
Relevance Models for Collaborative Filtering

Relevance Models for Collaborative Filtering

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J. T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 7 april 2008 om 12:30 uur

door Jun Wang

MSc in Computer Science from National University of Singapore, Singapore,

Bachelor in Electrical Engineering from Southeast University, China,

geboren te Jiangsu, China.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. M.J.T. Reinders

Toegevoegd promotor:
Dr.ir. A.P. de Vries

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. M.J.T. Reinders, Technische Universiteit Delft, promotor
Dr.ir. A.P. de Vries, CWI, toegevoegd promotor
Prof.dr.ir. G. Jongbloed, Technische Universiteit Delft
Prof.dr. S.E. Robertson, Microsoft Research, Cambridge, UK
Prof.dr.ir. M. van Steen, Vrije Universiteit
Prof.dr. B. Berendt, Katholieke Universiteit Leuven, Belgium
Dr.ir. D. Hiemstra, Universiteit Twente

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school; ASCI dissertation
series number 158. The research reported in this thesis was financed by the
CACTUS and I-Share projects.

ISBN 978-90-9022932-4

Copyright c© 2007 by Jun Wang

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without written permission from the copyright
owner.

The Master said,
“When I walk along with two others,
they may serve me as my teachers.

I will select their good qualities and follow them,
their bad qualities and avoid them.”

The Lunyu: BooK VII Shu’er
Confucius, 551 BCE - 479 BCE

to my family

for making it possible

Summary

Collaborative filtering is the common technique of predicting the interests of
a user by collecting preference information from many users. Although it is
generally regarded as a key information retrieval technique, its relation to the
existing information retrieval theory is unclear. This thesis shows how the de-
velopment of collaborative filtering can gain many benefits from information
retrieval theories and models. It brings the notion of relevance into collabora-
tive filtering and develops several relevance models for collaborative filtering.
Besides dealing with user profiles that are obtained by explicitly asking users
to rate information items, the relevance models can also cope with the situa-
tions where user profiles are implicitly supplied by observing user interactions
with a system. Experimental results complement the theoretical insights with
improved recommendation accuracy for both item relevance ranking and user
rating prediction. Furthermore, the approaches are more than just analogy:
our derivations of the unified relevance model show that popular user-based and
item-based approaches represent only a partial view of the problem, whereas a
unified view that brings these partial views together gives better insights into
their relative importance and how retrieval can benefit from their combination.

vii

Samenvatting

Collaborative filtering is een bekende techniek om de interesses van een ge-
bruiker te voorspellen aan de hand van gegevens over de voorkeuren van een
grote groep gebruikers. De relatie tussen collaborative filtering en de algemeen
geaccepteerde theorie voor information retrieval is echter grotendeels onbek-
end. Dit proefschrift toont aan dat information retrieval modellen een grote
bijdrage kunnen leveren aan de ontwikkeling van collaborative filtering. Het
introduceert het begrip relevantie in collaborative filtering, en ontwikkelt ver-
volgens een reeks modellen voor dit relevantiebegrip. Naast gebruikersprofielen
gebaseerd op expliciete voorkeursinformatie, verkregen door gebruikers te vra-
gen objecten te beoordelen, kunnen deze modellen ook gebruik maken van im-
pliciete indicatoren van relevantie op basis van waarnemingen over de interactie
van gebruikers met objecten. Behalve theoretische inzichten, wijzen de exper-
imentele resultaten uit dat deze modellen de gebruikersinteresse nauwkeuriger
voorspellen, alsmede relevantere objecten aanbevelen. Bovendien blijkt uit de
afleidingen in het proefschrift dat collaborative filtering met information re-
trieval theorie niet slechts een mooie metafoor is. De reeds bekende gebruikers-
en objectbenaderingen van collaborative filtering blijken slechts een deel van het
probleem te beschrijven, terwijl een verenigde kijk op beide deelbenaderingen
een beter inzicht geeft in hun relatieve belang en hoe retrieval kan profiteren
van hun combinatie.

ix

Contents

Summary vii

Samenvatting ix

1 Introduction 1

1.1 Scope . 3

1.1.1 Collaborative Filtering Scenarios 4

1.1.2 Putting Relevance into Collaborative Filtering 4

1.1.3 Issues in Collaborative Filtering 6

1.2 Thesis Outline . 7

1.3 Main Contributions . 8

I Relevance Models 11

2 Language Modelling Approaches 13

2.1 Introduction . 14

2.2 Background . 14

2.2.1 Rating-based Collaborative Filtering 14

2.2.2 Log-based Collaborative Filtering 15

2.3 A User-Item Relevance Model . 17

xi

2.3.1 Item-based Generation . 18

Probability Estimation and Smoothing 19

Linear Interpolation Smoothing 19

2.3.2 User-based Generation . 20

2.3.3 Discussions . 21

Inverse Item Frequency 21

Two Representations . 22

2.4 Experiments . 22

2.5 Conclusions . 25

Commentary on Chapter 2 27

3 Probabilistic Relevance Ranking 31

3.1 Introduction . 32

3.2 Related Work . 33

3.2.1 Rating Prediction . 33

3.2.2 Item Ranking . 34

3.3 A Probabilistic Relevance Ranking Framework 35

3.3.1 Item-Based Relevance Model 36

3.3.1.1 Probability Estimation 38

3.3.2 User-Based Relevance Model 43

3.3.3 Discussions . 44

3.4 Experiments . 44

3.4.1 Data Sets . 44

3.4.2 Experiment Protocols . 45

3.4.3 Performance . 46

3.4.4 Parameter Estimation . 49

3.5 Conclusions . 50

3.A The Okapi BM25 Document Ranking Score 53

xii

Commentary on Chapter 3 55

4 Personalized Collaborative Tagging 57

4.1 Introduction . 58

4.2 Related Work . 60

4.3 Personalization Models . 61

4.3.1 Indexing Phase . 63

4.3.1.1 Collaborative Indexing Model 63

4.3.2 Exploratory Search Phase 65

4.3.2.1 Collaborative Browsing Model 65

4.3.2.2 Collaborative Item Search Model 66

4.3.3 Discussions . 67

4.4 Experiments . 68

4.4.1 Data Set Preparation . 68

4.4.2 Evaluation Protocols . 69

4.4.3 Performance of Personalization Models 71

4.4.4 Representation of User Profiles 72

4.4.5 Impact of Parameters . 74

4.5 Conclusions . 76

4.A Probability Estimation . 77

Commentary on Chapter 4 79

II Unified Models 81

5 Similarity Fusion 83

5.1 Introduction . 84

5.2 Related Work . 85

5.3 Background . 86

5.3.1 User-based Collaborative Filtering 86

xiii

5.3.2 Item-based Collaborative Filtering 88

5.4 Similarity Fusion . 89

5.4.1 Individual Predictors . 89

5.4.2 Probabilistic Fusion Framework 90

5.4.3 Probability Estimation . 92

5.4.4 Discussions . 93

5.5 Empirical Evaluation . 94

5.5.1 Experimental Setup . 94

5.5.2 Individual Predictors . 96

5.5.3 Impact of Parameters . 96

5.5.4 Data Sparsity . 97

5.5.5 Comparison to Other Methods 99

5.6 Conclusions . 100

5.A Normalization . 100

5.B A Unified Weighting Function . 101

6 Unified Relevance Models 103

6.1 Introduction . 104

6.2 Related Work . 106

6.2.1 Collaborative Filtering . 106

6.2.2 Probabilistic Models for Information Retrieval 107

6.3 Background . 109

6.3.1 User-based Collaborative Filtering 110

6.3.2 Item-based Collaborative Filtering 111

6.3.3 Combining User-based and Item-based Approaches 112

6.4 Probabilistic Relevance Prediction Models 113

6.4.1 Three Different Relevance Models 114

6.4.1.1 User-based Relevance Model 115

6.4.1.2 Item-based Relevance Model 116

xiv

6.4.1.3 Unified Relevance Model 116

6.4.2 Probability Estimation . 117

6.4.2.1 Density Estimation for Rating Models 117

6.4.2.2 Density Estimation for Preference Models 118

6.4.3 Rating Predictions . 120

6.4.4 Cross-validated EM algorithm 122

6.4.5 A Generalised Distance Measure 122

6.4.6 Discussions . 125

6.4.7 Computational Complexity 127

6.4.7.1 Offline Computation 128

6.4.7.2 Online Computation 129

6.5 Experiments . 130

6.5.1 Data Sets . 130

6.5.2 Evaluation Protocols . 130

6.5.3 Results . 131

6.5.3.1 Parameter Estimation 131

6.5.3.2 Sparsity . 134

6.5.3.3 Comparison to other approaches 140

6.6 Conclusions and Future Work . 142

6.A Cross-validated EM algorithm . 144

Commentary on Chapter 6 149

III Applications 151

7 Peer-to-Peer Recommendation 153

7.1 Introduction . 154

7.2 Related Work . 156

7.2.1 Collaborative Filtering . 156

xv

7.2.2 Peer-to-Peer Networks . 156

7.3 User-oriented Overlay Network 157

7.3.1 User-based Ranking Model 157

7.3.2 Decentralized Ranking . 159

7.4 Item-oriented Overlay Network 163

7.4.1 Item-based Ranking Model 163

7.4.1.1 Incorporation of User Profiles 164

7.4.2 Self-organizing Distributed Buddy Tables 165

7.4.2.1 Dynamically Updating Relevance Ranks 165

7.4.2.2 Distributed Item-to-Item Relevance Ranking . . 167

7.4.3 Distributed Recommendation 170

7.4.4 Experiments . 171

7.4.5 Self-organizing Relevance Links 177

7.4.6 Recommendation Performance 178

7.5 Applications . 181

7.5.1 The Tribler System . 181

7.5.2 Wi-Fi Walkman . 183

7.6 Conclusions . 185

8 Discussions 187

8.1 Scenarios . 187

8.2 Relevance . 188

8.2.1 Two views . 188

8.3 Data Sparsity . 189

8.4 Future Research . 189

8.4.1 Discovering More from Information Retrieval Models . . . 189

8.4.2 Beyond Collaborative Filtering 190

Bibliography 191

xvi

Acknowledgements 203

Curriculum Vitae 205

xvii

xviii

Chapter 1
Introduction

Technological breakthroughs in the last half of the 19th century, such as the
telephone and telegraphy, have revolutionized communications and the spread
of information. The subsequent digital revolution in the 20th century on infor-
mation storage and transmission further increased the amount of information
that we deal with in our daily lives. Although we enjoy the entertainment
and convenience brought to us by such a variety of sources, the volume of
information is increasing far more quickly than our ability to digest it. For
instance, the Internet has become the most significant media source and is
growing at an exponential speed. But users’ ability to obtain useful informa-
tion from the Internet grows at a slow rate. Tools that support the effective
retrieval of relevant information are still primitive. Most information retrieval
systems rely heavily on textual queries by users to identify their information
needs. Queries constructed using keywords alone, however, are not powerful
enough to express both semantically and contextually the needs of a partic-
ular user. To see this, consider the following common search scenario: “Find
movies showing this weekend in nearby cinemas that I am most likely to enjoy.”
Such a user information need requires the retrieval system to at least be able
to capture user interest (“most likely to enjoy”). Unfortunately, most existing
retrieval models and search technologies are incapable of achieving such a real-
istic retrieval goal, because they focus only on building correspondence between
textual queries and documents and lack the mechanisms to model individual
users who issue queries. Hence, it is essential to accurately model various user
information needs beyond queries. With recent advances in Human-Computer
Interfacing and sensor technologies that make use of cameras, motion detectors,
voice captures, GPSs etc., we have witnessed a research transition from infor-
mation (document)-centric computing to user-centric computing - for example
user profiling, which attempts to broadly understand users’ various interests,

1

2 Chapter 1. Introduction

intentions, etc. on the basis of recorded human-computer interactions.

In addition, large amounts of information exist in a dynamic form. To process
streams of incoming data, we need an information system that can play a more
active role during information-seeking process. Therefore, information-filtering
systems arise [5]. In contrast to most retrieval systems that passively wait
for user queries to respond accordingly, information-filtering systems aim to
actively filter out, refine and systematically represent the relevant information,
intuitively ignoring superfluous computations on redundant data.

The potential combination of these two demands has created an increasing in-
terest in building a filtering system that can steer users towards their personal
interests and actively filter relevant information items on the users’ behalf. As
one of the dominant forms, recommender systems have appeared in the do-
mains of Information Retrieval (IR) and Human-Computer Interaction (HCI).
These systems attempt to filter information items such as books, CDs, DVDs,
movies, TV programmes, and electronics, based on a history of the user’s likes
and dislikes. Examples include the Amazon’s book-recommendation engine
(amazon.com) and the Netflix DVD-recommendation engine (netflix.com). It
is believed that recommender systems will eventually support companies to re-
alize a shift from offering mass products and services to offering customized
goods and services that efficiently satisfy the desires and needs of individual
users. An extensive survey of recommendation algorithms can be found at [1].
For a recent overview of the personalization process in Web applications, we
refer to [73].

There are two prevalent approaches to recommending information items to a
given user: content-based filtering [5] and collaborative filtering [30]. Content-
based approaches usually make use of content descriptions, such as titles, genres,
and synopses, to make the recommendation. However, content descriptions are
not always available. In situations where information items are non-textual,
content-based approaches in general have to dig deep, directly extracting and
analyzing low-level features (measurable properties) from the content. For in-
stance, colors, textures, and edges are the common features of image and video
items [34, 101], while frequency-related features are usually adopted for audio
and music items [54, 110]. Nonetheless, trying to bridge the so-called seman-
tic gap between low-level features and high-level user needs causes many re-
searchers to look beyond traditional low-level features. Collaborative filtering
approaches are such methods that address this problem from a user perspec-
tive. In these approaches, the recommendations are calculated on the basis of
a collection of user preferences, which are either obtained by explicitly asking
users to rate items or implicitly learned from users’ historic interactions with
them. The work described in this thesis is one of the efforts undertaken in this
direction.

1.1. Scope 3

User

ModelItem

(a) A snapshot of the MovieLens System (b) A diagram of rating prediction.

User

Model
Items

(c) A snapshot of the Last.FM system (d) A diagram of item ranking.

Figure 1.1: The Two Forms of Recommendation.

1.1 Scope

This Ph.D thesis focuses on the theoretical understanding of the underlying
collaborative filtering mechanisms. To gain an insight into the problems, we
introduce the notion of relevance into collaborative filtering. We approach
it from several aspects, mostly employing statistical models. Our intention
is that, besides the theoretical contributions, the resulting recommendation
models and techniques should cope with several major issues in recommender
systems. Meanwhile, they should be applicable to many practical applications
where recommendation and personalization are needed, such as in the areas
of e-commerce, the Internet (e.g. web search, user-generated content, social
media), information retrieval, and P2P content discovery.

To detail the scope of the thesis, this section starts with the scenarios of col-
laborative filtering, identifying opportunities and challenges in collaborative
filtering research.

4 Chapter 1. Introduction

1.1.1 Collaborative Filtering Scenarios

Although collaborative filtering exists in various forms in practice, its pur-
poses can be generally regarded as “item ranking” and “rating prediction”.
These are illustrated in Fig 1.1. The rating prediction (see Fig 1.1 (a) and
(b)) aims to predict an unknown rating of an item for a target user, with the
requirement that the user has to explicitly rate a certain number of items.
This type of recommendation has been widely conceived and well studied in
the research literature since the pioneering work on the MovieLens systems
(http://movielens.umn.edu) - from the early work on filtering netnews [81]
and the movie recommender systems [37] to the latest Netflix competition
(http://www.netflixprize.com/), most approaches accept by default that
rating prediction is the basic core task for recommender systems. However,
we shall see in this thesis that, in many practical systems such as Amazon

(http://amazon.com) and Last.fm (http://last.fm) it is sometimes more
favorable to formulate collaborative filtering as an item-ranking problem, be-
cause we often face a situation where our ultimate task is to generate the top-N
list of the end user’s most favorite items (see Fig 1.1 (c) and (d)).

This thesis takes this difference into account when seeking statistical models
for collaborative filtering. To cope with differing scenarios and data types,
the methods proposed in each chapter, together with their evaluations, are
specifically designed for one of the particular scenarios. For instance in Chapters
2, 3, and 4, we will first look at the item ranking problem of the Last.Fm scenario
and then in Chapters 5 and 6 we will deal with the rating prediction problem
of the MovieLens scenario.

1.1.2 Putting Relevance into Collaborative Filtering

The notion of relevance has a long history [72]; it is a key concept in informa-
tion retrieval and facilitates the understanding of retrieval mechanisms and the
development of retrieval models [91, 112]. To help understanding recommen-
dation mechanisms and the development of collaborative filtering models, we
shall introduce the notion of relevance into collaborative filtering research.

In information (text) retrieval, relevance is generally considered as, among other
similar definitions, the correspondence between a user information need and
an information item (e.g. a document) returned by the system in response
to that need. Since the true user information need is quite often a hidden
variable and in most cases impossible to extract, the relevance in many retrieval
models is constructed at a surface level, i.e. by considering the evidence of user
information needs such as users’ queries and relevance feedbacks. Owing to
the absence of evidence about the difference between users, before relevance

1.1. Scope 5

feedback, the retrieval system may provide the same response to any two users
who issue the same query.

In collaborative filtering and recommender systems, the underlying information
need may have slightly different meanings. It represents a user interest or pref-
erence for a set of information items. The user interest may slowly vary over
time as the user’s goals, knowledge and conditions change, but nonetheless it
remains relatively stable and can be inferred through user profiling. In this
regard, we can think of the relevance of a recommender system as a correspon-
dence between a long-term user interest and information items returned by the
recommender system in response to that interest. The task of a recommender
system is to find information items that are “relevant” to a user interest.

This school of thinking lays a foundation for our study of recommendation algo-
rithms. We shall see it provides a theoretical framework to study the problem
of collaborative filtering.

By doing this, we relate the problem of information retrieval and that of col-
laborative filtering at a conceptual level. Yet, at the modelling level they are
quite apart from each other, as their input data and purposes are completely
different. Consequently, applying the information retrieval (relevance) models
to collaborative filtering is not trivial. The difficulty lies in the fact that in text
retrieval both queries and documents are represented by texts, which provide
an important information channel to link queries (user needs) and documents.
Due to the lack of relevance observations, the retrieval models in text retrieval
shift their focus from directly estimating the correspondence (relevance) be-
tween user needs (queries) and documents to estimating word statistics in the
documents and/or queries and then building up the link through these statis-
tics. Conversely, in collaborative filtering, in most cases, we do not have such
extra information to relate users and information items. Instead, recorded in
the system are only user preferences, which are thought of as indirect observa-
tions of the relevance between a user interest and an information item. Thus,
the central question in modelling the relevance in collaborative filtering is how
to relate users and items through this usually very sparse user-item matrix. We
shall see that in this thesis we achieve this by establishing user representations,
item representations or both on the basis of the user preferences.

The relevance between information items and user interests can be estimated
through a variety of information channels. A general view of relevance would
be to treat it as a hidden random variable, and subsequently, our belief about
it is sequentially updated each time a new observation is made. In Chapters
2, 3, and 4, we will focus our study on evidence from users’ interactions (e.g.
users’ playlists), while in Chapters 5 and 6, we will concentrate on explicit user
ratings. In addition, to obtain task-focused recommendations, we shall see in
Chapter 4 that keyword queries from users are effective in inferring and learning

6 Chapter 1. Introduction

aspects of user interests, therefore building up a more close relationship with
text retrieval.

1.1.3 Issues in Collaborative Filtering

Once we introduce the notation of relevance and establish the correspondence
between items and users to formulate collaborative filtering, we are equipped to
formally address some practical issues of collaborative filtering. In this thesis
we will concentrate on the following aspects:

Collaborative filtering suffers seriously from the data sparsity problem. That is,
the number of information items is large, and most recommendation systems
do not have enough observations, either explicitly or implicitly, about user
preferences for these items. The resulting user preference data is therefore
sparse, and there is no guarantee to find a set of users who have similar tastes.
This typically happens when the ratio between the number of items and the
number of users is high or when the recommender system is in the initial stage
of use. In this regard, solving the data sparsity problem becomes an important
objective in seeking appropriate models for collaborative filtering in this thesis.

It is highly desirable in practice to infer user preferences by implicitly observ-
ing user interactions with the recommender systems. Unfortunately, academic
research into this implicit user-profiling for collaborative filtering has so far
been limited, while a large body of research focuses on rating data. Thus, it is
worthwhile investigating a formal model for those recommender systems that
require implicit user profiles.

Recommendation without specifying user information needs (queries) is less
task-focused. We need to have a flexible recommendation model that can in-
corporate more data about user information needs whenever it is available. As
a case study, we will study the personalized retrieval problem in the context of
collaborative tagging systems [32]. We will show that user input in the form
of tags (few keywords) could provide an effective channel to infer and learn
user information needs, resulting in more specific and task-focused recommen-
dations.

Peer-to-peer (P2P) networks are becoming more and more popular for sharing
information items. As the amount of data overwhelms the local storage, it is
necessary to share the storage and filter relevant information in a personal-
ized way. Our relevance model of collaborative filtering requires a centralized
database to hold user preferences. Within a peer-to-peer network, however,
such a centralized database is not readily available. Thus, we need to pro-
pose a fully distributed relevance model that can facilitate the distribution of
computation loads and data into the network.

1.2. Thesis Outline 7

1.2 Thesis Outline

This thesis consists of a list of papers that have been published or submitted
to international journals or conferences. The chapters are self-contained texts,
which can be read independently. They are organized in such a way so as to
reflect our thread in the quest to obtain collaborative filtering models. We
begin with a “partial” view of relevance models, depicted from either a user
perspective or an item perspective. We then move forward to a unified view,
introducing unified (relevance) models that combine the two partial views. Fi-
nally, we investigate their applicability in distributed environments.

Chapter 2 investigates recommendations based on user preferences extracted
from user interaction data. It introduces the basic relevance models within the
context of collaborative filtering. To formally model the task of item ranking, we
establish the log-ratio of relevance on the basis of the Probability Ranking Prin-
ciple (PRP) of information retrieval [112]. This chapter constrains its discussion
to the relevance case only and leaves a full discussion of the non-relevance case
to Chapter 3. Two ranking models are introduced independently, namely the
user-based relevance model and the item-based relevance model. The analysis
and discussion of the two models supply a basis and motivation for the unified
models that will be developed in the later chapters (Chapter 5 and Chapter 6).

Chapter 3 proposes a more advanced item-ranking framework, inspired by the
BM25 formula in text retrieval [87]. This framework not only allows us to make
use of frequency counts for modelling implicit user preferences but has room
to model non-relevance in a formal way. However, data sparsity makes proba-
bility estimations less reliable. Thus, we extend the BM25 ranking formula by
viewing the probabilities of (non-)relevance in the models as parameters and ap-
ply Bayesian inference to enforce different prior knowledge into the probability
estimations. This will prove to be crucial for the accuracy of recommendation.

One of the drawbacks of existing collaborative filtering methods including those
based on the techniques introduced in Chapters 2 and 3, is that the item ranking
is made independently from the user’s task. To enforce the dependency of
the ranking on the user’s task at hand, Chapter 4 therefore proposes a task-
focused collaborative filtering framework incorporating tags as a task (or aspect)
indicator. In the framework, we extend the approaches proposed in Chapter 2
and consider further types of generative processes in the tagging data, where
smoothing methods are naturally integrated to cope with the problem of data
sparsity.

Next we start to look at the rating prediction problem.

Chapter 5 considers a unified framework for the purpose of alleviating data
sparsity. We view rating prediction in collaborative filtering as a voting mech-

8 Chapter 1. Introduction

anism from a pool of predictors. We identify three types of predictors and
show that a carefully formulated, complete model for combining them leads to
a robust prediction that is more tolerant to data sparsity.

Chapter 6 goes further regarding this topic and presents a unified relevance
framework for rating prediction. We first establish a link between information
retrieval and collaborative filtering, arguing that current memory-based col-
laborative filtering approaches represent only a partial view of the prediction
problem and share the same drawback as the two common views on information
retrieval. We then set up a unified probabilistic relevance framework to exploit
more of the data available in the user-item matrix.

Chapter 7 addresses collaborative filtering from an application perspective,
more specifically regarding its applicability for peer-to-peer networks. To elim-
inate its reliance upon centralized databases, we present two distributed ap-
proaches. First, from a user-oriented view of the network, we propose the
Buddycast algorithm, which effectively exchanges user preferences using ex-
ploitation and exploration principles. We then present an item-oriented view
and introduce a technique to distribute the computation of item-to-item simi-
larity throughout the network, without sacrificing efficiency. At the conclusion
of this chapter, we describe two peer-to-peer recommendation systems: the
Tribler system and the Wi-Fi Walkman system.

Chapter 8 concludes the thesis with a discussion of future work.

1.3 Main Contributions

This thesis is devoted to various relevance models for collaborative filtering,
reflecting different types of data inputs and different recommendation scenarios.
Modelling relevance in collaborative filtering provides a general yet concrete
solution for the development of collaborative filtering and recommender systems
both effectively and efficiently. The main contributions are summarized as
follows:

Collaborative filtering has often been formulated as a self-contained problem,
parallel to the classic information retrieval problem (i.e. ad hoc text retrieval).
This thesis relates collaborative filtering to text retrieval (Chapters 2, 3, 4, and
6). The way of thinking expands our methodologies towards collaborative filter-
ing, providing a flexible framework in which to try out more of the techniques
that have been used in text retrieval for the related problem of collaborative
filtering.

The problem of data sparsity is tackled in a formal way (Chapters 2, 3, 4, and
6). In our relevance frameworks, the probabilities of (non-)relevance have to

1.3. Main Contributions 9

be estimated from the severely under-sampled input data. This largely reduces
the reliability of the estimations. The Bayesian inference framework that we
adopt offers an elegant way of converting the problem of estimation (and thus
the data sparsity problem) to that of choosing a proper prior, which in turn
can be estimated from the whole data collection.

Chapters 5 and 6 provide a unified view of and solution to the prediction prob-
lem. In information retrieval, there have been two separate views on how to
assign a probability of relevance for a document to a user need have existed,
namely the document-oriented and the query-oriented views; the classic proba-
bilistic retrieval model of information retrieval [86] takes the query-oriented view
while the language modelling approach to information retrieval [39, 55, 58, 78]
builds upon the document-oriented view. Neither represents the problem of
information retrieval completely [85]. Likewise, we discover the same draw-
back in popular user-based and item-based collaborative filtering approaches
(Chapters 5 and 6). We thus propose a unified relevance model of collaborative
filtering (Chapter 6) by applying kernel density estimation and as a result, pro-
viding a practical solution for the unification advocated in [85] in the context
of collaborative filtering.

A practical contribution lies in a method for implementing distributed col-
laborative filtering. Collaborative filtering requires a centralized user profile
database, but within a peer-to-peer network such a centralized database is not
readily available. The proposed novel scheme, called BuddyCast, builds such
a social network for a user by exchanging user profiles using exploitation and
exploration principles (Chapter 7). As one of the core algorithms for a peer-to-
peer file sharing system (tribler.org), it has been released to the public at
large.

10 Chapter 1. Introduction

Part I

Relevance Models

11

Chapter 2
Language Modelling Approaches

In this paper, we follow a formal approach of text retrieval to reformulate
the collaborative filtering problem. Based on the classic probability ranking
principle, we propose a probabilistic user-item relevance model. Under this
formal model, we show that user-based and item-based approaches are only two
different factorizations with different independence assumptions. Moreover, we
show that smoothing is an important aspect in estimating the parameters of
the models, because of data sparsity. By adding linear interpolation smoothing,
the proposed model provides a probabilistic justification for using TF×IDF-
like item ranking in collaborative filtering. Besides offering the insight into
the problem of collaborative filtering, we also show experiments in which the
proposed method provides a better recommendation performance on a music
playlist data set.

This work has been published as “A user-item relevance model for log-based collaborative
filtering” by J. Wang, A. P. de Vries, and M. J. Reinders, in Proc. of European Conference
on Information Retrieval (ECIR06), London, UK, 2006. See also [114].

13

14 Chapter 2. Language Modelling Approaches

2.1 Introduction

Generally, a collaborative filtering algorithm uses a collection of user profiles to
identify interesting “information” for these users. A particular user acquires a
recommendation based on the user profiles of other similar users. User profiles
are commonly obtained by explicitly asking users to rate the items. Collabo-
rative filtering has often been formulated as a self-contained problem, distinct
from the classic information retrieval problem (i.e. ad hoc text retrieval). Re-
search started with heuristic implementations of “Word of Mouth” (e.g. user-
based approaches [9]) and moved to item-based approaches [92], and more re-
cently, various model-based approaches have been introduced [42, 66].

Previous research [15] has shown that users are very unlikely to provide an
explicit rating. Asking the user to rate items is annoying and should be avoided
whenever possible. Alternatively, user profiles can also be obtained by implicitly
observing user interactions with the system. For instance, a music playlist
indicates the music tastes of a user, and web query logs could indicate the
interest of a user in certain web sites. The implicit acquisition of user preferences
makes the “log-based” collaborative filtering more favorable in practice (see
Section 2.2).

This paper therefore focuses on log-based collaborative filtering. We identify a
close relationship between log-based collaborative filtering and text information
retrieval. We build a user-item relevance model to reformulate collaborative
filtering under the classic probability ranking principle. Given our user-item
relevance models, we also introduce the linear interpolation smoothing into col-
laborative filtering. We show that the smoothing is important in estimating
the model parameters correctly, because of data sparsity. Similar to the situ-
ation in text retrieval, the user-item relevance model provides a probabilistic
justification for using TF×IDF-like item weighting in collaborative filtering.

2.2 Background

2.2.1 Rating-based Collaborative Filtering

Preference information about items can be based either on user ratings (ex-
plicit interest functions) or log-archives (implicit interest functions). Their
differences lead, in our view, to two distinct ways of approaching collabora-
tive filtering: rating-based and log-based. Rating-based collaborative filtering is
based on user profiles that contain rated items. The majority of the literature
addresses rating-based collaborative filtering, which has been studied in depth
[66]. Rating-based approaches are often classified as memory-based or model-

2.2. Background 15

based. In the memory-based approach, all rating examples are stored as is into
memory (in contrast to learning an abstraction). In the prediction phase, sim-
ilar users or items are sorted based on the memorized ratings. Based on the
ratings of these similar users or items, a recommendation for the target user
can be generated. Examples of memory-based collaborative filtering include
item correlation-based methods [92], user clustering [123] and locally weighted
regression [9]. The advantage of the memory-based methods over their model-
based alternatives is that they have fewer parameters to be tuned, while the
disadvantage is that the approach cannot deal with data sparsity in a principled
manner.

In the model-based approach, training examples are used to generate a model
that is able to predict the ratings for items that a target user has not previously
rated. Examples include decision trees [9], latent class models [42], and factor
models [10]. The “compact” models in these methods could solve the data
sparsity problem to a certain extent. However, the requirement of tuning an
often significant number of parameters or hidden variables has prevented these
methods from practical usage.

Recently, to overcome the drawbacks of these approaches to collaborative fil-
tering, researchers have started to combine memory-based and model-based
approaches [77, 118].

2.2.2 Log-based Collaborative Filtering

Implicit interest functions can be represented by binary-valued preferences.
That is a one indicates a “file is downloaded”, or a “web-site is visited”. Few
log-based collaborative filtering approaches that deal with such data have been
developed thus far. Two examples are the item-based top-N collaborative fil-
tering approach [23, 52] and Amazon’s item-based collaborative filtering [61].

The following characteristics make log-based collaborative filtering more similar
to the problem of text retrieval than the rating-based approaches:

• The simplest way to employ log-based user profiles, e.g. playlists, is to
assume they are binary-valued. Usually, one means “relevance” or “like-
ness”, and zero indicates “non-relevance” or “non-likeness”. Moreover, in
most situations, non-relevance and non-likeness are rarely observed. This
is similar to the concept of relevance in text retrieval.

• A common goal for rating-based collaborative filtering is to predict the
rating of users, while for log-based algorithms it is desirable to rank the
items to the user in order of decreasing relevance. As a result, their
evaluation differs. In rating-based collaborative filtering, the mean square

16 Chapter 2. Language Modelling Approaches

error (MSE) of the predicted rating is usually adopted, while in log-based
collaborative filtering, recall and precision metrics are employed.

This paper therefore proposes to apply the probabilistic framework developed
for text retrieval to log-based collaborative filtering. We consider the following
formal setting. The information that has to be filtered, e.g. images, movies,
or audio files, is represented as a set of items. We introduce discrete random
variables U∈ {u1, ..., uK} and I∈ {i1, ..., iM} to represent a user and an item in
the collection, respectively. K is the number of users while M is the number
of items in the collection. Let Luk

denote a user profile list for user uk. Luk
is

a set of items in which user uk has previously shown interest. Luk
(im) = 1 (or

im ∈ Luk
) indicates that item im, is in the list while Luk

(im) = 0 (or Im /∈ Luk
)

indicates otherwise. The number of items in the list is denoted as |Luk
|.

The purpose of log-based collaborative filtering is to rank the relevance of a
target item to a user. This could be represented by the retrieval status value
(RSV) of a target item for a user, denoted as: RSVuk

(im). Heuristic imple-
mentations of “Word of Mouth” introduced in [23, 37] provide the following
basic item-based and user-based approaches for calculating the RSV when we
consider the binary case:

User-based : RSVuk
(im) =

∑

Top-N similar ub

sU (uk, ub)Lub
(im)

Item-based : RSVuk
(im) =

∑

∀ib:ib∈Luk

sI(ib, im)
(2.1)

where sI and sU are the two similarity measures between two items and two
users, respectively. The two commonly used similarity measures are the Pearson
correlation and the cosine similarity [9]. Frequency counting has been used as
an alternative basis for similarity measures in [23, 52]. To suppress the influence
of items that are being purchased frequently, these studies have introduced a
TF×IDF-like weighting (similarity) function:

sI(ib, im) =
c(ib, im)/c(im)

c(ib)α
(2.2)

where c(ib, im) =
K∑

k=1

|Luk
(im)∩Luk

(ib))| is the number of user profiles in which

both items ib and im exist (i.e., items that co-occur); and c(i) is the number of
user profiles containing item i. α is a tuning parameter.

2.3. A User-Item Relevance Model 17

2.3 A User-Item Relevance Model

In log-based collaborative filtering, users want to know which items fit their
interests best. This section adopts the probabilistic relevance model proposed
in the text retrieval domain [56, 78] to measure the relevance between user
interests and items. We intend to answer the following basic question:

• What is the probability that this item is relevant to this user, given his

or her profile?

To answer this question, we first define the sample space of relevance: ΦR. It
has two values: “relevant” r and “non-relevant” r̄. Let R be a random variable
over the sample space ΦR. Likewise, let U be a discrete random variable over
the sample space of user ids: ΦU = {u1, ..., uK} and let I be a random variable
over the sample space of item ids: ΦI = {i1, ..., iM}, where K is the number of
users and M the number of items in the collection. In other words, U refers to
the user identifiers and I refers to the item identifiers.

We then denote P as a probability function on the joint sample space ΦU ×
ΦI × ΦR. In a probability framework, we can answer the above basic question
by estimating the probability of relevance P (R = r|U, I). The relevance rank
of items in the collection ΦI for a given user U = uk can be formulated as the
odds of the relevance:

RSVuk
(im) = ln

P (r|uk, im)

P (r̄|uk, im)
(2.3)

For simplicity, R = r, R = r̄, U = uk, and I = im are denoted as r, r̄, uk, and
im, respectively.

Hence, the evidence for the relevance of an item for a user is based on both
the positive evidence (indicating the relevance) as well as the negative evidence
(indicating the non-relevance). Once we know, for a given user, the RSV of
each item I in the collection (excluding the items in which the user has already
expressed interest), we sort these items in decreasing order. The highest-ranked
items are then recommended to the user.

In order to estimate the conditional probabilities in Eq. 2.3, i.e. the relevance
and non-relevance between the user and the item, we need to factorize the
equation along the item or the user dimension. We propose to consider both
item-based generation (i.e. using items as features to represent the user) and
user-based generation (i.e. treating users as features to represent an item).

18 Chapter 2. Language Modelling Approaches

2.3.1 Item-based Generation

By factorizing P (•|uk, im) with P (uk|im,•)P (•|im)
P (uk|im) , the following log-odds ratio

can be obtained from Eq. (2.3):

RSVuk
(im) = ln

P (r|im, uk)

P (r̄|im, uk)
= ln

P (uk|im, r)

P (uk|im, r̄)
+ ln

P (im|r)P (r)

P (im|r̄)P (r̄)
(2.4)

Without explicit evidence for non-relevance, and following the language mod-
elling approach to information retrieval [56], we now assume: 1) independence
between uk and ik in the non-relevance case (r̄), i.e., P (uk, |im, r̄) = P (uk|r̄);
and, 2) equal priors for both uk and im, given that the item is non-relevant.
Then the two non-relevance terms can then be removed and the RSV becomes:

RSVuk
(im) = ln P (uk|im, r) + lnP (im|r) (2.5)

Note that the two negative terms in Eq. (2.4) can always be added to the model,
when the negative evidences are captured.

To estimate the conditional probability P (uk|im, r) in Eq. 2.5, consider the
following. Instead of placing users in the sample space of user ids, we can also
use the set of items that the user likes (Luk

) to represent the user (uk). This
step is similar to using a “bag-of-words” representation of queries or documents
in the text retrieval domain [90]. This implies: P (uk|im, r) = P (Luk

|im, r). We
call these representing items query items. Note that, unlike the target item im,
the query items do not need to be ranked since the user has already expressed
interest in them.

Furthermore, we assume that the items in the user profile list Luk
(query items)

are conditionally independent from each other. Although this naive Bayes as-
sumption does not hold in many real situations, it has been empirically shown
to be a competitive approach (e.g. in text classification [27, 112]). Under this
assumption, Eq. 2.5 becomes:

RSVuk
(im) = ln P (Luk

|im, r) + ln P (im|r)
=

∑

∀ib:ib∈Luk

ln P (ib|im, r) + ln P (im|r) (2.6)

The conditional probability P (ib|im, r) corresponds to the relevance of an item
ib, given that another item im is relevant. This probability can be estimated by
counting the number of user profiles that contain both items ib and im, divided
by the total number of user profiles in which im exists (see also [52]):

Pml(ib|im, r) =
P (ib, im|r)
P (im|r) :=

c(ib, im)

c(im)
(2.7)

2.3. A User-Item Relevance Model 19

Probability Estimation and Smoothing

Using the frequency count in Eq. 2.7 to estimate the above probability corre-
sponds to using its maximum likelihood estimator. However, many item-to-item
co-occurrence counts will be zero, because of the sparseness of the user-item
matrix. Therefore, we apply a smoothing technique to adjust the maximum
likelihood estimation [112].

In information retrieval [126], most smoothing methods apply two distinct dis-
tributions: one for the words that occur in the document, and one for the words
that do not. Here, we also adopt this formulation. To estimate P (ib|im, r), we
use Ps(ib|im, r) when c(ib, im) > 0, while when c(ib, im) = 0 (i.e. ib and im
do not co-occur in any of the user profiles), we assume the probability is pro-
portional to the general frequency of ib for the whole user profile set. That is,
P (ib|im, r) = αimP (ib|r), where αim depends on item im. Then, the conditional
probability between a user and an item can be formulated as follows:

ln P (uk|im, r) = ln P (Luk
|im, r)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

ln Ps(ib|im, r) +
∑

∀ib:ib∈Luk
∩c(ib,im)=0

ln αimP (ib|r)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

ln
Ps(ib|im, r)

αimP (ib|r)
+

∑

∀ib:ib∈Luk

ln αimP (ib|r)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

ln
Ps(ib|im, r)

αimP (ib|r)
+ |Luk

| ln αim +
∑

∀ib:ib∈Luk

ln P (ib|r)

(2.8)

Since the last term is independent of the target item im, it can be dropped
when we calculate the RSV of item im. Combining Eq. (2.6) and Eq. (2.8), we
obtain the following:

RSVuk
(im)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

ln
Ps(ib|im, r)

αimP (ib|r)
+ |Luk

| ln αim + ln P (im|r) (2.9)

Eq. 2.9 provides a generative ranking formula. Next, we consider a special case:
a linear interpolation smoothing.

Linear Interpolation Smoothing

A linear interpolation smoothing can be defined as a linear interpolation be-
tween the maximum likelihood estimation and the background model. To use

20 Chapter 2. Language Modelling Approaches

it, if we define:

Ps(ib|im, r) = (1 − λ)Pml(ib|im, r) + λP (ib|r)
αim = λ

(2.10)

where Pml(ib|im, r) is the maximum likelihood estimation as given in Eq. 2.7.
Item prior probability P (ib|r) is used as a background model. Furthermore,
the parameter λ ∈ [0, 1] is a parameter that balances the maximum likelihood
estimation and background model (a larger λ means more smoothing). Usually,
the best value for λ is found from a training data. The linear interpolation
smoothing leads to the following RSV:

RSVuk
(im)

=
∑

∀ib:ib∈Luk
∩c(ib,im)>0

ln(1 +
(1 − λ)Pml(ib|im, r)

λP (ib|r)
) + ln P (im|r) (2.11)

2.3.2 User-based Generation

By factorizing P (•|uk, im) with P (im|uk, •)P (•|uk)/P (im|uk), the following log-
odds ratio can be obtained from Eq. 2.3:

RSVuk
(im) = ln

P (r|im, uk)

P (r̄|im, uk)

= ln
P (im|uk, r)

P (im|uk, r̄)
+ ln

P (uk|r)P (r)

P (uk|r̄)P (r̄)

∝ ln
P (im|uk, r)

P (im|uk, r̄)

(2.12)

When the non-relevance evidence is absent, and following the language model
[56], we now assume equal priors for im in the non-relevant case. The non-
relevance term can then be removed and the RSV becomes:

RSVuk
(im) = ln P (im|uk, r) (2.13)

Instead of using the item list to represent the user, we use each user’s judgment
as a feature to represent an item. For this, we introduce a list Lim for each item
im, where m = {1, ...,M}. This list enumerates the users who have expressed
interest in the item im. Lim(uk) = 1 (or uk ∈ Lim) denotes that user uk is in
the list, while Lim(uk) = 0 (or uk /∈ Lim) indicates otherwise. The number of
users in the list corresponds to |Lim |.

2.3. A User-Item Relevance Model 21

Replacing im with Lim , after we assume that each user’s judgment of a partic-
ular item is independent, we obtain:

RSVuk
(im) = ln P (im|uk, r) =

∑

∀ub:ub∈Lim

ln P (ub|uk, r)

(2.14)

Similar to the item-based generation, when we use linear interpolation smooth-
ing to estimate P (ub|uk, r), we obtain the final ranking formula:

RSVuk
(im) =

∑

∀ub:ub∈Lim

ln P (ub|uk, r)

∝
∑

∀ub:ub∈Lim∩c(ub,uk)>0

ln(1 +
(1 − λ)Pml(ub|uk, r)

λP (ub|r)
) + |Lim | ln λ

(2.15)

where λ ∈ [0, 1] is the smoothing parameter.

2.3.3 Discussions

Inverse Item Frequency

The usage of TF×IDF-like ranking shown in Eq. 2.2 was studied in [23] and has
been shown to display the best performance. However, [23] does not provide
justification about the usage of the inverse item frequency (1/P (ib|r)) through
probability theory. By considering log-based collaborative filtering probabilisti-
cally and proposing the linear interpolation smoothing, our user-item relevance
model in Eq. 2.11 provides a probabilistic justification. Our ranking formula
can directly be interpreted as TF×IDF-like ranking, since

Pml(ib|im, r) ∝ c(ib, im)/c(im) and P (ib|r) ∝ c(ib) (2.16)

In addition, Eq. 2.11 offer a very intuitive understanding of the statistical rank-
ing mechanisms that play a role in log-based collaborative filtering:

• The relevance rank of a target item im is the sum of both its popularity
(prior probability P (im|r)) and its co-occurrence (the first term in Eq.
2.11) with the items (ib) in the profile list of the target user. The co-
occurrence is higher if more users express interest in the target item (im)
as well as item ib. However, the co-occurrence should be suppressed more
when the popularity of the item in the profile of the target user (P (ib|r))
is higher.

22 Chapter 2. Language Modelling Approaches

• When λ approaches 0, smoothing from the background model is mini-
mal. It emphasizes the co-occurrence count, and the ranking becomes
equivalent to coordination level matching [40], which is simply counting
the number of times for which c(ib, im) > 0. When the λ is equal to 0,
the model reduces to the traditional item-based approach [61]. When the
λ approaches 1, the model is more smooth, emphasizing the background
model.

Two Representations

Traditionally, collaborative filtering makes a distinction between user-based and
item-based approaches. Our probabilistic user-item relevance model, derived
with an information retrieval view to collaborative filtering, demonstrates that
the user-based (Eq. 2.15) and item-based (Eq. 2.11) models are, in fact, equiva-
lent from the probabilistic point of view, since they have actually been derived
from the same generative relevance model (Eq. 2.3). The only difference in their
derivation corresponds to the choice of independence assumptions, leading to
the two distinct factorizations.

Consequently, this formula offers a much better understanding of the underlying
statistical assumptions that are made in these two approaches. In the user-based
approach, a target item is assumed to be judged or rated independently, while
in the item-based approach, a target user is assumed independently to judge or
rate each query item. Besides the differences in the number of users (K) and
the number of items (M), we believe that these underlying assumptions are the
major factors influencing the performances of these two approaches in practice.

2.4 Experiments

The standard data set used in the evaluation of collaborative filtering algorithms
(MovieLens) is rating-based, which is not suitable for testing our method using
log-based user profiles. The user logs we employed were collected from the
Audioscrobbler1 community. The Audioscrobbler data set is collected from the
playlists of the users in the community by using a plug-in in the users’ media
players (for instance, Winamp, iTunes, and XMMS). Plug-ins send the title
(song name and artist name) of every song that users play to the Audioscrobbler
server, which updates the user’s musical profile with the new song. That is,
when a user plays a song in a certain time, this transaction is recorded as a
tuple in the form of {userID, itemID, t} in the database.

1Audioscrobbler can be found at http://last.fm.

2.4. Experiments 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

lambda

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1 return
Top−10 return
Top−20 return
Top−40 return

(a) Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

lambda

R
ec

om
m

en
da

tio
n

R
ec

al
l

Top−1 return
Top−10 return
Top−20 return
Top−40 return

(b) Recall

Figure 2.1: Performance of the linear interpolation smoothing.

For computational reasons, we randomly sampled the data set to limit the
number of users to 428 and the number of items to 516. The sparsity (percentage
of 0 values in the user-item matrix) is 96.86% .

24 Chapter 2. Language Modelling Approaches

For cross-validation, we randomly divided this data set into a training set (80%
of the users) and a test set (20% of the users). Results are obtained by averaging
five separate runs (sampling of training/test set). The training set was used to
estimate the model. The test set was used for evaluating the accuracy of the
recommendations on the new users, whose user profiles were not in the training
set. For each test user, 50% of the items of a test user were placed into the user
profile list. The other 50% of the items were used to test the recommendations.
By doing so, the number of items in the user profiles reflects the distribution
in the overall data set.

The effectiveness of the log-based collaborative filtering experiments can be
measured using the precision and recall of the recommendations. Precision
measures the proportion of recommended items that are ground truth items.
The recall measures the proportion of the ground truth items that are rec-
ommended. In the case of making recommendations, precision seems more
important than recall. However, to analyze the behavior of our method, we
report both metrics in our experimental results.

We first studied the behavior of the linear interpolation smoothing. For this,
we plotted the average precision and recall rate for the different values of the
smoothing parameter λ. This is shown in Fig. 2.1.

Fig. 2.1 (a) and (b) show that both precision and recall drop when λ reaches
its extreme values 0 and 1. The precision is sensitive to λ, especially the early
precision (when only a small number of items are recommended). Recall is less
sensitive to the actual value of this parameter, having its optimum at a wide
range of values. Effectiveness tends to be higher in both metrics when λ is
large; when λ is approximately 0.9, the precision seems optimal. An optimal
range of λ near 1 can be explained by the sparsity of user profiles, causing the
prior probability P (ib|r) to be much smaller than the conditional probability
Pml(ib|im, r). The background model is therefore only emphasized for values
of λ closer to 1. In combination with the experimental results that we ob-
tained, this suggests that smoothing the co-occurrence probabilities with the
background model (prior probability P (ib|r)) improves recommendation per-
formance.

Next, we compared our user-item relevance model to other log-based collab-
orative filtering approaches. Our goal here was to see, using our user-item
relevance model, whether the smoothing and inverse item frequency should im-
prove recommendation performance with respect to the other methods. For
this, we focused on the item-based generation (denoted as UIR-Item). We
set λ to the optimal value 0.9. We compared our results to those obtained
with the top-N SUGGEST recommendation engine, a well-known log-based
collaborative filtering implementation [52, 60]. This engine implements a va-
riety of log-based recommendation algorithms. We compared our own results

2.5. Conclusions 25

Top-1 Item Top-10 Item Top-20 Item Top-40 Item

UIR-Item 0.62 0.52 0.44 0.35
Item-TFIDF 0.55 0.47 0.40 0.31
Item-CosSim 0.56 0.46 0.38 0.31
Item-CorSim 0.50 0.38 0.33 0.27
User-CosSim 0.55 0.42 0.34 0.27

(a) Precision
Top-1 Item Top-10 Item Top-20 Item Top-40 Item

UIR-Item 0.02 0.15 0.25 0.40
Item-TFIDF 0.02 0.15 0.26 0.41
Item-CosSim 0.02 0.13 0.22 0.35
Item-CorSim 0.01 0.11 0.19 0.31
User-CosSim 0.02 0.15 0.25 0.39

(b) Recall

Table 2.1: Comparison of Recommendation Performance.

with both the item-based TF×IDF-like version (denoted ITEM-TFIDF) and
the user-based cosine similarity method (denoted User-CosSim), setting the
parameters to the optimal ones according to the user manual. Additionally, for
item-based approaches, we also used other similarity measures: the commonly
used cosine similarity (denoted Item-CosSim) and Pearson correlation (denoted
Item-CorSim). The results are shown in Table 2.1. For the precision, our user-
item relevance model with the item-based generation (UIR-Item) outperforms
other log-based collaborative filtering approaches for all four different numbers
of returned items. Overall, TF×IDF-like ranking ranks second. The obtained
experimental results demonstrate that smoothing contributes to a better rec-
ommendation precision in the two ways that were also found by [126]. On the
one hand, smoothing compensates for missing data in the user-item matrix, and
on the other hand, it plays the role of inverse item frequency to emphasize the
weight of the items with the best discriminative power. With respect to recall,
all four algorithms perform almost identically. This is consistent with our first
experiment, which determined that recommendation precision is sensitive to
the smoothing parameters while the recommendation recall is not.

2.5 Conclusions

This paper has identified a close relationship between log-based collaborative fil-
tering and the methods developed for text information retrieval. We have built a
user-item relevance model to reformulate the collaborative filtering problem un-
der the classic probability ranking principle. Using this probabilistic framework

26 Chapter 2. Language Modelling Approaches

of user-item relevance models, we introduced linear interpolation smoothing in
collaborative filtering. We showed that smoothing is an important aspect in
estimating models, because of data sparsity. Similar to the situation in text re-
trieval, the user-item relevance model provides a probabilistic justification for
using TF×IDF-like item weighting in collaborative filtering.

Our further research aims to introduce relevance feedback into collaborative
filtering. One of the powerful characteristics of linear interpolation smoothing
is that we can vary the smoothing parameter: λ → λ(ib) for the various items ib
in the user profile. It can then be treated as the importance of the query item.
Initially, all the items in the user profile are treated equally. From relevance
feedback, the importance value for various query items can be updated by using
EM algorithm [40].

Commentary on Chapter 2

Event Space

In Chapter 2, we defined users and items in their identity spaces, and only when
making probability estimations did we introduce their feature representations.
The introduction of the “identity spaces”, however, is unnecessary and may be
difficult to follow. Here, we provide a more general treatment.

First, information items and users are represented by their measurable prop-
erties, commonly called features. Mathematically, for each item, we have a
K-dimensional random vector I = (I1, ..., Ik, ..., IK) over the sample space of
the item properties (item features) ΦI. Likewise, for each user, we have a M -
dimensional random vector U = (U1, ..., Um, ..., UM) over the sample space of
user properties ΦU. Um and Ik are the elements of the feature vectors. The
resulting definitions are of a general nature, because we can employ any feature
representations that we can think of, as long as they are available. The possi-
ble features representing users include user demographics, user preferences, and
relevance feedback, while those for items include content descriptions, low-level
features, users’ ratings of them. In this thesis, we have limited our discussions
to user profile data only, where users are represented by their preferences while
items are characterized by users’ judgments of them.

Second, to indicate the correspondence between users and items, we define a
sample space of relevance ΦR. Let R be a random variable over the relevance
space ΦR. The random variable can be binary, multiple-valued, or even multi-
variate, depending on the practical situations. For instance, in Chapters 1 and
2 we assumed that it is binary when aiming at item relevance ranking, while in
Chapter 6 we assume that it has multiple values when focusing on rating pre-
diction. For the moment, let us consider the binary case ΦR = {r, r̄}, in which
R is either “relevant” r or “non-relevant” r̄. In most cases, we do not have a
direct observation of the relevancy between users and items. A simple solution,
as described in Chapters 1 and 2, would be to consider an item relevant to a
user if this user frequently plays or visits the item.

27

28 Chapter 2. Commentary on Chapter 2

Third, a probability measure on the joint sample space ΦU × ΦI × ΦR models
the random behavior of the random vector (U, I, R). An item recommendation
model can thus be built by estimating the log odds of the relevance:

ou(i) = ln
P (r|u, i)

P (r̄|u, i)

where u = (u1, ..., um, ...uM) and i = (i1, ..., ik , ..., iK) are, respectively, the two
instantiations of the random vectors U and I. For simplicity, the propositions
R = r, R = r̄, U = u and I = i are denoted as r, r̄, u, and i, respectively.

We then obtain the following dual solutions if we apply Bayes’ rule differently:

ou(i) = ln
P (u|r, i)
P (u|r̄, i) + ln

P (r|i)
P (r̄|i) (the item-based)

ou(i) = ln
P (i|r,u)

P (i|r̄,u)
+ ln

P (r|u)

P (r̄|u)
(the user-based)

The vectors u and i are quite often high-dimensional, making the conditional
probabilities difficult to estimate. A common practice [25, 59] is to assume
conditional independence among the element features. This leads to:

ou(i)

= ln
P (u|r, i)
P (u|r̄, i) + ln

P (r|i)
P (r̄|i) =

∑

m

ln
P (um|r, i)
P (um|r̄, i) + ln

P (r|i)
P (r̄|i) (the item-based)

ou(i)

= ln
P (i|r,u)

P (i|r̄,u)
+ ln

P (r|u)

P (r̄|u)
=

∑

k

ln
P (ik|r,u)

P (ik|r̄,u)
+ ln

P (r|u)

P (r̄|u)
(the user-based)

Clearly, the conditional independence assumption may not hold in practice. For
instance, items in a music playlist may be dependent upon each other. A possi-
ble solution to alleviate the dependency would be to project the feature vectors
into an uncorrelated low-dimensional space by applying dimension reduction
techniques such as PCA (Principle Component Analysis) [25].

Generative models

In Chapter 2 we have proposed a generative model for ranking items. The idea
is that for each target item we construct a generative model (see P (Luk

|im, r)
in Eq. 2.6) to describe its relevant user profiles. The presence of an item in the
user profile is the output of a generative process associated with that model.
We then considered the user profile as a sequence of independent items, lead-
ing to a multinomial generative model. In Chapter 2, we binarized the data

29

and considered only the presence/absence counts when we estimated the gen-
erative model. Nonetheless, it is possible and straightforward to estimate the
multinomial distribution without binarizing the user profile data.

The method introduced in Chapter 3 is another way to model the frequency
counts in user profiles. The model has a more complete view of modelling
relevance because it not only incorporates the estimation of the probability of
relevance but also takes int account the non-relevance and absence counts.

30 Chapter 2. Commentary on Chapter 2

Chapter 3
Probabilistic Relevance Ranking

Collaborative filtering is concerned with making recommendations about items
to users. Most formulations of the problem are specifically designed for pre-
dicting user ratings, assuming past data of explicit user ratings is available.
However, in practice we may only have implicit evidence of user preference;
and furthermore, a better view of the task is of generating a top-N list of items
that the user is most likely to like. In this regard, we argue that collabora-
tive filtering can be directly cast as a relevance ranking problem. We begin
with the classic Probability Ranking Principle of information retrieval, propos-
ing a probabilistic item ranking framework. In the framework, we derive two
different ranking models, showing that despite their common origin, different
factorizations reflect two distinctive ways to approach item ranking. For the
model estimations, we limit our discussions to implicit user preference data,
and adopt an approximation method introduced in the classic text retrieval
model (i.e. the Okapi BM25 formula) to effectively decouple frequency counts
and presence/absence counts in the preference data. Furthermore, we extend
the basic formula by proposing the Bayesian inference to estimate the probabil-
ity of relevance (and non-relevance), which largely alleviates the data sparsity
problem. Apart from a theoretical contribution, our experiments on real data
sets demonstrate that the proposed methods perform significantly better than
other strong baselines.

This work has been accept by Information Retrieval, Springer, 2008. The authors are J.
Wang, S. Roberston, A. P. de Vries, and M. J. T. Reinders. See also [120].

31

32 Chapter 3. Probabilistic Relevance Ranking

3.1 Introduction

Collaborative filtering aims at identifying interesting information items (e.g.
movies, books, websites) for a set of users, given their user profiles. Different
from its counterpart, content-based filtering [5], it utilizes other users’ prefer-
ences to perform predictions, thus making direct analysis of content features
unnecessary.

User profiles can be explicitly obtained by asking users to rate items that they
know. However these explicit ratings are hard to gather in a real system [15].
It is highly desirable to infer user preferences from implicit observations of user
interactions with a system. These implicit interest functions usually generate
frequency-counted profiles, like “playback times of a music file”, or “visiting
frequency of a web-site” etc.

So far, academic research into frequency-counted user profiles for collaborative
filtering has been limited. A large body of research work for collaborative
filtering by default focuses on rating-based user profiles [1, 66]. Research started
with memory-based approaches to collaborative filtering [37, 92, 116, 123] and
lately came with model-based approaches [41, 66, 50].

In spite of the fact that these rating-based collaborative filtering algorithms
lay a solid foundation for collaborative filtering research, they are specifically
designed for rating prediction, making them difficult to apply in many real situ-
ations where frequency-counted user profiling is demanded. Most importantly,
the purpose of a recommender system is to suggest to a user items that he or
she might be interested in. The user decision on whether accepting a sugges-
tion (i.e. to review or listen to a suggested item) is a binary one. As already
demonstrated in [23, 69], directly using predicted ratings as ranking scores may
not accurately model this common scenario.

This motivated us to conduct a formal study on probabilistic item ranking for
collaborative filtering. We start with the Probability Ranking Principle of in-
formation retrieval [83] and introduce the concept of “binary relevance” into
collaborative filtering. We directly model how likely an item might be relevant
to a given user (profile), and for the given user we aim at presenting a list of
items in rank order of their predicted relevance. To achieve this, we first estab-
lish an item ranking framework by employing the log-odd ratio of relevance and
then derive two ranking models from it, namely an item-based relevance model
and user-based relevance model. We then draw an analogy between the classic
text retrieval model [87] and our models, effectively decoupling the estimations
of frequency counts and (non-)relevance counts from implicit user preference
data. Because data sparsity makes the probability estimations less reliable,
we finally extend the basic log-odd ratio of relevance by viewing the probabili-

3.2. Related Work 33

ties of relevance and non-relevance in the models as parameters and apply the
Bayesian inference to enforce different prior knowledge and smoothing into the
probability estimations. This proves to be effective in two real data sets.

The remainder of the paper is organized as follows. We first describe related
work and establish the log-odd ratio of relevance ranking for collaborative filter-
ing. The resulting two different ranking models are then derived and discussed.
After that, we provide an empirical evaluation of the recommendation perfor-
mance and the impact of the parameters of our two models, and finally conclude
our work.

3.2 Related Work

3.2.1 Rating Prediction

In the memory-based approaches, all rating examples are stored as-is into mem-
ory (in contrast to learning an abstraction), forming a heuristic implementation
of the “Word of Mouth” phenomenon. In the rating prediction phase, similar
users or (and) items are sorted based on the memorized ratings. Relying on the
ratings of these similar users or (and) items, a prediction of an item rating for
a test user can be generated. Examples of memory-based collaborative filtering
include user-based methods [9, 37, 81], item-based methods [23, 92] and unified
methods [115, 116]. The advantage of the memory-based methods over their
model-based alternatives is that less parameters have to be tuned; however, the
data sparsity problem is not handled in a principled manner.

In the model-based approaches, training examples are used to generate an “ab-
straction” (model) that is able to predict the ratings for items that a test user
has not rated before. In this regard, many probabilistic models have been
proposed. For example, to consider user correlation, [77] proposed a method
called personality diagnosis (PD), treating each user as a separate cluster and
assuming a Gaussian noise applied to all ratings. It computes the probability
that a test user is of the same “personality type” as other users and, in turn,
the probability of his or her rating to a test item can be predicted. On the
other hand, to model item correlation, [9] utilizes a Bayesian Network model,
in which the conditional probabilities between items are maintained. Some re-
searchers have tried mixture models, explicitly assuming some hidden variables
embedded in the rating data. Examples include the aspect models [41, 50], the
cluster model [9] and the latent factor model [10]. These methods require some
assumptions about the underlying data structures and the resulting ‘compact’
models solve the data sparsity problem to a certain extent. However, the need
to tune an often significant number of parameters has prevented these methods

34 Chapter 3. Probabilistic Relevance Ranking

from practical usage. For instance, in the aspect models [41, 50], an EM itera-
tion (called ”fold-in”) is usually required to find both the hidden user clusters
or/and hidden item clusters for any new user.

3.2.2 Item Ranking

Memory-based approaches are commonly used for rating prediction, but they
can be easily extended for the purpose of item ranking. For instance, a ranking
score for a target item can be calculated by a summation over its similarity
towards other items that the target user liked (i.e. in the user preference list).
Taking this item-based view, we formally have the following basic ranking score:

ouk
(im) =

∑

im′∈Luk

si(im′ , im)
(3.1)

where uk and im denote the target user and item respectively, and im′ ∈ Luk

denotes any item in the preference list of user uk. Si is the similarity measure
between two items, and in practice cosine similarity and Pearson’s correla-
tion are generally employed. To specifically target the item ranking problem,
researchers in [23] proposed an alternative, TFxIDF-like similarity measure,
which is shown as follows:

si(im′ , im) =
Freq(im′ , im)

Freq(im′) × Freq(im)α
(3.2)

where Freq denotes the frequency counts of an item Freq(im′) or co-occurrence
counts for two items Freq(im′ , im). α is a free parameter, taking a value between
0 and 1. On the basis of empirical observations, they also introduced two
normalization methods to further improve the ranking.

In [114], we proposed a language modelling approach for the item ranking prob-
lem in collaborative filtering. The idea is to view an item (or its presence in
a user profile) as the output of a generative process associated with each user
profile. Using a linear smoothing technique [126], we have the following ranking
formula:

ouk
(im) =

∑

im′∈Luk

ln
(
λP (im′ |im) + (1 − λ)P (im′)

)
+ ln P (im) (3.3)

where the ranking score of a target item is essentially a combination of its
popularity (expressed by the prior probability P (im)) and its co-occurrence with
the items in the preference list of the target user (expressed by the conditional
probability P (im′ |im)). λ ∈ [0, 1] is used as a linear smoothing parameter to
further smooth the conditional probability from a background model (P (im′)).

3.3. A Probabilistic Relevance Ranking Framework 35

Nevertheless, our formulations in [114] only take the information about pres-
ence/absence of items into account when modelling implicit user preference
data, completely ignoring other useful information such as frequency counts
(i.e. the number of visiting/playing times). We shall see that the probabilistic
relevance framework proposed in this paper effectively extends the language
modelling approaches of collaborative filtering. It not only allows us to make
use of frequency counts for modelling implicit user preferences but has room to
model non-relevance in a formal way. They prove to be crucial to the accuracy
of recommendation in our experiments.

3.3 A Probabilistic Relevance Ranking Framework

The task of information retrieval aims to rank documents on the basis of their
relevance (usefulness) towards a given user need (query). The Probability Rank-
ing Principle (PRP) of information retrieval [83] implies that ranking documents
in descending order by their probability of relevance produces optimal perfor-
mance under a “reasonable” assumption, i.e. the relevance of a document to a
user information need is independent of other documents in the collection [112].

By the same token, our task for collaborative filtering is to find items that are
relevant (useful) to a given user interest (implicitly indicated by a user profile).
The PRP applies directly when we view a user profile as a query to rank items
accordingly. Hereto, we introduce the concept of “relevancy” into collaborative
filtering. By analogy with the relevance models in text retrieval [56, 86, 108],
the top-N recommendation items can then be generated by ranking items in
order of their probability of relevance to a user profile or the underlying user
interest.

To estimate the probability of relevance between an item and a user (profile),
let us first define a sample space of relevance: ΦR and let R be a random
variable over the relevance space ΦR. R is either ‘relevant’ r or ‘non-relevant’
r̄. Secondly, let U be a discrete random variable over the sample space of user
id ’s: ΦU = {u1, ..., uK} and let I be a random variable over the sample space of
item id ’s: ΦI = {i1, ..., iM}, where N is the number of users and M the number
of items in the collection. In other words, U refers to the user identifiers and I
refers to the item identifiers.

We then denote P as a probability function on the joint sample space ΦU ×ΦI×
ΦR. The PRP now states that we can solve the ranking problem by estimating
the probability of relevance P (R = r|U, I) and non-relevance P (R = r̄|U, I).
The relevance ranking of items in the collection ΦI for a given user U = uk can

36 Chapter 3. Probabilistic Relevance Ranking

be formulated as the log odds of the relevance:

ouk
(im) = ln

P (r|uk, im)

P (r̄|uk, im)
(3.4)

For simplicity, the propositions R = r, R = r̄, U = uk and I = im are denoted
as r, r̄, uk, and im, respectively.

3.3.1 Item-Based Relevance Model

Two different models can be derived if we apply Bayes’ rule differently. This
section introduces the item-based relevance model, leaving the derivations of
the user-based relevance model in Section 3.3.2.

By factorizing P (•|uk, im) with P (uk|im, •)P (•|im)/P (uk|im), the following log-
odds ratio can be obtained from Eq. 3.4:

ouk
(im) = ln

P (uk|im, r)

P (uk|im, r̄)
+ ln

P (r|im)

P (r̄|im)
(3.5)

Notice that, in the ranking model shown in Eq. 3.5, the target user is defined in
the user id space. For a given new user, we do not have any observations about
his or her relevancy towards an unknown item. This makes the probability
estimations unsolvable. In this regard, we need to build a feature representation
of a new user by his or her user profile so as to relate the user to other users
that have been observed from the whole collection.

This paper considers implicit user profiling: user profiles are obtained by im-
plicitly observing user behavior, for example, the web sites visited, the music
files played etc., and a user is represented by his or her preferences towards all
the items. More formally, we treat a user (profile) as a vector over the entire
item space, which is denoted as a bold letter l := (l1, ..., lm

′
, ..., lM), where lm

′

denotes an item frequency count, e.g., number of times a user played or visited
item im′ . Note that we deliberately used the item index m′ for the items in
the user profile, as opposed to the target item index m. For each user uk, the
user profile vector is instantiated (denoted as lk) by assigning this user’s item
frequency counts to it: lm

′
= cm′

k , where cm′

k ∈ {0, 1, 2...} denotes number of
times the user uk played or visited item im′ . Changing the user presentation
from Eq. 3.5, we have the following:

ouk
(im) = ln

P (lk|im, r)

P (lk|im, r̄)
+ ln

P (r|im)

P (r̄|im)
=

∑

∀m′

ln
P (lm

′
= cm′

k |im, r)

P (lm′ = cm′

k |im, r̄)
+ ln

P (r|im)

P (r̄|im)

(3.6)

where we have assumed frequency counts of items in the target user profile are
conditionally independent. Although this conditional independence assumption

3.3. A Probabilistic Relevance Ranking Framework 37

does not hold in many real situations, it has been empirically shown to be a
competitive approach (e.g., in text classification [27]). It is worthwhile noticing
that we only ignore the item dependency in the profile of the target user, while
for all other users, we do consider their dependence. In fact, how to utilise the
correlations between items is crucial to the item-based approach.

For the sake of computational convenience, we intend to focus on the items
(im′ , where m′ ∈ {1,M}) that are present in the target user profile (cm′

k > 0).
By splitting items in the user profile into two groups, i.e. presence and absence,
we have:

ouk
(im)

=
∑

∀m′:cm′
k

>0

ln
P (lm

′
= cm′

k |im, r)

P (lm′ = cm′

k |im, r̄)
+

∑

∀m′:cm′
k

=0

ln
P (lm

′
= 0|im, r)

P (lm′ = 0|im, r̄)
+ ln

P (r|im)

P (r̄|im)

(3.7)

Both subtracting

∑

∀m′:cm′
k

>0

ln
P (lm

′
= 0|im, r)

P (lm′ = 0|im, r̄)
, (3.8)

to the first term and adding it from the second (where ln x − ln y = ln x
y) gives

ouk
(im)

=
(∑

∀m′:cm′
k

>0

ln
P (lm

′
= cm′

k |im, r)P (lm
′
= 0|im, r̄)

P (lm′ = cm′

k |im, r̄)P (lm′ = 0|im, r)

)

+
(∑

∀m′

ln
P (lm

′
= 0|im, r)

P (lm′ = 0|im, r̄)

)
+ ln

P (r|im)

P (r̄|im)

(3.9)

where the first term only deals with those items that are present in the user
profile. P (lm

′
= cm′

k |im, r) is the probability that item im′ occurs cm′

k times in
a profile of a user who likes item im (i.e. item im is relevant to this user). In
other words, it means, given the evidence that a user who likes item im, what
is the probability that this user plays item im′ cm′

k times.

In summary, we have the following ranking formula:

ouk
(im) = Wuk,im + Xim + Yim (3.10)

where

Wuk,im =
(∑

∀m′:cm′
k

>0

ln
P (lm

′
= cm′

k |im, r)P (lm
′
= 0|im, r̄)

P (lm′ = cm′

k |im, r̄)P (lm′ = 0|im, r)

)
(3.11)

38 Chapter 3. Probabilistic Relevance Ranking

IR

'm
E

'm
l

'
:'

m

k
cm

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Estimation

(a) (b)

Figure 3.1: A Poisson mixture model for modelling the item occurrences in user
profiles. (a) A graphical model of the Poisson mixtures. (b) An estimation of the
Poisson mixtures for the Last.FM data set in the relevance case (λ0 = 0.0028,
λ1 = 6.4691 and p = 0.0046).

Xim =
∑

∀m′

ln
P (lm

′
= 0|im, r)

P (lm′ = 0|im, r̄)
(3.12)

Yim = ln
P (r|im)

P (r̄|im)
(3.13)

From the final ranking score, we observe that the relevance ranking of a target
item in the item-based model is a combination between the evidence that is
dependent on the target user profile (Wuk,im) and that of the target item itself
(Xim + Yim). However, we shall see in Section 3.2 that, due to the asymmetry
between users and items, the final ranking of the user-based model (Eq. 3.27)
only requires the “user profile”-dependent evidence.

3.3.1.1 Probability Estimation

Let us look at the weighting function Wuk,im (Eq. 3.11) first. Item occurrences
within user profiles (either P (lm

′
= cm′

k |im, r) or P (lm
′

= cm′

k |im, r̄)) can be
modeled by a Poisson distribution. Yet, an item occurring in a user profile
does not necessarily mean that this user likes this item: randomness is another
explanation, particularly when the item occurs few times only. Thus, a better
model would be a mixture of two Poisson models, i.e. a linear combination
between a Poisson model coping with items that are “truly” liked by the user

3.3. A Probabilistic Relevance Ranking Framework 39

and a Poisson model dealing with some background noise. To achieve this, we
introduce a hidden random variable Em′ ∈ {e, ē} for each of the items in the
user profile, describing whether the presence of the item in a user profile is due
to the fact that the user truly liked it (Em′

= e), or because the user acci-
dentally selected it (Em′

= ē). A graphical model describing the probabilistic
relationships among the random variables is illustrated in Fig. 3.1 (a). More
formally, for the relevance case, we have

P (lm
′
= cm′

k |im, r) =P (lm
′
= cm′

k |e)P (e|im, r) + P (lm
′
= cm′

k |ē)P (ē|im, r)

=
λ

(cm′

k)
1 exp(−λ1)

(cm′

k)!
p +

λ
(cm′

k)
0 exp(−λ0)

(cm′

k)!
(1 − p)

(3.14)

where λ1 and λ0 are the two Poisson means, which can be regarded as the
expected item frequency counts in the two different cases (e and ē) respectively.
p ≡ P (e|im, r) denotes the probability that the user indeed likes item i′m, given
the condition that he or she liked another item im. A straight-forward method
to obtain the parameters of the Poisson mixtures is to apply the Expectation-
Maximization (EM) algorithm [22]. To illustrate this, Fig. 3.1 (b) plots the
histogram of the item frequency distribution in the Last.FM data set as well as
its estimated Poisson mixtures by applying the EM algorithm.

The same can be applied to the non-relevance case. Incorporating the Poisson
mixtures for the both cases into Eq. 3.11 gives

Wuk,im =
∑

∀m′:cm′
k

>0

Wi′m,im

=
∑

∀m′:cm′
k

>0

ln

(
p + (λ0/λ1)

(cm′

k) exp(λ1 − λ0)(1 − p)
)(

exp(λ0 − λ1)q + (1 − q)
)

(
q + (λ0/λ1)

(cm′
k

) exp(λ1 − λ0)(1 − q)
)(

exp(λ0 − λ1)p + (1 − p)
)

(3.15)

where, similarly, q ≡ P (e|im, r̄) denotes the probability of the true preference
of an item in the non-relevance case, while Wi′m,im denotes the ranking score
obtained from the target item and the item in the user profile.

For each of the item pairs (i′m, im), we need to estimate four parameters (p, q, λ0

and λ1), making the model difficult to apply in practice. Furthermore, it should
be emphasised that the component distributions estimated by the EM algorithm
may not necessarily correspond to the two reasons that we mentioned for the
presence of an item in a user profile, even if the estimated mixture distribution
may fit the data well.

In this regard, this paper takes an alternative approach, approximating the
ranking function by a much simpler function. In text retrieval, a similar two-

40 Chapter 3. Probabilistic Relevance Ranking

Poisson model has been proposed for modeling within-document term frequen-
cies [35]. To make it applicable also, [87] introduced an approximation method,
resulting in the widely-used BM25 weighting function for query terms. Fol-
lowing the same way of thinking, we can see that the weighting function for
each of the items in the target user profile Wi′m,im (Eq. 3.15) has the follow-
ing characteristics: 1) Function Wi′m,im increases monotonically with respect

to the item frequency count cm′

k , and 2) it reaches its upper-bound, governed
by log

(
p(1 − q)/q(1 − p)

)
, when cm′

k becomes infinity ∞ [103, 104]. Roughly
speaking, as demonstrated in Fig. 3.2, the parameters λ0 and λ1 can adjust
the rate of the increase (see Fig. 3.2(a)), while the parameters p and q mainly
control the upper bound (see Fig. 3.2(b)).

Therefore, it is intuitively desirable to approximate these two characteris-
tics separately. Following the discussion in [87], we choose the function
cm′

k /(k3 + cm′

k) (where k3 is a free parameter), which increases from zero to
an asymptotic maximum, to model the monotonic increase with respect to the
item frequency counts. Since the probabilities q and p cannot be directly esti-
mated, a simple alternative is to use the probabilities of the presence of the item,
i.e. P (lm

′
> 0|im, r) and P (lm

′
> 0|im, r̄) to approximate them respectively. In

summary, we have the following ranking function:

Wuk,im ≈
(∑

∀m′:cm′
k

>0

cm′

k

k3 + cm′

k

ln
P (lm

′
> 0|im, r)P (lm

′
= 0|im, r̄)

P (lm′ > 0|im, r̄)P (lm′ = 0|im, r)

)
(3.16)

where the free parameter k3 is equivalent to the normalization parameter of
within-query frequencies in the BM25 formula [87] (also see Appendix 3.A), if
we treat a user profile as a query. P (lm

′
> 0|im, r) (or P (lm

′
> 0|im, r̄)) is the

probability that item m′ occurs in a profile of a user who is relevant (or non-
relevant) to item im. Eq. 3.16 essentially decouples frequency counts cm′

k and
presence (absence) probabilities (e.g. P (lm

′
> 0|im, r)), thus largely simplifying

the computation in practice.

Next, we consider the probability estimations of presence (absence) of items in
user profiles. To handle data sparseness, different from the Robertson-Sparck
Jones probabilistic retrieval (RSJ) model [86], we propose to use Bayesian in-
ference [29] to estimate the presence (absence) probabilities. Since we have
two events, either an item is present (lm

′
> 0) or absent (lm

′
= 0), we as-

sume that they follow the Bernoulli distribution. That is, we define θm′,m ≡
P (lm

′
> 0|im, r), where θm′,m is regarded as the parameter of a Bernoulli dis-

tribution. For simplicity, we treat the parameter as a random variable and
estimate its value by maximizing an a posteriori probability. Formally we have

θ̂m′,m = arg max
θm′,m

p(θm′,m|rm′,m, Rm;αr, βr) (3.17)

3.3. A Probabilistic Relevance Ranking Framework 41

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Item Frequency

W
ei

gh
tin

g
F

un
ct

io
n

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Item Frequency

W
ei

gh
tin

g
F

un
ct

io
n

(a) (b)

Figure 3.2: The relationship between weighting function Wi′m,im and its four
parameters λ0, λ1, p and q. We plot ranking score Wi′m,im against various

item frequency counts cm′

k from 0 to 20. (a) We fix λ0 = 0.02, p = 0.02 and
q = 0.010, and vary λ1 ∈ {0.03, 0.04, 0.1, 0.4, 5}. (b) We fix λ0 = 0.02, λ1 = 0.04
and p = 0.02, and vary q ∈ {0.020, 0.018, 0.016, 0.014, 0.012, 0.010}.

where Rm denotes the number of user profiles that are relevant to an item im,
and among these user profiles, rm′,m denotes the number of the user profiles
where an item im′ is present. This establishes a contingency table for each item
pair (shown in Table 3.1). In addition, we choose the Beta distribution as the
prior (since it is the conjugate prior for the Bernoulli distribution), which is
denoted as Beta(αr, βr). Using the conjugate prior, the posterior probability
after observing some data turns to the Beta distribution again with updated
parameters.

p(θm′,m|rm′,m, Rm;αr, βr) ∝ θ
rm′,m+αr−1

m′,m (1 − θm′,m)Rm−rm′,m+βr−1 (3.18)

Maximizing an a posteriori probability in Eq. 3.18 (i.e. taking the mode) gives
the estimation of the parameter [29]

θ̂m′,m =
rm′,m + αr − 1

Rm + αr + βr − 2
(3.19)

Following the same reasoning, we obtain the probability of item occurrences in
the non-relevance case.

P (lim′ > 0|im, r̄) ≡ γ̂i =
nm′ − rm′,m + αr̄ − 1

K − Rm + αr̄ + βr̄ − 2
(3.20)

where we used γ̂i to denote P (lim′ > 0|im, r̄). αr̄ and βr̄ are again the param-
eters of the conjugate prior (Beta(αr̄, βr̄)), while nm′ denotes the number of

42 Chapter 3. Probabilistic Relevance Ranking

Table 3.1: Contingency table of relevance v.s. occurrence: Item Model
Item im is Relevant Item im is NOT Relevant

Item im′ Contained in UP rm′,m nm′ − rm′,m nm′

Item im′ NOT Contained in UP Rm − rm′,m (N − Rm) − (nm′ − rm′,m) K − nm′

Rm K − Rm K

Table 3.2: Contingency table of relevance v.s. occurrence: User Model
User uk is Relevant User uk is NOT Relevant

User uk′ Contained in UP rk′,k nk′ − rk′,k nk′

User uk′ NOT Contained in UP Rk − rk′,k (M − Rk) − (nk′ − rk′,k) M − nk′

Rk M − Rk M

times that item im′ is present in a user profile (See Table 1). Replacing Eq. 3.19
and Eq. 3.20 into Eq. 3.16, we have

Wuk,im ≈
∑

∀m′:cm′
k

cm′

k

k3 + cm′

k

ln
θ̂i(1 − γ̂i)

γ̂i(1 − θ̂i)

=
∑

∀m′:cm′
k

cm′

k

k3 + cm′

k

ln
(rm′,m + αr − 1)((K − Rm) − (nm′ − rm′,m) + βr̄ − 1)

(nm′ − rm′,m + αr̄ − 1)(Rm − rm′,m + βr − 1)

(3.21)

The four hyper-parameters (αr, αr̄, βr, βr̄) can be treated as pseudo frequency
counts. Varying choices for them leads to different estimators [125]. In the
information retrieval domain [86, 87], adding an extra 0.5 count for each prob-
ability estimation has been widely used to avoid zero probabilities. This choice
corresponds to set tiny constant values αr = αr̄ = βr = βr̄ = 1.5. We shall see
that in the experiments collaborative filtering needs relatively bigger pseudo
counts for the non-relevance and/or absence estimation (αr̄, βr and βr̄). This
can be explained because using absence to model non-relevance is noisy, so more
smoothing is needed. If we define a free parameter v and set it to be equal to
ar −1, we have the generalized Laplace smoothing estimator. Alternatively, the
prior can be fit on a distribution of the given collection [126].

Applying the Bayesian inference similarly, we obtain Xim as follows:

Xim =
∑

im′

ln
P (lim′ = 0|im, r)

P (lim′ = 0|im, r̄)

=
∑

im′

ln
(K − Rm + αr + βr − 2)(Rm − rm′,m + βr − 1)

(Rm + αr + βr − 2)(K − Rm − (nm′ − rm′,m) + βr̄ − 1)

(3.22)

3.3. A Probabilistic Relevance Ranking Framework 43

For the last term, the popularity ranking Yim , we have

Yim = ln
P (r|im)

P (r̄|im)
= ln

Rm

K − Rm
(3.23)

Notice that in the initial stage, we do not have any relevance observation of
item im. We may assume that if a user played the item frequently (say played
more than t times), we treat this item being relevant to this user’s interest. By
doing this, we can also construct the contingency table to be able to estimate
the probabilities.

3.3.2 User-Based Relevance Model

Applying Bayes’ rule differently results in the following formula from Eq. 3.4:

ouk
(im) = ln

P (im|uk, r)

P (im|uk, r̄)
+ ln

P (r|uk)

P (r̄|uk)
(3.24)

Similarly, using frequency counts over a set of users (l1, ..., lk
′
, ...lK) to represent

the target item im, we get

Suk
(im) =

∑

∀k′:cm
k′

>0

ln
P (lk

′
= cm

k′ |uk, r)P (lk
′
= 0|uk, r̄)

P (lk
′
= cm

k′ |uk, r̄)P (lk
′
= 0|uk, r)

+
∑

∀k′

ln
P (lk

′
= 0|uk, r)

P (lk′ = 0|uk, r̄)
+ ln

P (r|uk)

P (r̄|uk)

(3.25)

where the last two terms in the formula are independent of target items, they
can be discarded. Thus we have

Suk
(im) ∝uk

∑

∀k′:cm
k′

>0

ln
P (lk

′
= cm

k′ |uk, r)P (lk
′
= 0|uk, r̄)

P (lk′ = cm
k′ |uk, r̄)P (lk′ = 0|uk, r)

(3.26)

where ∝uk
denotes same rank order with respect to uk.

Following the same steps (the approximation to two-Poisson distribution and
the MAP probability estimation) as discussed in the previous section gives

Suk
(im) ∝uk

∑

∀k′:cm
k′

>0

cm
k′

K + cm
k′

ln
P (lk

′
> 0|uk, r)P (lk

′
= 0|uk, r̄)

P (lk
′
> 0|uk, r̄)P (lk

′
= 0|uk, r)

=
∑

∀k′:cm
k′

>0

cm
k′

K + cm
k′

ln
(rk′,k + αr − 1)(M − nk′ − Rk + rk′,k + βr̄ − 1)

(nk′ − rk′,k + αr r̄ − 1)(Rk − rk′,k + βr − 1)

(3.27)

44 Chapter 3. Probabilistic Relevance Ranking

Table 3.3: Characteristics of the test data sets.
Last.FM Del.icio.us

Num. of Users 2408 1731

Num. of Items 1399 3370

Zero Occurrences in UP(%) 96.8% 96.7%

where K = k1((1−b)+bLm). k1 is the normalization parameter of the frequency
counts for the target item, Lm is the normalized item popularity (how many
times the item im has been “used”) (i.e. the popularity of this item divided
by the average popularity in the collection), and b ∈ [0, 1] denotes the mixture
weight. Notice that if we treat an item as a document, the parameter k1 is
equivalent to the normalization parameter of within-document frequencies in
the BM25 formula (see Appendix 3.A). Table 3.2 shows the contingency table
of user pairs.

3.3.3 Discussions

Previous studies on collaborative filtering, particularly memory-based ap-
proaches, make a distinction between user-based [9, 37, 81] and item-based
approaches [23, 92]. Our probabilistic relevance models were derived with an
information retrieval view on collaborative filtering. They demonstrated that
the user-based (relevance) and item-based (relevance) models are equivalent
from a probabilistic point of view, since they have actually been derived from
the same generative relevance model. The only difference corresponds to the
choice of independence assumptions in the derivations, leading to the two differ-
ent factorizations. But statistically they are inequivalent because the different
factorizations lead to the different probability estimations; In the item-based
relevance model, the item-to-item relevancy is estimated while in the user-based
one, the user-to-user relevancy is required instead. We shall see shortly in our
experiments that the probability estimation is one of the important factors
influencing recommendation performance.

3.4 Experiments

3.4.1 Data Sets

The standard data sets used in the evaluation of collaborative filtering algo-
rithms (i.e. MovieLens and Netflix) are rating-based, which are not suitable for
testing our method using implicit user profiles. This paper adopts two implicit

3.4. Experiments 45

user profile data sets.

The first data set comes from a well known social music web site: Last.FM.
It was collected from the play-lists of the users in the community by using a
plug-in in the users’ media players (for instance, Winamp, iTunes, XMMS etc).
Plug-ins send the title (song name and artist name) of every song users play
to the Last.FM server, which updates the user’s musical profile with the new
song. For our experiments, the triple {userID, artistID, Freq} is used.

The second data set was collected from one well-known collaborative tagging
Web site, del.icio.us. Unlike other studies focusing on directly recommend-
ing contents (Web sites), here we intend to find relevance tags on the basis of
user profiles as this is a crucial step in such systems. For instance, the tag
suggestion is needed in helping users assigning tags to new contents, and it
is also useful when constructing a personalized “tag cloud” for the purpose of
exploratory search [121] (see also Chapter 4). The Web site has been crawled
between May and October 2006. We collected a number of the most popular
tags, found which users were using these tags, and then downloaded the whole
profiles of these users. We extracted the triples {userID, tagID, Freq} from
each of the user profiles. User IDs are randomly generated to keep the users
anonymous. Table 3.3 summarizes the basic characteristics of the data sets1.

3.4.2 Experiment Protocols

For 5-fold cross-validation, we randomly divided this data set into a training
set (80% of the users) and a test set (20% of the users). Results are obtains by
averaging 5 different runs (sampling of training/test set). The training set was
used to estimate the model. The test set was used for evaluating the accuracy
of the recommendations on the new users, whose user profiles are not in the
training set. For each test user, 5, 10, or 15 items of a test user were put into the
user profile list. The remaining items were used to test the recommendations.

In information retrieval, the effectiveness of the document ranking is commonly
measured by precision and recall [2]. Precision measures the proportion of
retrieved documents that are indeed relevant to the user’s information need,
while recall measures the fraction of all relevant documents that are success-
fully retrieved. In the case of collaborative filtering, we are, however, only
interested in examining the accuracy of the top-N recommended items, while
paying less attention to finding all the relevant items. Thus, our experiments
here only consider the recommendation precision, which measures the propor-
tion of recommended items that are ground truth items. Note that the items

1The two data sets can be downloaded from http://ict.ewi.tudelft.nl/~jun/

CollaborativeFiltering.html.

46 Chapter 3. Probabilistic Relevance Ranking

1 2 3 4 5 6 7 8 9 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Top−N Returned

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

BM25−Item
BM25−User
LM−LS
LM−BS
SuggestLib

1 2 3 4 5 6 7 8 9 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Top−N Returned

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

BM25−Item
BM25−User
LM−LS
LM−BS
SuggestLib

(a) User Preference Length 5 (b) User Preference Length 10

1 2 3 4 5 6 7 8 9 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Top−N Returned

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

BM25−Item
BM25−User
LM−LS
LM−BS
SuggestLib

(c) User Preference Length 15

Figure 3.3: Precision of different methods in the Last.FM Data Set.

in the profiles of the test user represent only a fraction of the items that the
user truly liked. Therefore, the measured precision underestimates the true
precision.

3.4.3 Performance

We choose the state-of-the-art item ranking algorithms that have been discussed
in Section 3.2.2 as our baselines. For the method proposed in [23], we adopt
their implementation, the top-N suggest recommendation library 2, which is
denoted as SuggestLib. We also implement the language modelling approach
of collaborative filtering in [114] and denote this approach as LM-LS while its
variant using the Bayes’ smoothing (i.e., a Dirichlet prior) is denoted as LM-BS.
To make a comparison, the parameters of the algorithms are set to the optimal
ones.

We set the parameters of our two models to the optimal ones and compare

2http://glaros.dtc.umn.edu/gkhome/suggest/overview

3.4. Experiments 47

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

Top−N Returned

R
ec

om
m

en
da

tio
n

P
re

ci
si

on
BM25−Item
BM25−User
LM−LS
LM−BS
SuggestLib

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

Top−N Returned

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

BM25−Item
BM25−User
LM−LS
LM−BS
SuggestLib

(a) User Preference Length 5 (b) User Preference Length 10

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

Top−N Returned

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

BM25−Item
BM25−User
LM−LS
LM−BS
SuggestLib

(c) User Preference Length 15

Figure 3.4: Precision of different methods in the Del.icio.us Data Set.

them with these strong baselines. The item-based relevance model is denoted
as BM25-Item while the user-based relevance model is denoted as BM25-User.
Results are shown in Fig. 3.3 and 3.4 over different returned items. Let us
first compare the performance of the BM25-Item and BM25-User models. For
the Last.FM data set (Fig. 3.3), the item-based relevance model consistently
performs better than the user-based relevance model. This confirms a previous
observation that item-to-item similarity (relevancy) in general is more robust
than user-to-user similarity [92]. However, if we look at the del.icio.us data
(Fig. 3.4), the performance gain from the item-based relevance model is not clear
any more - we obtain a mixture result and the user-based one even outperforms
the item-based one when the number of items in user preferences is set to
15 (see Fig. 3.4 (c)). We think this is because the characteristics of data set
play an important role for the probability estimations in the models. In the
Last.FM data set, the number of users is larger than the number of items (see
Table 3.3). It basically means that we have more observations from the user
side about the item-to-item relevancy while having less observations from the
item side about user-to-user relevancy. Thus, in the Last.FM data set, the
probability estimation for the item based relevance model is more reliable than

48 Chapter 3. Probabilistic Relevance Ranking

Table 3.4: Comparison with the other approaches. Precision is reported in the
Last.FM data set. The best results are in bold type. A Wilcoxon signed-rank
test is conducted and the significant ones (P-value < 0.05) over the second best
are marked as *.

Top-1 Top-3 Top-10
BM25-Item 0.620* 0.578* 0.497*
LM-LS 0.572 0.507 0.416
LM-BS 0.585 0.535 0.456
SuggestLib 0.547 0.509 0.421

(a) User Profile Length 5
Top-1 Top-3 Top-10

BM25-Item 0.715* 0.657* 0.553*
LM-LS 0.673 0.617 0.517
LM-BS 0.674 0.620 0.517
SuggestLib 0.664 0.604 0.503

(b) User Profile Length 10
Top-1 Top-3 Top-10

BM25-Item 0.785* 0.715* 0.596*
LM-LS 0.669 0.645 0.555
LM-BS 0.761 0.684 0.568
SuggestLib 0.736 0.665 0.553

(c) User Profile Length 15

Table 3.5: Comparison with the other approaches. Precision is reported in the
Del.icio.us data set. The best results are in bold type. A Wilcoxon signed-
rank test is conducted and the significant ones (P-value < 0.05) over the second
best are marked as *.

Top-1 Top-3 Top-10
BM25-Item 0.306 0.251 0.205
LM-LS 0.306 0.253 0.208
LM-BS 0.253 0.227 0.173
SuggestLib 0.168 0.141 0.107

(a) User Profile Length 5
Top-1 Top-3 Top-10

BM25-Item 0.329 0.279* 0.222*
LM-LS 0.325 0.256 0.207
LM-BS 0.248 0.226 0.175
SuggestLib 0.224 0.199 0.150

(b) User Profile Length 10
Top-1 Top-3 Top-10

BM25-Item 0.357* 0.292* 0.219*
LM-LS 0.322 0.261 0.211
LM-BS 0.256 0.231 0.177
SuggestLib 0.271 0.230 0.171

(c) User Profile Length 15

that of the user-based relevance model. But in the del.icio.us data set (see
Table 3.3), the number of items is larger than the number of users. Thus we

3.4. Experiments 49

have more observations about user-to-user relevancy from the item side, causing
a significant improvement for the user-based relevance model.

Since the item-based relevance model in general outperforms the user-based
relevance model, we next compare the item-based relevance model with other
methods (shown in Table 3.4 and 3.5). From the tables, we can see that the
item-based relevance model performs consistently better than the SuggestLib

method over all the configurations. A Wilcoxon signed-rank test [45] is done to
verify the significance. We also observe that in most of the configurations our
item-based model significantly outperforms the language modelling approaches,
both the linear smoothing and the Bayesian smoothing variants. We believe
that the effectiveness of our model is due to the fact that the model naturally
integrates frequency counts and probability estimation of non-relevance into the
ranking formula, apart from other alternatives.

3.4.4 Parameter Estimation

This section tests the sensitivity of the parameters, using the del.icio.us data
set. Recall that for both the item-based relevance model (shown in Eq. 3.10)
and the user-based relevance model (shown in Eq. 3.27), we have frequency
smoothing parameter k1 (and b) or k3, and co-occurrence smoothing parameters
α and β. We first test the sensitivity of the frequency smoothing parameters.
Fig. 3.5 shows recommendation precision against the parameters k1 and b of
the user-based relevance model while Fig. 3.6 shows recommendation precision
varying the parameter k3 of the item relevance model. The optimal values in
the figures demonstrate that using both the frequency smoothing parameters
(k1 and k3) and the length normalization parameter b, inspired by the BM25
formula, indeed improves the recommendation performance. We also observe
that these parameters are relatively insensitive to different data sets and their
different sparsity setups.

Next we fix the frequency smoothing parameters to the optimal ones and test
the co-occurrence smoothing parameters for both models. Fig. 3.7 and Fig. 3.8
plot the smoothing parameters against the recommendation precision. More
precisely, Fig. 3.7 (a) and Fig. 3.8 (a) plot the smoothing parameter for the
relevance part v1 = αr − 1 while Fig. 3.7 (b) and Fig. 3.8 (b) plot that of the
non-relevance or absence parts; all of them are set to be equal (v2 = αr̄ −
1 = βr − 1 = βr̄ − 1) in order to minimize the number of parameters while
still retaining comparable performance. From the figures, we can see that the
optimal smoothing parameters (pseudo counts) of the relevance part v1 are
relatively small, compared to those of the non-relevance part. For the user-
based relevance model, the pseudo counts of the non-relevance estimations are
in the range between 10 and 15 (Fig. 3.7(b)) while for the item-based relevance

50 Chapter 3. Probabilistic Relevance Ranking

0 20 40 60 80 100 120 140 160 180 200
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

k
1

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1

Top−5

Top−10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

b

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1

Top−5

Top−10

(a) The smoothing parameter k1 of frequency counts (b) The item length normalization b

Figure 3.5: Parameters in the user-based relevance model.

0 20 40 60 80 100 120 140 160 180 200
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

k
3

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1

Top−5

Top−10

Figure 3.6: The smoothing parameter of frequency counts k3 in the item-based
relevance model.

model, they are in the range of [50, 100] (Fig. 3.8(b)). It is due to the fact that
the non-relevance estimation is not as reliable as the relevance estimation and
thus more smoothing is required.

3.5 Conclusions

This paper proposed a probabilistic item ranking framework for collaborative
filtering, which is inspired by the classic probabilistic relevance model of text
retrieval and its variants [86, 87, 103, 104]. We have derived two different
models in the relevance framework in order to generate top-N item recommen-
dations. We conclude from the experimental results that the proposed models
are indeed effective, and significantly improve the performance of the top-N

3.5. Conclusions 51

0 5 10 15 20 25
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

v

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

0 5 10 15 20 25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

v

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

(a) The Relevance Factor v1 (b) The Non-Relevance Factor v2

Figure 3.7: The relevance/non-Relevance smoothing parameters in the user-
based relevance model.

0 5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

v

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

0 50 100 150 200 250 300 350 400
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

v

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

(a) The Relevance Factor v1 (b) The Non-Relevance Factor v2

Figure 3.8: The relevance/non-relevance smoothing parameters in the item-
based relevance model.

item recommendations.

In current settings, we fix a threshold when considering frequency counts as rel-
evance observations. In the future, we may also consider graded relevance with
respect to the number of times a user played an item. To do this, we may weight
(sampling) the importance of the user profiles according to the number of times
the user played/reviewed an item when we construct the contingency table. In
current models, the hyperparameters are obtained by using cross-validation. In
the future, it is worthwhile investigating the evidence approximation framework
[6] by which the hyperparameters can be estimated from the whole collection; or
we can take a full Bayesian approach that integrates over the hyperparameters
and the model parameters by adopting variational methods [51].

It has been seen in this paper that relevance is a good concept to explain the

52 Chapter 3. Probabilistic Relevance Ranking

correspondence between user interest and information items. We have set up a
close relationship between the probabilistic models of text retrieval and these of
collaborative filtering. It facilitates a flexible framework to tryout more of the
techniques that have been used in text retrieval to the related problem of collab-
orative filtering. For instance, relevance observations can be easily incorporated
in the framework once we have relevance feedback from users. An interesting
observation is that, different from text retrieval, relevance feedback for a given
user in collaborative filtering is not dependent of this user’s “query” (a user
profile) only. It instead has a rather global impact, and affects the representa-
tion of the whole collection; Relevance feedback from one user could influence
the ranking order of the other users. It is also worthwhile investigating query
expansion by including more relevant items as query items or re-calculating
(re-constructing) the contingency table according to the relevance information.

Finally, a combination of the two relevance models is of interest [115, 116].
This has some analogies with the “unified model” idea in information retrieval
[85]. However, there are also some differences: in information retrieval, based
on explicit features of items and explicit queries, simple user relevance feedback
relates to the current query only, and a unified model is required to achieve
the global impact which we have already identified in the present (non-unified)
models for collaborative filtering. These subtle differences make the exploration
of the unified model ideas particularly attractive.

3.A. The Okapi BM25 Document Ranking Score 53

3.A The Okapi BM25 Document Ranking Score

To make the paper self-contained and facilitate the comparison between the pro-
posed model and the BM25 model of text retrieval [87, 104] , here we summarise
the Okapi BM25 document ranking formula. The commonly-used ranking func-
tion Sq(d) of a document d given a query q is expressed as follows:

Sq(d) =
∑

∀t:ct
q>0

log
(k3 + 1)ct

q

k3 + ct
q

(k1 + 1)ct
d

K + ct
d

log
(rt + 0.5)(N − nt − R + rt + 0.5)

(nt − rt + 0.5)(R − rt + 0.5)

(3.28)

where

• ct
q denotes the within query frequency of a term t at query q, while ct

d

denotes the with document frequency of a term t at document d.

• k1 and k3 are constants. The factors k3 + 1 and k1 + 1 are unnecessary
here, but help scale the weights. For instance, the first component is 1
when ct

q = 1.

• K ≡ k1((1 − b) + bLd). Ld is the normalised document length (i.e. the
length of this document d divided by the average length of documents in
the collection). b ∈ [0, 1] is constant.

• nt is the number of documents in the collection indexed by this term t.

• N is the total number of documents in the collection.

• rt is the number of relevant documents indexed by this term t.

• R is the total number of relevant documents.

For detailed information about the model and its relationship with the
Robertson-Sparck Jones probabilistic retrieval (RSJ) model [86], we refer to
[87, 104].

54 Chapter 3. Probabilistic Relevance Ranking

Commentary on Chapter 3

Relevance and Beyond

Chapters 2 and 3 focused on item relevance ranking. Our probabilistic models
of item relevance are based on the probability ranking principle (PRP) of infor-
mation retrieval, requiring an assumption that “the relevance of an information
item to a request is independent of other information items in the collection”
[83, 112]. Under this assumption, the PRP is optimal in terms of precision and
recall metrics [83]. However, it is worth noting that relevance may not neces-
sarily be the only concern when generating a top-N item list. For example, in
music recommendation scenarios, we expect to recommend music items from
the artists that we like, but we might also require that these artists are new
to us – we need a certain unexpectedness and novelty for the recommendation
[128]. Moreover, user interests may have multiple aspects (subtopics). It may
be difficult to decide which one is the suitable one. One of the solutions, as we
shall introduce in Chapter 4, is to ask users to specify their current interest at
hand and rank items accordingly. Another solution is to develop measurements
for these qualities and model them separately from the relevance [11, 128, 130];
the system developed in [127] separates the consideration of novelty and re-
dundancy and re-ranks the retrieval results so that the top list includes some
documents for each subtopic. It is also interesting to develop a method that
can directly integrate diversity or novelty into the probabilistic relevance mod-
elling. For example, Chen and Karger [12] argue that, instead of using the PRP,
a retrieval system should rank documents in order to maximize the probability
of finding a relevant document among the top N. A greedy heuristic they de-
veloped shows that, for each new entry in the top-N document list, one should
select documents according to the probability of relevance conditioned on an
assumption that all the past selected documents in the list were non-relevant.
This intuitively provides a natural diversity requirement.

Our study focuses on developing relevance models for collaborative filtering. To
evaluate the effectiveness of the proposed recommendation algorithms, we limit
our experiments to widely used metrics such as precision (Chapters 2, 3, and

55

56 Chapter 3. Commentary on Chapter 3

4) and the mean absolute error (MAE) (Chapters 5 and 6). We are aware that
our research is user-centered, and user satisfaction with recommender systems
has various aspects. How to develop evaluation metrics with respect to these
aspects is of great interest, but the answer to the question is, however, beyond
the scope of this thesis. We refer to [38] for the detailed discussions and studies.

Item Correlations

The approximation method given in Eq. 3.16 indicates that the weight function
Wi′m,im increases monotonically with respect to the item frequency count cm

k in
the target user profile. This might be a preferable property for text retrieval,
because in most cases, query terms are chosen to be positively associated with
relevance. In recommender systems, however, correlations between an item in
the user profile and a target item may be negative. In such a situation, we
expect that the weighting function should decrease monotonically with respect
to the item frequency count. The memory-based methods that adopt Pear-
son’s correlation [9] naturally take the negative factor into account. This is of
great interest in investigating the negative influence in the two-Poisson model
(Eq. 3.15) and the relation of the two-Poisson model to these heuristic methods
in the future.

Chapter 4
Personalized Collaborative Tagging

As a result of the popularity of collaborative tagging systems, we have witnessed
a substantial increase in user-generated content and user-generated metadata
(tags). These systems capture user preferences while their users share content
and metadata. This paper investigates how user preferences can be exploited
for the personalization tasks in collaborative tagging systems. We consider two
generative processes that generate tagging data and create probabilistic models
for collaborative indexing, collaborative browsing and collaborative search, the
three main steps in tagging systems. The individual user’s tagging history is
integrated in the recommendation of tags and items to make the suggestions
more specific and focused on the user’s task. From the proposed models, we
demonstrate that, regardless of the task, the underlying personalized ranking
should consider both the personal behavior and other users’ behavior together.
Experiments on two real data sets show that our personalized models signifi-
cantly outperform the non-personalized ones for all the three tasks.

This work is under a journal submission. Authors are J. Wang, J. Yang, M. Clements, A.
P. de Vries and M. J. T. Reinders. See also [121].

57

58 Chapter 4. Personalized Collaborative Tagging

4.1 Introduction

Recently, as a new web content production circle, user-generated content has en-
joyed an enormous growth. We have seen a shift among web content publishers
from creating on-line content themselves to providing the facilities and play-
grounds for end users to publish their self-produced content, such as bookmarks
(del.icio.us), photographs (flickr.com), research papers (CiteULike.org)
and video clips (YouTube.com).

Collaborative tagging systems have emerged to facilitate the procedures of tag-
ging (annotating), sharing and exploring content over the established social
networks. Fig. 4.1 illustrates the workflow of a common collaborative tagging
system. In general, there are two phases during the process, namely the index-
ing phase and the exploratory search phase. In the indexing phase, users tag
content that they are interested in. The tagged content could be injected by
the users themselves, for instance the photos in Flickr and videos in YouTube,
or could come from other sources, for instance the web URLs in del.icio.us and
the scientific papers in CiteULike. Aggregating from millions of users creates
a large amount of user-generated content and their associated tags. In the ex-
ploratory search phase, these systems allow users to search and explore relevant
content using these associated tags.

The amount of user-generated content is increasing far more quickly than our
capability to digest it. Compared to professionally produced content and meta
data, collaborative tagging systems face the challenge that end-users assign tags
in an uncontrolled manner, resulting in unsystematic and inconsistent meta-
data. This calls for extensive support for suggesting tags in the indexing phase,
and steering users towards their personal interests in the exploratory search
phase. We identify three opportunities for personalization in collaborative tag-
ging systems:
In the indexing phase:
1. Collaborative Indexing: personalizing the tagging process when a user
assigns tags to label (index) certain content. Tags act as an indication of
“aboutness” towards items. But, most users are not professional to describe
content by tags precisely, and are insufficiently aware of tags in use by oth-
ers. For instance, users might tag the same content using “computer game”,
“computer-game” or “computer games”. Ideally, the system should suggest
tags from the common vocabulary that fit the user’s intention or taste while
remaining consistent with other users (shown in Fig. 4.1). As a result, users
discover suitable tagging keywords more easily, and, more importantly, incon-
sistent tagging behavior is reduced. This way, every user benefits from and
builds upon the information contributed by others; it has even been claimed
that this support for suggesting tags when a user is asked to label a certain

4.1. Introduction 59

item would lead to a true “folksonomy” (e.g. coherent categorization schemes)
[32, 67]. We shall see shortly how our tag suggestion model (Section 4.3.1.1)
reinforces tags that have been frequently used by the target user as well as other
users.
In the exploratory search phase:
2. Collaborative Browsing: personalizing tag exploration when a user starts
to browse for relevant content. Navigation through tags provides an effective
way to explore and discover relevant content. To initiate the navigation, current
collaborative tagging systems make use of “tag clouds”, a visual representation
of the set of most popular tags [28, 70]. Popularity-based exploration is however
limited, as it does not necessarily fit an individual user’s need: different users
may have very different preferences. Personalizing tag exploration could allevi-
ate the search cost and improve the retrieval performance. The formulation of
the proposed collaborative browsing model is allocated in Section 4.3.2.1.
3. Collaborative Item Search: personalizing item search when a user
chooses a tag (as a query). After identifying interesting tags, users click or
issue these tags to further explore the related content (items). To rank items,
most of the existing collaborative tagging systems rely on merely its association
with the query tag, where usually a combination of the item’s popularity and
“freshness” are employed as ranking criteria. However, it is well-known in text
retrieval that, due to its ambiguity, a term (tag) alone is not semantically and
contextually expressive enough to represent the needs for a particular user. For
example, the term “apple” can be referring to a type of fruit, a computer brand
or even a city. In this regard, an optimal relevance ranking should utilize as
much extra information as possible to clarify the user’s needs. It is worthwhile
investigating the usage of user preference in order to facilitate the personalized
item search. The formulation of the personalized item search model can be
found in Section 4.3.2.2.

Considering two generative processes in the tagging data, this paper proposes
three types of task-focussed ranking models to solve the three aforementioned
personalization problems in a unified framework. We show how the underlying
personalized ranking scores for a given candidate (an item or a tag depend-
ing on the task) consist of the popularity of the candidate and its likelihood
towards the user preference. For probability estimation, we consider different
types of generative processes in the tagging data, where the smoothing methods
are naturally integrated. We then choose an optimal candidate model for each
of the three problems introduced above, and estimate the probability of the
user preferences being generated from that candidate model. Our experiments
on two real data sets demonstrate the effectiveness of the methods, showing
that all the three personalized models perform significantly better than the
non-personalized ones, while the collaborative browsing model outperforms the
ranking-based collaborative filtering approaches when we have more user pref-

60 Chapter 4. Personalized Collaborative Tagging

Indexing Exploratory Searching

User

Profiles

User

Profiles

Exploring

Tag Clouds

Searching Item
Indexing/Tagging

Items

Tags

New item

A

Chosen

Tag

A Chosen Item

Suggested

Tagging Keywords

Given an Item

Suggested

Tagging Keywords

Given an Item

Suggested

Relevant Tags

Suggested

Relevant Tags

Suggested

Relevant Items

Given a Tag

Suggested

Relevant Items

Given a Tag
u

),|(uitp),|(utip

)|(utp

Figure 4.1: Personalized Collaborative Tagging.

erences data.

The remainder of the paper is organized as follows. We first summarize related
work. We then introduce the generative processes of the tagging data and the
derived ranking models for the three suggestion problems of indexing, browsing
and search. We provide an empirical evaluation of the performance of our
models for the three ranking tasks and the impact of parameters, and finally
conclude our work.

4.2 Related Work

Collaborative tagging systems have recently emerged as tools that assist to find
structure in online database and user-generated content. As an example, Golder
and Huberman conducted an investigation of del.icio.us, a web bookmarking
system [32]. Their results have been confirmed on measurements on the online
photo album Flickr in [67]. These works have also investigated the incentives
for users to collaborate in a social tagging system, and although users mostly
tag their items for their personal use, these tags can still be a great contribution
to social exploratory search. Halpin et al studied the dynamics of the collabo-
rative tagging system, showing that tagging distributions tend to stabilize into
power law distributions [33]. We think that providing a tagging suggestion
that carefully examining both the personal behavior and other users’ behavior
could accelerate the stabilization process, leading to a coherence categorization

4.3. Personalization Models 61

scheme in collaborative tagging systems (the task 1 in our paper).

In order to improve social navigation results in collaborative tagging systems,
researchers tried to detect semantically related tag clusters [4]. We believe that
a personalized tag cloud (the task 2) can contribute more to the user experience
than a tag clustering, although a clustering system can easily be integrated into
our computation of personalized tag clouds.

So far, academic research into the retrieval and prediction models for collabora-
tive tagging systems has been limited. Collaborative filtering provides methods
to predicts a user’s interests by looking at other but similar users (user-based
collaborative filtering, e.g., [9, 37, 129]) or other but similar items to the target
item (e.g., item-based collaborative filtering [23]). A drawback of these col-
laborative filtering approaches is that they are usually based on explicit user
ratings, that are hard to obtain in practice [15]. Alternatively, user preferences
may be inferred from implicit observations of user interactions with the sys-
tem (for instance, tagging) and consequently building a ranking model for user
interests. Examples include the item-based Top-N collaborative filtering ap-
proaches [23, 114] and Amazon’s operational item-based collaborative filtering
[61]. However, almost all collaborative filtering research has ignored the tag
structure, relying on user-item interactions only. The predictions made about
user preferences are conditional on the full user profile, and therefore indepen-
dent of the user’s task. Without other data or inputs, collaborative filtering
cannot accurately model the important aspects of users or items. Although
some hidden aspect models have been proposed to compute recommendations
[41, 50, 99], the interpretation of the hidden aspects in terms of their meaning
remains usually unclear. User-input in the form of tags (the opportunity 3)
could however provide an effective channel to infer and learn the aspects of
user interests and contents, resulting in more specific and task-focussed recom-
mendations.

4.3 Personalization Models

This section introduces generative probabilistic models to address the three
personalization problems in collaborative tagging systems posed in the intro-
duction, using the following notation. Let u be a discrete random variable over
the sample space of users ΦU = {1, ...,M}, let i be a random variable over the
sample space of items (content) ΦI = {1, ...,K}, and let t be a random variable
over the sample space of tags ΦT = {1, ..., L} (where M is the number of users,
K the number of items, and L the number of tags in the collection).

Consider the following two processes that generate tagging data. The first
model views a tag as the output of a generative process associated with each

62 Chapter 4. Personalized Collaborative Tagging

user. A particular user’s decision to choose a tag is the result of choosing a
generative model for that particular user, and then generating the tag using
that model (illustrated in Fig. 4.2). More formally, for each user u ∈ ΦU , we
choose a tag-generative model ΘT

u :

ΘT
u = (θ1

u, ...θt
u..., θL

u), with θt
u ∈ [0, 1],

∑

u

θt
u = 1, (4.1)

where θt
u indicates the probability of generating a tag t from the distribution

belonging to the generative model of a user u. Later on, we assume a multi-
nomial distribution over the vocabulary of tags, but the model itself does not
depend on a specific choice of distribution.

The second model assumes that items are the output of a generative process as-
sociated with each tag, ΘI

T . This process is assumed independent from the user
variable, to keep the sparsity in the data manageable. This independence as-
sumption keeps our model relatively simple (less parameters) while still having
a close representation of the underlying patterns.

Research on the language modelling approach for text retrieval has identified
various methods to estimate the term probabilities in document models, using
smoothing to handle the sparsity in the term document matrix [126]. We follow
these ideas for the estimation of the probabilities in our generative models. Ta-
ble 4.1 summarizes the two generative models and their probability estimations.
For readability, we leave the detailed description about the probability estima-
tions in Appendix 4.A, and continue to formulate the three personalization
problems in terms of conditional probabilities:

1. Collaborative Indexing: The tag to assign to an item can be suggested
based on the probability of a candidate tag t being used to label a given
item i from the user u, i.e., p(t|i, u).

2. Collaborative Browsing: When browsing a ‘tag cloud’, the most rele-
vant tags can be identified using the probability of a candidate tag t given
a user u, i.e. p(t|u).

3. Collaborative Search: After user u selects tag t, the most relevant
items have the highest probability p(i|t, u).

These probabilities provide principled ranking scores for a personalized order-
ing of tags and items in collaborative tagging systems. Our suggestion models
combine the user preferences for items with the observed user actions involving
tags (e.g., selecting a tag to explore items, or tagging a particular item). The
role of tags distinguishes this approach from the suggestions provided by ex-
isting collaborative filtering approaches, where items are ranked based on user

4.3. Personalization Models 63

� �

�
θ �

�

�
θ

����� �����

�

Figure 4.2: A Generative Model of Tagging Data.

Table 4.1: Probability estimation.

ML Laplace smooth. Bayes smooth. Jelinek-Mercer Smooth.

n(u,t)
P

t n(u,t)
n(u,t)+ν

P

t n(u,t)+νL

n(u,t)+µ(
P

u n(u,t)/
P

i,t n(u,t))
P

t n(u,t)+µ
λ

n(u,t)
P

t n(u,t)
+ (1 − λ)

P

u n(u,t)
P

u,t n(u,t)

p(t|Θ̂T
u) αt = 1 αt = ν + 1 αt = µ

P

i n(u,t)
P

i,t n(u,t)
+ 1 -

n(i,t)
P

i n(i,t)
n(i,t)+ν

P

i n(i,t)+νK

n(i,t)+µ
P

t n(i,t)/
P

i,t n(i,t)
P

i n(i,t)+µ
λ

n(i,t)
P

i n(i,t)
+ (1 − λ)

P

t n(i,t)
P

i,t n(i,t)

p(i|Θ̂I
t) αi = 1 αi = ν + 1 αi = µ

P

t n(i,t)
P

i,t n(i,t)
+ 1 -

preferences alone, i.e., using p(i|u). Of course, this probability can be derived
from our model by marginalizing out the tags, p(i|u) =

∑
t p(i|t, u)p(t|u). In

other words, the usage of tags makes the proposed suggestion models more
context-aware than traditional collaborative filtering approaches.

4.3.1 Indexing Phase

This section describes personalization for the indexing phase. We aim at sug-
gesting a tag for a given item from a pool of tags that have been employed by
other users.

4.3.1.1 Collaborative Indexing Model

Formally, personalizing collaborative indexing refers to the suggestion of candi-
date tags with high p(t|i, u), for a given user u who labels item i. Using Bayes’
rule gives the following ranking formula:

p(t|u, i) =
p(t|u)p(i|t, u)

p(i|u)
(4.2)

Assuming that tags generate items independent from u (Fig. 4.2), i.e., p(i|t, u) =
p(i|t), and ignore p(i|u) as it is independent from t and therefore does not
influence the ranking of tags, we get

p(t|u, i) ∝t log p(t|u) + log p(i|t) (4.3)

64 Chapter 4. Personalized Collaborative Tagging

where ∝t denotes same rank order with respect to t.

To estimate the two conditional probabilities, we consider the two generative
processes that have been discussed (illustrated in Fig. 4.2). In Bayesian infer-
ence [29], the generative process can be expressed as an integration over all the
model parameters to take the uncertainty about the right model into account.
In the case of p(t|u), we have:

p(t|u) =

∫

ΘT
u

p(t|ΘT
u , u)p(ΘT

u |u)dΘT
u (4.4)

where p(ΘT
u |u) (given as p(ΘT

u |{n(u, t)}L
t=1,a

T
u) in Appendix 4.A) is the pos-

terior probability of model parameter ΘT
u when we have observed some tags

(denoted as {n(u, t)}L
t=1) associated with this user u, and p(t|ΘT

u , u) describes
the generative process from the estimated model to a tag.

In practice, it is common to approximate the full Bayesian integration over the
model by estimating the “optimal” model parameters Θ̂T

u (e.g. by Maximizing
their A Posterior probability (MAP)) and then setting p(ΘT

u |u) ≈ δ(ΘT
u , Θ̂T

u)
[46]:

p(t|u) ≈
∫

ΘT
u

p(t|ΘT
u , u)δ(ΘT

u , Θ̂T
u)dΘT

u = p(t|Θ̂T
u) (4.5)

This paper takes the approximation approach, leaving the full Bayesian ap-
proach for future work. Substitute the optimal model of Eq. 4.5 for each gen-
erative process in Eq. 4.3:

p(t|u, i) ∝t log p(t|Θ̂T
u) + log p(i|Θ̂I

t) (4.6)

The ranking score of each tagging keyword is composed of two generative pro-
cesses. The first process calculates how probable the candidate keyword is to
be generated from the user model (a completely personal suggestion), while
the other one computes from the candidate tag (keyword) model how probable
the query item would be generated (a completely popularity-based suggestion).
Thus, a tag that has been frequently used in the past by the target user and
by other users for the target item will have a high ranking score. It naturally
copies with the “rich get richer” phenomenon [33].

We can incorporate different types of smoothing techniques into the model esti-
mations in Eq. 4.6 to count data sparsity. (refer to Table 4.1). The smoothing
parameter also plays a central role in balancing the personal suggestion with
the popularity-based suggestion (see Eq. 4.18). Varying the smoothing param-
eter µ shows that an optimum can be found between a completely personal and
completely popularity-based tag suggestion.

4.3. Personalization Models 65

4.3.2 Exploratory Search Phase

This section introduces personalization for the exploratory search phase. Dif-
ferent from the case of personalizing collaborative indexing, we need to predict
“new” items or tags, i.e., those that do not exist in the given user preference.
Using a model Θ̂T

u per user u is suitable for the indexing problem, but inappro-
priate to make predictions on new tags or items – since we have no observations
to compute the user model for the candidate tags (or items). To address this
problem, we invert the Bayesian inference, to infer the user’s tags rather than
deploy them. In this regard, we represent user preferences explicitly, such that
they can be linked to the preferences of other users. Formally, qu denotes the
preferences of user u, either based on items or on tags. In the former case, user
preferences correspond to the set of items that this user has tagged or preferred,
i.e., qu = {i|n(u, i) > 0}, where n(u, i) denotes the number of times a user u
has tagged an item i) (normally these are binary, as users tend to tag an item
only once). In the latter case, user preferences are represented by the set of
tags that this user has used, qu = {t|n(u, t) > 0}.

4.3.2.1 Collaborative Browsing Model

In collaborative browsing, interesting tags are suggested to create a personalized
“tag cloud” using the following ranking formula:

p(t|qu) =
p(qu|t)p(t)

p(qu)

∝t log p(qu|t) + log p(t) − log p(qu)

∝t log p(qu|t) + log p(t)

(4.7)

where log p(qu) can be removed since it is independent of the target t. The tag
ranking has two parts: its likelihood towards the user preference p(qu|t) and its
popularity p(t). The probability p(t) can be easily estimated by counting the
frequency from the collection.

To estimate the likelihood p(qu|t), we follow the argument of the previous
section. That is we first choose an optimal tag model Θ̂I

t (an item-generation
model) for each candidate tag t and then estimate the probability of the user
preference (as query) being generated by the candidate tag model:

p(t|qu) ∝t log p(qu|Θ̂I
t) + log p(t) (4.8)

The estimation of the likelihood p(qu|Θ̂I
t) depends again on the representation

of the user preferences (using items or tags). If we use the representation as a

66 Chapter 4. Personalized Collaborative Tagging

set of items and assume that each item in the user preference is independently
generated, we have

p(t|qu) ∝t

∑

i′∈qu

log p(i′|Θ̂I
t) + log p(t) (4.9)

Taking the alternative representation of user preferences by a set of tags and
assuming that each tag in the user preference is independently generated result
in the following ranking score from Eq. 4.7:

p(t|qu)

∝t log p(qu|Θ̂I
t) + log p(t)

=
∑

t′∈qu

n(t′, u) log p(t′|Θ̂I
t) + log p(t)

=
∑

t′∈qu

n(t′, u) log
(∑

i′

pML(t′|i′)p(i′|Θ̂I
t)

)
+ log p(t)

(4.10)

where pML(t|i) = n(i,t)
P

t n(i,t) . The ranking corresponds to the sum (in logarithm

domain) of a personalized suggestion and the popularity suggestion. When we
know little about the user, we have less observations on the generation from
the target to the user preference and thus the prediction comes mainly from the
popularity part. The smoothing parameters balance the two suggestions. For
instance, in the Jelinek-Mercer smoothing, when the λ is zero, the first term
becomes constant for all the candidate tags and the prediction relies solely on
popularity.

4.3.2.2 Collaborative Item Search Model

Following the discussion in section 4.3.2.1 and considering the tag-generation
model of an item, we can derive the relevant item ranking model similarly. We
omit the derivations and give the final ranking score as follows:

p(i|qu, t) ∝i log p(qu|Θ̂T
i) + log p(t|Θ̂T

i) + log p(i)

∝i

(∑

t′∈qu

n(t′, u) log p(t′|Θ̂T
i)

)

+ log p(t|Θ̂T
i) + log p(i)

(4.11)

where the user preference is represented by a set of tags (the model using the
item-based user preference can be obtained similarly). We can see that the
ranking for a given item is a combination of the its popularity (p(i)), its prob-
ability of generating the query tag (p(t|Θ̂T

i)), and its probability of generating
the user preference (p(qu|Θ̂T

i)).

4.3. Personalization Models 67

Table 4.2: Characteristics of the test data sets.
del.icio.us CiteULike

Num. of Users 1731 741
Num. of Items 3370 2179
Num. of Tags 1097 960

Num. of User-Item-Tag Triples 772087 20703
Avg. Num. of Tags per User 109 12
Avg. Num. of Items per Tag 135 14
Avg. Num. of Tags per Item 44 6

4.3.3 Discussions

Our approach to modelling tagging data resembles the generative models de-
picted in language modelling of text retrieval [55, 56], with the difference that
tagging data has two different generative processes. For each specific task and
its model, their comparison with other common topics in information retrieval
is summarized as follows:

1. Collaborative Indexing: This indexing task is similar to document cate-
gorization or classification, as both aim at labeling (classifying) the documents
(items). However, the indexing in our model is “collaborative”. The final rank-
ing balances the popularity ranking against the personalized one. Therefore,
a good tag candidate should be consistent with other users’ labeling behav-
ior while still focusing on the user’s own vocabulary (familiar tags in the user
preference).

2. Collaborative Browsing: This model for ranking tags looks somewhat
similar to the case of query expansion using relevance feedback in text retrieval,
where terms are ranked against a set of judged documents from a given user.
Yet, the two problems are quite different. In our tag ranking, we want to
suggest tags that are not used previously by this user. Thus, we have to use the
information from other users such that the terms (tags), which are not judged
in the relevant document list (user preferences), can still be suggested. We
achieve this by looking at how similar the tag is to the items that the target
user preferred (item-based user preference) or to the tags that the target user
used (tag-based user preference).

3. Collaborative Item Search: If we treat tags as one-word queries, our
model intuitively provides a unified framework to combine the language mod-
elling of ranking queries to the collaborative filtering of ranking user prefer-
ences. This is similar to the work of collaborative web search in [102] with the
difference that our model gives a more theoretical foundation.

68 Chapter 4. Personalized Collaborative Tagging

Table 4.3: Comparison of the Collaborative Indexing (Tagging) Model with non-
personalized ones. A Wilcoxon signed-rank test is conducted and the significant
ones (P-value < 0.05) are marked as ∗.

Precision:
User Prof. Length: 20% 40%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.832* 0.733* 0.641* 0.852* 0.749* 0.656*
Non-Personalized 0.799 0.684 0.613 0.801 0.692 0.615

User Prof. Length: 60% 80%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.867* 0.768* 0.673* 0.866* 0.780* 0.683*
Non-Personalized 0.807 0.702 0.626 0.806 0.698 0.631

Recall:
User Prof. Length: 20% 40%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.135 0.353* 0.511* 0.137* 0.358* 0.517*
Non-Personalized 0.130 0.329 0.487 0.128 0.329 0.482

User Prof. Length: 60% 80%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.138* 0.361* 0.522* 0.135* 0.360* 0.520*
Non-Personalized 0.128 0.329 0.484 0.126 0.322 0.480

(a) in the del.icio.us Data Set.

Precision:
User Prof. Length: 20% 40%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.615* 0.432* 0.313* 0.661* 0.452* 0.322*
Non-Personalized 0.501 0.382 0.292 0.515 0.393 0.298

User Prof. Length: 40% 80%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.671* 0.479* 0.336* 0.662* 0.462* 0.324*
Non-Personalized 0.522 0.405 0.306 0.503 0.373 0.288

Recall:
User Prof. Length: 20% 40%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.178* 0.369* 0.439* 0.190* 0.384* 0.451*
Non-Personalized 0.144 0.325 0.413 0.147 0.333 0.419

User Prof. Length: 60% 80%
Top-N Returned: 1 3 5 1 3 5
Tagging-BS 0.191* 0.401* 0.462* 0.190* 0.391* 0.451*
Non-Personalized 0.147 0.337 0.424 0.142 0.314 0.404

(b) in the CiteULike Data Set.

4.4 Experiments

4.4.1 Data Set Preparation

Despite the popularity of collaborative tagging, there are no standard data sets
available for research evaluation. We collected data from two well-known col-

4.4. Experiments 69

Table 4.4: Comparison of the Collaborative Item Search Model with non-
personalized ones. A Wilcoxon signed-rank test is conducted and the significant
ones (P-value < 0.05) are marked as ∗. Precision is measured.

User Prof. Length: 20% 40%
Top-N Returned: 1 5 10 1 5 10
ItemUP-BS 0.284* 0.192* 0.160* 0.280* 0.191* 0.154*
Non-Personalized 0.263 0.182 0.150 0.257 0.171 0.139

User Prof. Length: 60% 80%
Top-N Returned: 1 5 10 1 5 10
ItemUP-BS 0.249* 0.175* 0.139* 0.240* 0.138* 0.113*
Non-Personalized 0.228 0.144 0.119 0.186 0.112 0.094

(a) in the del.icio.us Data Set.

User Prof. Length: 20% 40%
Top-N Returned: 1 5 10 1 5 10
Tag UP-BS 0.190* 0.094* 0.063* 0.193* 0.095* 0.065*
Non-Personalized 0.146 0.077 0.055 0.141 0.075 0.057

User Prof. Length: 60% 80%
Top-N Returned: 1 5 10 1 5 10
Tag UP-BS 0.174* 0.081* 0.052* 0.183* 0.078* 0.048*
Non-Personalized 0.118 0.062 0.044 0.111 0.052 0.040

(b) in the CiteULike Data Set.

laborative tagging web sites, del.icio.us and CiteULike. The corpus has
been crawled between May and October 2006. We collected a number of the
most popular tags, found which users were using these tags, and then down-
loaded the whole profiles of these users, and applied standard term tokenization
techniques from text retrieval followed by stopword removal. Finally, we ex-
tracted the user-item-tag triples from each of the user profiles. User IDs are
randomly generated to keep the users anonymous. Table 4.2 summarizes the
basic characteristics of the data sets.

4.4.2 Evaluation Protocols

Evaluation Methodology: Since the three tasks, either ranking items or tags,
are essentially prediction tasks, we can evaluate their performance by holding
a certain amount of data as ground-truth and building the prediction models
from the remaining data to predict the ground-truth. The effectiveness of these
predictions can be therefore evaluated by comparing the predicted ones with
the ground-truth. For this, we randomly divided the data set into a training set
(80% of the users) and a test set (20% of the users). The training set was used
to estimate the model. The test set was used for evaluating the accuracy of
the suggestions on the new users, whose user profiles (represented by items or
tags) are not in the training set. For each test user, part of the items and their
associated tags of that test user, for instance, 20% and 40% etc., was put into

70 Chapter 4. Personalized Collaborative Tagging

Table 4.5: Comparison of the Collaborative Browsing Model with other alterna-
tives in the del.icio.us Data Set. A Wilcoxon signed-rank test is conducted
and the significant ones (P-value < 0.05) over the second best are marked as ∗.
Precision is measured.

User Prof.: 20% 40%
Top-N: 1 5 10 1 5 10
Item UP-BS 0.848* 0.795* 0.743* 0.835* 0.753* 0.688*
Non-Person. 0.746 0.746 0.690 0.705 0.690 0.623

User Prof.: 60% 80%
Top-N: 1 5 10 1 5 10
Item UP-BS 0.776* 0.666* 0.588* 0.645* 0.495* 0.404*
Non-Person. 0.631 0.591 0.507 0.504 0.413 0.328

(a) Comparison with the popularity-based one.

User Prof.: 20% 40%
Top-N: 1 5 10 1 5 10
Item UP-BS 0.849 0.795 0.744 0.836* 0.754* 0.688
ItemProb 0.860 0.786 0.741 0.803 0.729 0.672
ItemCos 0.833 0.799 0.752 0.815 0.740 0.683
UserCos 0.822 0.779 0.728 0.793 0.732 0.674

User Prof.: 60% 80%
Top-N: 1 5 10 1 5 10
Item UP-BS 0.776* 0.667 0.588* 0.645* 0.495* 0.404*
ItemProb 0.738 0.636 0.561 0.580 0.455 0.379
ItemCos 0.748 0.656 0.576 0.597 0.470 0.385
UserCos 0.733 0.647 0.571 0.583 0.471 0.386

(b) Comparison with the ranking-based collaborative filtering.

the user profile list. The remaining items and their associated tags were used to
test the prediction (suggestion) performance. By doing so, we model different
sparsity of user profiles. The overall scheme is illustrated in Fig. 4.3. For cross-
validation, results are averaged over 5 different runs (sampling of training/test
set).

Evaluation Metrics: We have three types of suggestion models. To evaluate
their effectiveness, we choose different evaluation metrics with respect to their
purposes. For the collaborative browsing (p(t|u)) and search models (p(i|u, t)),
their effectiveness can be measured using the precision since they are used to
help a user to find relevant tags (or items). It basically measures the proportion
of suggested tags (the collaborative browsing model) or items (the collaborative
search model) that are ground truth tags or items (only partially known).

For the collaborative tagging model (p(t|u, i)), users need to get some specific
keywords to label the given item. Thus recall is also an appropriate measure-
ment. It measures the proportion of the ground truth tags that are indeed
suggested. For this model, we use both precision and recall.

4.4. Experiments 71

Ground-truthUser Profiles

T
r
a
in

in
g

 U
s
e
r
s

T
e
s
t U

s
e
r
s

Randomly split per test user

R
a
n

d
o

m
ly

 s
p

lit

Item and its associated tags

Figure 4.3: The split of Data Sets.

4.4.3 Performance of Personalization Models

This section evaluates the performance of the proposed personalization models.
The first experiments investigate the performance of the collaborative indexing
models and the collaborative item search. The main advantage of these two
models is to integrate “collaborative” user behavior into the ranking scores. To
evaluate the effectiveness of these models, we compare the personalized results
to those obtained with a non-personalized ranking (i.e., applying the standard
language modelling approach for text retrieval [39]: a generative model from
candidate item to the query tag or vice versa). The results of collaborative
indexing search are given in Table 4.3 and those for collaborative item search
in Tables 4.4. Both of them use the Bayes smoothing (see Table 4.1) and the
parameters are chosen to be optimal in a validate set. A Wilcoxon signed-
rank test [45] is done to verify the significance. These results indicate that the
personalized collaborative models significantly outperform the non-personalized
approach, regardless of the sparsity of user preferences and the different data
sets investigated. More specifically, comparing the different user profile length,
we notice that the more observations about user preferences we have, the more
our models improve over the non-personalized performance.

Next, let us look at collaborative browsing task. Table 4.5 (a) shows that

72 Chapter 4. Personalized Collaborative Tagging

our model with Bayes smoothing (denoted as ItemUP -BS) also significantly
outperform the popularity-based ranking in all configurations. Recall that col-
laborative browsing aims at ranking (suggesting) tags with respect to a certain
user profile (user interest). For this task, some existing collaborative filter-
ing techniques can be applied if we treat tags as items. Collaborative filter-
ing techniques can be roughly classified as rating prediction and item ranking.
Rating-prediction-based collaborative filtering is designed for rating data and
its purpose is to predict user ratings of items. This makes it inapplicable to
implicit ratings like click data (or, in our case, tagging data). But for item-
ranking-based collaborative filtering, its purpose is to rank items and thus it
can be employed for the tag suggestion task. Therefore we choose one of the
state-of-the-art ranking-based collaborative filtering techniques: the item-based
top-N recommendation method [23]. To make a fair comparison, we directly
use their optimized Top-N -suggest recommendation engine 1 [52] and compared
them with the results of the our collaborative browsing model. Particularly, we
compared our own results to the item-based TF×IDF-like version (denoted as
ItemProb) and to the user-based cosine similarity method [37] (denoted as User-
Cos), setting the parameters to the optimal ones according to the user manual.
We report cosine similarity results for item-based approaches [92] as well (de-
noted as ItemCos). Results in Table 4.5 (b) show that, in most cases, our model
outperforms the ranking-based collaborative filtering approaches. Particularly,
the improvement becomes significant when we have more data in user profiles.
This is because we model two generative processes in tagging data while com-
mon collaborative filtering techniques only model one generative process, in this
case, the user-to-tag generative process.

4.4.4 Representation of User Profiles

As explained in Section 3, user profiles can be represented by a set of items or
tags. This section compares the effectiveness of the two representations (e.g.,
ItemUP , TagUP).

Starting with the collaborative browsing model, we report results for user pref-
erence lengths 5, 10, and 20, and the corresponding precisions at top-1, top-5
and the top-10. Table 4.6 (a) shows that, in general, the item-based user pref-
erence representation outperforms the tag-based representation. This may due
to the fact that in a tagging system like del.icio.us, a user only considers
a new tag when the old tags are insufficiently expressive for the newly added
items. As a consequence, the correlation between two tags in one user profile is
less obvious than that between two items. Thus, using the “old” tags to predict
(rank) new tags is not as reliable as using the “old” items.

1http://www-users.cs.umn.edu/~karypis/suggest/

4.4. Experiments 73

Table 4.6: Comparison of the two representation methods for user profiles.
Precision is measured.

User Prof.: 20% 40%
Top-N: 1 5 10 1 5 10
Item UP-BS 0.848 0.795 0.743 0.835 0.753 0.688
Item UP-JMS 0.772 0.764 0.714 0.763 0.723 0.664
Tag UP-BS 0.810 0.764 0.708 0.797 0.719 0.646
Tag UP-JMS 0.753 0.752 0.692 0.716 0.695 0.625

User Prof.: 60% 80%
Top-N: 1 5 10 1 5 10
Item UP-BS 0.776 0.666 0.588 0.645 0.495 0.404
Item UP-JMS 0.709 0.632 0.564 0.595 0.473 0.392
Tag UP-BS 0.715 0.623 0.542 0.578 0.447 0.358
Tag UP-JMS 0.656 0.595 0.515 0.530 0.422 0.345

(a) the Collaborative Browsing Model in the del.icio.us Data Set.

User Prof. Length: 20% 40%
Top-N Returned: 1 5 10 1 5 10
ItemUP-BS 0.284 0.192 0.160 0.280 0.191 0.154
TagUP-BS 0.282 0.194 0.161 0.274 0.187 0.149

User Prof. Length: 60% 80%
Top-N Returned: 1 5 10 1 5 10
ItemUP-BS 0.249 0.175 0.139 0.240 0.138 0.113
TagUP-BS 0.248 0.164 0.132 0.213 0.132 0.107

(b) the Collaborative Item Search Model in the del.icio.us Data Set.

User Prof. Length: 20% 40%
Top-N Returned: 1 5 10 1 5 10
Item UP-BS 0.153 0.079 0.055 0.173 0.080 0.054
Tag UP-BS 0.190 0.094 0.063 0.193 0.095 0.065

User Prof. Length: 60% 80%
Top-N Returned: 1 5 10 1 5 10
Item UP-BS 0.134 0.065 0.043 0.140 0.062 0.040
Tag UP-BS 0.174 0.081 0.052 0.183 0.078 0.048

(c) the Collaborative Item Search Model in the CiteULike Data Set.

But for the collaborative item search model, the two user profile representations
may perform differently on different data sets. Notice from Table 4.6 (b) and (c)
that the tag-based user preference representation (i.e. TagUP-BS), in general,
outperforms the item-based one in the CiteULike data set, but it behaves
differently in del.icio.us. This is because the tags for scientific papers are
more specific than those for URLs. As a consequence, tags in CiteULike can
represent users’ interests more precisely than in del.icio.us.

Besides, we also observe from table 4.6 (a) that the Bayes smoothing works
better than the Jelinek-Mercer smoothing, regardless of the different repre-
sentation of user profiles. The possible explanation in our case is that, like
document length in text retrieval, our candidate tags have different number of
items associated with them. Bayes smoothing adapts to the “tag length” (see

74 Chapter 4. Personalized Collaborative Tagging

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log10(µ)

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log10(µ)

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

1. Tag-Based UP: 20 Tags 2. Item-Based UP: 20 Items

(a) Bayes-Smoothing parameter µ

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−log10(λ)

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−log10(λ)

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

Top−1
Top−5
Top−10

1. Tag-based UP: 20 Tags 2. Item-based UP: 20 Items

(b) Jelinek-Mercer Smoothing parameter λ

Figure 4.4: Impact of the parameters in the Collaborative Browsing Model. In
the del.icio.us Data Set.

explanation in Eq. 4.19) and thus leads to a better performance.

4.4.5 Impact of Parameters

This section evaluates the smoothing parameters in our models in the
del.icio.us data set. Our objective is to study the sensitivity and impact
of the parameters, and, for a thorough study of the different smoothing tech-
niques, we refer to [126].

The first experiments address the collaborative exploratory search phase. Fig.
4.4 (a) and (b) plot precision against parameter µ in Bayes smoothing (BS)
and parameter λ of Jelinek-Mercer smoothing (JMS), respectively, using a log-
arithmic scale. Notice that we plot − log 10(λ) such that in both Figures the

4.4. Experiments 75

0 200 400 600 800 1000 1200
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

µ

R
ec

om
m

en
da

tio
n

P
re

ci
si

on

UP Length: 20%
UP Length: 40%
UP Length: 60%
UP Length: 80%

0 200 400 600 800 1000 1200
0.5

0.505

0.51

0.515

0.52

0.525

0.53

µ

R
ec

om
m

en
da

tio
n

R
ec

al
l

UP Length: 20%
UP Length: 40%
UP Length: 60%
UP Length: 80%

(a) Precision at Top-5 (b) Recall at Top-5

Figure 4.5: Impact of the parameter µ in the Collaborative Indexing Model. In
the del.icio.us Data Set.

amount of smoothing increases along the axis. We observe from both figures
that the optimal precision emphasizes either a higher value of µ or a low value
of λ, indicating that parameter estimation needs a large amount of smoothing
from the background collection model (a popularity-based model). The large
amount of smoothing is attributed to data sparsity. The optimal results of
Bayes smoothing are relatively stable in a wide range between 105 to 106 and
those of Jelinek-Mercer smoothing are in the range of 10−4 and 10−2, indepen-
dent of representation and length of user preferences. In addition, we observe
that the precision obtained with Jelinek-Mercer smoothing is more sensitive to
lambda for the tag-based user preferences than for the item-based user pref-
erences. The tag-based user preferences need even more smoothing (almost
corresponding to coordination level matching [126]). Additional experiments
(not reported here) show that smoothing in collaborative item search exhibits
similar behavior.

Regarding collaborative indexing, recall how Eq. 4.6 is based on two generative
models, the user’s tag-generation model and tag’s item-generation model. Since
the goal is to create a vocabulary shared by all users, we do not want to suggest
tags that no other user assigned to the item, so we choose the maximum-
likelihood estimator for the tag’s item-generation model. Bayes smoothing is
applied in the user’s tag-generation model. Fig. 4.5 plots the precision and
recall against parameter µ, showing that the optimal µ is insensitive to the
length of user profiles, and has a relatively small value compared to the one in
the collaborative browsing model. This means that the indexing model needs
less smoothing from the background collection model, which can be explained
because users tend to select tags from their own user preference list to label an
item.

76 Chapter 4. Personalized Collaborative Tagging

4.5 Conclusions

User-generated content and meta data open new avenues for many interesting
applications and challenges. This paper investigated three ways to personal-
ize collaborative tagging systems: during indexing (assigning tags to items),
browsing (finding interesting tags to explore) and search (finding items repre-
sentative of an interesting tag). We conclude from the experimental results that
the proposed personalized methods are effective, and could improve the user’s
indexing and retrieval experiences in collaborative tagging systems.

In the future, like other personalized tasks [14, 24, 98], we will also need do a
user study to further evaluate our models in operational tagging systems. In
such an environment, a setup that could incorporate relevance feedback is of
particular interest. In addition, we plan to extend the estimation process to a
full Bayesian treatment (Eq. 4.4 and [125]).

4.A. Probability Estimation 77

4.A Probability Estimation

For simplicity, we only describe the parameter estimation for the user’s tag-
generation model, which is used for the collaborative tagging model. The prob-
ability estimations of other generative models, used for other two models, can
be derived analogously.

As we described in Section 4.3, the user’s tag-generation model views a tag as
the output of a generative process associated with each user. For a given user
u, we treat the parameters of the tag-generation model ΘT

u , defined in Eq. 4.1,
as random variables (Fig. 4.2) and estimate their value by maximizing their a
posteriori probability [46]:

Θ̂T
u = arg max

ΘT
u

p(ΘT
u |{n(u, t)}L

t=1,a
T
u) (4.12)

where n(u, t) denotes the observation of the number of times that a tag t has
been used by the user u and aT

u denotes the parameters of the prior distri-
bution (often referred to as hyper-parameters). The posterior probability is
proportional to the product of the likelihood and the prior probability:

p(ΘT
u |{n(u, t)}L

t=1,a
T
u) ∝ p({n(u, t)}L

t=1|ΘT
u)p(ΘT

u |aT
u) (4.13)

The likelihood p({n(u, t)}L
t=1|ΘT

u) ∝ ∏
t(θ

t
u)n(u,t) captures the knowledge of the

model parameters coming from the observed data ({n(u, t)}L
t=1). Data spar-

sity results in only small amounts of data to achieve an “accurate” estimation
of these parameters. A solution is to deploy the prior p(ΘT

u |aT
u) to incorpo-

rate prior knowledge of the model parameters. In practice, the multinomial’s
conjugate distribution (the Dirichlet) is chosen as prior to simplify estimation
[29]:

p(ΘT
u |aT

u) ∝
∏

t

(θt
u)at−1

(4.14)

where aT
u = (a1, . . . , aL) are the parameters of the Dirichlet distribution. Be-

cause of using the conjugate, the posterior probability after observing some
data corresponds to a Dirichlet with updated parameters:

p(ΘT
u |{n(u, t)}L

t=1,a
T
u) ∝

∏

t

(θt
u)n(u,t)

∏

t

(θt
u)at−1

=
∏

t

(θt
u)n(u,t)+at−1

(4.15)

Maximizing the posterior probability in Eq. 4.15 (taking the mode [29]) gives
the estimation of the probabilities in the tag-generation model.

p(t|Θ̂T
u) = θ̂t

u =
n(u, t) + at − 1

(
∑

t n(u, t)) + (
∑

t at) − L
(4.16)

78 Chapter 4. Personalized Collaborative Tagging

Varying choices for hyper-parameter at lead to different estimators [125]. For
instance, a constant value at = 1 gives the maximum-likelihood estimator. Set-
ting at = ν + 1, where ν is a free parameter, results in the generalized Laplace
smoothing estimator. Alternatively, the prior can be fit on the distribution of
the tags in a given collection:

at = µ · pML(t) + 1, where pML(t) =

∑
u n(u, t)∑
u,t n(u, t)

(4.17)

where pML is the maximum-likelihood estimator. Substituting Eq. 4.17 into Eq.
4.16 results in the Bayes-smoothing estimator [125]

p(t|Θ̂T
u) = θ̂t

u =
n(u, t) + µ · pML(t)

(
∑

t n(u, t)) + µ
(4.18)

Eq. 4.18 is equivalent to (details in [126])

p(t|Θ̂T
u) = θ̂t

u = λupML(t|u) + (1 − λu)pML(t), (4.19)

where

λu =
(∑

t n(u, t)

µ +
∑

t n(u, t)

)
, pML(t|u) =

n(u, t)∑
t n(u, t)

(4.20)

The result can be viewed as an adaptive version of linear interpolation smooth-
ing with p(t), the term probability estimated from a background model. One
can also fix the influence from the background model with a constant λu = λ,
giving the commonly used Jelinek-Mercer smoothing [126].

Commentary on Chapter 4

A drawback of pure collaborative filtering algorithms (including those intro-
duced in Chapters 1 and 2) is that the relevance prediction of a user information
need (interest) relies entirely on the profile of the user, regardless of the user’s
task at hand. As a result, the recommendations are less task-focused. This is
why there are as yet no avaiable generic recommendation engines: current rec-
ommendation systems are designed specifically for one particular type of infor-
mation item: for example, the recommender system of Netflix (netflix.com)
handles only DVD movies, while that of Last.FM (Last.FM) deals solely with
music items. Chapter 4 suggests that, in recommender systems, asking users to
provide queries could be effective in inferring and learning the aspects of user
interests, resulting in more specific and task-focused recommendations.

On the other hand, to

Dynamic Doc. Collection

Document Ranking Results

Incoming Query

Dynamic User

Profile /Query

Indexing

Dynamic

Doc.

Indexing

Social IR Model

User Profiles

Query Log

+

Figure 4.6: A Social Information Retrieval System.

address common search
tasks such as “find a
favorite restaurant to
have dinner tonight, a
blog to read, or the
best review about LCD
TV”, we need an infor-
mation retrieval system
not only to handle one-
time, short-term queries
(e.g. information about
“restaurant” or “blog”
or “LCD TV”) but also,
importantly, to make
suggestions on the basis
of repetitive, long-term
user preferences. Thus, it would be of great interest in the future to break the
barriers between information retrieval and (social) information filtering and to
create a new retrieval paradigm that automatically determines the relevance of

79

80 Chapter 4. Commentary on Chapter 4

information items by both considering the interactions or contributions of users
(social-based) and analyzing the content of information items and queries
(content-based). Our vision is illustrated in Fig. 4.6. We not only deal with
the document and query collections but, importantly, also consider information
retrieval as a social activity, including other users’ knowledge and experience
in the framework.

Part II

Unified Models

81

Chapter 5
Similarity Fusion

Memory-based methods for collaborative filtering predict new ratings by aver-
aging (weighted) ratings between, respectively, pairs of similar users or items.
In practice, a large number of ratings from similar users or similar items are not
available, due to the sparsity inherent to rating data. Consequently, prediction
quality can be poor. This paper reformulates the memory-based collaborative
filtering problem in a generative probabilistic framework, treating individual
user-item ratings as predictors of missing ratings. The final rating is estimated
by fusing predictions from three sources: predictions based on ratings of the
same item by other users, predictions based on different item ratings made by
the same user, and, third, ratings predicted based on data from other but sim-
ilar users rating other but similar items. Existing user-based and item-based
approaches correspond to the two simple cases of our framework. The complete
model is however more robust to data sparsity, because the different types of
ratings are used in concert, while additional ratings from similar users towards
similar items are employed as a background model to smooth the predictions.
Experiments demonstrate that the proposed methods are indeed more robust
against data sparsity and give better recommendations.

This work has been published as “Unifying user-based and item-based collaborative fil-
tering approaches by similarity fusion”, by J. Wang, A. P. de Vries, and M. J. T. Reinders, in
SIGIR06: Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 501−508, New York, NY, 2006. So also [116].

83

84 Chapter 5. Similarity Fusion

5.1 Introduction

Collaborative filtering aims at predicting the user interest for a given item based
on a collection of user profiles. Commonly, these profiles either result from
asking users explicitly to rate items or are inferred from log-archives ([41]).
Research started with memory-based approaches to collaborative filtering, that
can be divided in user-based approaches like [9, 37, 48, 81] and item-based ap-
proaches like [23, 92]. The former approaches form a heuristic implementation
of the “Word of Mouth” phenomenon. Memory-based approaches are widely
used in practice, e.g., [37, 61].

Given an unknown test rating (of a test item by a test user) to be estimated,
memory-based collaborative filtering first measures similarities between test
user and other users (user-based), or, between test item and other items (item-
based). Then, the unknown rating is predicted by averaging the (weighted)
known ratings of the test item by similar users (user-based), or the (weighted)
known ratings of similar items by the test user (item-based).

In both cases, only partial information from the data embedded in the user-
item matrix is employed to predict unknown ratings (using either correlation
between user data or correlation between item data). Because of the sparsity
of user profile data however, many related ratings will not be available for
the prediction, Therefore, it seems intuitively desirable to fuse the ratings from
both similar users and similar items, to reduce the dependency on often missing
data. Also, methods known previously ignore the information that can be
obtained from ratings made by other but similar users to the test user on other
but similar items. Not using such ratings causes the data sparsity problem of
memory-based approaches to collaborative filtering: for many users and items,
no reliable recommendation can be made because of a lack of similar ratings.

This paper sets up a generative probabilistic framework to exploit more of the
data available in the user-item matrix, by fusing all ratings with predictive
value for a recommendation to be made. Each individual rating in the user-
item matrix is treated as a separate prediction for the unknown test rating
(of a test item from a test user). The confidence of each individual predic-
tion can be estimated by considering both its similarity towards the test user
and that towards the test item. The overall prediction is made by averaging
the individual ratings weighted by their confidence. The more similar a rat-
ing towards the test rating, the higher the weight assigned to that rating to
make the prediction. Under this framework, the item-based and user-based
approaches are two special cases, and these can be systematically combined.
By doing this, our approach allows us to take advantage of user correlations
and item correlations embedded in the user-item matrix. Besides, smoothing
from a background model (estimated from known ratings of similar items by

5.2. Related Work 85

similar users) is naturally integrated into our framework to improve probability
estimation and counter the problem of data sparsity.

The remainder of the paper is organized as follows. We first summarize related
work, introduce notation, and present additional background information for
the two main memory-based approaches, i.e., user-based and item-based col-
laborative filtering. We then introduce our similarity fusion method to unify
user-based and item-based approaches. We provide an empirical evaluation of
the relationship between data sparsity and the different models resulting from
our framework, and finally conclude our work.

5.2 Related Work

Collaborative filtering approaches are often classified as memory-based or
model-based. In the memory-based approach, all rating examples are stored
as-is into memory (in contrast to learning an abstraction). In the prediction
phase, similar users or items are sorted based on the memorized ratings. Based
on the ratings of these similar users or items, a recommendation for the test
user can be generated.

Examples of memory-based collaborative filtering include user-based methods
[9, 37, 48, 81] and item-based methods [23, 92]. The advantage of the memory-
based methods over their model-based alternatives is that less parameters have
to be tuned; however, the data sparsity problem is not handled in a principled
manner.

In the model-based approach, training examples are used to generate a model
that is able to predict the ratings for items that a test user has not rated before.
Examples include decision trees [9], aspect models [41, 99] and latent factor
models [10]. The resulting ‘compact’ models solve the data sparsity problem to
a certain extent. However, the need to tune an often significant number of pa-
rameters has prevented these methods from practical usage. Lately, researchers
have introduced dimensionality reduction techniques to address data sparsity
[31, 80, 93]. However, as pointed out in [44, 123], some useful information may
be discarded during the reduction.

Recently, [44] has explored a graph-based method to deal with data sparsity,
using transitive associations between user and items in the bipartite user item
graph. [114] has extended the probabilistic relevance model in text retrieval
([40]) to the problem of collaborative filtering and a linear interpolation smooth-
ing has been adopted. These approaches are however limited to binary rat-
ing data. Another recent direction in collaborative filtering research combines
memory-based and model-based approaches [77, 123]. For example, [123] clus-

86 Chapter 5. Similarity Fusion

ters the user data and applies intra-cluster smoothing to reduce sparsity. The
framework proposed in our paper extends this idea to include item-based rec-
ommendations into the final prediction, and does not require to cluster the data
set a priori.

5.3 Background

This section introduces briefly the user- and item-based approaches to collabo-
rative filtering [37, 92]. For M items and K users, the user profiles are repre-
sented in a K × M user-item matrix X (Fig. 5.1(a)). Each element xk,m = r
indicates that user k rated item m by r, where r ∈ {1, ..., |r|} if the item has
been rated, and xk,m = ∅ means that the rating is unknown.

The user-item matrix can be decomposed into row vectors:

X = [u1, . . . ,uK]T ,uk = [xk,1, . . . , xk,M]T , k = 1, . . . ,K

where T denotes transpose. Each row vector uT
k corresponds to a user pro-

file and represents a particular user’s item ratings. As discussed below, this
decomposition leads to user-based collaborative filtering.

Alternatively, the matrix can also be represented by its column vectors:

X = [i1, ..., iM], im = [x1,m, ..., iK,m]T , m = 1, ...,M

where each column vector im corresponds to a specific item’s ratings by all K
users. This representation results in item-based recommendation algorithms.

5.3.1 User-based Collaborative Filtering

User-based collaborative filtering predicts a test user’s interest in a test item
based on rating information from similar user profiles [9, 37, 81]. As illustrated
in Fig. 5.1(b), each user profile (row vector) is sorted by its dis-similarity to-
wards the test user’s profile. Ratings by more similar users contribute more
to predicting the test item rating. The set of similar users can be identified
by employing a threshold or selecting top-N. In the top-N case, a set of top-N
similar users Su(uk) towards user k can be generated according to:

Su(uk) = {ua|rank su(uk,ua) ≤ N,xa,m 6= ∅} (5.1)

where |Su(uk)| = N . su(uk,ua) is the similarity between users k and a. Cosine
similarity and Pearson’s correlation are popular similarity measures in collabo-
rative filtering, see e.g. [9, 37]. The similarity could also be learnt from training

5.3. Background 87

……
m
i

M
i

1
i

,1k
x

1,m
x

,K m
x

,k M
x,

?
k m
x

k
u

K
u

1
u

…
…

m
i

k
u…

…

,1k
x

,k M
x,

?
k m
x

S
o

rte
d

 U
s
e

r D
is

-s
im

ila
rity

R
a
tin

g
 P

re
d
ic

tio
n

Unknown Rating

SUR

(a) (b)
m
i … …Sorted Item Dis-similarity

1,m
x

,K m
x

k
u

,
?

k m
x

Rating Prediction

SIR

Unknown Rating

m
i …

,
?

k m
x

k
u

…
…

S
o

rte
d

 U
s
e

r D
is

-s
im

ila
rity

… Sorted Item Dis-similarity

SIR

Unknown Rating

SUIR

SUR

Rating Prediction

R
ating

P
rediction

(c) (d)

Figure 5.1: (a) The user-item matrix (b) Rating prediction based on user simi-
larity (c) Rating prediction based on item similarity (d) Rating prediction based
on rating similarity.

data [48]. This paper adopts the cosine similarity measure, comparing two user
profiles by the cosine of the angle between the corresponding row vectors.

Consequently, the predicted rating x̂k,m of test item m by test user k is com-
puted as (see also [9, 37])

x̂k,m = uk +

∑

ua∈Su(uk)

su(uk,ua)(xa,m − ua)

∑

ua∈Su(uk)

su(uk,ua)
(5.2)

where uk and ua denote the average rating made by users k and a, respectively.

Existing methods differ in their treatment of unknown ratings from similar
users (xa,m = ∅). Missing ratings can be replaced by a 0 score, which lowers
the prediction, or the average rating of that similar user could be used [9, 37].
Alternatively, [123] replaces missing ratings by an interpolation of the user’s
average rating and the average rating of his or her cluster.

88 Chapter 5. Similarity Fusion

Before we discuss its dual method, notice in Eq. 5.2 and the illustration in Fig.
5.1(b) how user-based collaborative filtering takes only a small proportion of
the user-item matrix into consideration for recommendation. Only the known
test item ratings by similar users are used. We refer to these ratings as the
set of ‘similar user ratings’ (the blocks with upward diagonal pattern in Fig.
5.1(b)): SURk,m = {xa,m|ua ∈ Su(uk)}. For simplicity, we drop the subscript
k,m of SURk,m in the remainder of the paper.

5.3.2 Item-based Collaborative Filtering

Item-based approaches such as [23, 61, 92] apply the same idea, but use similar-
ity between items instead of users. As illustrated in Fig. 5.1(c), the unknown
rating of a test item by a test user can be predicted by averaging the ratings
of other similar items rated by this test user [92]. Again, each item (column
vector) is sorted and re-indexed according to its dis-similarity towards the test
item in the user-item matrix, and, ratings from more similar items are weighted
stronger. Formally (see also [92]),

x̂k,m =

∑

ib∈Si(im)

si(im, ib)(xk,b)

∑

ib∈Si(im)

si(im, ib)
(5.3)

Where item similarity si(im, ib) can be approximated by the cosine measure or
Pearson correlation [61, 92]. To remove the difference in rating scale between
users when computing the similarity, [92] has proposed to adjust the cosine
similarity by subtracting the user’s average rating from each co-rated pair be-
forehand. We adopt this similarity measure in this paper. Like the top-N
similar users, a set of top-N similar items towards item m, denoted as Si(im),
can be generated according to:

Si(im) = {ib|rank si(im, ib) ≤ N,xk,b 6= ∅} (5.4)

Fig. 5.1(c) illustrates how Eq. 5.3 takes only the known similar item ratings
by the test user into account for prediction. We refer to these ratings as the
set of ‘similar item ratings’ (the blocks with downward diagonal pattern in
Fig. 5.1(c)): SIRk,m = {xk,b|ib ∈ Si(im)}. Again, for simplicity, we drop the
subscript k,m of SIRk,m in the remainder of the paper.

5.4. Similarity Fusion 89

5.4 Similarity Fusion

Relying on SUR or SIR data only is undesirable, especially when the ratings
from these two sources are quite often not available. Consequently, predictions
are often made by averaging ratings from ‘not-so-similar’ users or items. We
propose to improve the accuracy of prediction by fusing the SUR and SIR data,
to complement each other under the missing data problem.

Additionally, we point out that the user-item matrix contains useful data be-
yond the previously used SUR and SIR ratings. As illustrated in Fig. 5.1 (d),
the similar item ratings made by similar users may provide an extra source for
prediction. They are obtained by sorting and re-indexing rows and columns
according to their dis-similarities towards the test user and the test item re-
spectively. In the remainder, this part of the matrix is referred to as ‘similar
user item ratings’ (the grid blocks in Fig. 5.1(d)): SUIRk,m = {xa,b|ua ∈
Su(uk), ib ∈ Si(im), a 6= k, b 6= m}. The subscript k,m of SUIRk,m is dropped.

Combining these three types of ratings in a single collaborative filtering method
is non-trivial. We propose to treat each element of the user-item matrix as a
separate predictor. Its reliability or confidence is then estimated based upon its
similarity towards the test rating. We then predict the test rating by averaging
the individual predictions weighted by their confidence. The remainder of the
section gives a probabilistic formulation for the proposed method.

5.4.1 Individual Predictors

Users rate items differently. Some users have a preference for the extreme values
of the rating scale, while others rarely deviate from the median. Likewise, items
may be rated by different types of users. Some items get higher ratings than
their ‘true’ value, simply because they have been rated by a positive audience.
Addressing the differences in rating behavior, we first normalize the user-item
matrix before making predictions.

Removing the mean ratings per user and item gives individual predictions as

pk,m(xa,b) = xa,b − (x̄a − x̄k) − (x̄b − x̄m) (5.5)

where pk,m(xa,b) is the prediction function for the test item k rating made by
test user m, x̄a and x̄k are the average ratings by user a and k, and x̄b and x̄m

are the average ratings of item b and m. Appendix 5.A derives that normalizing
the matrix by independently subtracting the row and column means gives the
same result.

90 Chapter 5. Similarity Fusion

5.4.2 Probabilistic Fusion Framework

Let us first define the sample space of ratings as Φr = {∅, 1, ..., |r|} (like before,
∅ denotes the unknown rating). Let xa,b be a random variable over the sample
space Φr, captured in the user-item matrix, a ∈ {1, . . . ,K} and b ∈ {1, . . . ,M}.
Collaborative filtering then corresponds to estimating conditional probability
P (xk,m|Pk,m), for an unknown test rating xk,m, given a pool of individual pre-
dictors

Pk,m = {pk,m(xa,b)|xa,b 6= ∅}.

Consider first a pool that consists of SUR and SIR ratings only (i.e., xa,b ∈
(SUR ∪ SIR)).

P (xk,m|SUR,SIR) ≡ P (xk,m|{pk,m(xa,b)|xa,b ∈ SUR ∪ SIR}) (5.6)

We write P (xk,m|SUR,SIR) for the conditional probability depending on
the predictors originating from SUR and SIR. Likewise, P (xk,m|SUR) and
P (xk,m|SIR) specify a pool consisting of SUR or SIR predictors only.

Now introduce a binary variable I1, that corresponds to the relative impor-
tance of SUR and SIR. This hidden variable plays the same role as the prior
introduced in [40] to capture the importance of a query term in information
retrieval. I1 = 1 states that xk,m depends completely upon ratings from SUR,
while I1 = 0 corresponds to full dependency on SIR. Under these assumptions,
the conditional probability can be obtained by marginalization of variable I1:

P (xk,m|SUR,SIR)

=
∑

I1

P (xk,m|SUR,SIR, I1)P (I1|SUR,SIR)

=P (xk,m|SUR,SIR, I1 = 1)P (I1 = 1|SUR,SIR)+

P (xk,m|SUR,SIR, I1 = 0)P (I1 = 0|SUR,SIR)

(5.7)

By definition, xk,m is independent from SUR when I1 = 1, so
P (xk,m|SUR,SIR, I1 = 1) = P (xk,m|SUR). Similarly, P (xk,m|SUR,SIR, I1 =
0) = P (xk,m, |SIR). If we provide a parameter λ as shorthand for P (I1 =
1|SUR,SIR), we have

P (xk,m|SUR,SIR) = P (xk,m|SUR)λ + P (xk,m|SIR)(1 − λ) (5.8)

Next, we extend the model to take into account the SUIR ratings:

P (xk,m|SUR,SIR,SUIR) ≡ P (xk,m|{pk,m(xk,m)|xa,b ∈ SUR∪SIR∪SUIR})
(5.9)

5.4. Similarity Fusion 91

We introduce a second binary random variable I2, that corresponds to the
relative importance of the SUIR predictors. I2 = 1 specifies that the unknown
rating depends on ratings from SUIR only and I2 = 0 that it depends on the
ratings from SIR and SUR instead. Marginalization on variable I2 gives:

P (xk,m|SUR,SIR,SUIR)

=
∑

I2

P (xk,m|SUR,SIR,SUIR, I2)P (I2|SUR,SIR,SUIR)

=P (xk,m|SUR,SIR,SUIR, I2 = 1) · P (I2 = 1|SUR,SIR,SUIR)+

P (xk,m|SUR,SIR,SUIR, I2 = 0) · (1 − P (I2 = 1|SUR,SIR,SUIR))

(5.10)

Following the argument from above and providing a parameter δ as shorthand
for P (I2 = 1|SUR,SIR,SUIR), we have

P (xk,m|SUR,SIR,SUIR)

=P (xk,m|SUR,SIR)(1 − δ) + P (xk,m|SUIR)δ
(5.11)

Substitution of Eq. 5.8 then gives:

P (xk,m|SUR,SIR,SUIR)

=
(
P (xk,m|SUR)λ + P (xk,m|SIR)(1 − λ)

)
(1 − δ)+

P (xk,m|SUIR)δ

(5.12)

Finally, the following equation gives the expected value of the unknown test
rating:

x̂k,m =

|r|∑

r=1

rP (xk,m = r|SUR,SIR,SUIR)

=
(|r|∑

r=1

rP (xk,m = r|SUIR)δ
)
+

(|r|∑

r=1

rP (xk,m = r|SUR)λ(1 − δ)
)
+

(|r|∑

r=1

rP (xk,m = r|SIR)(1 − λ)(1 − δ)
)

(5.13)

The resulting model can be viewed as using importance sampling of the neigh-
borhood ratings as predictors. λ and δ control the selection (sampling) of data
from the three different sources.

92 Chapter 5. Similarity Fusion

5.4.3 Probability Estimation

The next step is to estimate the probabilities in the fusion framework expressed
in Eq. 5.13.

λ and δ are determined experimentally by using the cross-validation, for ex-
ample following the methodology of Section 5.5.3. The three remaining proba-
bilities can be viewed as estimates of the likelihood of a rating xa,b from SIR,
SUR, or SUIR, to be similar to the test rating xk,m. We assume that the prob-
ability estimates for SUR and SIR are proportional to the similarity between
row vectors su(uk,ua) (Section 5.3.1) and column vectors si(im, ib) (Section
5.3.2), respectively. For SUIR ratings, we assume the probability estimate to
be proportional to the combination of su and si. To combine them, we use
a Euclidean dis-similarity space such that the resulting combined similarity is
lower than either of them.

sui(xk,m, xa,b) =
1√

(1/su(uk,ua))2 + (1/si(im, ib))2
(5.14)

This results in the following conditional probability estimates:

P (xk,m = r|SUR) =

∑

∀xa,b:(xa,b∈SUR)∧(pk,m(xa,b)=r)

su(uk,ua)

∑

∀xa,b:xa,b∈SUR

su(uk,ua)

P (xk,m = r|SIR) =

∑

∀xa,b:(xa,b∈SIR)∧(pk,m(xa,b)=r)

si(im, ib)

∑

∀xa,b:xa,b∈SIR

si(im, ib)

P (xk,m = r|SUIR) =

∑

∀xa,b:(xa,b∈SUIR)∧(pk,m(xa,b)=r)

sui(xk,m, xa,b)

∑

∀xa,b:xa,b∈SUIR

sui(xk,m, xa,b)
(5.15)

After substitution from Eq. 5.15 (for readability, we put the detailed derivations
in Appendix 5.B), Eq. 5.13 results in:

x̂k,m =
∑

xa,b

pk,m(xa,b)W
a,b
k,m (5.16)

5.4. Similarity Fusion 93

where

W a,b
k,m =

su(uk ,ua)
P

xa,b∈SUR

su(uk ,ua)λ(1 − δ) xa,b ∈ SUR

si(im,ib)
P

xa,b∈SIR

si(im,ib)
(1 − λ)(1 − δ) xa,b ∈ SIR

sui(xk,m,xa,b)
P

xa,b∈SUIR

sui(xk,m,xa,b)
δ xa,b ∈ SUIR

0 otherwise

(5.17)

It is easy to prove that
∑
xa,b

W a,b
k,m = 1. W a,b

k,m acts as a unified weight matrix to

combine the predictors from the three different sources.

5.4.4 Discussions

Sum as Combination Rule λ and δ control the importance of the different
rating sources. Their introduction results in a sum rule for fusing the individ-
ual predictors (Eq. 5.12 and 5.16.). Using the independence assumption on the
three types of ratings and the Bayes’ rule, one can easily derive a product com-
bination from the conditional probability ([53]). However, the high sensitivity
to estimation errors makes this approach less attractive in practice. We refer
to [53] for a more detailed discussion of using a sum rule vs. the product rule
for combing classifiers.

Unified Weights The unified weights in Eq. 5.17 provide a generative frame-
work for memory-based collaborative filtering.

Eq. 5.17 shows how our scheme can be considered as two subsequent steps of
linear interpolation. First, predictions from SUR ratings are interpolated with
SIR ratings, controlled by λ. Next, the intermediate prediction is interpolated
with predictions from the SUIR data, controlled by δ. Viewing the SUIR ratings
as a background model, the second interpolation corresponds to smoothing the
SIR and SUR predictions from the background model.

A bigger λ emphasizes user correlations, while smaller λ emphasizes item cor-
relations. When λ equals one, our algorithm corresponds to a user-based ap-
proach, while λ equal to zero results in an item-based approach.

Tuning parameter δ controls the impact of smoothing from the background
model (i.e. SUIR). When δ approaches zero, the fusion framework becomes the
mere combination of user-based and item-based approaches without smoothing
from the background model.

94 Chapter 5. Similarity Fusion

Table 5.1: Percentage of the ratings that are available (6= ∅).
test item 1st most sim 2nd most sim 3rd most sim 4th most sim

test user - 0.58 0.56 0.55 0.54
1st most sim. user 0.54 0.58 0.58 0.58 0.57
2nd most sim. user 0.51 0.56 0.56 0.56 0.56
3rd most sim. user 0.51 0.57 0.57 0.57 0.56
4th most sim. user 0.49 0.55 0.55 0.56 0.55

Table 5.2: Mean Absolute Err (MAE) of individual predictions.
test item 1st most sim 2nd most sim 3rd most sim 4th most sim

test user - 0.824 0.840 0.866 0.871
1st most sim. user 0.914 0.925 0.927 0.942 0.933
2nd most sim. user 0.917 0.921 0.931 0.935 0.927
3rd most sim. user 0.927 0.947 0.952 0.953 0.945
4th most sim. user 0.928 0.929 0.939 0.946 0.932

5.5 Empirical Evaluation

5.5.1 Experimental Setup

We experimented with the MovieLens1, EachMovie2, and book-crossing3 data
sets. While we report only the MovieLens results (out of space considerations),
the model behaves consistently across the three data sets.

The MovieLens data set contains 100,000 ratings (1-5 scales) from 943 users
on 1682 movies (items), where each user has rated at least 20 items. To test
on different number of training users, we selected the users in the data set at
random into a training user set (100, 200, 300 training users, respectively) and
the remaining users into a test user set. Users in the training set are only used
for making predictions, while test users are the basis for measuring prediction
accuracy. Each test user’s ratings have been split into a set of observed items
and one of held-out items. The ratings of observed items are input for predicting
the ratings of held-out items.

We are specifically interested in the relationship between the density of the
user-item matrix and the collaborative filtering performance. Consequently, we
set up the following configurations:

• Test User Sparsity Vary the number of items rated by test users in the
observed set, e.g., 5, 10, or 20 ratings per user.

• Test Item Sparsity Vary the number of users who have rated test items
in the held-out set; less than 5, 10, or 20 (denoted as ‘< 5’, ‘< 10’, or ‘<

1http://www.grouplens.org/
2http://research.compaq.com/SRC/eachmovie/
3http://www.informatik.uni-freiburg.de/~cziegler/BX/

5.5. Empirical Evaluation 95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

lambda

M
A

E

Rating Per User: 5, Rating Per Item: 5
Rating Per User: 5
Rating Per User: 20, Rating Per Item: 5
Rating Per User: 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

delta

M
A

E

Rating Per User: 5, Rating Per Item: 5
Rating Per User: 5
Rating Per User: 20, Rating Per Item: 5
Rating Per User: 20

(a) Lambda (b) Delta

Figure 5.2: Impact of the two parameters.

0 50 100 150 200 250 300 350 400 450 500
0.765

0.77

0.775

0.78

0.785

0.79

0.795

Num. of Neighborhood Ratings

M
A

E

SF2

Figure 5.3: Size of neighborhood.

20’), or, unconstrained (denoted as ‘No constraint’).

• Overall Training User Sparsity Select a part of the rating data at
random, e.g., 20%, 40%, 60% of the data set.

For consistency with experiments reported in the literature, e.g., [48, 92, 123]),
we report the mean absolute error (MAE) evaluation metric. MAE corresponds
to the average absolute deviation of predictions to the ground truth data, for
all test item ratings and test users:

MAE =

∑
k,m

|xk,m − x̂k,m|

L
, (5.18)

96 Chapter 5. Similarity Fusion

where L denotes the number of tested ratings. A smaller value indicates a
better performance.

5.5.2 Individual Predictors

We first report some properties of the three types of individual predictions used
in our approach. Table 5.1 illustrates the availability of the top-4 neighborhood
ratings in the MovieLens data set. The first column contains the top-4 SUR
ratings, the first row the top-4 SIR ratings; the remaining cells correspond to
the top-4x4 SUIR ratings. We observe that only about half of these ratings are
given. Table 5.2 summarizes recommendation MAE of individual predictors
(applying Eq. 5.5) using leave-one-out cross-validation. Clearly, more similar
ratings provide more accurate predictions. While SUIRs ratings are in general
less accurate than SURs and SIRs, these may indeed complement missing or
unreliable SIR and SUR ratings.

5.5.3 Impact of Parameters

Recall the two parameters in Eq. 5.17: λ balances the predictions between SUR
and SIR, and δ smoothes the fused results by interpolation with a pool of SUIR
ratings.

We first test the sensitivity of λ, setting δ to zero. This scheme, called SF1,
combines user-based and item-based approaches, but does not use additional
background information. Fig. 5.2(a) shows recommendation MAE against
varying λ from zero (a pure item-based approach) to one (a pure user-based
approach). The graph plots test user sparsity 5 and 20, and test item sparsity
settings ‘< 5’ and unconstrained. The value of the optimal λ demonstrates
that interpolation between user-based and item-based approaches (SF1) im-
proves the recommendation performance. More specifically, the best results
are obtained with λ between 0.6 and 0.9. This optimal value emphasizing the
SUR ratings may be somewhat surprising, as Table 5.2 indicated that the SIR
ratings should be more reliable for prediction. However, in the data sets con-
sidered, the number of users is smaller than the number of items, causing the
user weights su(uk,ua) to be generally smaller than the item weights si(im, ib).
When removing the constraint on test item sparsity, the optimal λ shifts down
from about 0.9 for the two upper curves (‘< 5’) to 0.6 for the two lower curves
(unconstrained). A lower λ confirms the expectation that SIR ratings gain
value when more items have been rated.

Fig. 5.2 (b) shows the sensitivity of δ after fixing λ to 0.7. The graph plots
the MAE for the same four configurations when parameter δ is varied from

5.5. Empirical Evaluation 97

Table 5.3: Comparison with other memory-based approaches. A smaller value
means a better performance.
|Lim | < 5 < 10 < 20 No constrain
|Luk

| 5 10 20 5 10 20 5 10 20 5 10 20

SF2 1.054 0.966 1.070 0.995 0.917 0.997 0.945 0.879 0.923 0.825 0.794 0.805
SF1 1.086 1.007 1.097 1.035 0.942 1.024 0.976 0.898 0.936 0.836 0.796 0.809
UBVS 1.129 1.034 1.117 1.052 0.972 1.054 0.996 0.913 0.969 0.891 0.809 0.836
IBVS 1.190 1.055 1.131 1.108 0.992 1.068 1.066 0.954 0.977 0.938 0.842 0.842

(a) Number of Training Users: 100
|Lim | < 5 < 10 < 20 No constrain

|Luk
| 5 10 20 5 10 20 5 10 20 5 10 20

SF2 0.960 0.945 0.948 0.915 0.875 0.885 0.826 0.802 0.828 0.806 0.786 0.803
SF1 0.976 0.960 0.963 0.927 0.883 0.895 0.832 0.804 0.831 0.808 0.786 0.804
UBVS 1.108 1.028 1.024 1.070 0.962 0.972 0.914 0.842 0.885 0.879 0.811 0.848
IBVS 1.187 1.071 1.034 1.122 1.006 0.976 0.974 0.875 0.886 0.921 0.840 0.847

(b) Number of Training Users: 200
|Lim | < 5 < 10 < 20 No constrain

|Luk
| 5 10 20 5 10 20 5 10 20 5 10 20

SF2 0.956 0.908 0.941 0.911 0.885 0.912 0.842 0.828 0.859 0.798 0.782 0.805
SF1 1.013 0.968 0.977 0.928 0.908 0.938 0.847 0.834 0.867 0.802 0.783 0.807
UBVS 1.024 0.971 1.044 0.966 0.919 0.980 0.921 0.877 0.936 0.886 0.808 0.852
IBVS 1.117 1.043 1.024 1.044 0.990 1.004 0.962 0.910 0.932 0.914 0.837 0.850

(c) Number of Training Users: 300

zero (without smoothing) to one (rely solely on the background model: SUIR
ratings). When δ is non-zero, the SF1 results are smoothed by a pool of SUIR
ratings, which we called fusion scheme SF2. We observe that δ reaches its
optimal in 0.8 when the rating data is sparse in the neighborhood ratings from
the item and user aspects (upper two curves). In other words, smoothing from a
pool of SUIR ratings improves the performance for sparse data. However, when
the test item sparsity is not constrained, its optimum spreads a wide range of
values, and the improvement over MAE without smoothing (δ = 0) is not clear.

Additional experiments (not reported here) verified that there is little depen-
dency between the choice of λ and the optimal value of δ. The optimal param-
eters can be identified by using the cross validation from the training data.

Like pure user-based and item-based approaches, the size of neighborhood N
also influences the performance of our fusion methods. Fig. 5.3 shows MAE of
SF2 when the number of neighborhood ratings is varied. The optimal results
are obtained with the neighborhood size between 50 and 100. We select 50 as
our optimal choice.

5.5.4 Data Sparsity

The next experiments investigate the effect of data sparsity on the performance
of collaborative filtering in more detail. Fig. 5.4(a) and (b) compare the be-
havior of scheme SF1 to that obtained by simply averaging user-based and
item-based approaches, when varying test user sparsity (Fig. 5.4(a)) and test
item sparsity (5.4(b)). The results indicate that combining user-based and

98 Chapter 5. Similarity Fusion

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Num. of Given Rating Per Test User

M
A

E

SF1
Avg. of User−based and Item−based

(a) Test User Sparsity

2 4 6 8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Max Num. of Given Rating Per Test Item

M
A

E

SF1
Avg. of User−based and Item−based

(b) Test Item Sparsity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Sparsity %

M
A

E

SF2
SF1

(c) Overall Training User Sparsity

Figure 5.4: Performance under different sparsity.

5.5. Empirical Evaluation 99

Table 5.4: Comparison with the result reported in [123]. A smaller value means
a better performance.

Num. of Training Users: 100 200 300
Ratings Given (Test User): 5 10 20 5 10 20 5 10 20
SF2 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769
SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778
AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796
PD 0.849 0.817 0.808 0.836 0.815 0.792 0.827 0.815 0.789
PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820

item-based approaches (SF1) consistently improves the recommendation per-
formance regardless neighborhood sparsity of test users or items.

Next, Fig. 5.4(c) plots the gain of SF2 over SF1 when varying overall training
user sparsity. The figure shows that SF2 improves SF1 more and more when the
rating data becomes more sparse. This can be explained as follows. When the
user-item matrix is less dense, it contains insufficient test item ratings by similar
users (for user-based recommendation), and insufficient similar item ratings by
the test user (for item-based recommendation) as well. Therefore, smoothing
using ratings by similar items made by similar users improves predictions.

We conclude from these experiments that the proposed fusion framework is
effective at improving the quality of recommendations, even when only sparse
data are available.

5.5.5 Comparison to Other Methods

We continue with a comparison to results obtained with other methods, setting
λ to 0.7 and δ to 0 for SF1 and using λ = 0.7 and δ = 0.7 for SF2. We
first compare our results to the standard user-based vector similarity (UBVS)
approach of [9] and the item-based adjusted cosine similarity (IBVS) of [92].
We report results for test user sparsity 5, 10, or 20, and test item sparsity
‘< 5’, ‘< 10’, ‘< 20’ or ‘No constrain’. Table 5.3 summarizes the results,
showing how SF1 and SF2 outperform the other methods in all twelve resulting
configurations.

Next, we adopt the subset of MovieLens (see [48, 123]), which consists of 500
users and 1000 items. We followed the exact evaluation procedure described
in [123] to compare the performance of our SF2 scheme with the state-of-art
results listed in [123]. Table 5.4 presents our experimental results, as well as
the four best methods according to their experiments, i.e., cluster-based Pear-
son Correlation Coefficient (SCBPCC) [123], the Aspect Model (AM) ([41]),
‘Personality Diagnosis’ (PD) ([77]) and the user-based Pearson Correlation Co-
efficient (PCC) ([9]). Our method outperforms these methods in all configura-
tions.

100 Chapter 5. Similarity Fusion

5.6 Conclusions

We proposed a novel algorithm to unify the user-based and item-based collab-
orative filtering approaches to overcome limitations specific to either of them.
We showed that user-based and item-based approaches are only two special
cases in our probabilistic fusion framework. Furthermore, by using a linear
interpolation smoothing, other ratings by similar users towards similar items
can be treated as a background model to smooth the rating predictions. The
experiments showed that our new fusion framework is effective in improving the
prediction accuracy of collaborative filtering and dealing with the data sparsity
problem. In the future, we plan to conduct better formal analyses of the fusion
model and more complete comparisons with previous methods.

5.A Normalization

We first normalize the matrix by subtracting the average item ratings:

n(xa,b)I = xa,b −
1

K

∑

i

xi,b = xa,b − x̄b

where n(xa,b)I normalizes ratings by subtracting the mean item rating. x̄b is
the average rating of item b.

We normalize again by the average user rating:

n(xa,b)I,U

= n(xa,b)I −
1

M

∑

j

n(xa,j)I

= xa,b −
1

K

∑

i

xi,b −
1

M

∑

j

(
xa,j −

1

K

∑

i

xi,j

)

= xa,b −
1

K

∑

i

xi,b −
1

M

∑

j

xa,j +
1

MK

∑

i,j

xi,j

= xa,b − x̄b − x̄a + x̄

where n(xa,b)I,U is the normalization of both item and user aspects. x̄a is the
average rating from user a. x̄ is the average of all the ratings. From here, we
see that the result does not depend on the order of normalization (whether to
normalize first by user or by item).

Treating each normalized individual rating as individual predictor results in:

x̂k,m − x̄m − x̄k + x̄ = xa,b − x̄b − x̄a + x̄

∴ pk,m(xa,b) = x̂k,m = xa,b − (x̄a − x̄k) − (x̄b − x̄m)

5.B. A Unified Weighting Function 101

5.B A Unified Weighting Function

More specifically, replacing three conditional probabilities with Eq. 5.15, the
following can be derived from Eq. 5.13:

x̂k,m

=

|r|∑

r=1

r
(∑

pk,m(xa,b)=r

(∑

xa,b∈SUR

A +
∑

xa,b∈SIR

B +
∑

xa,b∈SUIR

C
))

=
∑

∀xa,b:xa,b∈SUR

pk,m(xa,b)A +
∑

∀xa,b:xa,b∈SIR

pk,m(xa,b)B+

∑

∀xa,b:xa,b∈SUIR

pk,m(xa,b)C

where

A =
su(uk,ua)∑

∀xa,b:xa,b∈SUR

su(uk,ua)
λ(1 − δ)

B =
si(im, ib)∑

∀xa,b:xa,b∈SIR

si(im, ib)
(1 − λ)(1 − δ)

C =
sui(xk,m, xa,b)∑

∀xa,b:xa,b∈SUIR

sui(xk,m, xa,b)
δ

where A,B and C act as the weights to combine the predictors from three
different sources. Unifying them we can obtain Eq. 5.16.

102 Chapter 5. Similarity Fusion

Chapter 6
Unified Relevance Models

This paper views collaborative filtering as a problem highly related to informa-
tion retrieval, drawing an analogy between the concepts of users and items in
recommender systems and queries and documents in text retrieval.

We present a probabilistic user-to-item relevance framework that introduces the
concept of relevance into the related problem of collaborative filtering. Three
different models are derived, namely, a user-based, an item-based and a unified
relevance model, estimating their rating predictions from three sources: the
user’s own ratings for different items, other users’ ratings for the same item,
and, ratings from different but similar users for other but similar items.

To reduce the data sparsity encountered when estimating the probability den-
sity function of the relevance variable, we apply the non-parametric (data-
driven) density estimation technique known as the Parzen-window method (or,
kernel-based density estimation). Using a Gaussian window function, the sim-
ilarity between users and/or items would however be based on Euclidean dis-
tance. Because collaborative filtering literature has reported improved predic-
tion accuracy when using cosine similarity, we generalise the Parzen-window
method by introducing a projection kernel.

Existing user-based and item-based approaches correspond to two simplified
instantiations of our framework. User-based and item-based collaborative fil-
tering represent only a partial view of the prediction problem, where the unified
relevance model brings these partial views together under the same umbrella.
Experimental results complement the theoretical insights with improved recom-
mendation accuracy. The unified model is more robust to data sparsity, because

This work is to appear in ACM Trans. on Information Systems (TOIS), 2008. The authors
are J. Wang, A. P. de Vries, and M. J. T. Reinders. See also [115].

103

104 Chapter 6. Unified Relevance Models

the different types of ratings are used in concert.

6.1 Introduction

Collaborative filtering (CF) algorithms use a collection of user profiles to iden-
tify interesting “information” (items) for these users. These profiles result from
asking users explicitly to rate items (rating-based CF), or, they are inferred
from log-archives (log-based CF) [41, 114]. The profiles can be thought of as
the evidence (observation) of relevance between users and items. Thus, the
task of collaborative filtering is to predict the unknown relevance between the
test user and the test item [114].

Relevance is also a very important concept in the text retrieval domain and
has been heavily studied (e.g., [112, 57]). Many probabilistic approaches have
been developed to model the estimation of relevance, ranging from the tradi-
tional probabilistic models [86] to the latest developments on language models
of information retrieval [58, 56].

Despite the concept of relevance existing in both collaborative filtering and text
retrieval, collaborative filtering has often been formulated as a self-contained
problem, apart from the classic information retrieval problem (i.e. ad hoc text
retrieval). Research started with memory-based approaches to collaborative
filtering, that can be divided in user-based approaches like [81, 9, 37, 48] and
item-based approaches like [92, 23]. Given an unknown test rating (of a test
item by a test user) to be estimated, memory-based collaborative filtering first
measures similarities between the test user and all other users (user-based), or,
between the test item and all other items (item-based). Then, the unknown
rating is predicted by averaging the (weighted) known ratings of the test item
by the similar users (user-based), or the (weighted) known ratings of the similar
items by the test user (item-based).

The two approaches share the same drawback as the document-oriented and
query-oriented views in information retrieval (IR) [82]: neither presents a com-
plete view on the problem. In both the user-based and item-based approaches,
only partial information from the data embedded in the user-item matrix is
employed to predict unknown ratings, i.e. using either correlation between user
data or correlation between item data. Because of the sparsity of user profile
data, however, many ratings will not be available. Therefore, it is desirable to
unify the ratings from both similar users and similar items, to reduce the de-
pendency on data that is often missing. Even ratings made by other but similar
users on other but similar items can be used to make predictions [116]. Not us-
ing such ratings causes the data sparsity problem of memory-based approaches
to collaborative filtering: for many users and items, no reliable recommendation

6.1. Introduction 105

can be made because of a lack of similar ratings.

Thus it is of great interest to see how we can follow the school of thinking in
IR relevance models to solve the collaborative filtering problem, once we draw
an analogy between the concept of user and items in collaborative filtering and
query and documents in IR. This paper applies IR relevance models at a con-
ceptual level, setting up a unified probabilistic relevance framework to exploit
more of the data available in the user-item matrix. We establish the models of
relevance by considering user ratings of items as observations of the relevance
between users and items. Different from any other IR relevance models, the
densities of the our relevance models are estimated by applying the Parzen-
window approach [25]. This approach reduces the data sparsity encountered
when estimating the densities, providing a data-driven solution, i.e., without
specifying the model structure a priori. We then extend the Parzen-window
density estimation into a projected space, to provide a generalised distance
measure which naturally includes most of commonly used similarity measures
into our framework.

We derive three types of models from the framework, namely the user-based
relevance model, the item-based relevance model and the unified relevance model.
The former two models represent a partial view of the problem. In the unified
relevance model, each individual rating in the user-item matrix may influence
the prediction for the unknown test rating (of a test item from a test user).
The overall prediction is made by averaging the individual ratings weighted by
their contribution. The weighting is controlled by three factors: the shape of
the Parzen window, the two (user and item) bandwidth parameters, and the
distance metric to the test rating. The more a rating contributes towards the
test rating, the higher the weight assigned to that rating to make the prediction.
Under the framework, the item-based and user-based approaches are two special
cases and they are systematically combined. By doing this, our approach allows
us to take advantage of user similarity and item similarity embedded in the user-
item matrix to improve probability estimation and counter the problem of data
sparsity.

The remainder of the paper is organized as follows. We first summarise re-
lated work, introduce notation, and present additional background information
for the three main memory-based approaches, i.e., user-based, item-based and
the combined collaborative filtering approaches. We then introduce our uni-
fied relevance prediction models. We provide an empirical evaluation of the
relationship between data sparsity and the different models resulting from our
framework, and finally conclude our work.

106 Chapter 6. Unified Relevance Models

6.2 Related Work

6.2.1 Collaborative Filtering

Collaborative filtering approaches are often classified as memory-based or
model-based. In the memory-based approach, all rating examples are stored
as-is into memory (in contrast to learning an abstraction). In the prediction
phase, similar users or items are sorted based on the memorized ratings. Based
on the ratings of these similar users or items, a recommendation for the test
user can be generated. Different views of the correlations embedded in the
user-item matrix lead to two different types of approaches: user-based methods
(looking at user correlation) [81, 9, 37, 48] and item-based methods (looking at
item correlation) [92, 23]. These approaches form a heuristic implementation
of the “Word of Mouth” phenomenon and are widely used in practice, e.g.,
[37, 61]. The advantage of the memory-based methods over their model-based
alternatives is that less parameters have to be tuned; however, the data spar-
sity problem is not handled in a principled manner. Lately, researchers have
introduced dimensionality reduction techniques to address the data sparsity
[93, 31, 80]. But, as pointed out in [44, 123], some useful information may be
discarded during the reduction. [123] clusters the user data and applies intra-
cluster smoothing to reduce sparsity. [43] extends this idea, by further adding a
linear interpolation between the user-based and item-based approaches within
the user cluster. The similarity fusion method presented in [116] can be also
regarded as an effort along this direction, which implicitly clusters users and
items simultaneously. Different from [43], [116] takes a rather formal view on
the fusion problem and proposes a multi-layer linear smoothing model, show-
ing that additional ratings from similar users towards similar items are also
valuable to counter the data sparsity.

In the model-based approach, training examples are used to generate a model
that is able to predict the ratings for items that a test user has not rated
before. In this regard, many probabilistic models have been proposed. For
example, to consider user correlation, [77] proposed a method called personality
diagnosis (PD), treating each user as a separate cluster and assuming a Gaussian
noise applied to all ratings. It computes the probability that a test user is
of the same “personality type” as other users and, in turn, the probability
of his or her rating to a test item can be predicted. On the other hand, to
model item correlation, [9] utilizes a Bayesian Network model, in which the
conditional probabilities between items are maintained. Some researchers have
tried mixture models, explicitly assuming some hidden variables embedded in
the rating data. Examples include the aspect model [41, 99], the cluster model
[9] and the latent factor model [10]. These methods require some assumptions
about the underlying data structures and the resulting ‘compact’ models solve

6.2. Related Work 107

the data sparsity problem to a certain extent. However, the need to tune
an often significant number of parameters has prevented these methods from
practical usage.

In contrast, the work presented in this paper takes a data-driven approach
without assuming any data structure a priori, thus getting rid of the significant
number of model parameters. It extends the ideas in [116] by further explor-
ing the usage of the probabilistic model of text retrieval. The Parzen-window
method is adopted for probability estimation, causing a natural integration of
user and item correlations. As a result, the proposed prediction framework is of
a general natural. We shall see how some of the previously proposed methods,
such as the PD algorithm [77], the Similarity Fusion method [116] and the linear
combination method [43], are equivalent to one of the simplified instantiations
of our framework (Table 6.3).

6.2.2 Probabilistic Models for Information Retrieval

Probabilistic (relevance) models for information (text) retrieval have been pro-
posed and tested over decades. Rather than giving a comprehensive overview,
here we mainly review the models that are related to the problem of collabora-
tive filtering.

The two different document-oriented and query-oriented views on how to as-
sign a probability of relevance of a document to a user need result in two
different types of practical models [85, 8]. The RSJ probabilistic model of in-
formation retrieval [86] takes the query-oriented view, and estimates the log
ratio of relevance versus non-relevance given the document and the query. To
instantiate this model, there is no need to directly represent the documents
(e.g., using terms) – the only task is to represent queries in such a way that
they will match well to those documents that the user will judge as relevant.
The document-oriented view has been first proposed by Maron and Kuhn in
[68]. Here, documents are indexed by terms carefully chosen such that they
will match well to the query to fulfill the user needs. Recently, the language
modelling approach to information retrieval (e.g., [78]) builds upon the same
document-oriented view. In the basic language models, a unigram model is
estimated for each document and the likelihood of the document model with
respect to the query is computed. Many variations and extensions have been
proposed (e.g., [39, 55, 126]). The concept of relevance has been integrated
into the language modelling approach to information retrieval by [58]. Several
recent publications have further investigated the relationship between the RSJ
models and the language modelling approach to information retrieval [56, 84].

The two views rely on fixing one variable and optimizing the other variable,

108 Chapter 6. Unified Relevance Models

i.e., fixing the query and tuning the document or the other way around [82].
[82] has pointed out the drawback that neither view represents the problem of
information retrieval completely. It seems intuitively desirable to treat both the
query and the document as variables, and to optimize both. Robertson et al.
[85] have illustrated this unified view to text retrieval using Fig. 6.1 (a). The
authors identified three types of information that can be used for retrieval sys-
tems: 1) data describing the relations between other queries in the same class
(or in other words similar queries) and this particular document, i.e. marginal
information about the column; 2) data describing the relations between this
particular query and other documents (similar documents), i.e. marginal in-
formation about the row; and 3) data describing the relations between other
(similar) queries and other (similar) documents, i.e. the joint information about
columns and rows.

The first literature proposing a unified model of information retrieval has been
of a theoretical nature only [85, 82]. A first implementation of these ideas is
found in [7], where learning methods have been introduced into the vector space
model to incorporate relevance information. Hereto, Multi-Dimensional Scaling
(MDS) has been adopted to re-position the document vectors and the query vec-
tors such that document representations are moved closer to queries when their
relevance is observed, and away from queries when their non-relevance is ob-
served. Bodoff and Robertson [8] modeled the joint distribution of the observed
documents, queries and relevances by assuming three underlying stochastic pro-
cesses in the data generations: 1) the observed documents are generated by the
true hidden document models, (2) the observed queries are generated by the
true hidden query models, and (3) the relevances are generated by both the doc-
ument and query models. A Maximum Likelihood (ML) method was applied
to estimates the model parameters.

Going back to the collaborative filtering problem, Fig 6.1 (b) illustrates an
analogy between the concepts of users and items in CF and the concepts of
documents and queries in information retrieval. Like [85] did for documents
and queries in information retrieval, [116] identified three types of information
embedded in the user-item matrix (see also Section 6.3.3): 1) ratings of the
same item by other users; 2) ratings of different items made by the same user,
and, 3) ratings of other (but similar) items made by other (but similar) users.
This paper explores deeper the usage of these three types of information in a
unified probabilistic framework.

6.3. Background 109

(a) (b)

Figure 6.1: Illustration of the joint data in text retrieval and collaborative
filtering. (a) Query-document joint data in text retrieval (reproduced from
[85]). (b) User-item joint data in collaborative filtering.

6.3 Background

This section introduces briefly the user- and item-based approaches to collabora-
tive filtering [37, 92]. For A users and B items, the user profiles are represented
in a A × B user-item matrix X (Fig. 6.2(a)). Each element xa,b = r indicates
that user a rated item b by r, where r is an integer ≥ 0 and |R| is the number
of rating scales. if the item has been rated, and elements xa,b = ∅ indicate that
the rating is unknown.

The user-item matrix can be decomposed into row vectors,

X = [u1, . . . ,uA]T

ua = [xa,1, . . . , xa,B]T , a = 1, . . . , A

corresponding to the A user profiles ua. Each row vector represents the item
ratings of a particular user. As discussed below, this decomposition leads to
user-based collaborative filtering.

Alternatively, the matrix can be represented by its column vectors,

X = [i1, ..., iB]

ib = [x1,b, ..., xA,b]
T , b = 1, ..., B

corresponding to the ratings by all A users for a specific item b. As will be
shown, this representation results in item-based recommendation algorithms.

110 Chapter 6. Unified Relevance Models

(a) (b)

(c) (d)

Figure 6.2: (a) The user-item matrix (b) User-based approaches (c) Item-based
approaches (d) Combining user-based and item-based approaches.

6.3.1 User-based Collaborative Filtering

User-based collaborative filtering predicts a test user’s interest on a test item
based on the ratings of this test item from other similar users. Ratings by
more similar users contribute more to predicting the test item rating. The set
of similar users can be identified by employing a threshold on the similarity
measure or just selecting the top-N most similar users. In the top-N case, a
set of top-N users similar to test user a, Tu(ua), can be generated by ranking
users in order of their similarities:

Tu(ua) = {uc|rank su(ua,uc) < N}, (6.1)

where su(ua,uc) is the similarity between users a and c. Cosine similarity and
Pearson Correlation are popular similarity measures in collaborative filtering,
see e.g. [9]. The similarity could also be learnt from training data [13, 48].
Notice that the formulation in Eq. 6.1 assumes that xc,b = ∅ =⇒ su(ua,uc) =
0, i.e., the users that did not rate the test item b are not part of the top-N
similar users Tu(ua).

6.3. Background 111

Consequently, the predicted rating x̂a,b of test item b by test user a is computed
as

x̂a,b = xa +

∑

uc∈Tu(ua)

su(ua,uc) · (xc,b − xc)

∑

uc∈Tu(ua)

su(ua,uc)
, (6.2)

where xa and xc denote the average rating on all the rated items, made by users
a and c, respectively.

Existing methods differ in their treatment of unknown ratings from similar users
(i.e. the value xc,b = ∅). Missing ratings can be replaced by a 0 score, which
lowers the prediction, or the average rating of that similar user could be used
(mean imputation) [9, 37]. Alternatively, [123] replaces missing ratings by an
interpolation of the user’s average rating and the average rating of his or her
cluster (k-NN imputation).

Fig. 6.2(b) illustrates the user-based approach. In the figure, each user profile
(row vector) is sorted and re-indexed by its similarity towards the test user’s
profile. Notice in Eq. 6.2 and in Fig. 6.2(b) user-based collaborative filtering
takes only a small proportion of the user-item matrix into consideration for
recommendation, i.e. only the known test item ratings by similar users are
used. We refer to these ratings as the set of ‘similar user ratings’ (the blocks
with upward diagonal pattern in Fig. 6.2(b)): SURa,b = {xc,b|uc ∈ Tu(ua)}.
For readability, we drop the subscript a, b of SURa,b in the remainder of the
paper.

6.3.2 Item-based Collaborative Filtering

Item-based approaches such as [23, 61, 92] apply the same idea using the simi-
larity between items instead of users. The unknown rating of a test item by a
test user is predicted by averaging the ratings of other similar items rated by
this test user. Ratings from more similar items are weighted stronger. Formally,

x̂a,b =

∑

id∈Ti(ib)

si(ib, id) · xa,d

∑

id∈Ti(ib)

si(ib, id)
, (6.3)

where item similarity si(ib, id) can be approximated by the cosine measure or
Pearson correlation [61, 92]. To remove the difference in rating scale between
users when computing the similarity, [92] has proposed to adjust the cosine

112 Chapter 6. Unified Relevance Models

similarity by subtracting the user’s average rating from each co-rated pair be-
forehand. Like the top-N similar users, a set of top-N similar items towards
test item b, denoted as Ti(ib), can be generated according to:

Ti(ib) = {id|rank si(ib, id) < N} (6.4)

Fig. 6.2(c) illustrates the item-based approaches. Each item (column vector)
is sorted and re-indexed according to its similarity towards the test item in the
user-item matrix. Eq. 6.3 shows that only the known similar item ratings by
the test user are taken into account for the prediction. We refer to the ratings
used in the item-based approach as the set of ‘similar item ratings’ (the blocks
with downward diagonal pattern in Fig. 6.2(c)): SIRa,b = {xa,d|id ∈ Ti(ib)}.
Again, for simplicity, we drop the subscript a, b of SIRa,b in the remainder of
the paper.

6.3.3 Combining User-based and Item-based Approaches

When the ratings from these two sources are quite often not available, predic-
tions are often made by averaging ratings from ‘not-so-similar’ users or items.
Therefore, relying on SUR or SIR ratings only is undesirable.

In order to improve the accuracy of prediction, [116] proposed to combine both
user-based and item-based approaches. Additionally, we pointed out that the
user-item matrix contains useful data beyond the previously used SUR and
SIR ratings. As illustrated in Fig. 6.2 (d), the similar item ratings made by
similar users may provide an extra source for prediction. They are obtained
by sorting and re-indexing rows and columns according to their similarities
towards the test user and the test item respectively. In the remainder, this part
of the matrix is referred to as ‘similar user item ratings’ (the grid blocks in Fig.
6.2(d)): SUIRa,b = {xc,d|uc ∈ Tu(ua), id ∈ Ti(ib), c 6= a, d 6= b}.
The subscript a, b of SUIRa,b is dropped. Their similarity towards the target
rating xa,b, denoted as sui(xa,b, xc,d), can be calculated as follows:

sui(xa,b, xc,d) =
1√

(1/su(ua,uc))2 + (1/si(ib, id))2

(6.5)

where a Euclidean dis-similarity space is adopted such that the resulting com-
bined similarity is lower than either of them. Now we are ready to combine
these three types of ratings in a single collaborative filtering method. We treat
each element of the user-item matrix as a separate predictor. Its confidence
for the prediction is then estimated based upon its similarity towards the test

6.4. Probabilistic Relevance Prediction Models 113

rating. We then predict the test rating by averaging the individual predictions
weighted by their confidence. Formally,

x̂a,b =
∑

xc,d

pa,b(xc,d)W
c,d
a,b , (6.6)

where

pa,b(xc,d) = xc,d − (xc − xa) − (xd − xb) (6.7)

can be treated as a normalization function when predicting rating xa,b from
rating xc,d. xa and xc are the average ratings by user a and c, and xb and xd

are the average ratings of item b and d. For each test rating xa,b, W c,d
a,b acts

as a unified weight matrix to combine the predictors from the three different
sources:

W c,d
a,b =

su(ua,uc)
P

xc,d∈SUR

su(ua,uc)
λ(1 − δ) xc,d ∈ SUR

si(ib,id)
P

xc,d∈SIR

si(ib,id)(1 − λ)(1 − δ) xc,d ∈ SIR

sui(xa,b,xc,d)
P

xc,d∈SUIR

sui(xa,b,xc,d)δ xc,d ∈ SUIR

0 otherwise

, (6.8)

where λ ∈ [0, 1] and δ ∈ [0, 1] control the importance of the different rat-
ing sources. This combination of ratings can be considered as two subsequent
steps of linear interpolation. First, predictions from SUR ratings are interpo-
lated with SIR ratings, controlled by λ. Next, the intermediate prediction is
interpolated with predictions from the SUIR data, controlled by δ. The sec-
ond interpolation corresponds to smoothing the SIR and SUR predictions with
SUIR ratings as a background model.

A bigger λ emphasizes user correlations, while smaller λ emphasizes item cor-
relations. When λ equals one, the algorithm corresponds to a user-based ap-
proach, while λ equal to zero results in an item-based approach.

Tuning parameter δ controls the impact of smoothing from the background
model (i.e. SUIR). When δ approaches zero, the fusion framework becomes the
mere combination of user-based and item-based approaches without smoothing
from the background model.

6.4 Probabilistic Relevance Prediction Models

This section re-formulates the collaborative filtering problem in a probabilistic
framework. Motivated by the probabilistic relevance models proposed in text

114 Chapter 6. Unified Relevance Models

retrieval domain [86, 56, 78], we introduce the concept of “relevance” into col-
laborative filtering. By analogy with the relevance models in text retrieval, the
collaborative filtering problem can be solved by answering the following basic
question: what is the probability that this item is relevant to this user, given
his or her profile?

To answer this question, firstly, let us define a sample space of relevance: ΦR and
let R be a random variable over the relevance space ΦR. Unlike the commonly
used binary relevance in text retrieval, in our case here, the relevance is multiple-
valued. Thus, let us define that ΦR has multiple values, which are observed from
the rating data: ΦR = {1, ..., |R|}, where |R| is the number of rating scales.
From now on, each known element (xa,b 6= ∅) in the user-item matrix is treated
as an observation of this multiple-scaled relevance. Secondly, let U be a discrete
random variable over the sample space of user id ’s: ΦU = {u1, ..., uA} and let
I be a random variable over the sample space of item id ’s: ΦI = {i1, ..., iB},
where A is the number of users and B the number of items in the collection. In
other words, U refers to the user identifiers and I refers to the item identifiers.

We then denote P as a probability function on the joint sample space ΦU ×
ΦI × ΦR. A prediction model thus can be built by estimating the conditional
probability of the rating P (R|U, I), given the specified user and item identifiers.
The expectation of the unknown rating of a given item I = ib from a given user
U = ua can be formulated as follows:

x̂a,b =

|R|∑

r=1

rP (R = r|I = ib, U = ua) (6.9)

For simplicity, R = r, U = ua, and I = ib are denoted as r, ua, and ib,
respectively.

Before proceeding, let us highlight how the current formulation using ratings
differs from the probabilistic model that we have proposed before for log-based
CF [114]. In the log-based model, relevance variable r is binary, observed as
“the file is (not) downloaded” or the “web-site is (not) visited”. In that case,
ΦR has binary values ‘relevant’ r and ‘non-relevant’ r. The resulting model is
a ranking model, and does not attempt to predict the rating. Conversely, the
model proposed in this paper is a rating prediction model, that is especially
targeted to rating-based CF; i.e., the model predicts directly the number of
stars that a user would assign to the test item.

6.4.1 Three Different Relevance Models

The way to estimate P (r|ib, ua) plays an important role in our model. Three
different models, namely user-based relevance, item-based relevance and unified

6.4. Probabilistic Relevance Prediction Models 115

relevance models can be derived if we apply the Bayes’ rule differently:

P (r|ib, ua) =

P (ua|r,ib)P (r|ib)
P (ua|ib) User-based Relevance

P (ib|r,ua)P (r|ua)
P (ib|ua) Item-based Relevance

P (ua,ib|r)P (r)
P (ib,ua) Unified Relevance

(6.10)

Each of the three derivations represents a different view of the problem. We
shall see that the former two models (i.e. the user-based relevance model and
the item-based relevance model) represent a partial view of the collaborative
filtering problem while the third model unifies these partial views.

6.4.1.1 User-based Relevance Model

Applying the first factorization in Eq. 6.9, we derive:

x̂a,b =

|R|∑

r=1

r
P (ua|r, ib)P (r|ib)

P (ua|ib)

=

∑|R|
r=1 rP (ua|r, ib)P (r|ib)

P (ua|ib)

=

∑|R|
r=1 rP (ua|r, ib)P (r|ib)

∑|R|
r=1 P (ua|r, ib)P (r|ib)

,

(6.11)

where the final prediction relies on two probabilities: 1) The conditional prob-
ability P (ua|r, ib) builds up a user space model conditioned on the target item
and the rating. It measures how probable a user may rate item ib as rating
r and thus it is the preference model of a user. 2) The probability P (r|ib)
measures how likely the target item ib may be rated as rating r. It can be
regarded as a rating prior or the rating model. Clearly, together the product of
the two probabilities serves as a weight for each rating scale r. The denomina-

tor, a sum over the different rating scales
∑|R|

r=1 P (ua|r, ib)P (r|ib), serves as a
normalization factor. To simplify the notation, we choose ri to denote the joint
event between r and i (i.e. rating for item i). Hence P (ua|r, ib) is written as
P (ua|rib).

Notice that, in the user preference model (P (ua|r, ib)) in Eq. 6.11, users are
defined by their ‘user identifiers’ in the user id space. To be able to make a
prediction for a new user, we need to build a feature representation and use
it to relate the new user to the training users. For this, instead of putting
users in the original user id space, we represent them by their ratings. So,
P (ua|rib) = P (ua|rib), where the vector ua = [xa,1, . . . , xa,B]T denotes the B
item ratings from user a. Unrated items can be filled with the average rating

116 Chapter 6. Unified Relevance Models

value, or taken as a constant value 0 instead. Substituting user identifiers by
their rating vectors in Eq. 6.11 gives:

x̂a,b =

∑|R|
r=1 rP (ua|rib)P (r|ib)

∑|R|
r=1 P (ua|rib)P (r|ib)

(6.12)

6.4.1.2 Item-based Relevance Model

We derive the following equation the same way, by factorizing P (r|ua, ib) in Eq.
6.9 as P (ib|ua, r)P (r|ua)/P (ib|ua):

x̂a,b =

∑|R|
r=1 rP (ib|r, ua)P (r|ua)

∑|R|
r=1 P (ib|r, ua)P (r|ua)

(6.13)

To simplify notation, let ru denote the joint event between r and u (i.e., the
rating from user u), and P (ib|r, ua) be written as P (ib|rua).

Following the same line of reasoning as for the user case above, an item can be
represented using each user’s rating as a feature, such that P (ib|rua) = P (ib|rua)
where the vector ib = [x1,b, . . . , xA,b]

T denotes the A user ratings for item b.
Again, the missing ratings can be replaced by the average rating value or by a
constant value 0. This gives

x̂a,b =

∑|R|
r=1 rP (ib|rua)P (r|ua)

∑|R|
r=1 P (ib|rua)P (r|ua)

(6.14)

Probability P (ib|rua) conditions the item space on the user’s rating. It expresses
how probable an item is rated as value r by user ua, and can be regarded as
the preference model of an item. The probability P (r|ua) measures how likely
the target user ua may provide a rating as value r. It can be treated as a
rating prior, or, the target user’s rating model. Obviously, the final weight for
each rating scale is a product between these two models. The summation over

different rating scales
∑|R|

r=1 P (ib|rua)P (r|ua) in the denominator serves as a
normalization factor.

6.4.1.3 Unified Relevance Model

Let us now introduce the unified relevance model. We derive from Eq. 6.9:

x̂a,b =

∑|R|
r=1 rP (ua, ib|r)P (r)

∑|R|
r=1 P (ua, ib|r)P (r)

(6.15)

6.4. Probabilistic Relevance Prediction Models 117

Table 6.1: Probabilities in the three different models.
Preference Model Rating Model

User-based Relevance P (ua|rib) P (r|ib)
Item-based Relevance P (ib|rua) P (r|ua)

Unified Relevance P (ua, ib|r) P (r)

Analogous to the two other derivations, we use ratings as features to represent
users and items, respectively: P (ua, ib|r) = P (ua, ib|r).

x̂a,b =

∑|R|
r=1 rP (ua, ib|r)P (r)

∑|R|
r=1 P (ua, ib|r)P (r)

(6.16)

The preference model now involves the user and item together.

Table 6.1 summarises the three different models derived from Eq. 6.9 (Eq. 6.12,
6.14 and 6.16). The weights to average the rating scales equal the product of a
preference model and a rating model. Since the three models are derived from
the same root, they are probabilistically equivalent, but the different factor-
izations lead to the different probability estimations, so statistically they are
inequivalent.

6.4.2 Probability Estimation

The next problem is how to estimate the probabilities listed in Table 6.1. Be-
cause the rating space is one-dimensional, the densities for the rating models
can be estimated by simply counting the frequency of the co-occurrences. For
the density estimations of the preference models however, the high dimension-
ality of the user feature space and the item feature space complicates matters.
Here, we use the non-parametric Parzen-window method for density estimation
(also known as kernel density estimation). This approach extrapolates the den-
sity from the sample data. The main advantage over a parametric approach is
that we do not have to specify the model structure a priori, but may determine
it from the data itself.

6.4.2.1 Density Estimation for Rating Models

Estimating the three rating models corresponds to counting the co-occurrence
frequencies of the three joint events:

P (r|ua) =

∑
ib

c(ua, ib, r)∑
ib,r c(ua, ib, r)

=
|Srua

|
|Sua |

(6.17a)

118 Chapter 6. Unified Relevance Models

Table 6.2: Commonly used Parzen kernel functions.
Rectangular 1

2 for |x| < 1, 0 otherwise

Triangular 1 − |x|for|x| < 1, 0 otherwise

Biweight 15
16(1 − x2)2 for |x| < 1, 0 otherwise

Gaussian 1√
2π

e−x2/2

Bartlett - Epanechnikov 3
4 (1 − x2/5)/

√
5 for |x| <

√
5, 0 otherwise

P (r|ib) =

∑
ua

c(ua, ib, r)∑
ua,r c(ua, ib, r)

=
|Srib

|
|Sib |

(6.17b)

P (r) =

∑
ua,ib

c(ua, ib, r)∑
ua,ib,r

c(ua, ib, r)
=

|Sr|
|S| , (6.17c)

where c(ua, ib, r) ∈ {0, 1} denotes the co-occurrence function; c(ua, ib, r) equals
one if user ua rated item ib as r, zero otherwise. S(·) denotes the set of ob-
served samples where event (·) happened, |S(·)| its cardinality. For example,
Srib

denotes the set of observed samples with event (R = r, I = ib), so |Srib
|

corresponds to the number of times that this event happened,
∑

ua
c(ua, ib, r).

S denotes the entire set of observed samples and |S| its size, equal to∑
ua,ib,r

c(ua, ib, r).

6.4.2.2 Density Estimation for Preference Models

Given some observed samples of a population, the Parzen-window method ex-
trapolates the data to the entire population by averaging from neighborhood
observed samples. The neighborhood samples are selected and weighted accord-
ing to some pre-defined Parzen kernel window functions. Usually, the Parzen
kernel function is required to be non-negative and symmetric, and it should
integrate to one. Table 6.2 lists the most commonly used Parzen kernels for
univariate data. The multi-dimensional feature spaces in which users and items
are represented require a multivariate Parzen kernel (denoted as K(y)), that
can be obtained using a product of univariate Parzen kernels:

K(y) =

Q∏

q=1

Kq(yq), (6.18)

where y = [y1, ..., yQ] is a Q-dimensional vector. Kq is the univariate Parzen
kernel function for the qth dimension. We assume all univariate kernels to be
equal: Kq = K. The product of the univariate Parzen kernel assumes that the
dimensions (features) are locally independent (where the locality is defined by

6.4. Probabilistic Relevance Prediction Models 119

the univariate Parzen kernel function K). Pluging in the bandwidth parameter,
we have:

1

hQ
K(

y

h
) =

1

hQ
K(

y1

h
, ...,

yQ

h
) =

1

hQ

Q∏

q=1

K(
yq

h
), (6.19)

where to reduce the complexity of the model, we have assumed the bandwidth
of each Parzen window to be equal in each dimension, defined as h.

First, take preference models P (u|rib) and P (i|rua) in the user-based and the
item-based relevance derivations. Both depend on a single feature vector; either
the user vector u or the item vector i. Directly applying the Parzen-window
method by using the univariate product Parzen kernel, we obtain the following
equations for the density estimations ([25]):

P (u|rib) =
1

|Srib
|

∑

u′∈Srib

1

hu
B

K(
u− u′

hu
) (6.20a)

P (i|rua) =
1

|Srua
|

∑

i′∈Srua

1

hi
A
K(

i − i′

hi
), (6.20b)

where hi and hu are the bandwidth window parameters for the user vector and
item vector, respectively.

Next, consider the preference model in the unified relevance case, P (ua, ib|r).
Probability estimation requires a density in the joint user-item feature space.
We employ a product of two univariate kernel density estimators:

P (ua, ib|r) =
1

|Sr|
∑

(u′,i′)∈Sr

1

hu
B

K(
u− u′

hu
)

1

hi
A
K(

i − i′

hi
), (6.21)

where Sr denotes the set of observed samples when event (R = r) happens,
while |Sr| denotes its size, equal to

∑
ua,ib

c(ua, ib, r).

The kernel density estimation can be interpreted as a mixture of the component
densities with an equal weight. Each mean of the component densities is located
in the place where the neighborhood observation is available. The shape of the
density is controlled by the Parzen kernel window function and its bandwidth
parameter. Thus, the final prediction can be expressed by the summation
over the Parzen kernels which are situated in the location of the neighborhood
samples.

120 Chapter 6. Unified Relevance Models

6.4.3 Rating Predictions

Consider now the problem of rating prediction in the user-based relevance
model. Substituting the user-based rating model of Eq. 6.17a and the user
preference model of Eq. 6.20a in the generic user-based relevance model of Eq.
6.12 gives:

x̂a,b =

∑|R|
r=1 r 1

|Srib
|

(∑
u′∈Srib

1
hu

B K(u−u′

hu
)
) |Srib

|
|Sib

|
∑|R|

r=1
1

|Srib
|

(∑
u′∈Srib

1
hu

B K(u−u′

hu
)
) |Srib

|
|Sib

|

(6.22)

Cancelling out the factors |Srib
| and |Sib | simplifies Eq. 6.22 to:

x̂a,b =

∑|R|
r=1 r

(∑
u′∈Srib

K(u−u′

hu
)
)

∑|R|
r=1

(∑
u′∈Srib

K(u−u′

hu
)
) (6.23)

Combining the outer summation over r with the inner over u′ completes our
approach to perform rating prediction using the user-based relevance model:

x̂a,b =

∑
u′∈Sib

ru′,ibK(u−u′

hu
)

∑
u′∈Sib

K(u−u′

hu
)

, (6.24)

where u′ ∈ Sib denotes the (other) users who have rated item ib, and, ru′,ib

denotes the rating of user u′ for item ib.

Rating prediction in the item-based relevance model is derived analogously:

x̂a,b =

∑
i′∈Sua

ri′,ua
K(i−i′

hi
)

∑
i′∈Sua

K(i−i′

hi
)

, (6.25)

where i′ ∈ Sua denotes the other items rated by user ua, and, ri′,ua denotes the
rating of user i′ for item ua.

Finally, rating prediction with the unified relevance model:

x̂a,b =

∑
(u′,i′)∈S ru′,i′K(u−u′

hu
)K(i−i′

hi
)

∑
(u′,i′)∈S K(u−u′

hu
)K(i−i′

hi
)

, (6.26)

where ru′,i′ denotes the rating of user u′ for item i′. Again, S denotes the entire
sample set S = S1 ∪ · · · ∪ S|R|.

6.4. Probabilistic Relevance Prediction Models 121

The next step specifies the Parzen-window kernel function K and its bandwidth
parameter h. A common choice is to use the Gaussian density function as the
univariate Parzen kernel function:

1

hQ
K(

y

h
) =

1

(
√

2πh)
Q

e−
||y||2

2h2 =
1

(
√

2πh)
Q

∏

q

e−
||yq||

2

2h2 (6.27)

Substituting the Gaussian Parzen-window in the above equations results in the
following preference models:

P (ua|rib) =
1

|Srib
|(
√

2πhu)B

∑

u′∈Srib

e
− ||u−u′||2

2hu2

P (i|rua) =
1

|Srua
|(
√

2πhi)A

∑

i′∈Srua

e
− ||i−i′||2

2hi
2

P (ua, ib|r) =
1

|Sr|
∑

(u′,i′)∈Sr

1

(
√

2πhu)B(
√

2πhi)A
e
− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2 (6.28)

Using these three probability estimates gives the final three equations for rating
prediction, corresponding to the three rating prediction models proposed in this
paper:

User-based Relevance Model:

x̂a,b =

∑
u′∈Sib

ru′,ib · e
− ||u−u′||2

2hu2

∑
u′∈Sib

e
− ||u−u′||2

2hu2

(6.29a)

Item-based Relevance Model:

x̂a,b =

∑
i′∈Sua

ri′,ua · e−
||i−i′||2

2hi
2

∑
i′∈Sua

e
− ||i−i′||2

2hi
2

(6.29b)

Unified Relevance Model:

x̂a,b =

∑
(u′,i′)∈S ru′,i′ · e−

||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

∑
(u′,i′)∈S e

− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

(6.29c)

122 Chapter 6. Unified Relevance Models

6.4.4 Cross-validated EM algorithm

Previous studies have shown that the type of Parzen kernel function has usually
only a marginal effect on the quality of density estimation; however, the choice
of the bandwidth window parameter h has a significant influence [100]. In our
case, the two bandwidth window parameters hu and hi need to be tuned to the
data. If their value is too small, the estimated density is a collection of sharp
peaks positioned at the sample points, such that the density estimation still
suffers from the data sparsity. If their value is however too large, the density
estimate is over-smoothed, such that the underlying structure in the data is not
preserved in the estimated density.

The optimal bandwidth parameters can be found by maximising the following
cross-validated (leave the estimated u or i out) likelihood function [26]:

ĥu, ĥi = arg max
hu,hi

∏

(u,i)∈Sr

1

|Sr − 1|
∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1

hB
u

K(
u− u′

hu
)

1

hA
i

K(
i − i′

hi
)

(6.30)

This maximisation problem can be solved using the iterative Expectation max-
imisation (EM) algorithm [22, 75]. For readability, we give the final expectation
(E) and maximisation (M) steps here but leave the detailed derivation for Ap-
pendix 6.A:

• E step:

P (t)(u′, i′|u, i) =
e
− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

∑
u′ 6=u,i′ 6=i e

− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

(6.31a)

• M step:

h(t+1)
u =

√
1

B|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||u − u′||2) (6.31b)

h
(t+1)
i =

√
1

A|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||i − i′||2) (6.31c)

where t equals the number of the iteration.

6.4.5 A Generalised Distance Measure

The univariate Gaussian Parzen kernel used in the previous measures the dis-
tance between users and item using Euclidean or L2 distance (||u − u′||2 and

6.4. Probabilistic Relevance Prediction Models 123

||i−i′||2). However, many alternative distances could be considered. A previous
study [36] shows that the mean-squared difference is less effective for collabo-
rative filtering than Pearson correlation and the cosine measure. We could of
course adapt our framework using a different Parzen-window function, and try
to set things up such that the density estimation is based on the cosine measure
instead of Euclidean distance. Ideally, we would however like to generalise the
Parzen-window density estimation from the specific distance measure of our
choice.

We can achieve this goal using the mathematics that has become known as
the kernel trick in the machine learning community [96]. Notice that the term
kernel will refer to a different kernel function than the one in the Parzen-window
density estimation; to avoid confusion, we use the term projection kernel. The
kernel trick transforms any algorithm that solely depends on the dot product
between two vectors, by replacing this dot product with the application of the
projection kernel. It has been proven (based on the Moore-Aronszajn-Theorem)
that a positive definite projection kernel determines a unique function φ such
that:

K(y,y′) =< φ(y), φ(y′) >, (6.32)

where <,> denotes the dot product. This equation is often used without know-
ing the exact form of function φ; it suffices to know that it exists and is defined
uniquely. Schölkopf has shown that an even larger class of projection kernels
(referred to as conditionally positive definite functions) satisfies Eq. 6.32 [95].

Now, basic linear algebra allows us to relate the Euclidean distance in projected
space to the application of a projection kernel in user- or item-space:

||φ(y) − φ(y′)||2

=
∑

i

(φ(yi) − φ(y′i))
2

=
∑

i

{φ(yi)
2 − 2φ(yi)φ(y′i) + φ(y′i)

2}

=
∑

i

φ(yi)
2 +

∑

i

φ(y′i)
2 − 2

∑

i

φ(yi)φ(y′i)

= < φ(y), φ(y) > + < φ(y′), φ(y′) > −2 < φ(y), φ(y′) >

=K(y,y) + K(y′,y′) − 2K(y,y′)

(6.33)

Using a length-normalised projection kernel for which K(y,y) = 1 gives

||φ(y) − φ(y′)|| = K(y,y) + K(y′,y′) − 2K(y,y′) = 2 − 2K(y,y′) (6.34)

So, computing a Euclidean distance in projected space is equivalent to using a
positive definite projection kernel K to compute distances in the original space.

124 Chapter 6. Unified Relevance Models

This property allows us to perform Parzen-window density estimation with the
Gaussian kernel in the projected space, without actually knowing the function
φ (which is however defined uniquely by the choice of the projection kernel).

In the remainder, we use the length-normalised dot product as the projection
kernel (also known as the cosine kernel, denoted as Cos(y,y′) [62]):

K(y,y′) = Cos(y,y′) =
< y,y′ >√

< y,y >< y′,y′ >
(6.35)

Thus, we have:

||φ(y) − φ(y′)||2 = 2 − 2Cos(y,y′) (6.36)

In this specific case, function φ is actually known and corresponds to vector
normalization:

φ(y) =
y√

< y,y >
=

y√∑
i(yi)2

(6.37)

Eq. 6.36 demonstrates that the cosine dissimilarity measure is indeed equivalent
to a Euclidean distance measure in the projected space. So, we can perform
Parzen-window density estimation with a Gaussian window function in the
projected space:

Kh(φ(y), φ(y′)) =
J

h
e−

||φ(y)−φ(y′)||2

2h2 =
J

h
e−

1−Cos(y,y′)

h2 , (6.38)

where J is a normalization factor to obtain a Parzen window function, i.e., to
satisfy

∫

y

J

h
e−

1−Cos(y,y′)

h2 dy = 1 (6.39)

It is easy to show that J ∈ IR since 1
he−

1−Cos(y,y′)

h2 is bounded in the y space.

By employing Eq. 6.38 instead of Eq. 6.27, we integrate the cosine similarity
measure into our final rating prediction models:

User-based Relevance Model:

x̂a,b =

∑
u′∈Sib

ru′,ibe
− 1−Cos(u,u′)

h2
u

∑
u′∈Sib

e
− 1−Cos(u,u′)

h2
u

(6.40a)

6.4. Probabilistic Relevance Prediction Models 125

Table 6.3: Relationship between the choice of Parzen kernel, bandwidth param-
eters and the projection kernel and CF algorithms.

Bandwidth Parzen Projection CF Algorithm
Parameters Kernel Kernel

hu ∈ IR Gaussian
Cosine User-based Relevance Model (Eq. 6.40a)
Null Eq. 6.29a and PD ([77])

hi = ∞ Bartlett-Epanechnikov
Cosine User-based method, VS ([9])
Null User-based, Ringo ([97])

hi ∈ IR Gaussian
Cosine Item-based Relevance Model (Eq. 6.40b)
Null Eq. 6.29b

hu = ∞ Bartlett-Epanechnikov
Cosine Item-based method, VS ([92]),
Null Item-based Relevance Model, Euclidean Distance

hu ∈ IR Gaussian
Cosine Unified Relevance Model (Eq. 6.40c)
Null Eq. 6.29c

hi ∈ IR Bartlett-Epanechnikov
Cosine ([116]) and ([43])
Null Unified Relevance Model, Euclidean Distance

Item-based Relevance Model:

x̂a,b =

∑
i′∈Sua

ri′,uae
− 1−Cos(i,i′)

h2
i

∑
i′∈Sua

e
− 1−Cos(i,i′)

h2
i

(6.40b)

Unified Relevance Model:

x̂a,b =

∑
(u′,i′)∈S ru′,i′e

− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)

h2
i

∑
(u′,i′)∈S e

− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)

h2
i

(6.40c)

Estimation of parameters hu and hi follows the same procedure as in the Eu-
clidean distance case, see Appendix 6.A.

6.4.6 Discussions

The General Framework The proposed combination of Parzen-window
kernel density estimation with the relevance models provides a general frame-
work for collaborative filtering. The three rating prediction models listed in Eq.
6.40a, 6.40b and 6.40c, show how the final predictions are expressed by summa-
tions over rating influences from the neighborhood samples (from user neighbors
Eq. 6.40a, item neighbors Eq. 6.40b, or both the user and item neighbors Eq.
6.40c). Three factors determine the influence of the neighborhood samples on
the prediction: the type of Parzen kernel, its bandwidth parameters, and, the
distance of the neighborhood samples from the sample to be predicted. The

126 Chapter 6. Unified Relevance Models

Parzen kernel smoothes the prediction, while the projection kernel allows us
to select the right distance measure. Different choices for the bandwidth pa-
rameters, the Parzen-window kernel function or the projection kernel lead to
different approaches to collaborative filtering. For instance, it is easy to see
that using the Bartlett-Epanechnikov kernel (given in Table 6.2) with hi equal
to one and hu to ∞ simplifies the unified relevance prediction formula in Eq.
6.26 to the item-based cosine similarity method (using Eq. 6.36):

x̂a,b =

∑
i′∈Sua

ri′,uaCos(i, i′)
∑

i′∈Sua
Cos(i, i′)

(6.41)

Table 6.3 summarises how the general framework can be specialised to various
previously known approaches.

The User-based and Item-Based Views The user-based relevance model
and item-based relevance model represent two different views for the problem.
In the user-based relevance model, we fix the target item ib. Conditioned on
it, we build up a user representation P (ua|ib, r) (See Fig. 6.3 (a)). This is
analogous to the document-oriented approaches in text retrieval [68, 56], where
queries represented by the terms are conditioned on the fixed target docu-
ment model P (Q|db, r).

1 Conversely, in the item-based relevance model, we fix
the target user ua and conditioned on it, we build up an item representation
P (ib|ua, r) (see Fig. 6.3 (b)). This is analogous to the query-oriented approach
in text retrieval [86], where documents D are represented by the terms and
these representations are conditioned on the fixed query terms P (D|qa, r).

2

The Unified View Unlike the above two models, the unified relevance model
in Eq. 6.40c however provides a rather completed and unified view of the prob-
lem. In this model, we do not fix the two variables: user and item. Instead,
we construct a unified model that relies on both the user representation and
the item representation P (ua, ib|r) (see Fig. 6.3 (c)). The model is solved by
applying the kernel density estimation and it provides a practical solution for
the unification advocated in [85]. It can also be treated as a generalised version
of the similarity fusion approach to CF [116].

The model intuitively provides a unified probabilistic framework to fuse user-
based and item-based approaches. In addition, the ratings from similar users for
similar items (the SUIR ratings) are employed to smooth the predictions. We
highlight the relationship to the similarity fusion method of [116] by dividing
the entire set of observations S into three sets: the ratings from test user Su,

1In the language modelling literature, the document-oriented approach is also referred to
as a query-generation model.

2The query-oriented approach is also known as a document-generation model for informa-
tion retrieval.

6.4. Probabilistic Relevance Prediction Models 127

the ratings for test item Si, and the remaining ratings Sū,̄ı. Eq. 6.40c gives

x̂a,b =
1

H

(∑

(u′,i′)∈S

ru′,i′e
− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)

h2
i

)

=
1

H

(∑

(u′,i)∈Si

ru′,iE +
∑

(u,i′)∈Su

ru,i′F +
∑

(u′,i′)∈Sū,̄ı

ru′,i′G
)
,

(6.42)

where H is a normalization factor equal to

∑

(u′,i′)∈S

e
− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)

h2
i (6.43)

The three types of ratings ru′,i, ru,i′ and ru′,i′ that contribute to the prediction
are precisely the similar user ratings (SUR), the similar item ratings (SIR) and
the similar user towards similar item ratings (SUIR). E, F and G determine
three weights for averaging these ratings:

E = e
− 1−Cos(u,u′)

h2
u

F = e
− 1−Cos(i,i′)

h2
i

G = e
− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)

h2
i

(6.44)

The bandwidth parameters hu and hi control the width of the kernel function.
A small bandwidth value leads to spiky estimates while larger bandwidth values
over-smooth the observations with data from far away samples. The bandwidth
parameters also balance the contributions from the user side and the item side.
A small hu emphasizes user correlations, and a small hi emphasizes the item
correlations (see also the experiments corresponding to Fig. 6.9 and Fig. 6.10).
When hu approaches ∞, the unified relevance model corresponds to item-based
collaborative filtering, while an hi of ∞ results in user-based recommendation.

6.4.7 Computational Complexity

This section discusses the scalability of our collaborative filtering framework.
The computational complexity of the framework consists of the amount of time
needed for building the model (i.e. the EM estimation of the two bandwidth
parameters and the probability estimations), and that of making online recom-
mendations for a new user from the model. The EM algorithm is only needed
during the model building phase. Thus there are no iterative steps required in
the online recommendation phase. Furthermore, we propose an efficient method
to calculate the kernel-based similarities, largely reducing the computational
complexity.

128 Chapter 6. Unified Relevance Models

6.4.7.1 Offline Computation

In the model building phase, Eq. 6.29c simplifies the probability estimations to
the calculations of the kernel-based similarities. That is, for any user pair and

item pair, we need to calculate their kernel similarities e
− ||u−u′||2

2hu2 and e
− ||i−i′||2

2hi
2 ,

respectively. To make the calculation efficient, we decompose them into the
distance measure part (||u − u′|| or ||i − i′||) and the kernel smoothing part

(e
− •

2hu2 or e
− •

2hi
2). Thus, model building consists of two steps: first computing

two distance (dis-similarity) matrices and then estimating the two bandwidth
parameters.

For each element in the matrix, we require either B arithmetic operations for the
user-to-user distance or A arithmetic operations for the item-to-item distance.
In total the upper bound of the computational complexity is O(A2B + B2A),
which is roughly equal to a sum of the complexity of a user-based method [37]
and that of an item-based method [92]. Since the data is extremely sparse,
with a proper data structure, the computation can be largely reduced. This
paper proposes to use two inverted files, respectively indexing users and items
about their ratings. When we calculate the distances, for instance, for a given
user, we do not need to go through all other users about their agreement on all
items. Instead, we first from the user indexing file get the set of items that he
or she has rated, and then go through these items, accessing a set of users who
have rated any of these items (from the item index file). By doing this, not
only do we exclude the users who do not share any commonly-rated item from
the computations, we also restrict the operations to those items that the two
users both rated. Thus the overall computation is much faster than the original
user-based or item-based methods, only requiring a linear time complexity that
approximately equals O((A + B)mn), where m is the average number of user
ratings per item and n is the average number of item ratings per user. In
addition, it is unnecessary to store all the non-zero elements in the distance
matrices, as we shall see in our experiment (Fig. 6.8) that keeping only the
top-N nearest user neighbors and the top-N nearest item neighbors improves
prediction accuracy, where N is typically in the range of (30...70).

Once we have the user (item) distance matrix that stores the top-N nearest
neighbors, the EM estimation of hi and hu becomes a relatively simple task
because it essentially averages the user or item distance from the distance ma-
trices in an iterative manner (see Eq. 6.31). For the sake of time efficiency,
the E step and M step can be computed together, where the computational
complexity in each iteration is given by O(ABN2) because we need to average
all possible user-item pair (A × B operations) and for each pair, we need to
access N × N neighbors. In practice, the complexity of the EM algorithm can
be further reduced by sub-sampling both training users and training items; our

6.4. Probabilistic Relevance Prediction Models 129

(a) (b) (c)

Figure 6.3: Illustration of the three different models. (a) User-based Relevance
Model. (b) Item-based Relevance Model. (c) Unified Relevance Model.

Table 6.4: Characteristics of the test data sets.

MovieLens 1 MovieLens 2 EachMovies 1 EachMovies 2
Num. of Users 943 500 2,000 10,000
Num. of Items 1682 1000 1,648 1,648
Avg. Num. of Rated Item Per User 106.0 87.7 90.0 96.3
Avg. Num. of User Rating Per Item 59.5 43.9 114.2 611.0
Sparsity 6.30% 8.77% 5.7% 6.11%
Rating Scales 5(1-5) 5(1-5) 6(1-6) 6(1-6))

additional experiments (not reported) verified that a small amount of train-
ing user-item pairs is sufficient to get the stable and accurate estimations of
hu and hi. We shall see in our experiment (Fig. 6.4) that the EM algorithm
converges fast, and a small number of iterations (3-5) suffices to get relatively
stable estimations in the tested data sets.

6.4.7.2 Online Computation

The online recommendation can be computed very efficiently if we again utilize
both the user and item indexing files. For a new user, the computational
complexity of his or her kernel similarity towards other users is approximately
given as O(mn) because on average we access his or her m rated items and for
each of these items access n users who rate it. The final prediction corresponds
to a weighted average from the ratings of the top-N nearest items and the top-
N nearest users, resulting in a computational complexity of O(N2), which is
independent of the number of users and items.

130 Chapter 6. Unified Relevance Models

6.5 Experiments

6.5.1 Data Sets

We experimented with two movie rating data sets: the MovieLens [19] and the
EachMovie [20] data sets.

The MovieLens data set was collected by the GroupLens group through the
MovieLens web site during the period from September 1997 through April 1998.
It contains ratings by 943 users for 1682 movies (items). Each user has rated
at least 20 movies. The rating scale takes values from 1 (the lowest rating)
to 5 (the highest rating). In addition, to compare with other approaches we
also adopt a widely-used subset [21], which contains 500 users and 1000 movies
(items), where each user has rated at least 40 items.

The EachMovie data set was collected by the Digital Equipment Research Cen-
ter during the period from 1995 to 1997. The rating scale was originally indi-
cated as the values from 0 (no star), 0.2 (one star) and up to 1 (five stars). For
consistency with the MovieLens data set, we transformed the rating scales to
the values 1−−6, with 1 being the lowest rating (i.e., no star) and 6 being the
highest one (i.e., five stars). To compare with other approaches, we adopt the
two subsets described in [99] and [123], which respectively contain 2,000 users
and 10,000 users. In both cases, each user has rated as least 40 items. The ba-
sic characteristics of these two data sets with the different size are summarised
in Table 6.4. We mainly use the MovieLens 1 data set to conduct empirical
analyses on our models while using the other sets to conduct performance tests.

6.5.2 Evaluation Protocols

For testing, we assigned the users in the data set at random to a training
user and a test user set. Users in the training set are used as the basis for
making predictions, while our test users are considered the ground truth for
measuring prediction accuracy. Each test user’s ratings have been split into a set
of observed items and one of held-out items. The ratings of the observed items
are input for predicting the ratings of the held-out items (the test items). To
improve our measurements, each of the experimental setups has been repeated
20 times with different random seeds.

For consistency with experiments reported in the literature, e.g., [48, 92, 123]),
we report our results using the mean absolute error (MAE) evaluation metric.
MAE corresponds to the average absolute deviation of predictions to the ground

6.5. Experiments 131

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

h
u
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

h
i
2

(a) h2
u (b) h2

i

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−9

−8

−7

−6

−5

−4

−3

−2

Iterations

Log Likelihood

(c) Log Likelihood Objective
Function

Figure 6.4: Convergence behavior of the cross-validated EM algorithm: Using
the cosine projection kernel (400 training users in the MovieLens 1 data set).

truth data, for all test item ratings and test users:

MAE =

∑
a,b

|xa,b − x̂a,b|

L
, (6.45)

where L denotes the number of tested ratings. A smaller value indicates a
better performance.

6.5.3 Results

6.5.3.1 Parameter Estimation

This section conducts experiments on the EM estimation for the parameters
hu and hi. We first test the convergence behavior of the cross-validated EM

132 Chapter 6. Unified Relevance Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

ba
bi

lit
y

Cosine Distance
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

ba
bi

lit
y

Cosine Distance

(a)Top-50 User (b)Top-50 Item

Figure 6.5: Distribution of cosine distance in the MovieLens data set (400
training users in the MovieLens 1 data set).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.92

0.94

0.96

0.98

1

1.02

h
u
2

M
A

E

h
u
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.92

0.94

0.96

0.98

1

1.02

h
i
2

M
A

E

h
i
2

(a)h2
u (b)h2

i

Figure 6.6: The sensitivity of the two parameters regarding to the MAE mea-
surement (the remaining 543 test users in the MovieLens 1 data set).

method using MovieLens set 1. To reduce redundancy, we only show the esti-
mation results when we randomly select 400 users as the training data. Notice
that the estimation over other number of training users behaves consistently.
Fig. 6.4 shows that the EM algorithm converges in few iterations (about 3) to
the optimal bandwidth parameters (h2

u = 0.79 (Fig. 6.4(a)) and h2
i = 0.49 (Fig.

6.4(b))) with respect to the log likelihood object function (Fig. 6.4 (c)). Re-
peating this experiment with different random initial values of hu and hi (have a
relatively large standard deviation in the figures), the EM algorithm converges
to (almost) the same optimal values (have a relatively small standard deviation
in the figures). Observe that the obtained bandwidth parameter hu is relatively
larger than the parameter hi. To explain this result, we investigate the influence

6.5. Experiments 133

0 50 100 150 200 250 300

0.7

0.75

0.8

0.85

0.9

0.95

h u2

TopN
0 50 100 150 200 250 300

0

1000

2000

3000

4000

5000

A
ve

ra
ge

 T
ru

e
T

op
−

N
 ×

(N
+

2)

h
u
2

Average True Top−N ×(N+2)

0 50 100 150 200 250 300

0.4

0.6

0.8

h i2

TopN
0 50 100 150 200 250 300

0

2000

4000

A
ve

ra
ge

 T
ru

e
T

op
−

N
 ×

(N
+

2)

h
i
2

Average True Top−N ×(N+2)

(a) h2
u vs. top-N (b) h2

i vs. top-N

Figure 6.7: The impact of the neighbor size on the parameter estimation. (400
training users in the MovieLens 1 data set).

50 100 150 200 250 300
0.74

0.76

0.78

0.8

0.82

0.84

0.86

TopN

M
A

E

Figure 6.8: The MAE performance under different neighbor size (the remaining
543 test users in the MovieLens 1 data set).

of the distribution of neighboring vectors on the parameter estimation. In our
models, both the user distance and item distance are measured by the cosine
distance, i.e. 1−Cos(u,u′) and 1−Cos(u,u′) (Eq. 6.40a–6.40c). Fig. 6.5 plots
the distributions of the top-50 nearest users and items as a histogram of 10 bins
in the distance range of [0, 1]. It shows that, on average, the user distances are
larger than the item distances. So, estimating the user density needs a bigger
bandwidth parameter to smooth from the neighborhood than that of the item
density.

To show the sensitivity of the two bandwidth parameters regarding to the rec-
ommendation performance, we plot the value of the bandwidth parameter (ei-
ther hu or hi) against the MAE measurement in Fig. 6.6. It shows that the two
bandwidth parameters are relatively stable in a wide range regarding to the

134 Chapter 6. Unified Relevance Models

MAE performance. Also, comparing the optimal bandwidth parameters with
the ones shown in Fig. 6.4 we can see that, although the EM algorithm uses
a different objective function (log likelihood), it does give a reasonably good
estimation of the two bandwidth parameters in terms of the MAE.

In practice, recommendation systems make a trade-off between prediction ac-
curacy and run-time system efficiency by pre-selecting the top-N nearest user
neighbors (SUR) and the top-N nearest item neighbors (SIR). These form a
rating pool, extended with the top-N × N nearest similar user to similar item
neighbors (SUIR). In total, we would have N × (N + 2) neighbors. However,
only the neighbors whose ratings are available in the pool contribute to the
predictions. Clearly, the parameter N affects the parameter estimation and
therefore also the performance of our fusion methods. Fig. 6.7 plots the esti-
mated parameter values of hu and hi under different neighbor sizes, where the
x axis represents the size of the pre-selected top-N and the left y axis corre-
sponds to the estimated value of the parameter (hu in Fig. 6.7(a) and hi in
Fig. 6.7(b)). The right y axis shows the ‘true’ number of SUR, SIR and SUIR
within the pool that have to be retrieved to obtain non-empty ratings for esti-
mation. The graph shows that for low values of N , both parameters hu and hi

increase fast. This shows that the new ratings introduced by increasing the top-
N contribute to improve the prediction accuracy, such that the corresponding
Parzen-window should cover the newly introduced ratings (so, the bandwidth
parameters increase). Gradually however, this increase diminishes, because a
large top-N introduces more and more noisy ratings. Consequently, the pa-
rameter values converge and the Parzen-window excludes the distant ratings
from the estimation process. Fig. 6.8 displays the MAE of the unified relevance
model under different neighbor sizes, to illustrate the effect of the estimated
parameters on prediction accuracy. The optimal result corresponds to N ≃ 50.
The error increases only slowly with larger values of N , due to the fact that the
Parzen-window reduces the effect of the noisy (distant) neighbors when they
are introduced. We select 50 as the optimal choice of N for the subsequent
experiments.

6.5.3.2 Sparsity

This section investigates the effect of data sparsity on the performance of our
collaborative filtering methods in more detail. For this, we set up the following
configurations: 1) Test User Sparsity : vary the number of items rated by test
users in the observed set, e.g. 5, 10, or 20 ratings per user. 2) Test Item
Sparsity : vary the number of users who have rated test items in the held-
out set, e.g. less than 15, 20, 25 (denoted as ‘< 15’, ‘< 20’, or ‘< 25’), or,
unconstrained (denoted as ‘No constraint’). Notice that the configurations of
the user sparsity and the item sparsity are not completely symmetrical in order

6.5. Experiments 135

5 10 15 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Num. of Given Rating Per Test User

Test Item Sparsity: < 15
Test Item Sparsity: < 20
Test Item Sparsity: < 25
Test Item Sparsity: < 30
Test Item Sparsity: < 40
Test Item Sparsity: < 60
Test Item Sparsity: < 100
Test Item Sparsity: < No constraint

5 10 15 20
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Num. of Given Rating Per Test User

Test Item Sparsity: < 15
Test Item Sparsity: < 20
Test Item Sparsity: < 25
Test Item Sparsity: < 30
Test Item Sparsity: < 40
Test Item Sparsity: < 60
Test Item Sparsity: < 100
Test Item Sparsity: < No constraint

(a) h2
u (b) h2

i

Figure 6.9: The optimal bandwidth parameters with different user sparsity.

20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Max Num. of Given Rating Per Test Item

Test User Sparsity: 5
Test User Sparsity: 10
Test User Sparsity: 15
Test User Sparsity: 20

20 30 40 50 60 70 80 90 100
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Max Num. of Given Rating Per Test Item

Test User Sparsity: 5
Test User Sparsity: 10
Test User Sparsity: 15
Test User Sparsity: 20

(a) h2
u (b) h2

i

Figure 6.10: The optimal bandwidth parameters under different item sparsity.

to reflect the practical situation.

The first experiment investigates the effect of data sparsity on parameter esti-
mation using the EM algorithm. We use the different sparsity configurations:
user sparsity: number of given ratings per user (5, 10, 15, 20) and item spar-
sity: maximum number of user rating per item (<15, <20, <25, <30, <40,
<60, <100, No constraint). For each configuration, we select 400 users in the
MovieLens data set to run the EM algorithm to obtain the optimal parameters
hi and hu.

Fig. 6.9 (a) and (b) show, respectively, the optimal values of h2
u (y axis in Fig.

6.9 (a)) and h2
i (y axis in Fig. 6.9 (b)) under different user sparsity conditions

(x axis). The figures demonstrate that when the user sparsity decreases (and
therefore the number of given ratings per user increases), the optimal user
bandwidth parameter hu becomes smaller while the optimal item bandwidth

136 Chapter 6. Unified Relevance Models

0 5 10 15 20 25 30 35 40
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Num. of Given Rating Per Test User

UnifiedRM
UserRM
ItemRM

0 5 10 15 20 25 30 35 40
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Num. of Given Rating Per Test User

UnifiedRM
UserRM
ItemRM

(a) Num. of user rating per Item: <
20

(b) Num. of user rating per Item: <
100

20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Max Num. of Given Rating Per Test Item

UnifiedRM
UserRM
ItemRM

20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Max Num. of Given Rating Per Test Item

UnifiedRM
UserRM
ItemRM

(c) Num. of item rating per user: 2 (d) Num. of item rating per user: 38

Figure 6.11: Performance of the three derived models under different sparsity
in the MovieLens 1 data set.

parameter hi stays relatively constant. This is due to the fact that, for a given
test user, when the number of item ratings provided by this user is small, it is
difficult for the test user to find other users who share ratings among the small
amount of item ratings provided. Consequently, the test user has less neighbors,
calling for a wide Parzen-window (a larger bandwidth parameter hu) such that
the users with relatively large distance can still contribute and smooth the
density estimation (rating prediction). However, as the number of item ratings
per user increases, for a given test user, he or she has more item ratings to be
used to find similar users. In this case, the test user has more neighbors. Thus,
it is expected to have a smaller bandwidth parameter to produce a narrow
kernel so as to give more emphasis on the most similar users for the density
estimation. In both cases, bandwidth parameter hi varies less than hu, because
the item sparsity remains relatively constant. Fig. 6.10(a) and (b) demonstrate
the same behaviour when varying item sparsity. A low number of user ratings
per item results in a relatively large bandwidth parameter hi. Conversely, when

6.5. Experiments 137

0 5 10 15 20 25 30 35 40
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Num. of Given Rating Per Test User

UnifiedRM
UserRM
ItemRM

0 5 10 15 20 25 30 35 40
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Num. of Given Rating Per Test User

UnifiedRM
UserRM
ItemRM

(a) Num. of user rating per item: <
20

(b) Num. of user rating per item: <
100

20 30 40 50 60 70 80 90 100
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Max Num. of Given Rating Per Test Item

UnifiedRM
UserRM
ItemRM

20 30 40 50 60 70 80 90 100
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Max Num. of Given Rating Per Test Item

UnifiedRM
UserRM
ItemRM

(c) Num. of item rating per User: 2 (d) Num. of item rating per User: 38

Figure 6.12: Performance of the three derived models under different sparsity
in the EachMovie 1 data set.

the number of user ratings per item increases, a small bandwidth parameter hi

is obtained.

We conclude that the EM algorithm adapts the bandwidth parameters success-
fully to the different sparsity situations. Let us now compare the performance
of the three different models for rating prediction: the unified relevance model,
the user-based relevance model and the item-based relevance model (Eq. 6.40a–
6.40c).

We vary user sparsity at 2, 10, 20, 30 and 38, and item sparsity ranging from
<20, <30, <50 to <100. In both the MovieLens 1 and EachMovie 1 data sets,
we randomly assign 400 users to the training set, and use the remaining users
as the test set. Fig. 6.11 and 6.12 summarise the results on the Movielens 1 and
the Eachmovie 1 data sets, respectively. The experiments with varying user and
item sparsity settings show that the MAE performance of each rating prediction
model improves with the number of given ratings per test user. Figures 6.11(c),

138 Chapter 6. Unified Relevance Models

Table 6.5: Comparison among the three derived models on the MovieLens 1
data set. The MAE and P-value of the 10-fold Wilcoxon signed-rank test are
reported (the minimum P-value for 10-fold is 0.002).
User Sparsity 5 10 20 30 38
Unified RM 1.009 0.851 0.825 0.816 0.811
User-based RM 1.078 0.908 0.872 0.862 0.856
Item-based RM 1.070 0.972 0.939 0.905 0.883

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(a) Num. of user rating per item: <20
User Sparsity 5 10 20 30 38
Unified RM 0.987 0.826 0.799 0.791 0.786
User-based RM 1.045 0.869 0.836 0.826 0.821
Item-based RM 1.039 0.947 0.905 0.872 0.851

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(b) Num. of user rating per item: <30
User Sparsity 5 10 20 30 38
Unified RM 0.972 0.806 0.781 0.773 0.769
User-based RM 1.017 0.839 0.809 0.800 0.797
Item-based RM 1.018 0.922 0.875 0.841 0.823

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(c) Num. of user rating per item: <50
User Sparsity 5 10 20 30 38
Unified RM 0.957 0.787 0.761 0.753 0.749
User-based RM 0.987 0.809 0.780 0.772 0.769
Item-based RM 0.999 0.892 0.838 0.805 0.790

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(d) Num. of user rating per item: <100

6.12(c) and (d), demonstrate that the user-based relevance model improves
more from a higher number of given ratings per test item than the item-based
relevance model does, especially in the EachMovie case. At first sight, this is
surprising as we would expect the item-based relevance model to improve most
from a reduced item sparsity (i.e., from having a more reliable item-to-item
similarity measure). Careful investigating of this finding shows however that
prediction accuracy does not only depend upon the reliability of the similarity
measure, but also relies on the number of similar ratings that contribute to
the predictions. The larger number of given ratings per test item improves the
reliability of the item-to-item similarity measure in the item-based relevance
model, but it also increases the number of ratings by users that are similar
to the test users (the SURs) in the user-based relevance model. Both effects

6.5. Experiments 139

Table 6.6: Comparison among the three derived models on the EachMovie 1
data set. The MAE and P-value of the 10-fold Wilcoxon signed-rank test are
reported (the minimum P-value for 10-fold is 0.002).
User Sparsity 5 10 20 30 38
Unified RM 1.282 1.073 1.027 1.010 1.007
User-based RM 1.353 1.156 1.102 1.087 1.087
Item-based RM 1.290 1.153 1.104 1.070 1.059

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.557(>0.05) 0.002(<0.05) 0.002(<0.05) 0.004(<0.05) 0.010(<0.05)

(a) Num. of user rating per item: <20
User Sparsity 5 10 20 30 38
Unified RM 1.249 1.040 0.999 0.983 0.983
User-based RM 1.338 1.128 1.076 1.062 1.060
Item-based RM 1.293 1.155 1.098 1.069 1.059

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.006(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(b) Num. of user rating per item: <30
User Sparsity 5 10 20 30 38
Unified RM 1.238 1.025 0.986 0.972 0.971
User-based RM 1.326 1.095 1.049 1.028 1.028
Item-based RM 1.296 1.159 1.096 1.067 1.057

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(c) Num. of user rating per item: <50
User Sparsity 5 10 20 30 38
Unified RM 1.202 0.973 0.934 0.922 0.920
User-based RM 1.267 1.026 0.978 0.960 0.960
Item-based RM 1.263 1.098 1.033 1.006 0.999

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(d) Num. of user rating per item: <100

contribute to better rating predictions, but increasing the number of SURs
proves to be more beneficial.

Fig. 6.12(d) shows how the user-based relevance model gradually outperforms
the item-based relevance model as the number of given user rating per item
increases. More importantly however, we find that the unified relevance model
outperforms the user-based relevance model and the item-based relevance model
in all sparsity settings. Tables 6.5 and 6.6 list more details of the performance
comparison over the two different data sets, to investigate the statistical sig-
nificance of the performance improvement obtained by the unified relevance
model. It shows the P-value of a Wilcoxon signed-rank test [45] applied to each
configuration. We conclude that the unified relevance model consistently and

140 Chapter 6. Unified Relevance Models

significantly improves the recommendation performance over the user-based
and item-based relevance models, irrespective of the sparsity (except for the
one exception in the top left corner of Table 6.6, where the difference with the
item-based relevance model is not significant). We conclude that the unified
relevance model is indeed effective at fusing the predictions from user and item
aspects.

Table 6.7: Comparison with other approaches on the EachMovie 1 and Movie-
Lens 1 data sets. The MAE and P-value of the 10-fold Wilcoxon signed-rank
test are reported (the minimum P-value for 10-fold is 0.002).

Given Ratings 5 10 20 30
Unified RM 1.011 0.919 0.887 0.876
UserVS 1.108 1.041 1.023 1.018
UserPCC 1.079 0.954 0.911 0.893
ItemVS 1.101 1.025 0.998 0.988
ItemPCC 1.120 1.013 0.969 0.954
PD 1.187 1.084 1.055 1.050

- P-value P-value P-value P-value
Unified - UserVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - UserPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - PD 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)

(a) the EachMovie 1 data set.
Given Ratings 5 10 20 30
Unified RM 0.837 0.769 0.749 0.741
UserVS 0.900 0.845 0.832 0.828
UserPCC 0.888 0.803 0.775 0.762
ItemVS 0.910 0.829 0.803 0.794
ItemPCC 0.954 0.865 0.813 0.795
PD 0.927 0.865 0.837 0.827

- P-value P-value P-value P-value
Unified - UserVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - UserPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - PD 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)

(b) the MovieLens 1 data set.

6.5.3.3 Comparison to other approaches

We continue with a comparison to results obtained with other methods. Each
setting uses the optimal hu and hi learned with the EM algorithm.

Recall that our unified model provides a very general framework for collabora-
tive filtering, particularly for those that make use of the neighborhood concept.
Thus, we first compare our unified model with other popular methods that

6.5. Experiments 141

need to compute the paired similarities, for instance, the memory-based ap-
proaches. Also, the Personality Diagnosis method (see [77]) can be considered
as a neighborhood-based approach as it requires to pre-compute the condi-
tional probabilities (similarities) between two paired users. Table 6.7 presents
the comparison of our unified model to the the Personality Diagnosis (PD)
method and the four memory-based approaches, i.e., the used-based Pearson
Correlation Coefficient (UserPCC) and Vector Space (UserVS) methods (see
[9]), and the item-based Pearson Correlation Coefficient (ItemPCC) and Vector
Space (ItemVS) methods (see [92]). In addition, we also conduct a significance
test, showing the P-value of a Wilcoxon signed-rank test applied to each config-
uration. From the table, we can see that the recommendation performance of
our unified model is indeed significantly better than that of other alternatives
that have been considered.

Next we adopt the MovieLens 2 data set [21] (called the MovieRating test bed
in [48, 123]) as well as the two EachMovie data sets. We followed the evalua-
tion procedure described in [123] and [99], aiming to compare the performance
of our unified model with the state-of-art results of the mixture models [99]
and the cluster-based models [123]. Table 6.8 presents the comparison of our
experimental results to the six methods of [99], i.e., the two extensions of the
Aspect Models (AM c,AM d, see [99]), ‘Personality Diagnosis’ (PD) ([77]), the
user-based Pearson Correlation Coefficient (PCC) ([9]), Vector Space (VC),
and, Flexible Mixture Model (FMM) ([99]). On the Eachmovie 1 data set, our
method outperforms all of these methods in all configurations. In the Movie-
Lens 2 data set, only FMM attains comparable results. However the FMM
method has more computation complexity than our unified model in the online
recommendation phase as it requires the EM iterations called “fold-in” to find
both the hidden user clusters and item clusters for new users.

Table 6.9 shows our experimental results as well as the results listed in [123], i.e.,
the cluster-based Pearson Correlation Coefficient (SCBPCC) and the cluster-
based collaborative filtering (CBCF) ([123]), the Aspect Models (AM) ([41]),
‘Personality Diagnosis’ (PD) ([77]), and the user-based Pearson Correlation Co-
efficient (PCC) and Vector Space (VC) ([9]). For both two test sets, our method
outperforms these methods in all configurations. By unifying the ratings from
both user and item aspects for prediction, our unified relevance model is found
to be effective in improving the prediction accuracy for recommendation con-
sistently.

142 Chapter 6. Unified Relevance Models

Table 6.8: Comparison with the result reported in [99]. The MAE is reported.
Training Users: 200 400
Given Ratings: 5 10 20 5 10 20
Unified Model 1.05 0.97 0.94 1.04 0.96 0.93
PCC 1.22 1.16 1.13 1.22 1.16 1.13
VS 1.25 1.24 1.26 1.32 1.33 1.37
PD 1.19 1.16 1.15 1.18 1.16 1.15
AM a(20) 1.27 1.18 1.14 1.28 1.19 1.16
AM a(10) 1.18 1.17 1.16 1.15 1.14 1.13
FMM 1.07 1.04 1.02 1.05 1.03 1.01

(a) the EachMovie 1 data set
Training Users: 100 200
Given Ratings: 5 10 20 5 10 20
Unified Model 0.848 0.779 0.796 0.828 0.767 0.781
PCC 0.881 0.832 0.809 0.878 0.828 0.801
VS 0.859 0.834 0.823 0.862 0.950 0.854
PD 0.839 0.826 0.818 0.835 0.816 0.806
AM a(5) 0.882 0.856 0.836 0.891 0.850 0.818
AM a(2) 0.869 0.857 0.850 0.837 0.833 0.825
FMM 0.829 0.822 0.807 0.800 0.787 0.768

(b) the MovieLens 2 data set

Table 6.9: Comparison with the results reported in [123]. The MAE is reported.
Training Users: 500 2000 6000
Given Ratings: 5 10 20 5 10 20 5 10 20
Unified Model 1.061 0.969 0.938 1.054 0.957 0.921 1.061 0.954 0.918
PCC 1.157 1.075 1.048 1.124 1.052 1.020 1.118 1.039 0.988
PD 1.148 1.145 1.140 1.129 1.087 1.043 1.101 1.063 1.051
AM 1.157 1.082 1.057 1.125 1.078 1.054 1.117 1.069 1.046
CBCF 1.207 1.132 1.089 1.187 1.113 1.063 1.197 1.111 1.060
SCBPCC 1.105 1.041 1.004 1.085 1.014 0.973 1.073 1.001 0.956

(a) the EachMovie 2 data set
Training Users: 100 200 300
Given Ratings: 5 10 20 5 10 20 5 10 20
Unified Model 0.848 0.779 0.796 0.828 0.767 0.781 0.799 0.7552 0.764
PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820
PD 0.849 0.817 0.808 0.836 0.815 0.792 0.827 0.815 0.789
AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796
CBCF 0.924 0.896 0.890 0.908 0.879 0.852 0.847 0.846 0.821
SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778

(b) the MovieLens 2 data set

6.6 Conclusions and Future Work

This paper presented a unified probabilistic model for collaborative filtering.
We explain how to use Parzen-window density estimation for acquiring the
probabilities of the proposed unified relevance model. We generalised the kernel
density estimation by applying the ‘kernel trick’, and showed that the often used
cosine measure is a suitable projection kernel function. The resulting method
has been shown to produce highly accurate predictions on common benchmark

6.6. Conclusions and Future Work 143

data.

The probabilistic framework calls for interesting future work. Firstly, we intend
to explore smoothing techniques as an extra technique to tackle data sparsity.
For instance, it is possible to use interpolation smoothing to introduce a back-
ground model into the density estimation. Secondly, we plan to look at other
IR models for collaborative filtering problems, especially in the situation where
we need to pose collaborative filtering as an item ranking problem. The well-
known Probability Ranking Principle (PRP) of information retrieval [83] is of
particular interest as it provides a theoretical guideline for ranking documents
(items). In this regard, we will investigate the possible usages of other rank-
ing models such as the language modelling of information retrieval [18, 114]
and the BM25 ranking formulas [87]. Thirdly, to deal with different scenarios
in recommender systems, we will investigate the possible integration of other
text retrieval techniques (more specifically, query expansion and relevance feed-
back). Fourthly, since our methods are general models for co-occurrence data,
it is also worthwhile seeking the possible usage of the models beyond collabo-
rative filtering. We are particularly interested in applying the unified relevance
model for the unification of document and query generation in text retrieval.

144 Chapter 6. Unified Relevance Models

6.A Cross-validated EM algorithm

This appendix derives a cross-validated expectation maximisation algorithm to
select an optimal value of the smoothing parameters hu and hi. Of course, this
depends for a large part on the data: on the number of data points and their
distribution. Other factors of influence are the Parzen window function and the
optimality criterion.

The goal is to select hu and hi such that they maximise the likelihood function:

ĥu, ĥi = arg max
hu,hi

∏

(u,i)∈Sr

P (u, i|r)

= arg max
hu,hi

∏

(u,i)∈Sr

1

|Sr|
∑

(u′,i′)∈Sr

1

hB
u

K(
u − u′

hu
)

1

hA
i

K(
i− i′

hi
)

(6.46)

It is easy to see that the joint distribution reaches an absolute maximum when
hu = 0 and hi = 0. [26] has proposed cross-validated maximum likelihood
estimation to remove this anomaly,

ĥu, ĥi = arg max
hu,hi

∏

(u,i)∈Sr

1

|Sr − 1|
∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1

hB
u

K(
u− u′

hu
)

1

hA
i

K(
i − i′

hi
)

(6.47)

This equation can be solved using the iterative expectation maximisation (EM)
algorithm (e.g., [75]).

The Parzen-window density estimation method can be interpreted as a genera-
tive model with a large mixture of |Sr −1| (because of cross-validation) compo-
nent densities with equal weight, where the means of the component densities
(assuming a symmetric window function) are located at each observation. Test
samples u and i are generated from component densities with means u′ and i′,
i.e., P (u, i|u′, i′ : hu,hi), with a prior probability of selecting that component
equal to P (u′, i′) = 1/|Sr − 1|. Applying Bayes’ rule to turn P (u, i|u′, i′) into
P (u′, i′|u, i) gives :

P (u′, i′|u, i) =
P (u′, i′)P (u, i|u′, i′ : hu,hi)∑

u′ 6=u,i′ 6=i P (u′, i′)P (u, i|u′, i′ : hu,hi)

=
(1/|Sr − 1|) 1

hB
u
K(u−u′

hu
) 1

hA
i

K(i−i′

hi
)

∑
u′ 6=u,i′ 6=i(1/|Sr − 1|) 1

hB
u
K(u−u′

hu
) 1

hA
i

K(i−i′

hi
)

=
K(u−u′

hu
)K(i−i′

hi
)

∑
u′ 6=u,i′ 6=i K(u−u′

hu
)K(i−i′

hi
)

(6.48)

6.A. Cross-validated EM algorithm 145

Equation 6.48 gives the E-step of the EM algorithm. The M-step of the EM

algorithm uses a lower-bound Λ(hu, hi|h(t)
u , h

(t)
i) to approximate the original

maximum likelihood function, and then maximises the lower-bound. The E-
step and M-step are iteratively applied until the algorithm converges to a (local)
maximum [109]. This lower-bound towards the log form of the cross-validated
likelihood function is obtained from Jensen’s Inequality, which states that for
any concave function f , such that:

f(
∑

i

pixi) ≥
∑

i

pif(xi),

where
∑

i pi = 1, pi ≥ 0 and xi ≥ 0. Because the logarithm is concave in the
range of (0, 1], Jensen’s Inequality can be used to derive a lower bound for the
likelihood function shown in Eq. 6.47:

∏

∀(u,i):(u,i)∈Sr

1

|Sr − 1|
∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1

hB
u

K(
u − u′

hu
)

1

hA
i

K(
i− i′

hi
)

∝
∑

∀(u,i):(u,i)∈Sr

ln
(1

|Sr − 1|
∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1

hB
u

K(
u− u′

hu
)

1

hA
i

K(
i− i′

hi
)
)

=
∑

∀(u,i):(u,i)∈Sr

ln
(∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1

|Sr − 1|
1

hB
u

K(
u− u′

hu
)

1

hA
i

K(
i− i′

hi
)
)

=
∑

∀(u,i):(u,i)∈Sr

ln
(∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

P (t)(u′, i′|u, i)

1
|Sr−1|

1
hB

u
K(u−u′

hu
) 1

hA
i

K(i−i′

hi
)

P (t)(u′, i′|u, i)

)

≥
∑

∀(u,i):(u,i)∈Sr

∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

P (t)(u′, i′|u, i) ln

1
|Sr−1|

1
hB

u
K(u−u′

hu
) 1

hA
i

K(i−i′

hi
)

P (t)(u′, i′|u, i)

=Λ(hu, hi|h(t)
u , h

(t)
i)

(6.49)

Thus we have the following lower-bound towards the log form of the cross-
validated likelihood function:

Λ(hu, hi|h(t)
u , h

(t)
i) =

∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln

1
|Sr−1|

1
hB

u
K(u−u′

hu
) 1

hA
i

K(i−i′

hi
)

P (t)(u′, i′|u, i)

=
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr − 1|
1

hB
u

K(
u− u′

hu
)

1

hA
i

K(
i − i′

hi
)

−
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln P (t)(u′, i′|u, i)

(6.50)

146 Chapter 6. Unified Relevance Models

The last term can be dropped since it is independent of hu and hi:

h(t+1)
u = arg max

hu

Λ(hu, hi|h(t)
u , h

(t)
i)

= arg max
hu

∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr − 1|
1

hB
u

K(
u− u′

hu
)

1

hA
i

K(
i − i′

hi
)

(6.51)

Solve the maximisation problem of Eq. 6.51 by taking the derivative of Λ with
respect to hu. In the case of a Gaussian kernel, first convert the product inside

the natural logarithm into a sum of −B ln hu, − ||u−u′||2
2hu

2 and a part that does
not depend on hu:

∂

∂hu
Λ(hu, hi|h(t)

u , h
(t)
i)

=
∂

∂hu

∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr − 1|
1

hu
B

e
− ||u−u′||2

2hu2
1

hi
A

e
− ||i−i′||2

2hi
2

=
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
(−B

hu

+
||u − u′||2

h3
u

)

=
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
−B

hu

+
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
||u − u′||2

h3
u

=
−B|Sr|

hu

+
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
||u − u′||2

h3
u

= 0

(6.52)

Therefore, we have:

h(t+1)
u =

√
1

B|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||u − u′||2) (6.53)

Similarly, we have for hi:

h
(t+1)
i =

√
1

A|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||i − i′||2) (6.54)

In all, we have our cross-validated EM algorithm to estimate the two bandwidth
parameters:

• E step:

P (t)(u′, i′|u, i) =
e
− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

∑
u′ 6=u,i′ 6=i e

− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

(6.55a)

6.A. Cross-validated EM algorithm 147

• M step:

h(t+1)
u =

√
1

B|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||u − u′||2) (6.55b)

h
(t+1)
i =

√
1

A|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||i − i′||2) (6.55c)

148 Chapter 6. Unified Relevance Models

Commentary on Chapter 6

Making use of the additional ratings from similar users for similar items solves
the data sparsity problem to some extent. But like any other user profile based
collaborative filtering approach, the unified model requires a user to provide
item ratings before it can make any personalized recommendation for that user
[94]. Similarly, a new item cannot be recommended until its ratings have been
collected. In this regard, recommender systems need bootstrapping, especially
in their early stage. Making an initial recommendation on the basis of item pop-
ularity could motivate new users to interact with the system. We have shown
in Chapters 2 and 3 that the item-based relevance-ranking algorithms have al-
ready incorporated this into the recommendation process. Unfortunately, the
acquisition of user preferences may be time-consuming and annoying. Thus,
it is desirable to explore active learning techniques in which most informative
item can be identified, and asking new users to rate only these items could
minimize the number of rating requests [49, 65].

Fig. 6.1 (b) illustrates that, to be able to make a recommendation of new items,
we require a feature representation of these items so as to correlate them to the
existing items in the collection. Content descriptions are helpful but they are
difficult to obtain for non-textual items such as images and videos and subject
indexing that manually describes or summarizes these information items by
index terms is not cost-effective. As we have seen in Chapter 4, collaborative
tagging alleviates the problem by collaboratively annotating and categorizing
content from millions of online users.

149

150 Chapter 6. Commentary on Chapter 6

Part III

Applications

151

Chapter 7
Peer-to-Peer Recommendation

The advent of Peer-to-Peer (P2P) networks has changed the way in which people
share and seek information. Given the large amount of information available,
it is of great interest to design a distributed recommender system, so as to per-
sonalize the information seeking in these networks. However, when applying
the proposed relevance models of collaborative filtering to P2P networks, we
are confronted with a challenge that there is no central server managing the
network. This chapter combines work in the field of information retrieval and
that of P2P networks, approaching distributed collaborative filtering in an in-
terdisciplinary manner. To achieve this, we introduce an overlay network that
efficiently decomposes the computation loads and preference data for the rele-
vance models. We argue that, with respect to the two factorizations of the rel-
evance models, there are two views on approaching an overlay network, namely
the user-oriented view and item oriented view. For the user-oriented view, we

This chapter is based on the following published papers [117, 118, 119, 124]:

• “Wi-Fi walkman: a wireless handhold that shares and recommends music on peer-to-
peer networks”, J. Wang, M. J. Reinders, J. Pouwelse, and R. L. Lagendijk, in Proc.
of Embedded Processors for Multimedia and Communications II, part of the SPIE
Symposium on Electronic Imaging 2005.

• “Distributed collaborative filtering for peer-to-peer file sharing systems”, J. Wang, J.
Pouwelse, R. Lagendijk, and M. R. J. Reinders, in Proc. of the 21st Annual ACM
Symposium on Applied Computing, 2006.

• “Personalization on a peer-to-peer television system”, J. Wang, J. Pouwelse, J. Fokker,
A. P. de Vries, and M. J. Reinders, Special Issue on Multimedia Tools and Applications,
2006.

• “An epidemic-based P2P recommender system”, J. Yang, J. Wang, M. Clements, J. A.
Pouwelse, A. P. de Vries, and M. Reinders, in Workshop on Large Scale Distributed
Systems for Information Retrieval (LSDS-IR) in SIGIR07, 2007.

153

154 Chapter 7. Peer-to-Peer Recommendation

take user proximity into account, proposing an user-preference exchange algo-
rithm on the basis of an epidemic protocol. For the item-oriented view, we
employ item proximity, introducing an item similarity update scheme that is
self-organizing and operates in a distributed way. Our experiments show that
the proposed overlay networks provide effective yet simple ways to distribute
the computation that is needed for the recommendations. To conclude the
chapter, we introduce two P2P applications, demonstrating the practical usage
of our algorithms.

7.1 Introduction

The rapid progress in multimedia processing, communications, and storage
technologies not only changes the availability of data, but also the way in
which people interact with it. Particularly, peer-to-peer (P2P) networks have
become a new and popular medium for people to exchange information, stored
on their local devices. Examples of P2P file sharing systems include: Emule
(EMule-Project.net) and BitTorrent (BitTorrent.com). These networks in-
crease content availability dramatically, since the involvement of third parties
that manage the centrally stored information can be avoided.

A schematic overview of a P2P file sharing system is given in Fig. 7.1, showing
that each peer performs two roles in the network: information seeker and sharer.
The overwhelming information availability in most P2P networks causes the
information seeking task to be difficult and time consuming. A filter based on
the peer’s preference offers a solution to extract interesting content from the
wealth of data in the network. Another problem in P2P networks lies in the fact
that both users and content are distributed and dynamically changing, these
characteristics make the design of content filters or search engines a challenging
task.

To manage the poorly organized information and filter relevant content that
fits the user’s interest within a P2P network, techniques to create a semantic
overlay need to be explored. P2P research has proposed semantic structures
[17, 105, 113], that deploy the similarity between content descriptions or user
demographics. In practice, the use of meta data descriptions is problematic,
since it is often unavailable or incomplete. Another way to describe the content
is by making use of low-level features of the data, such as proposed in content-
based multimedia analysis [34, 101]. However, these approaches often require
that the data to be compared is from the same modality, which is an undesirable
property when one wants to share multimedia files. Thus, there is a need for
a more generic content similarity measure that does not demand meta data
and/or low level features.

7.1. Introduction 155

…

P2P

Networks

sh
ari
ng

Pee
r

ob
se
rvi
ng

filt
eri
ng

p
ro
filin

g

s
h
a
rin
g

Peer

o
b
s
e
rv
in
g

filte
rin
g

p
ro
filin
g

s
h
a
ri
n
g

P
e
e
r

o
b
s
e
rv
in
g

fi
lt
e
ri
n
g

profiling

sh
arin
g

Peero
b
servin

g

filterin
g

p
ro
fi
li
n
g

s
h
a
ri
n
g

Pe
er

o
b
s
e
rv
in
g

fi
lt
e
ri
n
g p

ro
filin
g

Figure 7.1: A schematic overview of a peer to peer file sharing system.

Research on recommender systems has provided similarity measures that can be
used to derive the relevance of an item to the preference of a user. Many current
recommender systems are based on collaborative filtering, a filtering technique
that derives similarities between users (user-based) or items (item-based) from
a database of the users’ rating or viewing profiles. Within the context of P2P
networks there is, however, no centralized user profile database, so that current
collaborative filtering approaches cannot be applied directly.

This chapter presents our research on distributed collaborative filtering. We
aim at decentralizing the proposed relevance models of collaborative filtering
so that they can be readily applied to P2P environments. Recall that we intro-
duced two different factorizations in the relevance model, and their differences
lead to two different ways to approaching collaborative filtering. For each of the
factorizations (i.e. user-based and item-based), this chapter respectively intro-
duces its corresponding overlay network, efficiently distributing computation
loads and user preference data into the whole network.

The remainder of the chapter is organized as follows. We first summarize related
work and introduce our two decentralized recommendation approaches. We
then look at two applications that we worked on: Tribler, a P2P file sharing
system and Wi-Fi Walkman, a P2P Music sharing handheld device. Finally, a
conclusion is given with discussion on future directions.

156 Chapter 7. Peer-to-Peer Recommendation

7.2 Related Work

7.2.1 Collaborative Filtering

Recently, a few early attempts towards decentralized collaborative filtering have
been introduced [10, 71, 74, 76, 111]. In [71], five architectures are proposed to
find and store user rating data to make rating based recommendation, namely,
a central server, random discovery similar to Gnutella, transitive traversal,
Distributed Hash Tables (DHT), and secure Blackboard. These solutions aim
to aggregate the rating data in order to make a recommendation and they
hold independently of any semantic structure of the networks. This inevitably
increases the amount of traffic within the network.

Different from these methods, we implicitly learn user interest from user inter-
action data. We build our sematic overlay network from either the user-oriented
view or item-oriented view, making any static structures unnecessary.

7.2.2 Peer-to-Peer Networks

Different indexing techniques for content located at different peers exist, such
as: a local index (the owner of the data is only able to index the data, like
in early Gnutella), the central index (a centralized server organizes indices to
data residing at peers, like in Napster), and the distributed index (other peers
are also able to index the data residing at a peer, like in Freenet). For a recent
comprehensive survey on P2P networks we refer to [64].

Jelasity and Van Steen [47] introduced newscast, an epidemic (or gossip) pro-
tocol that exploits randomness to disseminate information without keeping
any static structures or requiring any sort of administration. Although this
type of protocol successfully operates in dynamic networks, its lack of content-
awareness restricts its efficiency towards content search.

Another major indexing approach makes use of DHTs [64, 106]. In a DHT each
location (index) is mapped to a unique key, and each peer maintains a certain
range of the keys. In this way each peer generates a well-defined structure that
can be used for routing queries that is scalable to some extent. However, an
extension is necessary to perform a search based on arbitrary queries, rather
than key lookups [64].

Recently, semantic indexing and routing techniques have been proposed to cap-
ture relationships between content [64, 107]. Distinct semantic groups of doc-
uments [17], or users [105, 113] are identified to create Semantic Overlay Net-
works (SONs). A document request is then handled by the overlay to which this
document presumably belongs (based on either clusters of documents or peers).

7.3. User-oriented Overlay Network 157

However, to match queries to documents, a content description (in the form of
meta-data) is required. Identifying similarities between peers or non-textual
content turns out to be difficult to establish in the absence of this information.

In this chapter, meta-data and demographics are redundant, as user similarity is
calculated by the co-occurrence of two users’ preference profiles and a semantic
overlay is created among users by randomly exchanging so-called Buddycast
messages. We shall see that such an overlay network lies at the heart of the
item ranking in P2P networks as it provides an effective way to collect the most
valuable profiles for the purpose of ranking.

7.3 User-oriented Overlay Network1

In this section, we first describe a user-based item ranking model for recom-
mendation. Taking user proximity into account, we propose an epidemic-based
algorithm for exchanging user profiles, and realize the ranking in a distributed
and dynamic manner. The proposed distributed recommendation algorithm
has been implemented in Tribler, an Open Source file sharing software [79]. For
readability, we leave the introduction of the Tribler system for Section 7.5.1.

7.3.1 User-based Ranking Model

Our task for collaborative filtering is to find items that are relevant (useful) to a
given user (his or her interest is implicitly indicated by a user profile). The well-
known Probability Ranking Principle (PRP) of information retrieval [83] states
that ranking documents by their probability of relevance in descending order
produces “optimal” performance under reasonable assumptions [83]. Thus, it
is natural to adopt the PRP for our recommendation task, treating the user
profile as a query and rank items. For this, we need to introduce the concept of
“relevancy” into collaborative filtering. By analogy with the relevance models in
text retrieval [56, 86], the top-N recommendation items can be then generated
by ranking items in order of their probability of relevance to the user profile or
the underlying user interest.

To be able to rank items, this section formulates the estimation of the prob-
ability of relevance between an item and a user (profile), using the following
notation. Let u be a discrete random variable over the sample space of users2

ΦU = {1, ...,M}, let i be a random variable over the sample space of items

1This section is based on the publication: “An epidemic-based P2P recommender system”,
J. Yang, J. Wang, M. Clements, J. A. Pouwelse, A. P. de Vries, and M. Reinders, in Workshop
on Large Scale Distributed Systems for Information Retrieval (LSDS-IR) in SIGIR07, 2007.

2Throughout the chapter, we use the terms peer and user interchangeably.

158 Chapter 7. Peer-to-Peer Recommendation

ΦI = {1, ...,K}, and let R be a random variable over the relevance space ΦR,
where R is either ‘relevant’ r or ‘non-relevant’ r̄.

In a probabilistic framework, we can generate a top-N item ranking list in order
of their estimated log-odd of relevance: ln p(r|u,i)

p(r̄|u,i) . Using Bayes’ rule gives the
following ranking formula:

ou(i) = ln
p(r|u, i)

p(r̄|u, i)
= ln

p(i|u, r)

p(i|u, r̄)
+ ln

p(r|u)

p(r̄|u)
(7.1)

where the last term can be discarded as it is independent on the target item.
Notice that this is not the only derivation. For other detailed derivations, please
refer to Chapter 1 or [114].

The relevancy between items and users can be explicitly obtained by asking
users to rate items (content) that they know. However these explicit ratings
are hard to gather in a real system. It is highly desirable to infer user profiles
from implicit observations of user interactions with the system. In our system,
for the sake of simplicity but without loss of generality, we only observe the
positive evidence. By following the language modelling of information retrieval
[56], we now assume equal priors for item i in the non-relevant case; Notice that
these two negative terms in Eq. 7.1 can always be added to the model when the
negative evidences are captured. Then, the non-relevance term can be removed
and the ranking formula becomes:

ou(i) ∝ p(i|u, r) (7.2)

where the probability p(i|u, r) cannot be directly estimated because we need
to predict “new” items, i.e., those that do not exist in the given user profile.
To address this problem, we represent items explicitly by the judgments of the
different users, such that they can be linked to the target user u. Formally, we
introduce a list Li for each item i, where u ∈ Li denotes that user u is in the
list. This list enumerates the users who have expressed interest in the item i.
Replacing i with Li, we have:

ou(i) ∝
∑

∀u′:u′∈Li

log p(u′|u, r) (7.3)

where the probability p(u′|u, r) depicts the similarity between two users u and
u′, which can be estimated using user profiles: counting the number of items
that both users liked (denoted as c(u′, u))), divided by the total number of
items that user u liked (denoted as c(u)):

p(u′|u, r) =
p(u′, u|r)
p(u|r) :=

c(u′, u)

c(u)
(7.4)

However due to the data sparsity, many co-occurrence counts of two users may
be zero. To counter the sparsity and remove the zero probabilities, we propose

7.3. User-oriented Overlay Network 159

Exploration
Sporadically exchange

profiles with others

social network

(your buddies)

Exploitation

Frequently exchange
profiles between buddies

Figure 7.2: Exploitation v.s. Exploration.

to use the Bayes-smoothing technique [126] to further smooth the estimation.
More formally, we have:

p(u′|u, r) :=
c(u′, u) + µ · p(u′|r)

c(u) + µ
(7.5)

where µ is the smoothing parameter and p(u′|r) := c(u′)
P

u′ c(u′) .

In summary, we now have our final ranking formula if we replace Eq. 7.5 into
Eq. 7.3.

ou(i) ∝
∑

∀u′:u′∈Li

log
c(u′, u) + µ · c(u′)

P

u′ c(u′)

c(u) + µ
(7.6)

7.3.2 Decentralized Ranking

It is easy to compute the ranking in a centralized server but it is non-trivial in
a P2P network because user profiles are distributed in the entire P2P network
and for a particular peer (user), there is no centralized user profile database
to be used to calculate the co-occurrences. Thus the ranking of items for a
particular user (peer) has to be calculated locally in that peer.

Eq. 7.6 gives a formal ranking solution for collaborative filtering, indicating
that, in order to make a recommendation, i.e. ranking the relevance of a target

160 Chapter 7. Peer-to-Peer Recommendation

Buddies of uk

))1(,(~
kuku
Bus

))2(,(~
kuku
Bus

))(,(~ NBus
kuku

ROULETTE WHEEL

step 1

Select
random
peers

step 2

Create
roulette
wheel

step 3

Choose peer
according to
roulette
wheel: ua

Ids Profiles

Buddies of uk

][
ku
B][N

Ids

Random peers

[]N

: Exploitation/Exploration ratio

Ids Profiles
][
ku
B][N

Ids Profiles

Buddies of ua

][
au
B][N

Ids Profiles

Buddies of uk

][
ku
B][N

step 4

Join buddylists, rank and
create new buddies for uk

Figure 7.3: Peer Selection.

item towards the user, we mainly need to estimate the co-occurrence c(u′, u) of
the target user u towards other users u′ who have already expressed interest in
the target item. Closely looking at Eq. 7.6, we find that, for the target user,
those items that have been liked by the similar users will have high ranking
scores when we rank the relevance to that target user. Thus an efficient and
scalable way to calculate the ranking formula in Eq. 7.6 is to find the simi-
lar users to the target user and only rank items that they liked, rather than
collecting all user profiles and ranking all items.

In this regard, we introduce the Buddycast algorithm, which is used to ef-
ficiently exchange the profiles of similar users. The Buddycast algorithm is
based on an epidemic protocol [47] and works as follows (see Fig. 7.4). Each
peer maintains a list of its top-N most similar peers along with their current
preference lists. Similarities between preference lists are measured using the
co-occurrence c(u′, u). Periodically, a peer connects to either (a) one of its bud-
dies to exchange social networks and preference lists (exploitation), or (b) to a
new peer, randomly chosen, to exchange this information (exploration). This
is illustrated in Fig. 7.2. To maximize the exploration of the social network,
every peer also maintains a list with the K most recently visited random peers,
and avoids reconnecting to a peer already present in the list.

In contrast to other epidemic protocols such as Newscast [47], we use both
exploitation and exploration branches, we limit the randomness of peer selec-
tion during the exploration, and we implicitly cluster peers into social groups

7.3. User-oriented Overlay Network 161

1 BuddyCast(pi) {
2 do forever {
3 e = waitForEvent();
4 if e is TIMEOUT {
5 pj = selectPeer(Bi);
6 send Bi to pj ;
7 receive Bj from pj ;
8 Bi = merg(Bi; Bj);
9 Bi = updateSim(Bi);
10 Bi = selectTopN(Bi);
11 }
12 if e is message Bj from pj {
13 send Bi to pj ;
14 Bi = merg(Bi; Bj);
15 Bi = updateSim(Bi);
16 Bi = selectTopN(Bi);
17 }
18 }
19 }

(a) Main Routine

1 selectPeer(Bi) {
2 {pλ}=randomPeers(pi, λ*N);
3 {wλ}=minWeight(Bi);
4 Bi = Bi +{(pλ, wλ)};
5 Bi = normalizeWeight(Bi);
6 randomly select p according to w.
7 }

(b) Peer Selection

Figure 7.4: The BuddyCast Algorithm. λ is the exploration/exploitation ratio,
Bi is the Buddy Cache.

(having common interest). To find a good balance between exploitation and
exploration, the following procedure is adopted (see Fig. 7.4 (b)). First, λ · N
random peers are chosen, where λ ≥ 0 is the exploitation-to-exploration ratio.
Then, these random peers are joined with the N buddies in a single ranked
list, with the random peers being assigned the lowest ranks. Then, one peer is
randomly chosen from this ranked list according to a roulette wheel approach
(probabilities proportional to the ranks), which gives taste buddies a higher
probability of being selected than the random peers. Once a peer has selected
some other peer, the buddy lists of the two peers are merged. The first peer
then ranks the composite list according to the preference list similarities with
its own preference list, and retains only the top-N best ranked peers. The peer
selection step is illustrated in Fig. 7.3.

After collecting similar user profiles, each peer applies the ranking formula in
Eq. 7.6 using the calculated co-occurrences to rank the items that are presented
in these profiles.

162 Chapter 7. Peer-to-Peer Recommendation

Figure 7.5: Convergence of our Buddycast algorithm.

Practical Considerations The proposed P2P recommendation algorithm has
been used in our P2P file sharing software Tribler since March 2006, which has
been downloaded more than 100,000 times. For such a real P2P environment,
we have addressed some of the practical issues. Firstly, we establish a “strong”
identifier for each peer since we do not have a central indexing server to index
online users and their network addresses (IP addresses). Tribler creates a public
key as a permanent identifier for each peer (client). Secondly, the network is
very dynamic. Peers arrive and leave frequently. According to our observation,
there are about 1/3 of the peers behind firewalls. To avoid including dead or
unreachable peers in the Buddycast messages, each peer always maintains an
online peer list, checking their connectability and keeping connected with those
peers that have been contacted recently. Thirdly, we limit our storage of user
profiles by removing dissimilar and old peers.

Our algorithm is scalable because each peer only keeps a small view of the
whole network in which he or she is interested. Thus, there is less local storage
required for each peer and therefore the computation is also reduced. In ad-
dition, the algorithm can cope with the dynamic nature of the network as our
recommendation can update its results once more peers and their preferences
are discovered.

Evaluation We have emulated our Buddycast algorithm using a cluster of
the DAS-2 system (asci.tudelft.nl). The network consisted of 480 peers

7.4. Item-oriented Overlay Network 163

distributed uniformly over 32 nodes. We used a data set of TV watching habits
of 480 users from the SKO foundation (kijkonderzoek.nl) as rating data
(users watched or did not watch TV programs). Each peer maintained a list of
10 taste buddies (N = 10) and the 10 last visited peers (K = 10). The system
was initialized by giving each peer a random other peer. The exploitation-to-
exploration ratio, r, was set to 1.

Figure 7.5 compares the convergence of Buddycast to that of Newscast (ran-
domly select connecting peers, i.e., r → ∞). After each update we compared
the list of top-N taste buddies with a pre-compiled list of top-N taste buddies
generated using all data (centralized approach). In Figure 7.5, the percentage of
overlap is shown as a function of time (represented by the number of updates).
The figure shows that the convergence of Buddycast is much faster than that
of the Newscast approach.

7.4 Item-oriented Overlay Network3

In this section, we take an item-oriented view, introducing our self-organizing
distributed relevance model. We first introduce an item-based relevance model
between an user and an information item. We then introduce a method to
update these relevance ranks in a distributed and dynamic way. Finally, we
present how to make recommendations based on this relevance model.

7.4.1 Item-based Ranking Model

We consider the following formal setting: Multimedia files (e.g. image, movie,
or audio files) are represented as a set of items. There are N items, denoted as
Ia, a = 1, ..., N , distributed throughout the network, and M users, denoted as
Pi, i = 1, ...,M .

We adopt a probabilistic relevance model proposed earlier for text retrieval
([56, 78]). Since a user profile represents the current interest of that user, we
can treat a user profile as a query and introduce random variables r and r̄
to denote whether an item is “relevant” or “irrelevant” for the user. Note this
treatment is only valid for the filtering problem. For the retrieval problem, other
than the user profile, content examples or keywords should also be presented
to give a more specific query. To avoid estimating P (Ia, Pi), the relevance rank
(denoted as RIa,Pi

) of the item Ia for a peer Pi can be formulated as the odds

3This section is based on the publication: “Distributed collaborative filtering for peer-to-
peer file sharing systems”, J. Wang, J. Pouwelse, R. Lagendijk, and M. R. J. Reinders, in
Proc. of the 21st Annual ACM Symposium on Applied Computing, 2006.

164 Chapter 7. Peer-to-Peer Recommendation

of relevance:

RIa,Pi
= log

P (r|Ia, Pi)

P (r̄|Ia, Pi)
(7.7)

By factorizing P (•|Ia, Pi) with P (Pi|Ia,•)P (•|Ia)
P (Pi|Ia) , the following log-odds ratio can

be obtained:

RIa,Pi
= log

P (r|Ia, Pi)

P (r̄|Ia, Pi)
= log

P (Pi|Ia, r)

P (Pi|Ia, r̄)
+ log

P (r|Ia)

P (r̄|Ia)
(7.8)

Hence, the evidence for the relevance of an item is based on both the positive
evidence (indicating the relevance) as well as negative evidence (indicating the
irrelevance). In our user profiling method, for the sake of simplicity but with-
out loss of generality, we only observe the positive evidence. By following the
language modelling approach ([56]), we now assume that 1) Pi and Ia are as-
sumed independent in the irrelevant case (r̄), i.e. P (Pi, |Ia, r̄) = P (Pi|r̄); and,
2) equal priors for both Pi and Ia, given that the item is irrelevant. Then the
two irrelevance terms can be removed and the relevance rank becomes:

RIa,Pi
∝ log P (Pi|Ia, r) + log P (r|Ia) (7.9)

Note that these two negative terms in Eq. (7.8) can always be added to the
model when the negative evidences are captured.

7.4.1.1 Incorporation of User Profiles

The interest of users towards the available multimedia content is represented
by user profiles. User profiles can be obtained by either explicitly asking users
to rate the content or implicitly by observing the interactions of a user with the
content. Since previous research ([15]) has shown that users are very unlikely to
provide an explicit rating because they find this annoying, we adopt an implicit
approach (as shown in Fig. 7.1).

The items that a user previously interacted with (e.g. watched, played, or
downloaded) represent positive evidence for the interest of the user. For ex-
ample, one could use the download action of the users as an implicit interest
indicator. Thus, items that are downloaded are stored into a download list
which represents the user profile. Let Li denote the download list of user Pi.
Li(Ib) = 1 (or Ib ∈ Li) indicates that item Ib, b = 1, ..., N , is in the list while
Li(Ib) = 0 (or Ib /∈ Li) otherwise.

We assume that items are conditionally independent from each other given that
they are downloaded by the same user. Although this naive Bayes assumption
does not hold in many real situations, it has been empirically shown to be a

7.4. Item-oriented Overlay Network 165

competitive approach (e.g. in text classification domain ([27]) as well as in our
experiments (see Sec. 7.4.4)). Then Eq. (7.9) becomes:

RIa,Pi
∝

∑

∀Ib:Ib∈Li

log P (Ib|Ia, r) + log P (r|Ia) (7.10)

When applying the Bayes rule once more:

RIa,Pi
∝

∑

∀Ib:Ib∈Li

log
P (r|Ia, Ib)

P (r|Ia)
+ log P (r|Ia) (7.11)

Eq. (7.11) shows that, in order to make a recommendation (ranking the rele-
vance of a target item towards the user profile), we need to estimate the prior
probability of the relevance of an item, P (r|Ia), as well as the probability of
the relevance between two items P (r|Ia, Ib), a, b ∈ {1, ..., N}.
Different from the previous item-based collaborative filtering techniques ([52,
61]), we use a probabilistic framework to convert the initial relevance rank
between user and item into a relevance rank between items. By doing so, the
prior probability of the item (i.e. the popularity of item) is systematically
incorporated into the model. Thus, our model can overcome the disadvantage
that it tends to recommend the most popular items only in the traditional item
based collaborative filtering [52, 61, 71],

In the following, we propose to build a scalable, efficient, and fully distributed
and dynamic approach to estimate these relevance probabilities.

7.4.2 Self-organizing Distributed Buddy Tables

In this section, first, we propose a dynamic approach to update the relevance
probabilities. Then, we introduce the buddy table that stores these relevance
ranks and relevance links in a distributed way.

7.4.2.1 Dynamically Updating Relevance Ranks

Unlike content-based analysis [34, 101] where relevance (or similarity) between
items is obtained by using low-level features, here we adopt user profiles to infer
the item similarities (see item-based collaborative filtering [52, 61]).

If a user likes two items Ia and Ib, then this increases the relevance (similarity) of
item Ia with respect to item Ib (and vice versa). Consequently, in a centralized
situation (i.e. when all user profiles are available), the relevance probability of
item Ia and Ib and the prior relevance probability of an item can be calculated

166 Chapter 7. Peer-to-Peer Recommendation

from the profiles of all users (see also, [52]):

P (r|Ia, Ib) = (

M∑

i=1

Li(Ia) ∩ Li(Ib))/M, (7.12)

P (r|Ia) = (
M∑

i=1

Li(Ia))/M (7.13)

where
M∑
i=1

Li(Ia) ∩Li(Ib) is the number of times that items Ia and Ib appear in

the same download list (i.e. the co-occurrence frequency between items). This
item-based similarity measure is computationally inexpensive and generic (i.e.
for different media formats).

In a P2P network the user profiles are, however, distributed throughout the
entire network. In the previous section, the user-based overlay, we need to
contact only a subset of good user profiles, but for an item-based overlay, we
would have to visit all peers to obtain a similar subset of all item profiles. A
naive way to collect user profiles is to broadcast the user profiles throughout
the P2P network as in [111, 71] or using DHTs to map keys to profiles [76].
Obviously, this is not efficient. We have found the solution in dynamically
updating these relevance probabilities.

At a given moment in time, the relevance between two items is updated accord-
ing to:

Pt(r|Ia, Ib) = Pt−∆t(r|Ia, Ib) + ∆Pt(r|Ia, Ib) (7.14)

where ∆Pt(r|Ia, Ib) is the update of the relevance between two items from time
t − ∆t to t. The update is only non-zero when there is a user that downloads
one of the items Ia or Ib while that user in the past already expressed interest
in the opposite item (listed in the download list). Hence, relevance updates
only occur when multimedia files are downloaded. The relevance update can
thus be expressed in terms of the transactions that take place between t − ∆t
and t, i.e.:

∆Pt(r|Ia, Ib) =
∑

∀Tk :t−∆t<k<t

∆Pk(r, Tk|Ia, Ib) (7.15)

where Tk denotes the download transaction at time k, and the notation
∆Pk(r, Tk|Ia, Ib) represents the relevance update between items Ia and Ib when
considering transaction Tk.

Since the relevance between Ia and Ib is not changed when considering a trans-
action that does not involve the downloading of either two items, the relevance

7.4. Item-oriented Overlay Network 167

Rank ItemID Owner Location Meta data(Option)
0.88 I25 100 c:/upload/...@P100 All My Loving-Beatles
0.80 I36 6 d:/mystuff/...@P6 Take It Easy-Eagles
0.78 I7 5 d:/sharefile/...@P5 Lost in Love-AirSupply
...

Table 7.1: A hypothetical example of a buddy table for an item: a song track
{Miss You - RollingStones}.

update can be simplified to:

∆Pt(r|Ia, Ib) =
∑

∀Tk:t−∆t<k<t

∆Pk(r, Ia = item(Tk), Ib ∈ Lpeer(Tk)|Ia, Ib) +

∑

∀Tk :t−∆t<k<t

∆Pk(r, Ib = item(Tk), Ia ∈ Lpeer(Tk)|Ia, Ib)

(7.16)

and
∆Pk(r, Ib = item(Tk), Ia ∈ Lpeer(Tk)|Ia, Ib) =

∆Pk(r, Ia = item(Tk), Ib ∈ Lpeer(Tk)|Ia, Ib) = 1/M
(7.17)

where item(Tk) indicates the item being downloaded in transaction Tk and
peer(Tk) indicates the peer that performs the download. Ib ∈ Lpeer(Tk) means
item Ib is in the downloading list of the peer that performs the download. Eq.
(7.17) indicates that – when Ia is downloaded by a peer (peer(Tk)) with Ib in
the download list (Lpeer(Tk)) (or vice versa) – the relevance between item Ia and
Ib increases 1/M . This is because there is one more download list in which the
item Ia and Ib both exist together over all the download lists.

A further investigation of Equation (7.16) shows that the relevance between two
items can be updated using only the information about the item that is being
downloaded (item(Tk)) and the user profile of the peer that is downloading the
item (e.g. Lpeer(Tk)). Now we show how to store these between-item relevances
and the prior relevances in a distributed way.

7.4.2.2 Distributed Item-to-Item Relevance Ranking

Equations (7.15) and (7.16) show that the between-item relevance probabilities
can be calculated incrementally. To store the relevance ranks in a fully dis-
tributed way, we propose to store the between-item relevance ranks locally at
the location of both items. This is realized by attaching to each item a so called
buddy table, which is denoted as BIa for item Ia.

168 Chapter 7. Peer-to-Peer Recommendation

Table 7.1 shows an example of such a buddy table. The buddy table stores
the information (including an index to their location) about the top-N rele-
vant items. The location information can be used to locate items when these
items are being recommended to a peer. Most importantly, the buddy tables
automatically create a self-organizing semantic overlay that implicitly cluster
similar multimedia files (see Sec. 7.4.4)).

The relevance ranks stored in the buddy table can be updated according to the
following strategy. For each transaction Tk, the buddy table of the item that is
being downloaded (Ia = item(Tk)), is updated, based on the user profile of the
peer that performs the download (Lpeer(Tk)). For all items in that user profile,
∀Ib : Ib ∈ LpeerTk

, the between-item relevance ranks recorded in the buddy
table are updated: RIa(Ib) = RIa(Ib) + 1/M . The prior relevance rank is also
updated: RIa = RIa + 1/M .

The overall protocol for updating buddy tables is illustrated in Fig. 7.6. It
can be simply run as a daemon program in each peer that is only activated
in two events: 1) UPLOAD request from other peers (leading to an update
of the buddy table of the requested item); and 2) DOWNLOAD request from
the local user (leading to sending the user profile to the peer that owns the
downloaded file). The protocol is scalable, and simple to implement even on
small network-enabled computing devices.

Note that the privacy can be preserved since user profiles are only used anony-
mously to update the buddy tables. They do not exist in the remote peer
after the updating. Moreover, the entire update procedures take advantage of
the connections for downloading items, no extra communication connection are
required.

Eq. (7.16) shows that the relevance probability between item Ia and Ib only
needs to be updated in two situations: either item Ia is downloaded while Ib

is in the list, or, vice versa. Careful investigation of the buddy table update
protocol shows that the update of this relevance probability is stored in the
buddy table of item Ia while Ia is being downloaded and stored in the buddy
table of item Ib when Ib is downloaded. That is, the accumulated relevance
probability between the two items in a given time is equal to the sum of the
two relevance ranks from the buddy tables of both items at that time:

Pt(r|Ia, Ib) = RIa(b) + RIb
(Ia) (7.18)

To increase the efficiency and to minimize the communication between the
peers, we would like to use only one of the relevance ranks stored in either of
the two buddy tables to approximate this accumulated between-item relevance
probability. Therefore, we make use of the following proposition.

7.4. Item-oriented Overlay Network 169

1 do forever {
2 e = waitForEvent();
3 /*UPLOAD request from another peer*/
4 if e is UPLOAD request for Ia from remote peer Pj {
5 upload Ia to Pj ;
6 RIa = RIa + 1; /*Update the prior probability*/
7 get Lj from Pj ;/*Receive the user profile*/
8 for b = 1:N {
9 if Lj(Ib)==1 {

10 /*Update between-item relevance*/
11 RIa (Ib)=RIa (Ib) + 1/M ;
12 }
13 }
14 }
15 /*DOWNLOAD request from local peer*/
16 if e is DOWNLOAD request for Ib in remote peer Pj from local user Pi {
17 download Ib and BIb

from Pj ;
18 send Li to Pj ; /*Send user profile anonymously*/
19 Li = Li

S

Ib; /*Add the item into download list*/
20 }
21 }

Figure 7.6: A Demon program running in each peer Pi for updating the buddy
tables of its own items.

Proposition 7.4.1 If items in one download list are conditionally independent
to each other, then:

Pt(r|Ia, Ib) = 2 ∗ RIa(b) = 2 ∗ RIb
(Ia)

With this proposition the accumulated relevance probability between the two
items can be calculated using only the information stored in one of the buddy
tables. The proof follows:

Recall that we have a naive Bayesian assumption in Eq. (7.10) that items in
one download list are conditionally independent to each other. This implies
that the order in which items are being downloaded is arbitrary. This can be
expressed as follows:

P(Ia = item(T), Ib ∈ Lpeer(T)|Ia, Ib)

= P(Ib = item(T), Ia ∈ Lpeer(T)|Ia, Ib) = 0.5
(7.19)

where T represents all transactions.

On the other hand, the relevance rank in the buddy tables of an item (RIa(Ib))
is equal to the joint probability between the relevance and the transaction for
downloading that item: RIa(Ib) = Pt(r, Ia = item(T), Ib ∈ Lpeer(T)|Ia, Ib)) (See
Eq. (7.16) and (7.18)). Since these two events are independent from each other,

170 Chapter 7. Peer-to-Peer Recommendation

we can factorize the probability as follows:

RIa(Ib) = Pt(r, Ia = item(T), Ib ∈ Lpeer(T)|Ia, Ib))

= Pt(r|Ia, Ib)P (Ia = item(T), Ib ∈ Lpeer(T)|Ia, Ib)
(7.20)

From Eq. (7.19), we know that P (Ia = item(T), Ib ∈ Lpeer(T)|Ia, Ib) = 0.5. We
then can derive the final result from the above equation:

Pt(r|Ia, Ib) = 2 · RIa(Ib) (7.21)

Similarly, we can also derive Pt(r|Ia, Ib) = 2 · RIb
(Ia).

Caching: In practice, it is not necessary to maintain a large number of rele-
vance ranks in the buddy tables. We can cache the recent updates of the rel-
evance ranks while keeping only the top-N highest ranked items in the buddy
tables. An item may move from the cache to the buddy table when its rele-
vance rank is higher than the relevance rank of the Nth item in the buddy.
Conversely, an item may move from the buddy table to the cache when its rele-
vance rank drops below the relevance rank of the Nth item in the buddy table.
During recommendation, only the highest ranked items are enough to generate
a recommendation. This is shown in the experiments section.

Item availability: One of the characteristics of P2P networks is that peers are
frequently not online. This causes: 1) The items stored at these peers are then
also not accessible. The top-N highest ranked items in the buddy table can be
periodically screened for item availability so that no unavailable items will be
recommended. 2) The locations stored in the buddy table may become invalid
when the host peers change their ip addresses. This can be solved by applying
the recent DHT techniques ([106]) to lookup from an item Key (stored in buddy
tables) to its location.

7.4.3 Distributed Recommendation

By using the relevance ranks stored in the buddy tables a recommendation can
be generated as follows:

RIa,Pi
∝

∑

∀Ib:Ib∈Li

log
2 · RIb

(Ia)

RIa

+ log RIa (7.22)

Items in the cache can be safely ignored because their relevance ranks are small
(lower then the relevance rank of the Nth item in the buddy table). The final
ranking for recommendation then becomes:

RIa,Pi
=

∑

∀Ib:Ib∈Li∩Ia∈BIb

log RIb
(Ia) − (q − 1) log RIa (7.23)

7.4. Item-oriented Overlay Network 171

1 /*Input: Li download list*/
2 /*Output: {Ia}; Top-N Recommendation list*/
3 recommend(Li) {
4 for Ib ∈ Li { /*For each item in the list*/
5 {BIb

} = {BIb
} + BIb

; /*Get buddy tables*/
6 }
7 for Ia ∈ {BIb

} {
8 get RIb

(Ia), RIa from {BIb
}; /*Get relevance rank*/

9 RIa,Pi
= eq. (7.23); /*Calculate rec.*/

10 }
11 return topN({Ia, RIa,Pi

}); /*Return rec. items*/
12 }

Figure 7.7: Recommendation Procedure.

where q is number of the elements in the first term. Ia ∈ BIb
means Ia is in the

buddy table of item Ib and its relevance rank RIb
(Ia) is available.

Finally, the procedure to perform a recommendation goes as follows: Firstly,
for a given user, the buddy tables of all the items within the profile of the user
(Li) are downloaded. Then, for all the items in the collected buddy tables,
the relevance ranks towards the user are calculated based on our user-content
relevance model (applying Eq. (7.23)). As a result, the top-N ranked items
(with their location indicated in the buddy tables) are recommended to the
user. This is illustrated in Fig. 7.7.

7.4.4 Experiments

To validate our proposed self-organizing distributed collaborative filtering ap-
proach, we simulated a situation in which users exchange music files on a P2P
network.

The data sets we use are collected from the Audioscrobbler (Last.FM) com-
munity. The audioscrobbler data set collects the play-lists of the users in the
community by using a plug-in in the users’ media players (for instance, Winamp,
iTunes, XMMS etc). Plug-ins send the title (song name and artist name) of
every song users play to the Audioscrobbler server, which updates the user’s
musical profile with the new song. That is, when a user plays a song in a certain
time, this transaction is recorded as a form of {userID, itemID, t} tuple in the
database. This data set is continuously updated and at the time we captured
it, it contained 1,862,766 transactions from 6,359 user IDs and 857,020 item
IDs.

Pre-processing: The data set was strongly polluted and needed to be processed
first:

172 Chapter 7. Peer-to-Peer Recommendation

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of users have played per item

Percentage

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
r

of
 p

la
ye

d
so

ng
s

pe
r

us
er

Users

Audioscrobbler Dataset: Number of Songs per User

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

400

N
um

be
r

of
 li

st
en

ed
 u

se
rs

 p
er

 s
on

g

Songs

Audioscrobbler Dataset: Number of Users per Song

(b) (c)

Figure 7.8: Audiosrobbler data set. (a) The distribution of the number of users
per item in the data set. Each bin indicates the percentage of items that were
played by the indicated number of users. The last bin represents the percentage
of items that have 25 or more users. (b) The number of items per user after
pre-processing. The users are ranked with respect to the number of items that
they have been playing. (c) The number of users per item after pre-processing.
The items are ranked according to the number of users that played it.

• 385 redundant item IDs and 2903 inactive user IDs (users that once reg-
istered but never played any song) were removed.

• Items that were played by less than 20 users were removed. This was
done since: 1) many titles of the songs were incorrect (because usually
the title of the song is extracted from the name of the file name), and 2)
77.9% of the songs were only played by one user (see Fig. 7.8(a)). When

7.4. Item-oriented Overlay Network 173

Song Artist
Lean On Me (duet with terry callier) 04
Vlkommen hit - 03 - Vran hemlighet Jumper
Faceless(Retail):The Awakening Godsmack
Closure - Aeon Flux: Eyes To Despise Drew Neumann
Sweet July 14
Body Heat - from ”Body Heat” Jazz At The Movies Band
Mansion on the Hill Bruce Springsteen and the E Stre
Napalm Brain,Scatter Brain dj shadow
Anna Begins 01-09
Fight To be Free [From Survive (1988)] Nuclear Assault
B Side - E-Bow The Letter Radiohead
War Henry Cow -01/0
Les rues de San Francisco GENERATION TV

(a)

Song Artist
Universal Love 4 Hero
Pluto Les Savy Fav
Call Letter Blues Bob Dylan
Shameless Billy Joel
Spine Machine Head
Conduit Converge
Nightingale Yanni
Mad Man Moon Genesis
Sorrow Life Without Buildings
No Love Dinky
Under Par Thrice
Hype Tegan And Sara
Handbags And Gladrags Rod Stewart

(b)

Table 7.2: An example of the pollution of titles of songs within the Audioss-
crobbler data set. (a) Most of the songs which are only played by one user
have either an incorrect song name or artist name. (b) Titles of songs (and the
corresponding artist) played by more than five users are correct.

we randomly selected 100 songs played by only one user, 80% titles were
wrong or odd (see Table 7.2(a)). The percentage of incorrect titles is
extremely reduced when items played by more tan 5 users are considered
(see Table 7.2(b)).

• Users that had played less than 2 items were removed since their profiles
do not add relevance within the network (they had only one item in their
download list).

After the pre-processing, we were left with 475531 transactions from 3854
userIDs and 10869 itemIDs. The sparsity is 98.86%. Fig. 7.8(b) and (c) show
the distributions of the obtained data set.

174 Chapter 7. Peer-to-Peer Recommendation

Item I Should Have Known... -Beatles 2+2=5 -Radiohead I Still Haven’t Found... I’m -U2
Buddy1 Drive My Car -Beatles Backdrifts -Radiohead With or Without You -U2

Buddy2 Love Me Do -Beatles Where I End... -Radiohead 1979 -Smashing Pumpkins
Buddy3 Magical Mystery Tour -Beatles sail to the moon -Radiohead Pride (in the name of love) -U2

Buddy4 Think For Yourself -Beatles The Gloaming -Radiohead Bad -U2

Buddy5 A Hard Day’s Night -Beatles Myxamatosis -Radiohead Porcelain -Moby
Buddy6 Nowhere Man -Beatles there there -Radiohead Sunday Bloody Sunday -U2
Buddy7 I Am The Walrus -Beatles scatterbrain -Radiohead Where The Streets... -U2
Buddy8 Michelle -Beatles I will -Radiohead Sweetest Thing -U2
Buddy9 Fixing A Hole -Beatles Go to sleep -Radiohead Yesterday -Beatles
Buddy10 Wait -Beatles Paranoid Android -Radiohead Honey -Moby

Item Mother And Father -Madonna Verse Chorus Verse -Nirvana Something is Calling... -Norah Jones
Buddy1 American Life -Madonna My Hero -Foo Fighters Turn Me On -Norah Jones
Buddy2 Intervention -Madonna Coffee and TV -Blur Don’t Know Why -Norah Jones

Buddy3 Die Another Day -Madonna Loser -Beck The Nearness Of You -Norah Jones
Buddy4 Easy Ride -Madonna in the End -Linkin Park Shoot the Moon -Norah Jones

Buddy5 Love Profusion -Madonna No surprises -Radiohead Nightingale -Norah Jones
Buddy6 X-Static Process -Madonna Schism -Tool big yellow taxi -Counting Crows
Buddy7 I’m So Stupid -Madonna Dumb -Nirvana Dear Prudence -Beatles
Buddy8 Hollywood -Madonna On A Plain -Nirvana Painter Song -Norah Jones
Buddy9 Nobody Knows Me -Madonna Castaway -Green Day Seven Nation Army -White Stripes
Buddy10 Sleeping With Ghosts -Placebo Shiver -Coldplay Love Song for No One -John Mayer

Item Too Much To ... -Avril Lavigne Most girls -Pink Poem to a Horse -shakira
Buddy1 Losing Grip -Avril Lavigne Forgot About Dre... -Dr. Dre Whenever, Wherever -shakira

Buddy2 Anything But... -Avril Lavigne in the End -Linkin Park Fool -shakira
Buddy3 Complicated -Avril Lavigne My Own Worst Enemy -Lit The One -shakira
Buddy4 Things I’ll ... -Avril Lavigne Come On... -Smash Mouth Rules -shakira

Buddy5 Unwanted -Avril Lavigne Gin and ... -Snoop Doggy Dogg Ready For The ... -shakira
Buddy6 Naked -Avril Lavigne Superman -Five For Fighting Underneath Your... -shakira
Buddy7 Mobile -Avril Lavigne Crawling -Linkin Park Something In The... -Nirvana
Buddy8 My World -Avril Lavigne Psycho -System Of A Down Clocks -Coldplay
Buddy9 Tomorrow -Avril Lavigne Last Kiss -Pearl Jam Dumb -Nirvana
Buddy10 Nobody’s Fool -Avril Lavigne Breathe -Prodigy Pennyroyal Tea -Nirvana

Table 7.3: The top-10 buddy tables for nine songs, each of a different artist,
after 374.530 transactions. The relevance links shown in figure 7.9 (f) have been
created from the first five items; these links are shown underlined here.

We randomly divided the data set into a training set (80% of the users) and
a test set (20% of the users). We used the training set to calculate the buddy
tables, the relevance links and to build the recommendations. The test set was
used for evaluating the accuracy of the recommendations.

In the training set, there were 3067 users and 374530 transactions. Each trans-
action (play action in the data set) was labelled with a time index. As be-
fore, each transaction then represents a user (userID) that downloads an item
(itemID) from another peer at the attached time (t).

In the test data set there were 767 users. The play actions of these users were
used to test the accuracy of the recommendations. For each test user, 50% of the
items of a test user were put into the download list of that user (the user profile).
The other 50% of the items were used to test the recommendations. Thus, the
number of items in the download lists of the users reflect the distribution in the
overall data set.

7.4. Item-oriented Overlay Network 175

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Avril Lavigne Pink shakira

Madonna Nirvana Norah Jones

Beatles Radiohead U2

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Avril Lavigne Pink shakira

Madonna Nirvana Norah Jones

Beatles Radiohead U2

(a) 0 link (b) 1148 links

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Avril Lavigne Pink shakira

Madonna Nirvana Norah Jones

Beatles Radiohead U2

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Avril Lavigne Pink shakira

Madonna Nirvana Norah Jones

Beatles Radiohead U2

(c) 1841 links (d) 2148 links

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Avril Lavigne Pink shakira

Madonna Nirvana Norah Jones

Beatles Radiohead U2

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

Avril Lavigne Pink shakira

Madonna Nirvana Norah Jones

Beatles Radiohead U2

(d) 2148 links

Figure 7.9: Illustration of dynamically created relevance links between the songs
of nine artists. Each song is represented by a rectangle. Songs from the same
artist are clustered within a grid, resulting in the nine rectangle regions. For
clarity, the links to songs of other artists (than the nine showed) have been
removed. The panels show the relevance links after (a) 0, (b) 74.906 (iteration
1), (c) 149.812 (iteration 2), (d) 224.718 (iteration 3), (e) 299.624 (iteration 4),
and, (f) 374.530 (iteration 5) transactions.

176 Chapter 7. Peer-to-Peer Recommendation

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
P

er
ce

nt
ag

e
of

 li
nk

s
am

on
g

sa
m

e
ar

tis
t

TopN Buddies

Automatic creation of links among the songs from the same artist

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

(a)

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 li

nk
s

am
on

g
sa

m
e

ar
tis

t

TopN Buddies

Automatic creation of links among the songs from the same artist

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

1

(b)

Figure 7.10: Percentage of relevance links towards songs of the same artist
within the top-N ranked items in a buddy table for different settings of N and
after a different number of transactions (iterations). (a) The average percentage
of links between the 15 songs from Avril Lavigne within their respective top-N
buddy tables. (b) Similarly for 173 items from the Beatles.

7.4. Item-oriented Overlay Network 177

7.4.5 Self-organizing Relevance Links

To simulate media files sharing in the P2P network, we uniformly distributed
each item across the different peers. Each peer runs a demon program described
in Fig. 7.6 to update the buddy tables during each transaction: Each time
a transaction takes place (i.e. when a multimedia file is downloaded), the
relevance links in the buddy table of the item that is being downloaded are
updated. The dynamic behavior of the relevance between items can thus be
studied. Figure 7.9(a) to (f) illustrate the links that were created after: (a) 0,
(b) 74.906, (c) 149.812, (d) 224.718, (e) 299.624, and, (f) 374.530 transactions.

The figure shows the songs (items) of nine artists selected such that they reflect
different genre of music and different amounts of songs within the database.
Songs from the same artist are grouped together. This results in nine clusters
shown in the figure. For each item (song), links to the top-5 relevant items
(according to their buddy table) are displayed as directed arrows (pointing
outwards the buddy table item). For reasons of clarity, only the links between
the displayed items are shown.

From the figure, we observe the following:

• The number of relevance links increases with an increase in the number
of transactions.

• The relevance links converge and cluster songs (items) of the same artists.
This can be seen from the large number of links between songs of the same
artist that arises with an increase in the number of transactions. This can
also been seen from Table 7.3, which shows the buddy tables of nine songs,
each of a different artist (only top-10 ranked items are displayed).
To measure this further, we ploted the percentage of links among songs
from the same artist as a function of the number of relevant links consid-
ered (top-N) and the number of of transactions. Figure 7.10 shows these
dependencies for two artists: Avril Lavigne and the Beatles.
This figure confirms the observation that with an increase of number of
transactions, the percentage of the links between songs of the same artist
increases. It also shows that songs from the same artists are more relevant
(have a better ranking position) than songs of other artists. This can be
noted from the increase in the percentage of songs by the same artists in
the top-N ranked items from the buddy tables of the songs by that artists
when N is decreased.

• Figure 7.9 also shows that, besides relevance links between songs by the
same artist, relevance links have been created between songs of the same
genre (reflecting the interest of a group of users). For instance, relevance
links have been created between U2, Radiohead and Nirvana, groups

178 Chapter 7. Peer-to-Peer Recommendation

that belong to the rock genre. Links between Avril Lavigne, Pink
and Shakira may indicate a group of young female pop music artists.
Norah Jones is somehow isolated since she belongs to the jazz genre, a
different style compared to those of the other eight artists.

7.4.6 Recommendation Performance

We treat each user in the test set as a target user in the system. For each target
user, a recommendation was caculated by applying the algorithm described in
Fig. 7.7, based on the caculated buddy tables from the training users. The
resulting recommended items were then compared to the ground truth items.

The performance was measured using the coverage (or recall) and precision.
The coverage measures the proportion of ground truth items (known by the
download lists) that are recommended. The precision measures the proportion
of the recommended items that are ground truth items. Note that the items
in the download list of the test user represent only a fraction of the items that
the user truly liked. Therefore, the resulting precision is smaller than the true
precision.

First, we investigated the impact of user interaction (transaction) on the recom-
mendation performance. The coverage and precision of the recommendation in
the five iterations are shown in Fig. 7.11 (a) and (b). The results indicate that
as the number of transactions increases, the recommendation results become
better.

Next, we compared our distributed collaborative filtering approach with the
Top-N suggest recommendation engine, a well-known centralized collaborative
filtering approach ([52]) 4. Both the item-based version and the a user-based
version were compared. The parameters had been set according to the user man-
ual. Additionally, we compared the three recommenders to a non-personalized
recommendation approach. For each item, its prior relevance P (r|IT) was used.
The items were then ranked and recommended accordingly.

For our distributed approach, we show the results of two different settings: one
with the prior relevance (second term of Eq. (7.11)) and one without it.

For computational reasons, we randomly sampled the pre-processed data set
to limit the number of users to 1300 and the number of items to 4807. We
then randomly divided the sampled data set: 80% (1040) users were inclued
in the training set and the remaining 20% (260) users were in the test set.
In the training set there were 159036 transactions. For our approach these
were transactions labelled with a time index and they are used to build up the

4http://www-users.cs.umn.edu/˜ karypis/suggest/

7.4. Item-oriented Overlay Network 179

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Top N return

R
ec

om
m

en
da

tio
n

co
ve

ra
ge

A plot of recommendation coverage v.s. top N return in the different iterations

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

1

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Top N return

R
ec

om
m

en
da

tio
n

pr
ec

is
io

n

A plot of recommendation precision v.s. top N return in the different iterations

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

1

(b)

Figure 7.11: Recommendation Convergence. (a) Coverage as a function of the
N (top-N) most relevant items after training using the five different iterations.
(b) Similarly for the precision.

180 Chapter 7. Peer-to-Peer Recommendation

Buddytable1 Buddytable2 TopN−item TopN−user Item−average
0

5

10

15

20

25
Normalized precision
Error

Figure 7.12: Recommendation results. The normalized precision for: (1) Bud-

dytable1 our proposed distributed collaborative filtering approach with the
prior term of equation 7.11; (2) Buddytable2 without the prior term; (3)
TopN-item the centralized item-based top-N suggest method; (4) TopN-user

the centralized user-based top-N suggest method; and (5) Item-average a ref-
erence recommendation method based on a average ranking.

relevance links stored in the distributed item buddy tables. For the centralized
approaches these transactions were used to build a user-item rating matrix. For
the test users (from the test set), again 50% of the items were put into their
download list and the other 50% items acted as the ground truth.

Since the precision and coverage vary according to the number of recommended
items, we adopted a normalized precision to compare the methods. To this end
we normalized the precision according to the precision of a random recommen-
dation of the same number of elements. The normalized precision denoted as
pnorm then becomes:

pnorm = (

NR∑

i=1

p(i))/(

NR∑

i=1

prand(i)) (7.24)

where i denotes number of items returned from the recommendation. p(i)
denotes the precison when i items are returned from the recommendation while
prand(i) denotes the precision from a random recommendation. We set NR = 50
in our experiment.

7.5. Applications 181

…

P2P networks

FilteringFiltering SharingSharing

Local Tuner,

Hard Drive

ObservingObserving

Implicit Interest

Learning
Implicit Interest

Learning

Figure 7.13: An Illustration of Tribler, a Personalized P2P File Sharing and
Television System.

The normalized precision of the five methods is shown in Fig. 7.12. It shows that
the performance of our distributed recommendation is comparable to that of
the centralized methods. Our approach using prior relevance outperforms even
the centralized top-N user-based recommendation method and approximates
the best top-N item-based method.

7.5 Applications

7.5.1 The Tribler System5

Television signals have been broadcast around the world for many decades.
More flexibility was introduced with the arrival of the VCR. PVR (personal
video recorder) devices such as the TiVo further enhanced the television expe-
rience. A PVR enables people to watch television programs they like without

5This section is based on the publication: “Personalization on a peer-to-peer television
system”, J. Wang, J. Pouwelse, J. Fokker, A. P. de Vries, and M. J. Reinders, Special Issue
on Multimedia Tools and Applications, 2006.

182 Chapter 7. Peer-to-Peer Recommendation

Peer CachePeer Cache

Peer to Peer Networks
Peer to Peer Networks

User InterfaceUser Interface

User

Preferences

Cache

User

Preferences

Cache

Torrent

Files

Cache

Torrent

Files

Cache

Exchange
Exchange

P
PxFPxF

F

Buddy cast

Peer Selection
Buddy cast

Peer Selection

Trust

Estimator
Trust

Estimator

Pref. Similarity

Function
Pref. Similarity

Function

My Social

Friend List
My Social

Friend List

Recommend

list
Recommend

list

My Similar

Peer List
My Similar

Peer List

Recommendation

Engine
Recommendation

Engine

My

Preference
My

Preference

My Social

Friend
My Social

Friend

Geography

Map
Geography

Map

B
itto

rre
n
t
D

o
w

n
lo

a
d
in

g
B

itto
rre

n
t
D

o
w

n
lo

a
d
in

g

Swam listSwam list

fusionfusion

Figure 7.14: The system architecture of Tribler.

the restrictions of broadcast schedules. However, a PVR has limited recording
capacity and can only record programs that are available on the local cable
system or satellite receiver.

We presents a prototype system that goes beyond the existing VCR, PVR, and
VoD (Video on Demand) solutions. We believe that amongst others broad-
band, P2P, and recommendation technology will drastically change the televi-
sion broadcasting as it exists today. Our operational prototype system called
Tribler (Tribler.org) gives people access to all television stations in the world.
By exploiting P2P technology, we have created a distribution system for live
television as well as sharing of programs recorded days or months ago.

The Tribler system is illustrated in Fig 7.13. The basic idea is that each user
will have a small low-cost set-top box attached to his or her TV to record
the local programs from the local tuner. This content is stored on a hard
disk and shared with other users (friends) through the Tribler P2P software.
Each user is then both a program consumer as well as a program provider.
Tribler implicitly learns the interests of users in TV programs by analyzing
their zapping behavior. The system automatically recommends, records, or even
downloads programs based on the learned user interest. Connecting millions

7.5. Applications 183

of set-top boxes in a P2P network will unbolt a wealth of programs, television
channels and their archives to people. We believe this will tremendously change
the way people watch TV.

The basic architecture of the Tribler system is shown in Fig 7.14 and a detailed
description can be found in [79]. The key idea behind the Tribler system is
that it exploits the prime social phenomenon ”kinship fosters cooperation” [79].
In other words, similar taste for content can form a foundation for an online
community with altruistic behavior. This is partly realized by building social
groups of users that have similar taste captured in user interest profiles.

The user interest profiles within the social groups can also facilitate the priori-
tization of content for a user by exploiting recommendation technology. With
this information, the available content in the peer-to-peer community can be
explored using novel personalized tag-based navigation.

Our research focuses on the personalization aspects of the Tribler system. We
use the zapping behavior of a user to learn the user interest in the watched TV
programs. The zapping behavior of all users is recorded and coupled with the
EPG (Electronic Program Guide) data to generate program IDs. In the Tribler
system different TV programs have different IDs. TV series that consists of
a set of episodes, like ”Friends” or a general ”news” program, get one ID (all
episodes get the same ID) to bring more relevance among programs.

7.5.2 Wi-Fi Walkman6

The Wi-Fi walkman that we developed is a case study that investigates the
technological and usability aspects of human-computer interaction with per-
sonalized, intelligent and context-aware wearable devices in ad-hoc wireless en-
vironments such as the future home, office, or university campuses. It is a small
handheld device with a wireless link that contains music content in the environ-
ment or from the user. Users carry their own Wi-Fi walkman around and listen
to the music content. All this music content can be shared using mobile ad-hoc
networking. The Wi-Fi walkman is situated in a peer-to-peer environment and
naturally interacts with the users. Without annoying interactions with users,
it can learn the users’ music taste and consequently provide personalized mu-
sic resources to fit the user’s interest according to the user’s current situated
context.

The Wi-Fi walkman is implemented on the Sharp Zaurus PDA (see Fig 7.15

6This section is based on the publication: “Wi-Fi walkman: a wireless handhold that shares
and recommends music on peer-to-peer networks”, J. Wang, M. J. Reinders, J. Pouwelse, and
R. L. Lagendijk, in Proc. of Embedded Processors for Multimedia and Communications II,
part of the SPIE Symposium on Electronic Imaging 2005.

184 Chapter 7. Peer-to-Peer Recommendation

(a) The Implementation on a Sharp Zaurus PDA

Step 1.User’s

Current play-list

representing

user’s interests

Step. 4 Filtered play-list

with the Locations in

current ad-hoc network

Step. 3

Discovered

peers and their

shared music

content in

current ad-hoc

network

Step.2

Recommended

music list

(b) The Snap-shots of the music recommendation

Figure 7.15: The Wi-Fi Walkman prototype.

(a)), using C++. It is running on an ad-hoc wireless network, featuring audio
playback, audio storage, audio recommendation, and ad-hoc wireless connec-
tivity for audio exchange.

The Wi-Fi walkman itself contains an audio agent, a transport agent, and a
wireless interface shown. The audio agent is responsible for the communication
with the recommendation services, manages the MP3 files on the storage devices

7.6. Conclusions 185

(e.g. a flash memory card), and selects which MP3 to play. The transport agent
uses the wireless ad-hoc network to communicate with other transport agents
and enables the sharing of the music files. Due to the dynamic nature of an
ad-hoc network, the transport agents must keep track of the other walkmans
around them. The enhanced ad-hoc wireless interface also informs the transport
agent of new walkmans and walkmans that can no longer be reached.

To test the performance of our P2P music recommendation, we utilize a data
set of the AudioScrobbler community (Last.FM) as our play-list data set. Cur-
rently this data set has 857.020 tracks and 4.175.146 playback actions. The
recommendation procedure is illustrated in Fig 7.15 (b).

7.6 Conclusions

This chapter studied one of the practical issues of recommender system, the
decentralization problem. We proposed two overlay networks to facilitate P2P
recommendation. For the user-oriented overlay network, we took user proximity
into account, deriving a novel user profile exchange algorithm. For the item-
oriented overlay work, we introduced the item buddy tables, which are attached
to items that are distributed throughout a P2P network. As a result, the
computation on the item similarity that is needed for the item-based ranking
model is decentralized. Our experiments with TV and music play-list data
showed that our approaches are promising techniques for recommendation in a
P2P network.

Our item ranking model of collaborative filtering has the same root as other
more general text retrieval models, for instance the language modeling of in-
formation retrieval, the classic probabilistic relevance models (the binary in-
dependent model and the BM25 variants), etc (see Chapter 3). Hence, it is
worthwhile seeking the possible usage of the proposed overlay networks to de-
centralize these text retrieval models [63, 107].

186 Chapter 7. Peer-to-Peer Recommendation

Chapter 8
Discussions

This thesis has introduced several (relevance) models for collaborative filtering.
Theoretically, we aimed at formulating the correspondence between user inter-
ests and information items; the probabilistic-modelling assumptions behind our
proposed relevance models gave us an in-depth understanding of the underly-
ing assumptions and limitations of existing collaborative filtering approaches.
Practically, we have classified collaborative filtering into two types of practi-
cal problems, namely rating prediction and item ranking, tackling them inde-
pendently. Some major practical issues such as data sparsity and distributed
recommendation were also studied. To conclude the thesis with this final chap-
ter, we will discuss the main points made in the thesis and point out future
directions.

8.1 Scenarios

In practice, recommender systems and collaborative filtering exist in various
forms with their input data potentially varying depending on the targeted ap-
plications. This thesis has studied two main scenarios, distinguishing between
item ranking and rating prediction problems. We have seen in the study that
such distinction is necessary, because it allows us to specifically target our al-
gorithms and evaluations to the particular recommendation problem at hand.
Chapters 2, 3, and 4 studied the item ranking problem, aiming at generat-
ing the top-N of the target user’s most favorite items, while Chapters 5 and 6
looked at rating prediction, aiming to predict a rating of a given item for the
target user. The item ranking problem is relatively close to the text retrieval
problem, as both problems aim at generating a top-N relevance ranking list.

187

188 Chapter 8. Discussions

We have shown that such a collaborative filtering problem can be cast as a
retrieval problem if the query is based on the user profile. Once we properly
establish the link between text retrieval and collaborative filtering, the models
in text retrieval, such as the language modelling of information retrieval and
the classic probabilistic models (the binary independence relevance model and
its BM25 variants), can be naturally reformulated and extended to the item
ranking problem in collaborative filtering.

8.2 Relevance

As has been seen in the thesis, using the concept of relevance is a natural way
to explain the correspondence between user interests and information items.
Introducing relevance into collaborative filtering has resulted in several formal
frameworks for modelling collaborative filtering. In these frameworks, several
relevance models are independently derived, targeting various data types and
application scenarios. In contrast to previous studies, these probabilistic rel-
evance models have not only solved some specific problems of collaborative
filtering but, most importantly, have also provided an insight into collaborative
filtering problems. Our relevance models in Chapters 2 and 4 depicted a statis-
tical ranking mechanism that lies at the heart of item ranking for collaborative
filtering. For instance, our proposed ranking models imply that the relevance
ranking of a target item should consider two aspects, namely the personalized
and generalized relevance. For example, in the item-generation models, the gen-
eralized relevance arises from the popularity of the item while the personalized
relevance equals the co-occurrence of such an item with other items that are
represented in the profile of the target user.

8.2.1 Two views

Previous studies on collaborative filtering make a distinction between user-
based and item-based approaches. Our probabilistic relevance models, for both
item ranking (Chapter 1) and rating prediction (Chapter 6), were derived with
an information retrieval view to collaborative filtering. They demonstrated
that the user-based and item-based models are equivalent from a probabilistic
point of view, since they have actually been derived from the same generative
relevance model. The only difference corresponds to the choice of independence
assumptions in the derivations, leading to the two distinct factorizations.

Most importantly, the combination of the two models (partial views) is of par-
ticular interest, because such a merger could compensate for the independent
assumptions embedded in either of the models and further alleviate the data

8.3. Data Sparsity 189

sparsity problem. Chapter 6 has presented a unified relevance model, provid-
ing the complete and unified view of the problem. In this model, we do not
fix the two variables, user and item. Instead, we construct a unified model
that relies on both the user representation and the item representation. The
proposed combination of Parzen-window kernel density estimation with the rel-
evance models provides a general framework for collaborative filtering, showing
how the final prediction is expressed by summations over rating influences from
user neighbors, item neighbors, and both user and item neighbors. In addition,
Chapter 5 showed that the cosine distance is indeed equivalent to a Euclidean
distance measure, but in the projected space. As a result, the classic vector
space model was covered in our proposed probabilistic framework.

8.3 Data Sparsity

Data sparsity seriously hampers the performance and practical usage of collab-
orative filtering. The study in this thesis revealed that it can be solved in two
ways. 1) Using the statistics of whole collection. As in text retrieval, unreliable
predictions due to inadequate observations can be smoothed by a properly in-
troduced background model and this background model can be estimated from
the statistics of the whole collection (Chapters 1, 2 and 3). 2) Fusing two rep-
resentations. As we have demonstrated, user-based approaches or item-based
approaches of collaborative filtering use only partial information. The final pre-
diction can be smoothed by fusing both the user representation and the item
representation (Chapters 5 and 6).

8.4 Future Research

8.4.1 Discovering More from Information Retrieval Models

This thesis has setup a close relationship between the probabilistic models of
text retrieval and those of collaborative filtering, facilitating a flexible approach
to integrating other techniques from text retrieval (e.g. query expansion, or
relevance feedback) whenever necessary.

In one of our formulations, a user interest is represented by a set of items that
the user has either rated or visited (played, listened etc). We treat it as a query
to rank unseen items. One of the limitations for such a representation is that
recommender systems need a target user to rate or visit a certain number of
items to be able to generate a good recommendation for that user. In practice,
however, particularly in the initial stage, we have few observed items available,

190 Chapter 8. Discussions

which usually results in an unsatisfactory recommendation. It becomes even
worse in a situation where the query items are less popular. The difficulty, often
called the “cold-start” problem [94], can be reduced if we extend our models
by integrating query expansion from information retrieval [122]. That is, we
consider a user profile for a set of items as our initial guess of the user interest
(query), rather than directly representing it as we did in our current models.
The cold start problem can therefore be alleviated by expanding the initial
guess using extra items that are similar or have some other statistical relation
to the set of specified items in the query.

It was shown in the introduction of this thesis (Fig. 1.1) that generating the
top-N recommendation list or predicting the rating for a certain item does not
necessarily mean the end of the task. User feedback on the initial rankings or
prediction outputs is a valuable resource with which to further validate and
refine the recommendation results. Using the mechanism of relevance feedback
has been proven to be a powerful feature in information retrieval systems [16,
88, 89]. In this regard, we are particularly interested in introducing a relevance
feedback loop into the relevance models in the future.

8.4.2 Beyond Collaborative Filtering

The proposed models in Chapters 2 and 4 are generative models for co-
occurrence data. An interesting idea would be to explore further the usage
on related applications beyond collaborative filtering. For example, our rank-
ing models can be easily extended and applied to the expert search task, which
aims at ranking people (experts) with respect to a user’s specific expertise re-
quest on a topic [3]. It would also be of great interest to apply the unified
relevance model for the unification of document and query generation in text
retrieval [7, 82, 85].

Measuring relevance between information items (documents) and user needs
is a fundamental problem of information retrieval. In the classic probabilistic
text retrieval models, relevance is implicitly modelled to be dependent on the
query and the document only. However, an issued query is not the only way to
represent a particular user information need. This can be further clarified if we
take user profiles into account. Thus, the relevance of a document is dependent
on both the user’s specified query as well as on his or her user profile. Thanks
to the models developed in this thesis, current developments in the two distinct
domains (i.e. text retrieval and collaborative filtering) can be integrated to
achieve user-centric information retrieval.

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749,
2005.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Ad-
dison Wesley, May 1999.

[3] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert finding
in enterprise corpora. In SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 43–50, New York, NY, USA, 2006. ACM
Press.

[4] G. Begelman, P. Keller, and F. Smadja. Automated tag clustering: Im-
proving search and exploration in the tag space. In WWW2006: Proceed-
ings of the Collaborative Web Tagging Workshop, Edinburgh, Scotland,
2006.

[5] N. J. Belkin and W. B. Croft. Information filtering and information
retrieval: two sides of the same coin? Commun. ACM, 35(12):29–38,
1992.

[6] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[7] D. Bodoff. A re-unification of two competing models for document re-
trieval. J. Am. Soc. Inf. Sci., 50(1):49–64, 1999.

[8] D. Bodoff and S. Robertson. A new unified probabilistic model. J. Am.
Soc. Inf. Sci. Technol., 55(6):471–487, 2004.

191

192 Bibliography

[9] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the 14th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 43–
52, San Francisco, CA, 1998. Morgan Kaufmann.

[10] J. Canny. Collaborative filtering with privacy via factor analysis. In
SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
238–245, New York, NY, 2002. ACM Press.

[11] J. Carbonell and J. Goldstein. The use of mmr, diversity-based rerank-
ing for reordering documents and producing summaries. In SIGIR ’98:
Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 335–336, New
York, NY, USA, 1998. ACM.

[12] H. Chen and D. R. Karger. Less is more: probabilistic models for re-
trieving fewer relevant documents. In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 429–436, New York, NY, USA, 2006.
ACM.

[13] K.-W. Cheung and L. F. Tian. Learning user similarity and rating style
for collaborative recommendation. Inf. Retr., 7(3-4):395–410, 2004.

[14] P. A. Chirita, C. S. Firan, and W. Nejdl. Personalized query expansion for
the web. In SIGIR ’07: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 7–14, New York, NY, USA, 2007. ACM Press.

[15] M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators.
In IUI ’01: Proceedings of the 6th international conference on Intelligent
user interfaces, pages 33–40, New York, NY, USA, 2001. ACM.

[16] I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos. Pichunter:
Bayesian relevance feedback for image retrieval. In ICPR ’96: Proceed-
ings of the International Conference on Pattern Recognition (ICPR ’96)
Volume III-Volume 7276, page 361, Washington, DC, USA, 1996. IEEE
Computer Society.

[17] A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p
systems. Technical report, Comp. Sci. Dept., Stanford University, 2003.

[18] B. W. Croft and J. Lafferty. Language Modeling for Information Retrieval.
Springer, 2003.

[19] DataSet. MovieLens: http://www.grouplens.org/.

Bibliography 193

[20] DataSet. EachMovie: http://research.compaq.com/SRC/eachmovie/.

[21] DataSet. MovieRating: http://www.cs.usyd.edu.au/~irena/movie_

data.zip.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society, 39(1):1–38, 1977.

[23] M. Deshpande and G. Karypis. Item-based top-N recommendation algo-
rithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.

[24] Z. Dou, R. Song, and J.-R. Wen. A large-scale evaluation and analysis
of personalized search strategies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 581–590, New York,
NY, USA, 2007. ACM Press.

[25] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley
Interscience, Wiley, New York, 2001.

[26] R. P. W. Duin. On the choice of smoothing parameters for parzen estima-
tors of probability density functions. IEEE Transactions on Computers,
C-25:1175– 1179, 1976.

[27] S. Eyheramendy, D. Lewis, and D. Madigan. On the naive bayes model
for text categorization. In Proc. of Artificial Intelligence and Statistics,
2003.

[28] J. Fokker, J. Pouwelse, and W. Buntine. Tag-based navigation for peer-
to-peer wikipedia. In WWW2006: Proceedings of the Collaborative Web
Tagging Workshop, Edinburgh, Scotland, 2006.

[29] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis. Chapman and Hall, 2003.

[30] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative
filtering to weave an information tapestry. Commun. ACM, 35(12):61–70,
1992.

[31] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A con-
stant time collaborative filtering algorithm. Information Retrieval Jour-
nal, 4(2):133–151, July 2001.

[32] S. A. Golder and B. A. Huberman. The structure of collaborative tagging
systems. Technical report, Information Dynamics Lab, HP Labs, 2005.
http://www.hpl.hp.com/research/idl/papers/tags/tags.pdf.

194 Bibliography

[33] H. Halpin, V. Robu, and H. Shepherd. The complex dynamics of col-
laborative tagging. In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 211–220, New York, NY, USA,
2007. ACM Press.

[34] A. Hanjalic. Content-Based Analysis of Digital Video. Kluwer Academic
Publishers, 2004.

[35] S. Harter. A probabilistic approach to automatic keyword indexing. Jour-
nal of the American Society for Information Science, 35:197–206 and 280–
289, 1975.

[36] J. L. Herlocker. Understanding and improving automated collaborative
filtering systems. PhD thesis, University of Minnesota, 2000. Adviser-
Joseph A. Konstan.

[37] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In SIGIR ’99: Proceed-
ings of the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, pages 230–237, New York, NY,
1999. ACM Press.

[38] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluat-
ing collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[39] D. Hiemstra. Using language models for information retrieval. Doctoral
thesis, University of Twente, 2001.

[40] D. Hiemstra. Term-specific smoothing for the language modeling ap-
proach to information retrieval: the importance of a query term. In Proc.
of SIGIR, pages 35–41, 2002.

[41] T. Hofmann. Latent semantic models for collaborative filtering. ACM
Trans. Info. Syst., Vol 22(1):89–115, 2004.

[42] T. Hofmann and J. Puzicha. Latent class models for collaborative filter-
ing. In Proc. of IJCAI, 1999.

[43] R. Hu and Y. Lu. A hybrid user and item-based collaborative filtering
with smoothing on sparse data. In ICAT Workshops, pages 184–189,
2006.

[44] Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval tech-
niques to alleviate the sparsity problem in collaborative filtering. ACM
Trans. Inf. Syst., 22(1):116–142, 2004.

Bibliography 195

[45] D. Hull. Using statistical testing in the evaluation of retrieval experiments.
In SIGIR ’93: Proceedings of the 16th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
329–338, New York, NY, 1993. ACM Press.

[46] T. Jebara. Machine Learning: Discriminative and Generative (Kluwer
International Series in Engineering and Computer Science). Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2003.

[47] M. Jelasity and M. van Steen. Large-scale newscast computing on the
Internet, Oct. 2002.

[48] R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for collab-
orative filtering. In SIGIR ’04: Proceedings of the 27th annual interna-
tional ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 337–344, New York, NY, 2004. ACM Press.

[49] R. Jin and L. Si. A bayesian approach toward active learning for col-
laborative filtering. In UAI ’04: Proceedings of the 20th conference on
Uncertainty in artificial intelligence, pages 278–285, Arlington, Virginia,
United States, 2004.

[50] R. Jin, L. Si, and C. Zhai. A study of mixture models for collaborative
filtering. Inf. Retr., 9(3):357–382, 2006.

[51] M. Jordan. Learning in Graphical Models. MIT Press, 1999.

[52] G. Karypis. Evaluation of item-based top-n recommendation algorithms.
In Proc. of the tenth international conference on Information and knowl-
edge management, 2001.

[53] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classi-
fiers. IEEE Trans. Pattern Anal. Mach. Intell., 20(3):226–239, 1998.

[54] F.-F. Kuo and M.-K. Shan. A personalized music filtering system based
on melody style classification. In ICDM ’02: Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM’02), page 649,
Washington, DC, USA, 2002. IEEE Computer Society.

[55] J. Lafferty and C. Zhai. Document language models, query models, and
risk minimization for information retrieval. In SIGIR ’01: Proceedings
of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 111–119, New York, NY,
2001. ACM Press.

[56] J. Lafferty and C. Zhai. Probabilistic relevance models based on document
and query generation. Language Modeling and Information Retrieval,
Kluwer International Series on Information Retrieval, V.13:1–10, 2003.

196 Bibliography

[57] V. Lavrenko. A generative theory of relevance. PhD thesis, University
of Massachusetts Amherst, 2004. Director-W. Bruce Croft and Director-
James Allan.

[58] V. Lavrenko and W. B. Croft. Relevance based language models. In
SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
120–127, New York, NY, 2001. ACM Press.

[59] D. D. Lewis. Naive (bayes) at forty: The independence assumption in in-
formation retrieval. In ECML ’98: Proceedings of the 10th European Con-
ference on Machine Learning, pages 4–15, London, UK, 1998. Springer-
Verlag.

[60] R. Library. SUGGESTLib: http://www-users.cs.umn.edu/~karypis/
suggest/.

[61] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing, Jan/Feb.:76–
80, 2003.

[62] Q. Liu, H. Lu, and S. Ma. Improving kernel fisher discriminant analysis
for face recognition. IEEE Trans. Circuits Syst. Video Techn., 14(1):42–
49, 2004.

[63] J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer net-
works. In CIKM ’03: Proceedings of the twelfth international conference
on Information and knowledge management, pages 199–206, New York,
NY, USA, 2003. ACM Press.

[64] E. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and com-
parison of peer-to-peer overlay network schemes. IEEE Communications
Survey, 2004.

[65] D. Maltz and K. Ehrlich. Pointing the way: active collaborative filtering.
In CHI ’95: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 202–209, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

[66] B. Marlin. Collaborative filtering: a machine learning perspective. Mas-
ter’s thesis, Department of Computer Science, University of Toronto,
2004.

[67] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Position paper, tag-
ging, taxonomy, flickr, article, toread. In WWW2006: Proceedings of the
Collaborative Web Tagging Workshop, Edinburgh, Scotland, 2006.

Bibliography 197

[68] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and
information retrieval. J. ACM, 7(3):216–244, 1960.

[69] M. R. McLaughlin and J. L. Herlocker. A collaborative filtering algo-
rithm and evaluation metric that accurately model the user experience.
In SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
329–336, New York, NY, USA, 2004. ACM Press.

[70] D. R. Millen and J. Feinberg. Using social tagging to improve social
navigation. In Workshop on the Social Navigation and Community based
Adaptation Technologies, Dublin, Ireland, 2006.

[71] B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens: Toward a personal
recommender system. ACM Trans. Inf. Syst., 22(3):437–476, 2004.

[72] S. Mizzaro. Relevance: The whole history. Journal of the American
Society of Information Science, 48(9):810–832, 1997.

[73] B. Mobasher. Data mining for personalization. In the Adaptive Web:
Methods and Strategies of Web Personalization, pages 90–135, Berlin-
Heidelberg, 2007. Springer.

[74] T. Oka, H. Morikawa, and T. Aoayama. Vineyard : A collaborative
filtering service platform in distributed environment. In Proc. of the
IEEE/IPSJ Symposium on Applications and the Internet Workshops,
2004.

[75] P. Paclik, J. Novovicova, P. Pudil, and P. Somol. Road sign classification
using laplace kernel classifier. Pattern Recogn. Lett., 21(13-14):1165–1173,
2000.

[76] H. Peng, X. Bo, Y. Fan, and S. Ruimin. A scalable P2P recommender
system based on distributed collaborative filtering. Expert systems with
applications, 2004.

[77] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative
filtering by personality diagnosis: A hybrid memory and model-based
approach. In UAI ’00: Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence, pages 473–480, San Francisco, CA, 2000. Morgan
Kaufmann Publishers Inc.

[78] J. M. Ponte and W. B. Croft. A language modeling approach to informa-
tion retrieval. In SIGIR ’98: Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information re-
trieval, pages 275–281, New York, NY, 1998. ACM Press.

198 Bibliography

[79] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. Epema, M.Reinders, M. van Steen, and H. Sips. Tribler: A social-
based based peer to peer system. In 5th Int’l Workshop on Peer-to-Peer
Systems (IPTPS), Feb 2006.

[80] J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factoriza-
tion for collaborative prediction. In ICML ’05: Proceedings of the 22nd
international conference on Machine learning, pages 713–719, New York,
NY, 2005. ACM Press.

[81] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In CSCW
’94: Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pages 175–186, New York, NY, 1994. ACM Press.

[82] S. Robertson. The unified model revisited. In Mathematical/Formal Meth-
ods in IR, Workshop in SIGIR 2003, New York, NY, 2003. ACM Press.

[83] S. E. Robertson. The probability ranking principle in IR. Readings in
information retrieval, pages 281–286, 1997.

[84] S. E. Robertson. On event spaces and probabilistic models in information
retrieval. Information Retrieval, 8(2):319 – 329, 2005.

[85] S. E. Robertson, M. E. Maron, and W. Cooper. Probability of relevance: a
unification of two competing models for document retrieval. Information
Technology: Research and Development, 1(1):1–21, 1982.

[86] S. E. Robertson and K. Sparck Jones. Relevance weighting of search
terms. Journal of the American Society for Information Science,
27(3):129–46, 1976.

[87] S. E. Robertson and S. Walker. Some simple effective approximations to
the 2-poisson model for probabilistic weighted retrieval. In SIGIR ’94:
Proceedings of the 17th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 232–241, New
York, NY, 1994. Springer-Verlag New York, Inc.

[88] Y. Rui, T. S. Huang, and S. Mehrotra. Content-based image retrieval
with relevance feedback in mars. In ICIP (2), pages 815–818, 1997.

[89] G. Salton and C. Buckley. Improving retrieval performance by relevance
feedback. Readings in information retrieval, pages 355–364, 1997.

[90] G. Salton and M. J. McGill. Introduction to modern information retrieval.
New York : McGraw-Hill, 1983.

Bibliography 199

[91] T. Saracevic. Relevance: A review of and a framework for the thinking
on the notion in information science. Journal of the American Society of
Information Science, 26(6):321–43, 75.

[92] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative
filtering recommendation algorithms. In WWW ’01: Proceedings of the
10th international conference on World Wide Web, pages 285–295, New
York, NY, 2001. ACM Press.

[93] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of
dimensionality reduction in recommender system – a case study. In Proc.
of ACM WebKDD Workshop, New York, NY, 2000. ACM Press.

[94] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and
metrics for cold-start recommendations. In Proc. of SIGIR, 2002.

[95] B. Schölkopf. The kernel trick for distances. In NIPS, pages 301–307,
Cambridge, MA, 2000. MIT Press.

[96] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-
bridge, MA, USA, 2001.

[97] U. Shardanand and P. Maes. Social information filtering: algorithms for
automating ”word of mouth”. In CHI ’95: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 210–217, New
York, NY, 1995. ACM Press/Addison-Wesley Publishing Co.

[98] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval
using implicit feedback. In SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 43–50, New York, NY, USA, 2005. ACM
Press.

[99] L. Si and R. Jin. Flexible mixture model for collaborative filtering. In
ICML’03: Proceedings of the Twentieth International Conference on Ma-
chine Learning (ICML 2003), pages 704–711, DC, 2003. AAAI Press.

[100] M. Skurichina. Effect of the kernel function form on the quality of
nonparametric parzen window classifier. Statistical Problems of Control,
95:216–244, 1990.

[101] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.
Content-based image retrieval at the end of the early years. IEEE PAMI,
December 2000.

200 Bibliography

[102] B. Smyth and E. Balfe. Anonymous personalization in collaborative web
search. Inf. Retr., 9(2):165–190, 2006.

[103] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of
information retrieval: development and comparative experiments, part1.
Information Processing and Management, V. 36(6):779–808, November
2000.

[104] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of
information retrieval: development and comparative experiments, part2.
Information Processing and Management, V. 36(6):809–840, November
2000.

[105] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location
using interest-based locality in peer-to-peer systems. In Proc. of Infocom,
2003.

[106] I. Stoica, D. K. R. Morris, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proc.
of SIG-COMM, Aug. 2001.

[107] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval
using self-organizing semantic overlay networks. In Proc. of SIGCOMM
’03, 2003.

[108] M. J. Taylor, H. Zaragoza, and S. E. Robertson. Ranking classes: Finding
similar authors. Technical report, Microsoft Research, Cambridge, 2003.

[109] C. Tomasi. Estimating gaussian mixture densities with EM : A tuto-
rial. Technical report, Duke University, 2004. http://www.cs.duke.

edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf.

[110] Y.-H. Tseng. Content-based retrieval for music collections. In SIGIR ’99:
Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 176–182, New
York, NY, USA, 1999. ACM.

[111] A. Tveit. peer-to-paper based recommendation for mobile commerce. In
Proc. of the First International Mobile Commerce Workshop, pages 26–
29, 2001.

[112] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, Lon-
don, UK, 1979.

[113] S. Voulgaris, A.-M. Kermarrec, L. Massoulie, and M. van Steen. Exploit-
ing semantic proximity in peer-to-peer content searching. In Proc. of the
10th IEEE Int’l Workshop on Future Trends in Distributed Computing
Systems, 2004.

Bibliography 201

[114] J. Wang, A. P. de Vries, and M. J. Reinders. A user-item relevance model
for log-based collaborative filtering. In Proc. of ECIR06, London, UK,
pages 37–48, Berlin, Germany, 2006. Springer Berlin / Heidelberg.

[115] J. Wang, A. P. de Vries, and M. J. Reinders. Unified relevance models
for rating prediction in collaborative filtering. To appear in ACM Trans.
on Information System (TOIS), 2008.

[116] J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
501–508, New York, NY, 2006. ACM Press.

[117] J. Wang, J. Pouwelse, J. Fokker, A. P. de Vries, and M. J. Reinders. Per-
sonalization on a peer-to-peer television system. Special Issue on Multi-
media Tools and Applications, 2006.

[118] J. Wang, J. Pouwelse, R. Lagendijk, and M. R. J. Reinders. Distributed
collaborative filtering for peer-to-peer file sharing systems. In Proc. of the
21st Annual ACM Symposium on Applied Computing, 2006.

[119] J. Wang, M. J. Reinders, J. Pouwelse, and R. L. Lagendijk. Wi-fi walk-
man: a wireless handhold that shares and recommends music on peer-
to-peer networks. In Proc. of Embedded Processors for Multimedia and
Communications II, part of the SPIE Symposium on Electronic Imaging
2005., 2005.

[120] J. Wang, S. E. Roberston, A. P. de Vries, and M. J. T. Reinders. Proba-
bilistic relevance models for collaborative filtering. To appear in Journal
of Information Retrieval, 2008.

[121] J. Wang, J. Yang, M. Clements, A. P. de Vries, and M. J. T. Reinders.
Personalized collaborative tagging. Technical Report, University College
London, 2007.

[122] J. Xu and W. B. Croft. Query expansion using local and global document
analysis. In SIGIR ’96: Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 4–11, New York, NY, USA, 1996. ACM Press.

[123] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen.
Scalable collaborative filtering using cluster-based smoothing. In SIGIR
’05: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 114–121,
New York, NY, 2005. ACM Press.

202 Bibliography

[124] J. Yang, J. Wang, M. Clements, J. A. Pouwelse, A. P. de Vries, and
M. Reinders. An epidemic-based P2P recommender system. In Workshop
on Large Scale Distributed Systems for Information Retrieval (LSDS-IR)
in SIGIR07, 2007.

[125] H. Zaragoza, D. Hiemstra, and M. Tipping. Bayesian extension to the
language model for ad hoc information retrieval. In SIGIR ’03: Proceed-
ings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, pages 4–9, New York, NY, USA,
2003. ACM Press.

[126] C. Zhai and J. Lafferty. A study of smoothing methods for language
models applied to ad hoc information retrieval. In SIGIR ’01: Proceed-
ings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 334–342, New York, NY,
2001. ACM Press.

[127] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent rele-
vance: methods and evaluation metrics for subtopic retrieval. In SIGIR
’03: Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, pages 10–17, New
York, NY, USA, 2003. ACM.

[128] Y. Zhang, J. Callan, and T. Minka. Novelty and redundancy detection in
adaptive filtering. In SIGIR ’02: Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 81–88, New York, NY, USA, 2002. ACM.

[129] Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for
recommendation system. In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 47–54, New York, NY, USA, 2007. ACM
Press.

[130] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving
recommendation lists through topic diversification. In WWW ’05: Pro-
ceedings of the 14th international conference on World Wide Web, pages
22–32, New York, NY, USA, 2005. ACM.

Acknowledgements

This thesis would not have been possible without the support of many people.

I am deeply indebted to my supervisor Professor Marcel Reinders who offered
invaluable guidance, support and assistance. His expertise in machine learning
was highly beneficial to my research. I would also like to express my gratitude
to my co-supervisor, Dr. Arjen de Vries, for his broad knowledge of information
retrieval and his assistance in writing research articles. It was under their
tutelage that I developed a focus and became interested in information retrieval.

A very special thanks goes out to Professor Inald Lagendijk for his financial
support as well as his guidance in the first year of my study. I must also
acknowledge Professor Stephen Robertson and Dr. Michael Taylor of Microsoft
Research Cambridge for their supervision during my internship at Microsoft.
The initial idea behind the work in Chapter 3 originated from some discussions
we had.

Appreciation also goes out to the other members in the ICT group and the
two projects in which I was involved: Pavel, David, and Bob for teaching me
machine learning; Jacco for his Linux expertise; Yunlei for throwing parties;
Jeroen for the Condensation algorithm; Umute and Alan for interesting Mul-
timedia problems; Maarten for the vivid illustrations of collaborative tagging;
Jenneke for a joint work on P2P recommender systems; Robbert and Ben for
their technical assistance; Anja for her secretarial support; Johan for his enthu-
siastic attitude towards research and his expertise in P2P networking; and Jie
for his programming skills.

Finally, I would also like to thank my father, mother, and brother for their
patience, support, and impeccable understanding and in particular, I must
acknowledge my wife, Huiyan, without whose love and encouragement I would
not have finished this thesis.

203

204

Curriculum Vitae

Jun Wang was born in Jiangsu, China. In 1993 he graduated from Jinling high
school in Nanjing, China. The same year, he started his studies in electrical
engineering at Southeast University; four years later, he obtained his BE degree.
In 2000, after spending three years in industry, he returned to academia and
worked as a research assistant in the computer science department, the National
University of Singapore, Singapore; in 2003, he obtained his MSc degree in
computer science, with the title of his masters thesis “Detecting and Tracking
Human Faces in the Compressed Domain from Content-based Video Indexing”.

From July 2003 to June 2007, he was a PhD student with the Information and
Communication Theory Group, Delft University of Technology, the Nether-
lands. His PhD study was carried out within the CACTUS (Context Aware
Communication, Terminal and UserS) and I-Share projects. His research fo-
cused on information retrieval, mainly personalization. In 2006, he spent three
months working at Microsoft Research, Cambridge, UK.

As of July 2007, Jun has been working as a lecturer at University College Lon-
don, UK. His research interests include collaborative filtering (recommender sys-
tems), information retrieval, intelligent multimedia information systems (con-
tent analysis, retrieval, and personalization). Jun has published over 30 re-
search papers in journals and conference proceedings including IEEE Trans. on
Multimedia, ACM Trans. on Information Systems, ACM Multimedia System
Journal, ACM SIGMM, and ACM SIGIR. He received the best Doctoral Con-
sortium award in ACM SIGIR 2006; He was also one of the recipients of the
“Beyond Search - Semantic Computing and Internet Economics” award spon-
sored by Microsoft Research, USA in 2007.

205

