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ABSTRACT

This paper presents a new way of thinking for IR metric
optimization. It is argued that the optimal ranking prob-
lem should be factorized into two distinct yet interrelated
stages: the relevance prediction stage and ranking decision
stage. During retrieval the relevance of documents is not
known a priori, and the joint probability of relevance is used
to measure the uncertainty of documents’ relevance in the
collection as a whole. The resulting optimization objective
function in the latter stage is, thus, the expected value of
the IR metric with respect to this probability measure of rel-
evance. Through statistically analyzing the expected values
of IR metrics under such uncertainty, we discover and ex-
plain some interesting properties of IR metrics that have not
been known before. Our analysis and optimization frame-
work do not assume a particular (relevance) retrieval model
and metric, making it applicable to many existing IR mod-
els and metrics. The experiments on one of resulting ap-
plications have demonstrated its significance in adapting to
various IR metrics.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H3.1Content
analysis and Indexing; H.3.3 Information Search and Re-
trieval

General Terms

Algorithms, Experimentation, Measurement, Performance

1. INTRODUCTION
In Information Retrieval Modelling, the main efforts have

been devoted to, for a specific information need (query),
automatically scoring individual documents with respect to
their relevance states. Representative examples include the
Probabilistic Indexing model that studies how likely a query
term is assigned to a relevant document [17], the RSJ model
that derives a scoring function on the basis of the log-ratio
of probability of relevance [20], to name just a few. And yet,
given the fact that in many practical situations relevance in-
formation is not steadily available, major developments have
shifted their focus to estimating text statistics in the doc-
uments and queries and then building up the link through
these statistics[12, 21, 34]. For example, scoring functions
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such as TF·IDF, Vector Space Model, and the Divergence
from Randomness (DFR) model [1] have been developed
[16]. A practical approximation of the RSJ model led to
the popular BM25 scoring function [21]. Another direction
in probabilistic modelling was to build a “language model”
of a document and assess its likelihood of generating a given
query [34]; a query language model is also covered under the
Kullback-Leibler divergence based loss function [15].

Despite the efforts for retrieval, when in the evaluation
phase, many IR tasks have evaluation criteria that go be-
yond simply counting the number of relevant documents in
a ranked list. Measuring IR effectiveness by different met-
rics is critical because, for different retrieval goals, we need
to capture different aspects of retrieval performance. In
the case where the preference goes strongly towards early-
retrieved documents, MRR (Mean Reciprocal Rank) is a
good measure [28], whereas if we try to capture a broader
summary of retrieval performance, MAP (Mean Average
Precision) becomes suitable [13]. Thus, there is a gap be-
tween the underlying (ranking) decision process of retrieval
models and the final evaluation criterion used to measure
success in a task. Ideally, it is desirable to have retrieval
systems adapted to the specific IR effectiveness metrics.

In fact, IR researchers have already started to explore the
opportunity. One extreme case is learning to rank ; it di-
rectly constructs a document ranking model from training
data, bypassing the step of estimating the relevance states
of individual documents [8]. Under this paradigm, some at-
tempts have been made to directly optimizing IR metrics
such as NDCG (Normalized Discounted Cumulated Gain)
and MAP [23, 33]. However, it is known that some evalua-
tion metrics are less informative than others [4]. As argued
in [32], some IR metrics thus do not necessarily summarize
the (training) data well; if we begin optimizing IR metrics
right from the data, the statistics of the data may not be
fully explored and utilized.

A somewhat opposite direction is to focus still on design-
ing a scoring function of a document, but with the acknowl-
edgement of various retrieval goals and the final rank con-
text. The “less is more” model proposed in [10] is one of the
examples. By treating the previously retrieved documents
as non-relevant when calculating the relevance of documents
for the current rank position, the algorithm is shown to be
equivalent to maximizing the Reciprocal Rank measure. In
[35], a more general and flexible treatment in this direction
is proposed. In the framework, Bayesian decision theory
is applied to incorporate various ranking strategies through
predefined loss functions. Despite its generality, the result-
ing IR models, however, lack the ability of directly incorpo-
rating IR metrics into the rank decision.

In this paper, we argue that regarding the retrieval task
solely as either optimizing IR metrics or deriving a (rele-



Figure 1: The two distinct stages in the statistical
document ranking process.

vance) scoring function presents a partial view of the under-
lying problem; a more unified view is to divide the retrieval
process into two distinct stages, namely relevance prediction
and ranking decision optimization stages, and solve them
sequentially. In the first stage, the aim is to estimate the
relevance of documents as accurate as possible, and sum-
marize it by the joint probability of documents’ relevance.
Only in the second stage is the rank preference specified,
possibly by an IR metric. The rank decision making is a
stochastic one due to the uncertainty about the relevance.
As a result, the optimal ranking action is the one that max-
imizes the expected value of the IR metric. We shall show
that statistical analysis of the expected value of IR metrics
gives insight into the properties of the metrics. One of the
findings is that AP (Average Precision) encourages docu-
ments whose relevance is positively correlated with previous
retrieved documents, while RR (Reciprocal Rank) does oth-
erwise. It follows that if a rank achieves superior results on
AP, it must pay with inferiority on RR. Apart from a the-
oretical contribution, our experiments on TREC data sets
demonstrate the significance of our probabilistic framework.

The remainder of the paper is organized as follows. We
first establish our optimization scheme, and study major
expected IR metrics and practical issues. We then provide
an empirical evaluation, and finally conclude our work.

2. STATISTICAL RANKING MECHANICS
In this section, we present the framework of optimizing IR

metrics in the situation where the relevance of documents is
unknown. To keep our discussion simple, we consider binary
relevance, while graded relevance can be extended similarly.
Given an information need, let us assume each document
in the corpus is either relevant or non-relevant. We denote
them jointly as a vector r ≡ (r1, ..., rk, ..., rN) ∈ {0, 1}N ,
where k = {1, ..., N}, N denotes the number of documents.
rk = 1 if document k is relevant; otherwise rk=0.

Our view is the following: firstly the IR model should fo-
cus on estimating the relevance of documents. The relevance
in this stage is the“true”topical relevance [18], different from
the user “perceived” relevance that will be qualified in the
next stage. In statistical modelling, we assign to every possi-
ble relevance state r a number p(r|q), which we interpret as
the probability that a user, who issues query q, will find the
documents’ relevance states as r. Given the observation so
far (the query, the user’s interaction etc), the posterior prob-
ability p(r|q) presents our (or the IR model’s) belief about
the relevance states of the documents in the collection as a
whole. Note that we use the joint distribution of relevance
instead of the marginal distribution p(rk|q) to cover the de-
pendency of relevance among documents.

It is argued that only in the second stage does the re-
trieval model make a ranking decision under the uncertainty
specified by the joint probability of relevance. To formu-
late this, we follow the terminology in natural language
processing [6]; a ranking order is represented by a vector
a ≡ (a1, ..., ai, ..., aN ), where ai ∈ {1, ..., N}. If a document
k is in rank position i, then ai = k. The retrieval task is,
thus, to find an optimal rank order a to maximize a cer-
tain retrieval objective. Formally, an IR metric (measure)
m(a|r) is defined as a score function of a given r. A good
metric should be able to measure the user’s gain or utility of
a rank order a when the true relevance states of all the doc-
uments, r, are known. m(a|r) can be also seen as a measure

of the user’s perceived relevance in the context of a ranked
list. For example, Precision concerns a solution that finds
relevant documents as many as possible in the list regardless
of their order, while Reciprocal Rank (inverse of the rank of
the first relevant document retrieved) makes sure to retrieve
the first relevant document as early as possible regardless of
the rank positions of remaining relevant documents.

Given the fact that different IR effectiveness metrics are
useful for capturing different aspects of retrieval quality, it
is desirable to optimize a with respect to the specific metric
m. Bayesian decision theory suggests that the optimal rank
order â is obtained by maximizing the expected IR metric:

â = argmax
a

Er[m|q] = argmax
a

X

r∈{0,1}N

m(a|r)p(r|q),
(1)

where E[·|q] denotes an expectation with respect to a con-
ditional distribution p(·|q). The subscript r indicates it is
averaged over all possible r. Eq. (1) shows that: firstly
the true relevance state of documents, r, is generated from
probability p(r|q) estimated by an IR model. Under the
relevance state r, the score of a given rank order a is calcu-
lated. Er[m|q], the expected score of the rank order, is the
one averaging over all possible relevance states of r. Finally,
the optimal rank order is chosen by maximizing Er[m|q].

Although the formulation can be thought of as a special
instantiation of the general retrieval decision framework in
[15, 35], our underlying idea and development are quite dif-
ferent from their instantiated models. The advantage is that,
as illustrated in Figure 1, in our framework, the IR metric
(utility) relies only on the true relevance and ranking order,
while (relevance) IR models are for estimating the relevance.
Decoupling them is essential to directly use any retrieval
metric and plug it into the optimization procedure. More
discussion can be found in Section 4.

To obtain Eq. (1), we analyze the expected IR metrics
Er[m|q] in Section 2.1 and present a practical implementa-
tion and maximization (search) method in Section 2.2.

2.1 Analysis of Expected IR metrics
2.1.1 Expected Average Precision

Average Precision (AP) is a widely-adopted metric. For
each query, it is the average of the precision scores obtained
across rank positions where each relevant document is re-
trieved; relevant documents that are not retrieved receive a
precision score of zero [7]. The metric, in fact, is the area un-
der the Precision-Recall curve, capturing a broad summary
of retrieval performance with a single value [4].

By definition, the Average Precision measure is as follows:

mA(a|r) ≡
1

NR

M
X

i=1

rai

(1 +
Pi−1

j=1 raj
)

i
, (2)

where M ≤ N (
Pi−1

j=1 raj
≡ 0 when i=1). NR is the num-

ber of relevant documents, and its expected value equals
PN

i=1 p(rai
= 1), the summation of the marginal probability

of relevance. For simplicity, we define p(rai
= 1) ≡ p(Rai

)
in the remainder of the paper. Because during retrieval r
is hidden, mA(a|r) cannot be calculated exactly. Instead,
its expected value under the joint probability of relevance
is derived by making use of the properties of expectation
(Throughout this paper the expectation is all conditioned
on a given query q and with respect to r. For simplicity, we
drop the subscript r and notation q in E[·] from now on):

E[mA] =
X

NR

p(NR|q)E[mA|NR] (3)
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Figure 2: (a) The adaptive weight wA
i of the expected Average Precision, (b) The adaptive weight wR

i of the
expected Reciprocal Rank, and (c) Comparison of the weights in different expected IR metrics.

=
X

NR

p(NR|q)
“ 1

NR

M
X

i=1

(
E[rai

|NR]

i
+

i−1
X

j=1

E[rai
raj

|NR]

i
)
”

=
X

NR

p(NR|q)
“ 1

NR

M
X

i=1

(
E[rai

|NR]

i
+

i−1
X

j=1

Cov(rai
, raj

|NR) + E[rai
|NR]E[raj

|NR]

i
)
”

,

where Cov(rai
, raj

|NR) denotes the correlation between the
relevance values of documents at rank i and j given the num-
ber of relevant documents is NR. Eq. (3) shows that the ex-
pected AP can be interpreted as: for the given query, an IR
model first estimates the number of relevant documents in
the collection, and then estimates the expected AP for that
number of relevant documents. The final expected measure
is the average, weighted by p(NR|q), across all the possible
numbers of relevant documents.

We can obtain more insight into the expected AP by mak-
ing a simple approximation to the average over NR. By
assuming that the posterior distribution of NR is sharply
peaked around the most probable value (the mode) N̂R, we
can use the mode to approximate the average [5]. This gives:

ER[mA] ≈
1

N̂R

M
X

i=1

“

wA
i p(Rai

) +

i−1
X

j=1

Cov(rai
, raj

)

i

”

, (4)

where E[rai
] =

P

rai
rai

p(rai
) = p(Rai

), the marginal prob-

ability of a document’s relevance at rank i. Note that the

equation removes the dependency of N̂R because the con-
ditional expectation and variance are well approximated by

the non-conditional ones when P (N̂R|q) ≈ 1. To simplify

the equation, we also define wA
i ≡

1+
Pi−1

j=1
p(Raj

)

i
, which is

regarded as an adaptive weight of rank i.
The first term in this simple approximation indicates that

the expected AP is a weighted average of the scores across
all rank positions, and as we increase the marginal probabil-
ity of relevance p(Rai

) in the ranked list, the expected AP
increases. Furthermore, because the weight ratio:

wa
i+1

wa
i

=
i

i + 1
(1 +

p(Rai
)

1 +
Pi−1

j=1 p(Raj
)
) (5)

is in the range between i
1+i

and 2i
1+i

.The ratio is adaptive

to the expected relevance (defined as
Pi−1

j=1 p(Raj
)) received

so far. To get the insight into it, we approximate the weight
by setting p(Rai

) all equal to p(r). We plot the weight ra-
tio against the marginal distribution p(r) and rank position

i in Figure 2 (a). It illustrates that when we have more
confidence about the relevance of the early retrieved docu-
ments (p(r) approaches one), the weight ratio becomes near
one. As a result, the metric is less worried about the early
retrieved documents, thus putting equal weights to the later-
retrieved documents. This is similar to the Precision metric.
But once less confident documents (p(r) approaches zero)
are retrieved, particularly in the top ranked positions, the
weight ratio approaches its lower bound i

i+1
. As a conse-

quence, the weight penalizes more the later-retrieved rele-
vant documents, and the ratio of the expected AP behaves
more like that of the expected DCG, which will be discussed
later.

The second term in Eq. (4) indicates that a document
will contribute more to the expected AP if its relevance is
more positively correlated with those of previous retrieved
documents. The consequence is that it will push positively
correlated documents up in the ranked list. This is an in-
teresting finding because it shows that the expected AP is
in fact nonlinear – it models well the dependencies between
documents’ relevance and incorporates them in deciding the
preferred rank order. The rational of encouraging positively
correlated relevant documents is that if a document is rele-
vant, it is likely that its positively correlated documents are
also relevant. It theoretically explains why pseudo relevance
feedback, i.e., the top ranked documents are generally likely
to be relevant, and finding other documents similar to these
top ranked ones helps improve MAP [24].

2.1.2 Expected DCG and Precision
Discounted Cumulative Gain (DCG) is another pop-

ular measure for ranking effectiveness, especially in web search.
DCG measures the usefulness, or gain, of a document based
on its (graded) relevance[14] (for the moment, let us con-
sider rai

to cover the graded relevance too); the gain is ac-
cumulated from the top of the result list to the bottom. To
penalize late-retrieved relevant documents, the gain of each
result is discounted by a function of its rank position. By
definition, we have the DCG measure as:

mD(a|r) =

M
X

i=1

wD
i g(rai

), (6)

where wD
i is the discount weight for rank position i, and

g(rai
) is a gain function mapping the relevance value to the

retrieval gain. Unlike the expected AP, the expect DCG is
linear with respect to rank positions. We thus have:

Er[mD] =

M
X

i=1

wD
i E[g(rai

)] (7)

Since g(rai
) is infinitely differentiable in the neighborhood



of the mean of rai
, i.e., r̂ai

≡ E[rai
], the mean of g(rai

) can
be represented by a Taylor power series as:

E[g(rai
)] =E[g(r̂ai

)] + E[(rai
− r̂ai

)g′(r̂ai
)]+

E[
1

2
(rai

− r̂ai
)2g′′(r̂ai

)] + ...

=g(r̂ai
) + 0 +

1

2
V ar(rai

)g′′(r̂ai
) + ...

≈g(r̂ai
) + V ar(rai

)
g′′(r̂ai

)

2
,

(8)

The expected DCG is thus approximated by:

Er[mD] ≈

M
X

i=1

wD
i

“

g
`

r̂ai

´

+
1

2
g′′(r̂ai

)V AR(rai
)
”

, (9)

where V AR(rai
) denotes the variance of rai

. Eq. (9) shows
that the expected value of DCG is determined by both the
mean and variance of the relevance of documents at rank
positions from 1 to M . Whether it should add variance or
minus variance depends on the sign of the second deriva-
tive of the gain function. In the case of graded relevance,
if consider highly relevant documents more valuable than
marginally relevant documents and give them more gain, we
can then use a gain function like g(rai

) = 2rai − 1. In this
case, we need to add variance.

It is shown that when wD
1 > wD

2 ... > wD
M , the docu-

ment with the highest score of g(r̂ai
)+ 1

2
g′′(r̂ai

)V AR(rai
) is

retrieved first, the document with the next highest score
is retrieved second, and so on. It is common to define
wD

i ≡ 1
log2(i+1)

. Compared to the adaptive weight in the

expected AP, it penalizes more the late-retrieved relevant
documents. Figure 2 (c) compares their weight ratios.

Precision at M is a special case of DCG, where the
discount is a constant and the gain function is linear. Thus,
the expected Precision measure is

E[mP ] =
1

M

M
X

i=1

E(rai
) ≡

1

M

M
X

i=1

p(Rai
) (10)

2.1.3 Expected Reciprocal Rank
In the cases like web search and question answering tasks,

we quite often expect a relevant document to be retrieved
as early as possible [10, 28]. Expected Search Length and
Reciprocal Rank (RR) are strongly biased towards early-
retrieved documents. This section analyzes RR, while Ex-
pected Search Length can be derived similarly. RR is the in-
verse of the rank of the first relevant document and bounded
between 0 and 1. It is formally defined as:

mR(a|r) =ra1

1

1
+ ra2

(1 − ra1
)
1

2

+ ra3
(1 − ra1

)(1 − ra2
)
1

3
+ ...

=
N

X

i=1

rai

i

i−1
Y

j=1

(1 − raj
) =

N
X

i=1

1

i
virai

,

(11)

where we define vi ≡
Qi−1

j=1(1 − raj
), a function of the rel-

evance values of documents ranked above i; (vi ≡ 1 when
i = 1). Conceptually, RR measure can be thought of as a
weighted average of relevance values at different rank po-
sitions, where the weights are adaptive to earlier retrieved
documents.

The expected value of the RR measure is the following:

E[mR] =E[
M

X

i=1

1

i
virai

] =
M

X

i=1

E[virai
]

i

=
M

X

i=1

E[vi]E[rai
] + Cov(rai

, vi)

i

=

M
X

i=1

`

wR
i p(Rai

) +
1

i
Cov(rai

, vi)
´

,

(12)

where, similarly, we consider E[vi]
i

as an adaptive weight and

denote it as wR
i . It can be approximated by assuming that

the irrelevance of documents above rank i is independent

when calculating wR
i , i.e., wR

i ≡ E[vi]
i

≈ 1
i

Qi−1
j=1(1−p(Raj

)).

Thus wR
i > wR

i+1. On the one hand, similar to the ex-

pected DCG, the weight wR
i is a discount factor penalizing

late retrieved relevant documents. As a result, maximiz-
ing the measure intends to push documents that have high
marginal distribution of relevance p(rj) to the top. However,
the penalty is much larger than the ones in expected DCG
and expected AP. To see this, let us again approximate the
weight by setting p(Rai

) ≡ p(r). The weight ratio is com-
pared with those of the expected AP and expected DCG in
Figure 2 (c). It shows that expected RR has the smallest
weight ratio, while expected AP has the largest. Expected
DCG is the one in the middle.

One the other hand, the weight is updated in a completely
different way compared to expected AP. Figure 2 (b) plots
the weight ratio against the marginal distribution p(r) and
rank position i. Different from expected AP, the weight
ratio of expected RR becomes larger when p(r) is larger, re-
inforcing the discount further. As a consequence, it entirely
focuses on the quality of a few early retrieval documents.
For example, the upper bound for wR

3 is 1
12

. If we consider
p(Rai

) > 0.5 for i = {1, 2, 3}, while for DCG it usually
equals 1

log2 4
= 1

2
and for expected AP even larger.

The covariance bit in Eq. (12) shows that overall the ex-
pected value of RR increases when relevance of a document
is more positively correlated with vi, the product of non-
relevancies (1 − raj

) of the documents above. The effect
is that negatively correlated documents will have higher ex-
pected RR than positively correlated documents. Such effect
will be discounted by a factor 1/i at rank i. This is an en-
tirely opposite preference compared to the expected AP. To
see this, suppose we have two documents to rank:

E[mRR]

=E[Ra1
] +

E[Ra2
]

2
−

E[ra1
ra2

]

2

=p(Ra1
) +

p(Ra2
)

2
−

Cov[ra1
, ra2

] + p(Ra1
)p(Ra2

)

2

=p(Ra1
) + wR

2 p(Ra2
) −

Cov[ra1
, ra2

]

2
,

(13)

where wR
2 =

(1−p(Ra1
))

2
. It shows that negatively correlated

document has a higher value of the expected RR, confirming
the findings in [10, 29] that the RR metric is optimized by
diversifying the ranked list of documents.

2.1.4 A General View
Through our analysis, it can be seen that the expected IR

metrics roughly have two components. A unified definition
is given as follows:

E[m(a|r)] ∝

M
X

i=1

“

Wip(Rai
)
”

+

M
X

i=1

V (rai
, ..., ra1

)

i
, (14)

where Wi is the discount weight in position i, and V is a



Table 1: A unified view of expected IR metrics.
Precision DCG AP RR

Definition:
PM

i=1 rai

PM
i=1

2
rai −1

log2(i+1)
1

NR

PM
i=1 rai

(1+
Pi−1

j=1
raj

)

i

PM
i=1

rai

i

Qi−1
j=1(1 − raj

)

Expected Precision Expected DCG Expected AP Expected RR

Wi 1 1
log2(i+1)

1+
Pi−1

j=1
p(Raj

)

i

Qi−1

j=1
(1−p(Raj

))

i

V (rai
, ..., ra1

) 0 0
Pi−1

j=1 Cov(rai
, raj

) Cov(rai
,
Qi−1

j=1(1 − raj
))

function defining the correlation between documents. The
specific definitions with respect to different metrics are sum-
marized in Table 1. Notice that for DCG, in the case of
binary relevance, g(rai

) = 2rai − 1 can be approximated as
a linear function, and the variance bit vanishes in Eq. (9).

The first bit is a linear one with respect to the marginal
probability p(Rai

). Strictly speaking, this is untrue as W
is adaptive to previously retrieved documents. But since
the weight ratio Wi+1/Wi is usually smaller than one, the
maximum value of the first bit is still achieved by ranking in
the decreasing order of the marginal probability of relevance.
This is identical to what the Probability Ranking Principle
has suggested [19]. We call it the general ranking preference.
The second bit makes the IR metrics different from each
other. It is called the specific ranking preference. A more
detailed discussion and comparison about it is presented in
Section 3.1 through a simulation.

2.2 Practical Considerations
Stack Search Maximizing Eq. (14) is a non-trivial task

because it needs to search over all possible ranking combi-
nations. We use stack search similar to [30], which keeps a
list of the best n ranking combinations as candidates seen
so far. These candidates are incomplete solutions till rank i.
It then iteratively expands each of the best partial solutions
by adding a document at rank i+1. For each candidate, we
select top-n documents that have the maximum increases
of the expected IR metric in Eq. (14). We then put all re-
sulting partial solutions (in this case, n × n) onto the stack
and then trim the resulting list of partial solutions to the
top n candidates again. We repeat the loop until the end
of the rank list is reached. The solution is the one having
the maximum value among the candidate solutions. Such
a sequential update may not necessarily provide a global
optimization solution, but it provides an excellent trade off
between accuracy and efficiency by adjusting n. When n is
1, it goes back to the greedy approach. When we increase
n, better solutions may be found at the expense of more
computational cost. For details refer to [30].

IR Model Calibration To calculate the expected IR
metrics during retrieval, we need to estimate the joint prob-
ability of relevance. An obvious solution is to directly esti-
mate it from the (training) data [20]. Relevance information
is, however, not steadily available in many practical situa-
tions to build a robust relevance model. In this paper, we
intend to conduct an indirect estimation using existing IR
models. It is observed that in many text retrieval experi-
ments that the calculated ranking scores can serve as robust
indicators of documents’ relevance with respect to queries.
Thus, a mapping function can be developed to map from
the ranking scores to the probability of relevance. Similar
to [29], the joint probability of relevance p(r|q) is summa-
rized by the marginal probability p(rai

|q) and covariance
Cov[rai

, raj
].

Let us first look at p(rai
|q), and treat it as the utility of

ranking scores. We expect the utility, defined as u, to be
a non-decreasing function of the ranking score. Thus the
first derivative u′ > 0. It is also expected that u has a
maximum value as the ranking score increases. Thus the

Figure 3: By adjusting the correlation between doc-
uments from -0.2 to 1.0, the gain on performance
for average precision, DCG, and RR, respectively.

second derivative u′′ < 0. Our experiment (Section 3.2)
on TREC data has confirmed our intuition. Applying an
exponential utility function (u′ > 0 and u′′ < 0) [2] gives
the mapping function as:

p(Rai
|q) ≡ u(s) = 1 − e−bs, (15)

where u(s), in the range [0, 1), is the utility of the ranking
score s, where s ≥ 0. b denotes a constant. For the empirical
study of the mapping, we refer to Section 3.2.

The next question is how to estimate the covariance

Cov[rai
, raj

] = ρ(rai
, raj

)
q

V ar[rai
]V ar[raj

], (16)

where V ar[rai
] = (1−p(Rai

))p(Rai
) if rai

follows a Bernoulli
distribution. The correlation coefficient ρ(rai

, raj
) models

the dependency of relevance between documents at rank i
and j. During retrieval, it is reasonable to use the docu-
ments’ score correlation to estimate the relevance correla-
tion, i.e., ρ(rai

, raj
) ≈ ρ(sai

, saj
). Strictly speaking, the

score correlation is query-dependent. A practical solution
is, however, to approximate it by sampling queries and cal-
culating the correlation between documents’ ranking scores
from an IR model. In our implementation, we construct each
of these queries by randomly sampling query terms from the
vocabulary of a data set.

For the expected RR, we need to compute the covari-
ance between document ai and variable vi, where vi is the
“meta-relevance”of previously retrieved i−1 documents, i.e.,
vi ≡

Qi−1
j=1(1 − raj

) as defined in Section 2.1.3. In our im-
plementation, we aggregate the content of the top i-1 doc-
uments as a meta document, and estimate the correlation
between rai

and vi as 1 minus the correlation between the
meta document’s ranking score and document ai’s ranking
score.

3. EXPERIMENTS

3.1 Simulation
In this section, we carried out a simulation as a confir-

mation of our analysis about the effect of correlation be-
tween different documents’ relevance on a range of IR met-
rics. The relevance states of documents were generated for
10,000 trials. At each trial, for each rank position i, we kept



Figure 4: Probability that a result from each bin is
relevant against the median of each bin.

the marginal probability of relevance p(Rai
|q) unchanged

and generated the relevance/nonrelevance states of the doc-
ument. The samples were then randomly perturbed so that
the correlation between each pair of variables increases from
negative to positive (x axis in Figure (3) ). For each sample
in each trial we calculated the value of an IR metric. We
then averaged the metric values across all the trials to obtain
the average value. We used the value of the IR metric when
the correlation is set as zero as the basis for calculating the
gain on the metric when the correlation changes. The results
for AP, DCG, and RR are shown in Figure (3). It confirms
our derivation of the expected DCG that it is insensitive to
correlation. AP value increases when correlation increases,
whereas RR does otherwise.

We tried with different settings such as the number of doc-
uments, and marginals etc, and got similar findings to the
reported above. Previous empirical studies on TREC data
have found out that one cannot optimize both the RR and
AP metrics at the same time [24, 29]. The analytical forms
and the simulation provide direct evidence that the AP met-
ric encourage positively correlated documents whereas the
RR metric encourages the opposite.

3.2 IR Model Calibration
In this section, TREC data is used to get an insight into

how the mapping function u looks like. Similar to the ex-
perimental setup in [22], we measured the utility of ranking
scores by the probability that documents given the ranking
scores are judged relevant. Documents were binned based on
their ranking scores for analysis; we judged the probability
that a randomly picked document from each bin is judged
as relevant. More specifically, we ran the Jelinek-Mercer
smoothing language model on the TREC2004 Robust Track
249 topics with the parameter λ set as its typical value 0.1
[34]. The top 1000 documents were returned for each topic,
and there were in total 241,606 results returned for these 249
queries, among which there are 7,029 relevant documents out
of a total number of 17,412 relevant documents in the track.
The queries contain different numbers of terms. To making
the ranking scores comparable across queries, we normalized
the ranking scores for all results of each query by dividing
these ranking scores by the number of terms in the query.

We sorted the 241,606 results in the descending order in
terms of their scores, and divided this ranked list into bins
of 1,500 results each, yielding 161 bins: the first 160 bins
containing 1,500 results each, and the last bin containing
the 1606 documents with the lowest scores. We selected the
median score in each bin to represent the bin. In Figure 4,
the utility of each bin, i.e., the probability that a randomly
chosen result from the bin is relevant, is estimated as the
number of relevant documents in each bin divided by the bin
size. The data points are based on the pairs of the median
of each bin and probability of relevance, and the data points
are connected by smoothed curves.

Table 2: Overview of six TREC collections.
Name Description Size # Docs Topics
TREC8 TREC disks

4&5 minus CR
1.86 GB 528,155 401-450

Robust
2004

TREC disks
4&5 minus CR

1.86 GB 528,155 301-450 and 601-
700 minus 672

Robust
Hard

TREC disks
4&5 minus CR

1.86 GB 528,155 50 difficult Ro-
bust2004 topics

WT10g TREC Web
collection

11 GB 1,692,096 501-550

CSIRO CSIRO crawl 4.2 GB 370,715 1-50 minus 8 un-
judged topics

.Gov 2002 crawl of
.gov domain

18 GB 1,247,753 551-600

Figure 4 confirms our intuition that the mapping function
is approximately a concave curve (u′ > 0 and u′′ < 0) and
fitting Eq. (15) to the data in Figure 4 gives b= 9.133. Our
experiments showed that the performance of our approach is
robust with respect to the choice of b, and a value of b any-
where between 7.0 and 12.0 results in negligible changes of
the performance on all the test collections. For the remain-
ing experiments, we fix the parameter b as 9, while bearing
in mind that tuning it from training data might have poten-
tials for further performance improvement.

3.3 Performance
We continued our empirical study of the proposed prob-

abilistic retrieval framework, focusing on understanding its
ability of optimizing IR metrics. Dirichlet and Jelinek-Mercer
smoothing language models were chosen as the two baseline
IR models since they are frequently reported for good per-
formance on TREC test collections [34]. For each query,
the ranking score of each document, calculated by either of
the two IR models, is normalized by dividing them over the
number of terms in the query. It is used as the input to esti-
mate the marginal probabilities and covariance on the basis
of the discussion in Section 2.2. The stack search is then ap-
plied to find an optimal ranking list that maximizes a given
IR metric in Eq. (14). For the stack search, we simply set
n=1, i.e., equivalent to a greedy approach, while leaving this
line of research to future work.

Standard stemming and stopword removing were carried
out for both queries and documents. The smoothing pa-
rameters of the language models were tuned for the optimal
performance for a metric on each data set. The results are
reported on six TREC test collections, described in Table 2.
TREC8, Robust 2004, and Robust 2004 Hard topics are
three plain text collections, and TREC 2001 ad hoc task on
WT10g data, TREC 2007 enterprise track document search
task on CSIRO data, and TREC 2002 topic distillation task
on .Gov data are on three Web collections.

The results in Table 3 indicate that if we choose a certain
IR metric to maximize, we obtained in most cases the best
performance on this metric than optimizing other metrics
and the baselines. More specifically, our approach always
had the best performance with respect to MAP and MRR
when the objective was to maximize the expected AP and
RR, respectively. When we aimed to optimize the expected
DCG, our approach improved the baseline on 8 out of 12
occasions in terms of NDCG. It is worth mentioning that no
parameter was needed when optimizing the metrics. With-
out any parameter tuning, our approach consistently out-
performed the two baseline models, and eight improvements
are statistically significant.

Recall the analysis in Section 2 that the expected AP
and RR have a rather “opposite” rank preference (utility)
– the expected AP favors a document whose relevance is
positively correlated with those of the documents ranked
above, whereas the expected RR suggests otherwise. Table
3 demonstrates that the optimization of the expected RR al-
ways leads to better performance on MRR than optimization



Table 3: Performance on MAP, NDCG and MRR when the objective is to optimize AP, DCG, and RR,
respectively. We used the Dirichlet and Jelinek-Mercer smoothing language models, whose smoothing pa-
rameters were tuned for the optimal performance of a metric on each data set, as the baselines in optimization.
We highlight the highest performance in bold. A Wilcoxon signed-rank test (p <0.05) is conducted and sta-
tistically significant improvements over the baselines are marked with ∗.

TREC8 MAP NDCG MRR Robust2004 MAP NDCGMRR Robust hard MAP NDCG MRR
Dirichlet (Baseline) 0.224 0.428 0.606 Dirichlet (Baseline) 0.221 0.410 0.596 Dirichlet (Baseline) 0.088 0.21 0.393

Maximize AP 0.236
∗ 0.428 0.602 Maximize AP 0.227 0.412 0.593 Maximize AP 0.089 0.21 0.387

Maximize DCG 0.224 0.44 0.615 Maximize DCG 0.219 0.411 0.593 Maximize DCG 0.0890.235
∗ 0.399

Maximize RR 0.189 0.436 0.628 Maximize RR 0.208 0.391 0.597 Maximize RR 0.076 0.23 0.410

Jelinek-Mercer (Baseline) 0.228 0.404 0.458 Jelinek-Mercer (Baseline) 0.221 0.401 0.542 Jelinek-Mercer (Baseline) 0.09 0.225 0.36
Maximize AP 0.239

∗

0.44
∗ 0.469 Maximize AP 0.228 0.412 0.593 Maximize AP 0.092 0.23 0.358

Maximize DCG 0.227 0.416 0.476 Maximize DCG 0.22 0.406 0.543 Maximize DCG 0.09 0.245
∗ 0.37

Maximize RR 0.196 0.404 0.477 Maximize RR 0.18 0.364 0.546 Maximize RR 0.087 0.24 0.374

WT10g MAPNDCG MRR CSIRO MAPNDCGMRR .Gov MAP NDCG MRR
Dirichlet (Baseline) 0.202 0.4 0.550 Dirichlet (Baseline) 0.398 0.692 0.782 Dirichlet (Baseline) 0.147 0.272 0.419

Maximize AP 0.204 0.392 0.546 Maximize AP 0.408 0.692 0.785 Maximize AP 0.151 0.272 0.417
Maximize DCG 0.199 0.405 0.551 Maximize DCG 0.395 0.692 0.779 Maximize DCG 0.148 0.293

∗

0.428

Maximize RR 0.181 0.316 0.552 Maximize RR 0.367 0.636 0.789 Maximize RR 0.132 0.238 0.427
Jelinek-Mercer (Baseline) 0.168 0.360 0.472 Jelinek-Mercer (Baseline) 0.374 0.684 0.849 Jelinek-Mercer (Baseline) 0.167 0.286 0.45

Maximize AP 0.176 0.376 0.48 Maximize AP 0.384 0.704 0.85 Maximize AP 0.187
∗

0.306
∗ 0.449

Maximize DCG 0.168 0.360 0.472 Maximize DCG 0.371 0.676 0.850 Maximize DCG 0.169 0.286 0.444
Maximize RR 0.153 0.36 0.481 Maximize RR 0.349 0.644 0.870 Maximize RR 0.147 0.245 0.454

of the expected AP, and vice versa. The result supports our
theoretical finding that RR and AP are two different types
of metrics, and optimizing either of them cannot lead to the
optimal performance of the other.

Table 3 also shows that optimization of AP can sometimes
lead to better performance on NDCG than direct optimiza-
tion of DCG. Similar finding appeared in the learning to
rank paradigm, and it was argued that the reason is due to
the fact that MAP is more informative than DCG [32]. Yet,
we think that the informative explanation, although true in
learning to rank, does not necessarily hold in our probabilis-
tic framework since we do not use IR metrics to summarize
the training data. Our belief is supported by the results
from the simulation in Section 3.1 that the expected DCG
is invariant to the changes of relevance correlation between
documents; and as a result, optimzing AP (prompting docu-
ments whose relevance is positively correlated with previous
documents) shouldn’t do any better than directly optimizing
DCG for the NDCG metric. We thus believe the somewhat
contradicted finding in the real data set may be attributed
to the estimation of the joint probability of relevance, more
specifically the relevance correlation, given the fact we used
textual content to infer relevancy. As the cluster hypothesis
suggests that relevant documents tend to be similar to each
other to form clusters [25], a document is likely to be rele-
vant if it is similar to relevant documents. As a result, the
expected AP biases towards putting documents similar with
each other in the top rank positions. When top ranked doc-
uments are relevant, these other documents are also likely to
be relevant - their marginal probabilities of relevance might
be higher than the estimated. As a result, metrics such as
NDCG and Precision are improved.

Finally, we provide a further account of RR and AP, the
two differently behaving metrics. Recall that in Figure 2
the properties of the expected RR and AP were depicted
by adjusting the weight functions wA

i and wR
i using a single

parameter p(r). Figure (5) used TREC8 test collection to
further show the effect of p(r) on the resulting MRR and
MAP performance. For comparison, the performance of the
baseline Dirichlet smoothing language model, and the exact
optimization of RR, MAP and DCG was also plotted.

It shows that adjusting p(r) to approximate AP is very
stable since the solution keeps roughly the same for all eight
values of p(r). This could be explained by the fact that
the weight ratio between wA

i+1 and wA
i saturates at 1 for

Figure 5: MRR v.s. MAP

all values of p(r) when i increases above 4. By contrast,
the RR approximation is more volatile with respect to p(r).
As p(r) increases from 0.1 to 0.5, the MRR performance
increases whereas the MAP performance decreases. This is
due to the fact that as p(r) decreases, the weight ratio of RR
becomes similar to that of DCG and AP. p(r) can be used
to trade off between the performance of MAP and MRR.
When p(r) = 0.3 and 0.4, the performance on MRR even
slightly exceeds that on the exact optimization of RR. This
suggests that there might be still scope to improve our stack
search algorithm by setting n higher than 1.

4. LINKS TO OTHER WORK
To complement Section 1, we continue the discussion of re-

lated work. In the learning to rank paradigm, optimizing IR
metrics is conducted in a discriminative manner where Sup-
port Vector Machines or Neural Networks were commonly
used [23, 33]. By contrast, we study the problem in a proba-
bilistic framework where the intention is to combine both the
generative and discriminative processes. Our formulation of
optimal ranking also fundamentally departs from the idea in
[26], where a probability distribution over document permu-
tations (rank) is defined, and the expectation of IR metrics
is considered under this distribution. In this paper, we, how-
ever, believe that the expectation of IR metrics should be
with respect to a distribution of relevance, because the un-
certainty comes only from the fact that we cannot know the
relevance of documents with absolute certainty.

For the purpose of evaluation, the estimation of IR met-
rics, particularly MAP, has been investigated in the past.



For example, to reduce the variability of test collection, a
normalization technique was introduced [11]; to deal with
incomplete judgements, sampling approaches were proposed
[3, 31]. Empirically, their error rates were measured [7]; and
the uncertainty from the variability of relevance judgments
in TREC were also examined [27]. By contrast, our study is
for the purpose of retrieval, and thus the IR metric estima-
tion and optimization were explored in a complete different
situation where the relevance is not known a priori.

The most relevant work can be found in [10, 15, 35]. The
study in [10] argued that in some tasks users would be sat-
isfied with a limited number of relevant documents, rather
than requiring all relevant documents. The authors there-
fore proposed to maximize the probability of finding a rele-
vant document among the top n. By treating the previously
retrieved documents as non-relevant ones, their algorithm
is equivalent to optimizing Reciprocal Rank. A more gen-
eral solution is proposed in [35] on the basis of the Bayesian
rank decision framework in [15]. In their solutions, different
rank preferences are expressed by different utility functions
and can be incorporated when calculating the score for each
of the documents. The two ideas are close in spirit to the
Maximal Marginal Relevance (MMR) criterion in [9], and
can be called “marginal relevance” IR models because they
are designed to calculate the additional information a doc-
ument contributes in a result list. But unfortunately this
framework does not allow the capacity to model and opti-
mize different IR metrics.

This paper takes a rather different view, although similar
to [15, 35] we also follow the Bayesian decision theory. We
argue that the rank utility is nothing to do with the (rele-
vance) model parameters but only with the hidden true top-
ical relevance; and the relevance states of documents need to
be estimated before knowing any user (rank) utility. A good
IR metric could be able to specify one type of rank utilities.
Once we summarize our belief about the true relevance by
the joint probability of relevance, the utility, expressed by
an evaluation metric, can be estimated under such uncer-
tainty, and the optimal decision is the one that optimizes
that expected value. The two distinct retrieval steps do not
assume a particular (relevance) retrieval model, making it
applicable to many existing IR models and IR metrics.

Our work is also related to the portfolio theory of docu-
ment ranking [29]. By an analogy with the financial prob-
lems, they argued that an optimal rank order is the one
that balances the overall relevance (mean) of the ranked list
against its risk level (variance). This paper follows the idea
of using mean and variance to summarize a distribution and
to analyze the expected IR metrics. Our analytical forms of
expected IR metrics on the basis of the mean and variance
reveal some interesting properties that have not been shown
in the past.

5. CONCLUSIONS
In this paper, we have studied the statistical properties

of expected IR metrics when the relevance of documents is
unknown. An implementation based on our analysis and the
two-stage framework has already shown its ability of opti-
mizing major IR metrics in a probabilistic framework. In the
future, it is of great interest to seek its usage in web search
where click-through data can be viewed as indirect evidence
of documents’ relevance. Also, during evaluation, the“Cran-
field paradigm” considers relevance as deterministic values,
either binary or graded ones. It is, however, more general
to consider IR evaluation as a stochastic process too. Thus,
despite the fact that our study of the expected IR metrics
is for retrieval, the analysis and development are also rel-

evant to evaluation if the disagreement between relevance
assessors needs to be modelled.
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