its implementation, which are more
economic than multiplicators.
Although the frequency response of (1) is a Sinc(.) function with N lobes and an
attenuation of about −13dB in its first side-lobe (which is rather poor for a lowpass
filter), by cascading several stages of such filters, better performance is achieved:

H(z) =
(1− z−N

1− z−1

)R

(2)

Such filters are usually followed by a down-sampling of order N . A similar filter is also
used for up-conversion of signals in transmitters.
Example 13 : Calculation of two-dimensional functions such as F (x, y) = xe−x2−y2

>> x = (−2:2);
>> y = (−1.5:.5:1.5);
>> % first method. Not efficient!
>> F = zeros(length(x),length(y));
>> for i = 1:length(x),
>> for j = 1:length(y),
>> F(i,j) = x(i)*exp(−x(i)ˆ2−y(j)ˆ2);
>> end
>> end
>> % second method. Better!
>> [X Y] = meshgrid(x,y);
>> F = X.*exp(−X.ˆ2−Y.ˆ2);

In this example we can also use the fact that F is a separable function of x and y, to
further simplify the calculations. Using F (x, y) =

(
xe−x2)

e−y2
we can write

>> F = (x'.*exp(−x'.ˆ2)) * exp(−y.ˆ2); % Efficient!

4.3 Profiling the program speed

You can use the tic and toc functions or the cputime function to find the exact
execution time of your codes:

11



>> tic % start timer
>> procedure1; % the procedure
>> toc % stop timer
>> % Or
>> t = cputime;
>> procedure2; % the procedure
>> dt = cputime − t

For the detailed information of your code (including all the functions and
sub-functions), you can use the profile function which gives you a complete report of
the program. This information can help you find the bottlenecks of the code and write
them more efficiently or even implement them using MEX-functions which are explained
in the next section. All you need to do for profiling your code is the following:

>> profile on
>> procedure; % a function or m−file which you want to profile
>> profile off
>> profile viewer

5 Linking MATLAB with external components

You can run command line functions directly from MATLAB:

>> ! dir
>> ! autoexec.bat

5.0.1 Calling MATLAB routines from C or Fortran

MATLAB functions can be executed from a C or Fortran program. This is done by the
MATLAB Engine library which may be called from other programs. You can find the
corresponding examples in the <MATLAB>\extern\ directory. In summary you need to
transfer your data between MATLAB and C (or Fortran) and to be able to execute the
MATLAB functions. The MATLAB Engine has several different routines for data
transfer and function calling from C (or Fortran).
MATLAB functions may also be converted to stand-alone programs or dynamically
linked libraries (DLLs) which are used in other programs such as Visual Basic. You can
use the MATLAB COM Builder (comtool) for this purpose. Take a look at MATLAB’s
documents for further details. You can also design a graphical interface for your codes
by using the guide tool.

5.0.2 Calling C routines from MATLAB

By now we have presented some general rules of thumb for optimizing your MATLAB
codes. Now suppose that you have already done all the possible optimizations, but your
code is still slow. This problem may happen in time-consuming simulations or in
real-time applications. A solution which can speed-up your program up-to an order of

12



ten times, is to rewrite the bottlenecks of your codes in C. You can do this in MATLAB
by using MEX-files, which stands for MATLAB Executable.
There is of course another reason for using MEX-files. You might already have many
efficient codes written in C or Fortran that you don’t want to rewrite in MATLAB. All
you have to do is to make a MEX-file of your source codes and call them from MATLAB.
Of course, we should note that MEX-files should not be overused, because MATLAB is
a high-level programming environment for rapid system design and prototyping and we
should avoid going into low-level implementation details.
MEX-files are in fact DLLs made of C or Fortran codes which can be executed by
MATLAB. Every C MEX-file consists of the four following elements:

1. #include "mex.h"

2. mexFunction

3. mxArray

4. API functions

The mexFunction is the gateway to the DLL which is called by MATLAB. In C
mexFunction always has the following form:

void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[]);

where nlhs and nrhs are the number of outputs and inputs to the function, respectively.
These two integers are equivalent with the nargout and nargin built-ins in MATLAB
functions. plhs and prhs are arrays of pointers to mxArray.
mxArray is a structure representing MATLAB arrays in C. All data-types are an
mxArray structure, containing the MATLAB variable name, its dimensions, its
data-type, and whether it is a real variable or a complex one. The real and imaginary
parts may be accessed by the .pr and .pi fields.
There are several functions in the mex library for sending, receiving, and processing
mxArray data. MEX-files also have the ability of loading variables directly from the
caller function or the base workspace of MATLAB.
MATLAB functions may also be directly called from MEX-files:

mexCallMATLAB(nlhs,plhs,nrhs,prhs,"MATLAB Function Name");

This will however reduce the speed efficiency of MEX-files due to the overload of calling
MATLAB routines.
The stages of generating MEX-file DLLs from an existing MEX-file is as follows:

1. C compiler selection by running mex -setup. MEX-files may be compiled using
any C compiler. An ANSI C compiler called lcc is included with the MATLAB
package; but this compiler can not compile C++ codes.

2. MEX-file DLL generation, by calling the mex command as follows:

13



>> mex example.c
>> % or
>> mex example.c objfile.obj ex1.c libfile.lib

As you see, the mex command can also take multiple C-files and pre-compiled
objects and libraries.

3. calling the MEX-file from MATLAB:

>> example([1 2],1:10);

If you are using Visual Studio or similar packages, you can use the dumpbin.exe

program to check the contents of the DLLs produced by MATLAB.

References

[1] Documentation for MathWorks Products, R2006b. [Online]. Available:
http://www.mathworks.com/access/helpdesk/help/helpdesk.html, September
2006.

[2] D. Eyre, MATLAB Basics and a Little Beyond. [Online]. Available:
http://www.math.utah.edu/∼eyre/computing/matlab-intro, 1998.

[3] C. Stark, MATLAB Summary. [Online]. Available:
http://www.math.ufl.edu/help/matlab-tutorial/matlab-tutorial.html, 1997.

[4] P. Getreuer, Writing Fast MATLAB Code. [Online]. Available:
http://www.math.ucla.edu/∼getreuer/matopt.pdf, June 2006.

[5] P.J. Acklam, MATLAB array manipulation tips and tricks. [Online]. Available:
http://home.online.no/∼pjacklam/matlab/doc/mtt/doc/mtt.pdf, October
2003.

[6] J.R. Gilbert, C. Moler, and R. Schreiber, Sparse Matrices in MATLAB: Design and
Implementation. [Online]. Available: http:
//www.mathworks.com/access/helpdesk/help/pdf doc/otherdocs/simax.pdf,
October 1991.

[7] Code Vectorization Guide. The Mathworks support center [Online]. Available:
http://www.mathworks.com/support/tech-notes/1100/1109.html.

[8] B. Shah, A Tutorial to Call MATLAB Functions from Within A C/C++ Program.
[Online]. Available:
http://prism.mem.drexel.edu/Shah/public html/c2matlab.htm.

[9] MEX-files Guide. The Mathworks support center [Online]. Available:
http://www.mathworks.com/support/tech-notes/1600/1605.html.

14


