
Goal-driven Collaborative Filtering
- A Directional Error Based Approach

Tamas Jambor and Jun Wang

Department of Computer Science
University College London

Malet Place, London, WC1E 6BT, UK
t.jambor@ucl.ac.uk, wang.jun@acm.org

Abstract. Collaborative filtering is one of the most effective techniques
for making personalized content recommendation. In the literature, a
common experimental setup in the modeling phase is to minimize, either
explicitly or implicitly, the (expected) error between the predicted rat-
ings and the true user ratings, while in the evaluation phase, the resulting
model is again assessed by that error. In this paper, we argue that defin-
ing an error function that is fixed across rating scales is however limited,
and different applications may have different recommendation goals thus
error functions. For example, in some cases, we might be more concerned
about the highly predicted items than the ones with low ratings (preci-
sion minded), while in other cases, we want to make sure not to miss any
highly rated items (recall minded). Additionally, some applications might
require to produce a top-N recommendation list, where the rank-based
performance measure becomes valid. To address this issue, we propose a
flexible optimization framework that can adapt to individual recommen-
dation goals. We introduce a Directional Error Function to capture the
cost (risk) of each individual predictions, and it can be learned from the
specified performance measures at hand. Our preliminary experiments
on a real data set demonstrate that significant performance gains have
been achieved.

1 Introduction

Collaborative filtering (CF) is concerned with predicting how likely a specific
user will like certain information items (books, movies, music items, web pages,
etc). As the term “collaborative” probably implies, the prediction has to rely on
a collection of other (similar) users’ preferences, which have been collaboratively
collected. One of the popular applications of collaborative filtering is personalized
content recommendation. A typical example is movie recommendation, where a
user is explicitly asked to rate what he or she liked or disliked in the past. After
rating a few movie items, the recommendation engine would be able to produce
a prediction about the users ratings of unseen movie items by looking at other
(similar) users past ratings for the movies items in question. In this case, users
have to explicitly provide their ratings for movie items beforehand, e.g., give 1
star for the lowest rating (most hated) and 5 stars for the highest rating (most
liked). As a major recommendation technique, collaborative filtering has been
widely used in practice.

The first Netflix competition [1] posed a challenge to develop systems that
could beat the accuracy of Neflix in-house recommender by 10 percent. One of
the importance of this challenge is that it specified an evaluation metric that is

to be used to measure the efficiency of the system. Therefore forcing developers
to think along the line of this measure. This would result in outcomes that have
the same shortfalls as the measure [2]. This paper attempts to take another
point of view of designing recommender systems. The aim is to introduce a
design pattern that takes into account user preferences which would define the
system itself. Different measures emphasize different qualities with respect to
how closely they are correlated with certain objectives that the system would
achieve. Therefore the measure itself gives a good indication of the qualities that
the algorithm should possess. This approach offers a different solution. It enables
the algorithm to be adjusted to user needs flexibly given that these needs are
already defined and do not change during the session. It attempts to optimize
the algorithm to these user needs instead of a measure which results in greater
flexibility and better user experience. To achieve this, we first critically examine
the issues of using squared errors as a cost function in collaborative filtering.
Based on this discussion, we propose a goal-driven optimization framework where
the users’ or system’s goal can be specified as a weight function. This weight
function will be optimized by a genetic algorithm [3]. Experimental results on a
real data set confirm our insights with improved performance.

The paper is organized as follows. We will discuss the related work in Section
2, present our theoretical development in Section 3, give our empirical investi-
gation on recommendation in Section 4, and conclude in Section 5.

2 Related work

The term, collaborative filtering, was first coined in [4] where the authors de-
veloped an automatic filtering system for electronic mail, called Tapestry. If we
look at the collaborative filtering problem from a conceptual level, it is very
much like Web retrieval in that it needs to calculate the correspondence (called
relevance) between a user information need (in our case, a user preference or
predefined preferable topics) and an information item (e.g., a movie or a book)
[5]. In text retrieval, the correspondence is usually calculated by looking at con-
tent descriptions, e.g., how many and how frequent the query terms occur with
a document. In contrast, when we make personalized recommendations, users
unseen preferences can be predicted by aggregating the opinions and preferences
of previous users.

Originally, the idea of collaborative filtering was derived from heuristics, as-
suming that users who have similar preferences in the past are likely to have
similar preferences in the future, and the more similar they are, the more likely
they would agree with each other in the future. The preference prediction is
therefore calculated by weighted-averaging of the ratings from similar users.

In the memory-based approaches, all user ratings are indexed and stored
into memory, forming a heuristic implementation of the “Word of Mouth” phe-
nomenon. In the rating prediction phase, similar users or (and) items are sorted
based on the memorized ratings. Relying on the ratings of these similar users
or (and) items, a prediction of an item rating for a test user can be generated.
Examples of memory-based collaborative filtering include user-based methods
[6], item-based methods [7] and combined methods [8].

In the model-based approaches, training examples are used to generate an
abstraction (model parameters) that is able to predict the ratings for items that
a test user has not rated before. In this regard, many probabilistic models have

been proposed. For example, to consider user correlation, [9] proposed a method
called personality diagnosis (PD), treating each user as a separate cluster and
assuming a Gaussian noise applied to all ratings. On the other hand, to model
item correlation, [10] utilizes a Bayesian Network model, in which the conditional
probabilities between items are maintained. Some researchers have tried mixture
models, explicitly assuming some hidden variables embedded in the rating data.
Examples include the cluster model [10] and the latent factor model [11]. These
methods require some assumptions about the underlying data structures and
the resulting ‘compact’ models solve the data sparsity problem to a certain
extent. However, the need to tune an often significant number of parameters has
prevented these methods from practical usage.

Alternatively, collaborative filtering can be considered as a matrix factoriza-
tion problem and it has emerged as the clear favorite in the Netflix competition
[12]. In general, the approach aims to characterize both items and users by vec-
tors of factors inferred from item-rating patterns. The approximation is usually
found such that it minimizes the sum of the squared distances between the
known entries and their predictions. One possibility of doing so is by using a
Singular Value Decomposition (SVD) [13]. The main reason of its success may
be due to the fact that the objective function of the approach is equivalent to the
performance measure (Root Mean Squared Error) that has been targeted in the
competition. The drawback of using the RMSE performance measure is studied
in [14]. However, it is also important to point out that many collaborative filter-
ing models use the squared errors as the objective function, either implicitly or
explicitly. Part of this paper is intended to increase the awareness and provide
a future study about the issues of using RMSE as the objective function.

On the other hand, researchers also argued that understanding collaborative
filtering as a rating prediction problem has some significant drawbacks. In some
of the cases, a better view of the task is of generating a top-N list of items that
the user is most likely to like [15, 16]. Thus, this paper attempts to develop a
flexible goal-driven optimization framework so that the algorithm can be tailored
to meet individual system requirements.

3 A Goal-driven Optimization Framework

3.1 Problem Definition and Analysis

One of the most used performance (error) measures for rating-based recom-
mender systems is RMSE (Root Mean Squared Error), which measures the dif-
ference between ratings predicted by a recommendation algorithm and ratings
observed from the users. It is defined as the square root of the mean squared

error:
√
E
(
(r̂ − r)2

)
, where E denotes the expectation, r is the true rating and

r̂ is the predicted value. In [14], researchers have already systematically exam-
ined many performance measures for collaborative filtering. In this section, we
critically examine the RMSE measure as an objective function.

The RMSE metric measures recommendation error across different rating
scales, and the error criterion is uniform over all the items. RMSE squares the
error before submitting it which puts more emphasis on large errors. Naturally
large errors can occur at the end of the rating scales. To see this, suppose we
have a recommendation algorithm which predicts the rating of an item randomly

1.5

2

2.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

40

50

60

70

0

10

20

30

40

50

60

70

1 2 3 4 5

(a) (b)

Fig. 1. (a) The expected value of RMSE per rating. (b) Percentage of RMSE improve-
ment over random recommendation by a common collaborative filtering algorithm that
optimizes RMSE.

from rating 1 to 5. Fig. 1(a) shows that it is more likely to get higher error at
both the ends of the rating scale if a random algorithm is used.

Thus, the question arises if we should adopt RMSE as the measure of cus-
tomer satisfaction. It measures the error across the system even for items that
are not that important for users to be correctly predicted. Therefore the system
might not want to penalize predictions that are not important for the user. If the
user is only interested to get relevant recommendations, RMSE as a measure is
not sufficient. Even if the user is interested in items that he or she would dislike,
it is arguable whether the middle range of the rating spectrum is interesting to
the user at all. If we take rating three out of five as middle, that range cannot
help to explain why an item was recommended, neither can it explain why the
item was not recommended.

Another issue may also arise if one directly optimizes RMSE. This is due to
the fact that the training samples are not uniformly distributed across rating
scales. To demonstrate this, Fig. 1(b) shows RMSE improvement in percentage
over random recommendation by using a common recommendation algorithm
(in this case an SVD-based approach is used to optimize the metric [12]). Since
users are likely to rate items that they liked, in most cases, they give them a
rating of four. So the algorithm has more data to make a prediction at that
range. This is the reason why we have higher improvements for rate four.

Improving accuracy on items that the user would like may be desirable from a
user point of view, but if the prediction falls into the middle range the error does
not matter as much as if the prediction falls into the lower range. It is similar with
items that are rated low, reducing the error rate is more desirable as the error
rate increases since the item gets a higher prediction. In addition to that, highly
accurate predictions on uninteresting items (perhaps rated 3 out of 5) can drown
out poor performance on highly/lowly ranked items. Therefore depending on the
rating we need to pay attention to the direction of the offset between the rating
and the prediction. Fig. 2 shows that the SVD algorithm tends to overpredict
items in the middle range. Also, it is more likely to overpredict lower rated items
than underpredict higher rated items.

Therefore a distinction can be made between items that are interesting to
the user and items that are neutral. Within the interesting category we can
differentiate between liked and disliked items. To decided which one is the most
important to us, let us consider two different type of recommendations. Since
the performance of a recommender system should be evaluated with respect to a

0 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Predicted less

Predicted correctly

Predicted more

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

True ratings

Predicted less

Predicted correctly

Predicted more

Fig. 2. Asymmetric Rating-prediction error offset.

 Rated

Predicted
1 or 2 3 4 or 5

1 or 2

3

4 or 5

Fig. 3. Directional Risk Preference of Recommendation Prediction.

specific task, it is useful to define the two main tasks that a typical recommender
system fulfills. If the output of the recommender system is the first n items then
RMSE is not an appropriate objective to optimize, since it is not important to
measure the system performance on items that do not fall into the first n good
items. As long as the system correctly identified that these items do not fall
into the n good items the accuracy is irrelevant. Users might be interested in
exploring movies, looking through the database or checking particular movies.
In this case everything matters, because users are interested in the justification
on how movies are made. Clearly, in both scenarios we can differentiate between
two separate kind of risks. First, the risk of recommending something that is
not relevant to the users, second, the risk of not recommending something that
is relevant to the users. These are two kind of errors, that should be separated
when it comes to measuring the error rate. For example assume that the system
predicts a movie four, and the user watches that movie, which he or she would
have rated only three. This is clearly different from the case where the system
rates a movie three, which would have been rated four is the user took the time
and watched it. Since the error of the algorithm in the second scenario would
never be found out, because the user would never watch a movie that is rated
three, from a user point of view this error would be hidden. Therefore the system
that makes errors like that would not considered better by the user than a system
that makes errors illustrated in the first scenario.

Therefore it is important to introduce two concepts here. Taste boundaries
and the direction of taste. Taste boundary could be defined as the interval that
is between liked and disliked items. In a rating scale from one to five this bound-
ary would be three. Direction would represent whether the predicted rating is
towards the taste boundary or not, at one level, on another level it would rep-

Table 1. The two dimensional weighting function, where p is the predicted value of
the item and r is the ground truth.

r = 1, 2 r = 3 r = 4, 5

p <= 2.5 w1 w2 w3

2.5 < p <= 3.5 w4 w5 w6

p > 3.5 w7 w8 w9

resent whether the error is large enough to cross the taste boundary or not. In
other words, whether the algorithm suggests that the user would like the item
when it is not the case and vice versa. These boundaries are illustrated in the
matrix shown in Fig. 3. It shows that we would like to minimize errors where the
prediction is correct and as we go further from the correct prediction we take
higher risks depending on the direction (the risk is illustrated by the size of the
arrows). Fig. 3 can also be applied to a ranking problem since higher predicted
items represent higher risk. For example in ranking an error should be penalized
more if an item is ranked higher than if it happens the other way around.

3.2 Optimizing the Weighted Errors

Based on our discussion, we should penalize more for more risk given a specified
recommendation goal. Also, risk is directional as shown in Fig. 3. Previous rec-
ommender systems considered the absolute value of the error, taking equally into
account negative distance and positive distance from the ground truth. Here, we
propose an optimization framework that would differentiate between negative
and positive distance between the prediction and the ground truth rating, as-
signing a higher penalty for positive distance than negative distance. To achieve
this, we assign a weight for each type of error. As shown in Fig. 3, the weights
are two dimensional, depending on both the prediction and the ground truth.
Mathematically, we optimize the following proposed objective function in order
to obtain the parameters of a recommendation model:

θ̂ = argmin
θ

∑
u,i

w
(
f(θ), ru,i

)(
f(θ)− ru,i

)2 (1)

where f(θ) denotes the recommendation model parameterized by θ. u and i are
the user and item index respectively. w

(
f(θ), ru,i

)
denotes the cost (or risk)

weighting function. We can solve the optimization problem by applying a Gra-
dient Descent method [17], which requires to differentiate the objective function
as follows: ∑

u,i

2w(f(θ)− ru,i)f ′(θ)dθ + w′(f(θ)− ru,i
)2
f ′(θ)dθ (2)

A discrete form of the weighting function is adopted in this paper (see in
Table 1) – the risk preference of the system is thus captured by the nine weights.
Because the weight w is constant for the three regions defined by f , the expres-
sion can be further approximated by:∑

u,i

2w(f(θ)− ru,i)f ′(θ)dθ (3)

• Train SVDTraining set

(60%)

• Optimise weightsValidation set

(20%)

• Test the best set of
weights

Test set

(20%)

Fig. 4. Two-level optimization

To demonstrate the optimization framework, we adopt an incremental SVD
(Singular Value Decomposition) factorization method [12], which is defined as
follows:

argmin
q,p

∑
u,i

w(ru,i − qTi pu)2 + λ(||qi||2 + ||pu||2) (4)

where f = qTi pu, where q and p are the model parameters. This algorithm factors
the matrix using only user and item pairs where ru,i is known. As mentioned
earlier we introduced a weight w depending on the given criteria that is added to
the equation. Therefore w is introduced, aiming to control the magnitude how
conservative the system is to be in a given rating sector.

The system learns the model by fitting the previously observed rating. In
order to avoid overfitting the second half of the equation regularizes the learning
parameters and the constant λ is set to control the extent of regularization.
Stochastic gradient descent is used to optimize the equation [12] introduced by
[18].

The next question is how to obtain the optimal weighting w given a rec-
ommendation goal. Normally, a recommendation goal can be defined by a per-
formance metric. For example, if the output is a ranked recommendation list,
rank-based metrics such as NDCG [19] might be suitable. We adopt a Genetic al-
gorithm to obtain the optimal weights. Genetic algorithms are search algorithms
that work via the process of natural selection. They begin with a sample set of
potential solutions which then evolves toward a set of more optimal solutions.
Within the sample set, solutions that are poor tend to die out while better solu-
tions remain in the population, thus introducing more solutions into the set. The
genetic algorithm does its best when there is a smooth slope of fitness over the
problem space towards the optimum solution. This approach requires a two-level
optimization illustrated in Fig. 4.

4 Evaluation

4.1 Experiment Setups

We empirically investigated the relationships between the taste boundaries and
the CF performance, using the MovieLens dataset. This publicly available dataset

consist of 100,000 ratings for 1682 movies by 943 users. We divided the dataset
into three parts (Fig. 4) making sure that ratings from any given user are in all
of the sets. Every user in the dataset rated at least 20 movies and the movies
from each user distributed randomly when the dataset was divided. This is an
important criterion since the performance measures that are discussed below
consider users as a point of evaluation. The result is cross-validated using a
five-fold cross-validation method and the outcomes are averaged.

The algorithm measures system effectiveness based on two assumptions.
First, we consider recommendation as a ranking problem. Second, we define
risk in nine different sectors (Fig. 3) which can be adjusted based on the desired
outcome of the system. Even if the goal is to measure the effectiveness of the
system across all users and items, from a user point of view there are items that
are more important than others. If we consider recommendation as a ranking
problem, it is sensible to optimize the algorithm using some of the measures
from IR. Therefore two main concepts from IR should be defined in the domain
of recommendations. Relevance shows whether an item is relevant to the query
issued. However, the query is hidden in a recommender system, since it is de-
fined by the user’s preference which is usually not expressed explicitly. In this
paper we make an assumption that users would watch a movie if it is rated four
or five on a five point scale (relevant), but we acknowledge that this might be
different for individual users. Therefore relevance is defined on a binary scale.
Movies that are rated four or five are considered relevant, the rest of the movies
are considered irrelevant. Retrieved items represent a list of items that are pre-
sented to the user. This concept might be important if the task of the system
is to return the first-N relevant items. In order to reach the desired effect we
evaluated the system using measures from IR. For a given user the algorithm
ranks unseen movies such that the movies he or she likes most are suggested
first. The following performance measures are used in this experiment.

The Mean reciprocal rank (MRR) [20] is the average of the reciprocal ranks
of results for all users in the dataset. This measure only takes into account the
first relevant item in the list. So the algorithm would achieve a high score if all
the items that are relevant are predicted correctly.

Mean average precision (MAP) [20] obtains the precision score after each
relevant document is retrieved. The mean of this score is calculated for all users to
obtain the MAP score. The algorithm would achieve a higher score if it improves
the precision in the retrieved list. So in this case all the documents that are
retrieved count toward the score.

Normalized discounted cumulative gain (NDCG) [20] measures the gain based
on the items position in the recommended list. This measure was introduced
in [21]. It penalizes the system if it returns highly relevant documents lower
in the ranking list but penalizes less if the lower end of the ranking list was
retrieved incorrectly. NDCG is normalized by the perfect permutation of all the
documents in the set. One of the problems if we apply it to recommendation
is that the average number of ratings by user is relatively low. The aspect of
picking the right k elements from a big dataset is lost here. Therefore all users
are evaluated on a fixed number of items which is set. So most of the time all
of the considered items are retrieved. Thus, there is no penalty on having the
wrong elements within the retrieved documents, the only penalty can arise from
the wrong order. In this experiment we used the formula defined in [22].

Table 2. Baseline SVD

r = 1, 2 r = 3 r = 4, 5

p <= 2.5 0.05175 0.01935 0.0106
2.5 < p <= 3.5 0.0904 0.1461 0.1391

p > 3.5 0.02995 0.10125 0.4115

Table 3. SVD with weights where w7 > w8 > w4

r = 1, 2 r = 3 r = 4, 5

p <= 2.5 0.0759 0.04075 0.0264
2.5 < p <= 3.5 0.0837 0.16765 0.23815

p > 3.5 0.0125 0.0583 0.29665

Since we used a small set it was also important to define the best solution
to the problem and use a measure that is relative to the best solution. This is
particularly important for MRR. As mentioned above in collaborative filtering
the algorithm is tested in a relatively small set compared to sets used in IR.
Therefore it is more likely that the algorithm is tested on users where all the items
are non-relevant. So the algorithm does not have a chance to return relevant
documents from a set where there is not any relevant documents. This would
decrease the performance of the algorithm. Therefore, in this experiment the
algorithm disregards users where there is no relevant documents in the test set.
This is a reasonable assumption, because if the algorithm runs on the whole
database it is very likely that there will be at least one item that is relevant to
the user.

4.2 Results

Introducing weight for the error would penalize unwanted categories therefore
the recommender prefers to have higher error rate in categories that are not
penalized. For example if an item was rated five by the baseline recommender
with the ground truth of one, the weighted recommender in Table 3 would more
likely to rate it less than three instead, reducing the error, but increasing the
error on items that are not that important (e.g. items where the ground truth
is one).

The first experiment aimed to demonstrate that introducing weight in dif-
ferent sectors would reduce the number of items that fell into those sectors. We
introduced weights in sectors where the algorithm would make a higher predic-
tion than the ground truth (w4, w7, w8) and set the magnitude of the weight in
the order of risk illustrated in Fig. 3. Table 3 shows that the probability that an
item would fall into those sectors is reduced. However, this is a trade-off since
it reduces the number of items in the sector (items that are rated five and pre-
dicted five). On the positive side, it increases the accuracy in the middle and
lower range.

In the second experiment weights are set to one by default at points where
the prediction should be the most accurate as defined by Fig. 3. In this case only
weights that fall into the interval where prediction were higher than ground truth
considered (w4, w7, w8). The rationale behind this choice is that the combination
of this force (enabling the algorithm to modify only these weights) and the
measure would result in an optimal solution for the user where higher rated items

Table 4. Experimental results

Measure(Test) Baseline(Test)

MAP 0.450 0.447
MRR 0.899 0.889

NDCG@10 0.726 0.720
NDCG@5 0.574 0.570
NDCG@3 0.450 0.447

0.2

0.25

0.3

0.35

0.4

0.45

Baseline

Weighted

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p <= 2.5|r = 1,2 2.5<p<=3.5|r=3 p>3.5|r=4,5

Baseline

Weighted

0.06

0.08

0.1

0.12

Baseline

Weighted

0

0.02

0.04

0.06

0.08

0.1

0.12

p>3.5|r=1,2 p>3.5|r=3

Baseline

Weighted

(a) (b)

Fig. 5. (a) The probability of correct predictions within sectors described in Table 1.
(b) The probability of predicting an item relevant when it is not.

are considered more important and items that are overpredicted are penalized.
Table 4 shows the result of the four performance measures that are used in our
experiment. The first column indicates the score that is computed using the
optimal weights and the second column is the baseline score (without weights).
This shows that weights in fact improved the algorithm. The samples in the table
are tested and found statistically significant. The reason why this method would
provide a more robust recommendation from the user point of view is that it is
reorganizing the ranking in a way that would take into account our initial criteria
defined by the weights and re-rank it in a way that is ideal for these criteria. The
advantage of the second approach is that it dynamically chooses the parameters
for a given measure, however, as we will discuss below the measures do not cover
all the possibilities given in our initial criterion. In contrast, the first approach
can be tuned to reach a result that satisfies these criteria, but it cannot reach
an optimal solution for all users.

Essentially this approach aims to minimize the error for the predefined sec-
tors which inevitably results in the increase of error in other sectors. Fig. 5(a)
shows the probability that true ratings are correctly predicted within our pre-
defined taste boundary by the optimized versus the baseline approach using the
weights obtained in the second experiment (Table 4). As expected the baseline
approach predicts higher ratings better than our optimized approach, since the
optimized approach does not penalize this type of error (high ratings predicted
less), whereas we have some improvement in the lower range where we aimed to
reduce the error. This approach takes the low risk approach therefore it hurts
the performance at the higher range of the spectrum where it is less risky to
predict something less, in exchange it reduces the error for item that are rated
low. This means that it is less likely that users get items that are not relevant
to them (Fig. 5(b)).

It is also important to investigate how the improvement of this evaluation
metrics can be translated into improvement in user experience. Using MRR as a
measure would reduce the probability that an irrelevant item would be presented
to the user at the first position in the list. That implies that it would reduce
the chance that lower rated items are rated higher for all items and it would
also reduce the chance that higher rated items rated lower given that they are
relevant items. The only place where it does not fit to our initial specification
is that it does not differentiate between item and item within the irrelevant
category, therefore there is not any difference in the score if an item rated one
or and item rated three was ranked higher. Therefore parameter w4 does not
add anything extra to this measure since it only penalizes low rated (one or
two) items being predicted as uninteresting items. The same applies to NDCG,
however it is a more subtle measure so it is able to differentiate between the
order of the items in the ranked list. Therefore an NDCG score can tell us how
well relevant items are ranked, which would be an optimal solution for the user.

5 Conclusion and future work

This paper presented a simple approach to optimize the outcome of collaborative
filtering algorithm from the user point of view. This approach put an emphasis
on the risk of making an incorrect recommendation. It considered recommenda-
tion in a more flexible way by taking into account predefined taste boundaries
where users receive a list of items and are only interested in those items that
are presented to the user. Another criterion is that items that are presented
to the user are only interesting if they are within our predefined taste bound-
ary. Therefore the algorithm aims to optimize its performance on those items.
This approach can be fine-tuned further by considering how the items would be
presented to the user. For example if a user would like to have just one recom-
mendation, the algorithm is best optimized by MRR, or if the user would like to
have more items recommended it would be better to optimized it by NDCG. The
choice of parameters can be tailored to users need penalizing sectors that are
more important to predict correctly to a specific user. For example calculating
the mean of all the ratings for a particular user would suggest where the taste
boundaries lie, so it can be determined for each individual user.

As it was discussed above all the measures only care about relevant items,
but for our purposes it is also important to minimize error on disliked items
(rated one or two). So we would like to measure how the algorithm performs on
both sides of the rating scale. In both cases the middle range (items rated three)
would be considered non-relevant. These two scores could be combined taking
the high rated list more into account than the low rated one.

It is a widely discussed topic that accuracy alone is not a sufficient to measure
whether a recommender system provides an effective and satisfying experience
[2]. It is also important to note that a data is not homogeneous. In terms of
prediction we can differentiate between easy and difficult items as well as easy
and difficult users.

References

1. Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of KDD Cup and
Workshop. Volume 2007. (2007)

2. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems 22(1) (2004)
5–53

3. Mitchell, M.: An introduction to genetic algorithms. The MIT press (1998)
4. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to

weave an information tapestry. Commun. ACM 35(12) (1992) 61–70
5. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.

Cambridge University Press (2008)
6. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework

for performing collaborative filtering. In: SIGIR ’99. (1999)
7. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM

Trans. Inf. Syst. 22(1) (2004) 143–177
8. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based

collaborative filtering approaches by similarity fusion. In: SIGIR ’06: Proceedings
of the 29th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, New York, NY, ACM Press (2006) 501–508

9. Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by
personality diagnosis: A hybrid memory and model-based approach. In: UAI ’00.
(2000)

10. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the 14th Annual Conference on Un-
certainty in Artificial Intelligence (UAI-98). (1998)

11. Canny, J.: Collaborative filtering with privacy via factor analysis. In: SIGIR ’02.
(2002)

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8) (2009) 30–37

13. Weimer, M., Karatzoglou, A., Smola, A.: Adaptive collaborative filtering. In:
RecSys ’08: Proceedings of the 2008 ACM conference on Recommender systems,
New York, NY, USA, ACM (2008) 275–282

14. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1) (2004) 5–53

15. Wang, J., Roberston, S.E., de Vries, A.P., Reinders, M.J.T.: Probabilistic relevance
models for collaborative filtering. Journal of Information Retrieval (2008)

16. Liu, N.N., Yang, Q.: Eigenrank: a ranking-oriented approach to collaborative fil-
tering. In: SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, New York, NY,
USA, ACM (2008) 83–90

17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience,
Wiley, New York (2001)

18. Funk, S.: Netflix update: Try this at home.
http://sifter.org/simon/journal/20061211.html (2006)

19. Jrvelin, K., Keklinen, J.: Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst. 20(4) (2002) 422–446

20. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London, London, UK
(1979)

21. Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant
documents. In: Proceedings of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information retrieval, ACM New York, NY,
USA (2000) 41–48

22. Vassilvitskii, S., Brill, E.: Using web-graph distance for relevance feedback in web
search. In: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, ACM New York, NY, USA
(2006) 147–153

