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Abstract. Probabilistic retrieval models usually rank documents based
on a scalar quantity. However, such models lack any estimate for the
uncertainty associated with a document’s rank. Further, such models
seldom have an explicit utility (or cost) that is optimized when rank-
ing documents. To address these issues, we take a Bayesian perspective
that explicitly considers the uncertainty associated with the estimation
of the probability of relevance, and propose an asymmetric cost function
for document ranking. Our cost function has the advantage of adjusting
the risk in document retrieval via a single parameter for any probabilis-
tic retrieval model. We use the logit model to transform the document
posterior distribution with probability space [0,1] into a normal distri-
bution with variable space (−∞, +∞). We apply our risk adjustment
approach to a language modelling framework for risk adjustable docu-
ment ranking. Our experimental results show that our risk-aware model
can significantly improve the performance of language models, both with
and without background smoothing. When our method is applied to a
language model without background smoothing, it can perform as well
as the Dirichlet smoothing approach.

1 Introduction

The well-known Probability Ranking Principle (PRP) [9,12] states that by rank-
ing documents in descending order of their probability of relevance to a query,
an information retrieval (IR) system’s overall effectiveness to the query will be
maximized. Probabilistic retrieval models [1,8,11] have followed the PRP in doc-
ument ranking. These models consider a document’s probability of relevance as
a deterministic quantity, i.e., it is known with absolute certainty. In practice, we
believe that the probability of relevance is better described by a distribution that
models the uncertainty associated with any estimate of a document’s probability
of relevance. The mean of the distribution represents the true (and unknown)
probability of relevance of the document to the query.

When we compute a score for the probability of relevance of the document to
the query, this represents our best estimate of the mean. It can be considered as
a sample value drawn from the distribution centered on the true mean. The vari-
ance of the distribution represents the uncertainty associated with the estimate.
The sources of uncertainty are many, and include ambiguity in the query, spe-
cific user preferences, and deviations between the scoring function and the true
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probability of relevance. Obviously, if the variance is large, then the uncertainty
in the estimate of a document’s probability of relevance is also large.

Any single estimate of a document’s true mean (probability of relevance) is
equally likely to be less than or greater than the true mean. And the likely
magnitude of the error is a determined by the variance. If the variance is large,
then the magnitude of the error will likely be large. If the variance is small, then
the magnitude of the error will likely be small.

Let us now consider what will happen when we apply the PRP framework
if the probabilities of relevance are not deterministic. In this case, we will, of
course, select the documents with the largest estimates of probability of rele-
vance. The most relevant document is assumed to be the document with the
largest probability of relevance. However, the veracity of this assumption de-
pends on both the variance associated with the probability of relevance value,
and the probabilities of relevance and variances of the other documents.

If the top-ranked document’s probability of relevance has a large associated
variance, then there is a much greater likelihood that we have significantly under
or over estimated the probability of relevance of the document. If we underes-
timate the probability of relevance, then the user will likely be pleased with
the choice. If we overestimate the probability of relevance, then the user will
likely be displeased with our choice. If we average the user’s perceived relevance
over many queries, choosing top-ranked documents that have high variance will
result in a user experiencing a high degree of variability in the search results.
Sometimes results will appear very good and other times very poor.

In practice, the situation is more complex since some documents in the result
set will have high estimated probability of relevance and low variance and other
documents will have high estimated probability of relevance and high variance.
Rank ordering these documents is more complicated and depends on the optimiza-
tion criterion. However, given two documents with the same (or very similar) esti-
mated probability of relevance, but one with much lower variance than the other,
we should always rank the more certain document (lower variance) above the other.

The PRP framework optimizes the expected relevance of documents. However,
as we discussed, this can lead to a high degree of volatility in the quality of
our result sets, if the estimated probability of relevance of documents have high
variances/uncertainties. Of course, in the case of uncertainty we are equally likely
to be right or wrong in our estimate. If we choose a more uncertain document
over a less uncertain document, we risk returning a poor quality document, but
the risk also offers the potential that we return a document that is more relevant
than the document with less uncertainty. Thus, there is a tradeoff between risk
and reward. In this paper, we introduce an asymmetric loss1 function with an
adjustable parameter that allows us to increase or decrease our risk. This loss

1 For document ranking, the loss of under-estimating the probability of relevance may
not be equal to that of over-estimating. For example, in many retrieval scenarios,
particularly within the top-ranked positions, we argue that it might be favorable to
take a more conservative ranking decision because the cost of over-estimating the
probability of relevance might be higher than that of under-estimating.
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function is described in Section 3, after a discussion of related work in Section 2.
We apply the cost function to language models in Section 4. Section 5 presents
experimental results, which show that a risk-averse preference can significantly
out-perform a risk-taking preference. More interestingly, a risk-averse preference
is also shown to significantly outperform the traditional PRP approach. Finally,
we conclude in Section 6.

2 Related Work

To remedy the problem of unreliable probability estimation from limited data,
e.g. maximum likelihood estimation, recent studies have focused on building
more accurate language models for documents, including background smoothing
based on collection statistics [18], and a Bayesian treatment of the language
modelling framework [16]. By considering risk in retrieval, a risk minimization
framework was proposed in [19] for ranking documents based on the expected
risk of these documents. The framework has been applied to subtopic retrieval
for modelling redundancy and novelty in addition to relevance. However, these
approaches do not explicitly model the uncertainty associated with document
ranking.

In previous work, we [20] proposed a Bayesian risk-adjustable approach to
account for the uncertainty in document ranking. We derived a Bayesian rank-
ing function, which is applied to a document’s posterior distribution with the
probability space in [0,1]. Based on the work in [20], our contribution in this
paper is to present a more generic approach to account for the uncertainty, that
uses the logit model [3] to transform the document posterior distribution into a
normal distribution. We subsequently derive a cost function based on the normal
distribution.

Vinay et al. [14] have also modeled a document’s relevance score as a Gaussian
random variable. They used the normal distributions to estimate the probability
that one document should be ranked higher than another, and this is used as
the basis for calculating the expected ranks of documents. However, Vinay et al.
[14] did not consider risk in document ranking.

Webber et al. [15] considered topic variability in IR evaluations. Given a topic,
they proposed using the mean and variance of participating systems’ scores on a
metric as the standardization factors, which can be used to normalize a system’s
score on the topic.

3 A Risk-Aware Information Retrieval Model

Suppose that we have a term qt in a query q. We denote θt as the estimation
of the correspondence between qt and a document d. θt is equal to p(r|d, qt)
(r denotes relevance) in the relevance models, and equal to p(qt|θd) (θd is the
language model for d) in language models. θt follows a distribution with a range
from 0 to 1, e.g., a Beta distribution for language models.
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We propose to transform the distribution of θt into a normal distribution
mainly due to two reasons. Firstly, a normal distribution can be uniquely de-
scribed by its mean and variance. Secondly, for a normal distribution, we can
obtain an analytic solution of the LINEX loss function [13] as shown later in this
section. Furthermore, normal distributions have been widely adopted in previous
work, e.g., Vinay et al. [14] and Herbrich et al. [6] used normal distributions to
model document relevance scores, and players’ skill, respectively.

It has been shown in [3] that the distribution obtained from the logit trans-
formation of θt approximately conforms to a normal distribution.

rt = f(θt) = ln
θt

1 − θt
, (1)

where rt is the relevance of a document to the term.
The logit function in Eq. (1) follows previous work on considering both the

probability of relevance and non-relevance in document ranking [4,10]. The logit
model favours documents that are highly relevant for some terms in a multi-term
query2.

The estimated mean and variance of the normal distribution obtained from
Eq. (1) are given by

E[f(θt)] ≈ ln
θ̄t

1 − θ̄t
+

2θ̄t − 1
2θ̄2

t (1 − θ̄t)2
V ar(θt) (2)

V ar[f(θt)] ≈ V ar(θt)
θ̄2

t (1 − θ̄t)2
, (3)

where the mean and variance of θt are θ̄t and V ar(θt), respectively, E[f(θt)] is
the mean of f(θt), and V ar[f(θt)] is the variance of f(θt). Further details can
be found in Appendix A.

Risk has been studied in a variety of contexts. We propose to use an asymmet-
ric loss function, LINEX, first proposed by Varian [13] in the context of financial
investment.

It has been shown in [17] that if the distribution of a document’s relevance
score has a Gaussian form, φ(x|μ, σ2), there exists an analytic solution for the
LINEX loss function, given by

φ̃ = μ − bσ2/2, (4)

2 To illustrate this, we give an example. Suppose a query consists of two terms, docu-
ment A’s relevance scores to the two terms are both 0.3, and document B’s relevance
scores to the two terms are 0.1 and 0.9, respectively. Assuming term independence,
retrieval models give A and B the same relevance score, i.e., 0.09. However, it can be
easily derived that the logit model gives B higher relevance score than A since B is
highly relevant to one of the two terms. Our initial experiments show that the logit
model performs better than traditional retrieval models on long queries, and has
similar performance to traditional models on short queries. Systematic comparison
is out of the scope of this paper, and will form part of our future work.
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where φ̃ is our risk-adjustable ranking function. Note that μ is the estimated
mean, not the true mean, and σ2 is the variance.

Eq. (4) gives a general formula, which has the advantage of adjusting the
risk via a single parameter b, to rank documents when considering asymmetric
loss. To address the uncertainty, the final ranking is equal to the mean of the
normal distribution subtracted (or added) by a weighted variance. A positive
b produces a risk-averse (conservative) ranking where the unreliably-estimated
documents (with big variance) should be given a lower ranking score. The bigger
the parameter b is, the more conservative the ranker is. On the other hand, a
negative b gives the risk-inclined ranking.

Substituting the estimated mean in Eq. (2) and variance in Eq. (3) into
Eq. (4), we get our risk-adjustable ranking function as

φ̃t == ln
θ̄t

1 − θ̄t
+

2θ̄t − 1 − b

2θ̄2
t (1 − θ̄t)2

V ar(θt) (5)

4 Risk-Aware Language Models

We apply the proposed document ranking approach in Eq. (4) under the language
modelling framework. However, it is worth noting that the proposed method is
generally applicable to any probabilistic retrieval models.

We formally represent a document d and a query q as vectors of term counts as
q ≡ (q1, ..., qt, ..., q|V |) and d ≡ (d1, ..., dt, ..., d|V |), where qt (dt) is the number
of times the term t appears in the query (document) and |V | is the size of a
vocabulary. A language model θ for the document is θ = (θ1, ..., θt, ..., θ|V |),
where

∑
t θt = 1, and the probability space of θt is [0,1].

To estimate θt, a straightforward approach is to apply maximum likelihood
estimation. However, estimating from one single document is unreliable due to
small data samples. A common solution is to use the posterior probability as
opposed to the likelihood function. Using the conjugate prior of the multinomial
distribution (the Dirichlet) results in the following posterior probability:

p(θ|d, α) ∝ p(d|θ)p(θ|α) ∝
∏

t

(θt)dt

∏

t

(θt)αt−1 ∝
∏

t

(θt)dt+αt−1, (6)

where prior p(θ|α) ≡ (α1, . . . , α|V |) incorporates prior knowledge, e.g. collection
statistics for smoothing the estimation [16,18]. For Jelinek-Mercer (or linear)
smoothing, we set αt = λ|d|

1−λ · Ct

|C| , where λ is a parameter, Ct is the number
of occurrences of term t in the collection, |d| is the document length, and |C|
is the collection size; for Dirichlet smoothing, we set αt = μ Ct

|C| , where μ is a
parameter.

Since the posterior probability in Eq. (6) is a Dirichlet distribution, its mean
θ̄t and variance V ar(θt) are known analytically [5], and given by:

θ̄t =
ct

ĉ
(7)
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V ar(θt) =
ct(ĉ − ct)
ĉ2(ĉ + 1)

, (8)

where, for simplicity, we denote ct ≡ dt + αt and ĉ ≡ ∑
t(dt + αt).

Replacing the mean and variance of the Dirichlet distribution in Eq. (5), our
risk-aware language model becomes:

φ̃t = ln
ct

ĉ − ct
+

ĉ[2ct − (1 + b)ĉ]
2ct(ĉ − ct)(ĉ + 1)

(9)

Finally, our ranking score of a document d for query q is:

φ̃ =
|V |∑

t=1

qt × (φ̃t) =
|V |∑

t=1

qt × {ln ct

ĉ − ct
+

ĉ[2ct − (1 + b)ĉ]
2ct(ĉ − ct)(ĉ + 1)

} (10)

5 Experimental Evaluation

We studied our approach on four TREC test collections described in Table 1.
The TREC2004 robust track is evaluated with an emphasis on the overall relia-
bility of IR systems, i.e. minimizing the number of queries for which the system
performs badly. Among the TREC2004 robust track, 50 queries were identified
as “difficult”, which can help us understand whether our approach is effective
for both “ordinary” and “difficult” queries. Documents were stemmed using the
Porter stemmer, and stopping is carried out at query time. In our experiments,
only the title portion of the TREC topics were used.

Table 1. Overview of the four TREC test collections

Name Description # Docs Topics # Topics
TREC2007 enterprise track
document search task

CSIRO website crawl 370,715 1-50 minus 8, 10, 17, 33, 37,
38, 46, 47

42

TREC 2004 robust track (Ro-
bust2004)

TREC disks 4, 5 minus CR 528,155 301-450 and 601-700 minus
672

249

Robust2004 hard topics TREC disks 4, 5 minus CR 528,155 Difficult Robust2004 topics 50
TREC8 ad hoc task TREC disks 4, 5 minus CR 528,155 401-450 50

5.1 The Risk-Adjustable Parameter

We first investigate the effect of parameter b in retrieval via standard metrics,
and then study relationships between the optimal b and risk-sensitive metrics.

We first look at the effect of the risk-adjustable parameter b on mean recip-
rocal rank (MRR) and mean average precision (MAP) for four test collections.
When b changes between -10 and 40, Fig. 1 (a) shows the percentage of improve-
ment3 on MRR on four test collections for a baseline model without background
smoothing. Each data point in Fig. 1 (a), 1 (b), and 1 (c) represents the per-
centage of improvement for a given b.

3 The percentage of improvement (or gain) on MRR and other metrics is based on the
improvement of the risk adjusted model over the model where b = 0.
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(a) (b)

(c)

Fig. 1. Plots of the percentage of gain on MRR or MAP against parameter b. (a)
Percentage of gain on MRR against b for four collections. (b) Percentage of gain on
MAP against b for four collections. (c) Percentage of gain on MRR against b for TREC8
collection under Jelinek-Mercer and Dirichlet smoothing.

We can see from Fig. 1 (a) that by taking a risk-aversion approach (b > 0),
i.e., revising the relevance score downwards, the value of MRR is improved for
all four collections. Generally, all four curves share a similar structure, with the
percentage of gain on MRR quickly improving as b increases above zero, reaching
a peak value when b is between 5 and 15, and then gradually declining. A merit
of our approach is that the performance gain is robust with respect to the choice
of b, and a value of b anywhere between 0 and 40 leads to positive performance
gains on all four collections. The results indicate that risk-aversion is favorable
for all four collections. Topic difficulty does not seem to affect our approach,
since the performance gain on Robust 2004 hard topics is even more significant
than that on the whole set of Robust 2004 topics.

On the other hand, by taking a risk-loving approach (b < 0), i.e., opportunis-
tically overestimating the relevance score, the performance on MRR degrades
for all four collections.
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Table 2. Relationship between risk-sensitive metrics and the optimal b for them on
four collections

(a) 1-call, 3-call, 6-call, and 10-call at 10 and their optimal b

Optimal b
Measures Robust04 Robust04 hard TREC07 TREC8

1-call 16.2 19.1 13.4 14.8
3-call 8.8 10.2 12.3 7.7
6-call 6.6 4.7 11.4 2.3
10-call 4.2 0.2 1.0 2.2

(b) NDCG at 1, 10, 50, 100, 500, and 1000 and their optimal b

Optimal b
Measures Robust04 Robust04 hard TREC07 TREC8
NDCG-1 10.2 16.1 17.4 13.3
NDCG-10 8.4 10.0 16.3 13.2
NDCG-50 5.8 5.5 5.8 5.6
NDCG-100 5.4 5.4 5.3 5.5
NDCG-500 5.3 5.6 4.4 5.8
NDCG-1000 3.0 5.8 4.0 4.0

To confirm our findings, we tested the effect of b on the MAP for the four
collections. Fig. 1 (b) also shows that a risk-aversion approach can help improve
the performance, while performance degrades under a risk-loving approach. Fol-
lowing similar trend as MRR in Figure 1 (a), curves in Fig. 1 (b) show that the
MAPs increase quickly at the beginning, reach a peak for b between 0 and 10,
and then declines gradually. However, the performance gain on MAP is not as
significant as that for MRR. The exact reason for the variation between MRR
and MAP will be the subject of future work.

We next compare to models using background smoothing. Fig. 1 (c) shows the
performance gain on MRR for both Jelinek-Mercer and Dirichlet smoothing with
different parameters for the TREC8 collection. We can see from Fig. 1 (c) that
a risk-aversion approach is effective for all five different background smoothing
methods. However, increasing the influence of background smoothing via large
values of λ or μ reduces the effectiveness of risk adjustment. We believe this is
because background smoothing plays a similar role to our approach in relevance
score adjustment. Similar results were obtained on the other three collections.

We now investigate how our risk-aversion approach behaves under a risk-
sensitive metric called n-call at 10 [2]. Given a ranked list, n-call is one if at
least n of the top 10 documents returned for a query are relevant. Otherwise,
n-call is zero. Averaging over multiple queries yields the mean n-call. The two
extremes are 10-call, an ambitious metric of perfect precision, returning only
relevant documents, and 1-call is a conservative metric that is satisfied with
only one relevant document. Therefore, a risk-aversion approach, which can
reliably find one relevant document with small variance, is preferred for 1-call,
while a risk-loving approach, which gives small weight to the variance, is favored
for 10-call.

Table 2 (a) illustrates the relationship between the optimal values of b and n-
call on the four collections. Table 2 (a) demonstrates that when n decreases, the
optimal value of b tends to increase. This demonstrates how the risk adjustment
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Table 3. Performance comparison on six metrics. Three lines in each cell are per-
formance of a language model and our risk-aware approach, and the percentage of
gain of our approach over the language model, respectively. Positive and statistically
significant improvements are in bold, and in bold and marked with “*”, respectively.
Where stated, we tested statistical significance with t tests, one-tail critical values for
significance levels α=0.05.

(a) LM with Dirichlet smoothing (μ = 2000) vs. b = 5 for the background-independent LM

Measures Robust04 Robust04 TREC07 TREC8 Measures Robust04 Robust04 TREC07 TREC8
hard hard

MRR 0.604 0.441 0.819 0.613 NDCG-100 0.238 0.166 0.503 0.282
0.605 0.45 0.849 0.615 0.232 0.166 0.513 0.285
+0.2% +2.0% +3.7% +0.3% -2.5% 0% +2.0% +1.1%

2-call 0.743 0.58 0.98 0.82 Prec-10 0.387 0.233 0.662 0.418
0.735 0.6 0.92 0.78 0.389 0.247* 0.68 0.411
-1.1% +3.4% -6.1% -4.9% +0.5% +6.0% +2.7% -1.7%

NDCG-10 0.399 0.244 0.678 0.424 Prec-100 0.203 0.148 0.472 0.248
0.398 0.247 0.696 0.421 0.197 0.146 0.479 0.252
-0.3% +1.2% +2.7% -0.7% -2.9% -1.3% +1.5% +1.6%

(b) LM with linear smoothing (λ = 0.1) vs. b = 5 for the LM with linear smoothing (λ = 0.1)

Measures Robust04 Robust04 TREC07 TREC8 Measures Robust04 Robust04 TREC07 TREC8
hard hard

MRR 0.544 0.375 0.804 0.488 NDCG-100 0.235 0.16 0.497 0.287
0.609* 0.424 * 0.846 0.611* 0.244 0.164 0.522 0.297
+11.9% +13.1% +5.2% +25.2% +3.8% +2.5% +5.0% +3.5%

2-call 0.723 0.56 0.96 0.76 Prec-10 0.382 0.236 0.669 0.413
0.747 0.6* 0.96 0.82* 0.407* 0.236 0.693 0.447*
+3.3% +7.1% 0% +7.9% +6.5% 0% +3.6% +8.2%

NDCG-10 0.386 0.228 0.672 0.404 Prec-100 0.205 0.145 0.465 0.26
0.415* 0.235 0.702 0.449* 0.209 0.149 0.488 0.261
+7.5% +3.1% +4.5% +11.1% +2.0% +2.8% +4.9% +0.4%

parameter, b, controls how much risk we are prepared to take when ranking
documents, and the effect this has on the result set. For large values of b, i.e.,
risk-aversion (conservative ranking) we have a much greater chance that at least
one document will be relevant, but the chance that many of the documents will
be relevant is diminished. Conversely, for a risk-loving (aggressive ranking), we
have a much greater chance that many of the documents will be relevant, but at
the expense that some searches produce no relevant documents. This supports
our discussion in Section 1 in which we described how a risk-loving strategy will
lead to more volatility in our search results, but that the benefit of this volatility
is that for some searches, we will display more relevant documents.

Next we study the effect of ranking positions on b. Table 2 (b) shows the
optimal b value for the Normalized Discounted Cumulated Gain (NDCG) at
different cut-off points on the four collections. Table 2 (b) illustrates that the
optimal value of b for each collection decreases when the cut-off point increases.
Such behavior suggests that lower rank position favors more conservative ranking
(bigger b), but higher rank position favors more aggressive ranking (smaller b).

5.2 Performance

Based on the study of parameter b in Section 5.1, we fix b as 5 and evaluate the
effectiveness of our risk-aware approach on four collections. Note that b = 5 may
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not be optimal for different collections, language models, and metrics as shown in
Fig. 1 and Table 2. However, we want to show that even by applying a universal
value of b, the performance of a number of metrics on four collections can all
be significantly improved. If b is optimized for individual collections, language
models, or metrics, the performance can be improved even further. Table 3 (a)
and (b) report the results on a number of metrics including MRR, 2-call, NDCG
at 10, NDCG at 100, Precision at 10, and Precision at 100.

Table 3 (a) compares our risk-aware approach without background smoothing
with the state-of-the-art language modelling Dirichlet smoothing approach with
μ=2000, which was reported to have outstanding performance on a number
TREC collections [18]. Table 3 (a) shows that even without any background
smoothing, our risk-aware approach can perform as well as, and sometimes even
better than the Dirichlet smoothing approach. Our approach outperforms the
Dirichlet smoothing approach on MRR for all four collections, 14 out of 24
improvements are positive in Table 3 (a), and one improvement is statistically
significant. In addition, our approach has similar performance to the Dirichlet
smoothing approach on MAP for all four collections.

Table 3 (b) reports the improvements of applying our approach to the Jelinek-
Mercer (linear) smoothing approach over the linear smoothing approach where
we adopted the typical settings of λ=0.1 [18]. We can see that our approach can
significantly improve the linear smoothing approach, i.e., 9 out of 24 results are
statistically significant, 22 out of 24 improvements are positive, and the highest
improvement on MRR is over 25%, showing that risk adjustment can dramat-
ically increase the chance of returning one relevant document close to the top
of a ranked list. Our approach also outperforms the linear smoothing approach
on MAP for all four collections. Comparing Table 3 (b) with Table 3 (a), we
can see that our approach combined with the linear smoothing performs better
than our approach without background smoothing in 18 out of 24 results, and
better than the Dirichlet smoothing in 18 out of 24 results. Therefore, our risk
adjustment complements background smoothing in performance improvement.

6 Conclusion and Future Work

Uncertainty is an intrinsic part of document ranking, but has not generally
been considered in current IR models. Current models usually provide a scalar
estimate of the mean of a document’s posterior probability distribution. However,
the probability distribution is better described by both its mean and variance.

As discussed in the Introduction, the variance or uncertainty can introduce
a level of volatility in our retrieved results, i.e. some results may be very good
while others may be very poor. In the light of this, we proposed a risk-aware
information retrieval model that allows us to control this volatility. That is,
we can reduce the variability across searches, albeit at the expense of reducing
the overall relevance of documents in the retrieved set. This was experimentally
demonstrated by adjusting the risk preference parameter, b, for the risk sensitive
metrics of n-call and NDCG.
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Our approach uses an asymmetric risk function, LINEX, developed in the con-
text for financial portfolio theory [7]. The LINEX cost function has an analytic
solution for random variables with a Gaussian distribution. We used the logit
transformation to transform the posterior distribution of the probability of rele-
vance into a normal distribution. Under these conditions, a single risk preference
parameter, b, allows us to adjust the level of risk we wish to accept.

Experimental results compared our method with a variety of language mod-
elling approaches. Our experiments on four TREC collections showed that a
risk-aversion approach (b > 0) helps improve the performance on MAP and
MRR, but a risk-loving approach (b < 0) degrades performance. By adjusting b,
our approach has effectively optimized a range of risk-sensitive metrics (n-call
at 10 [2]) and metrics of different ranking positions (NDCG at n) that reflect
different levels of risk in search.

Performance is comparable with the Dirichlet smoothing approach. However,
we note this was achieved without the need for background smoothing. Our
approach can also complement the Jelinek-Mercer smoothing approach. Experi-
mental results demonstrated significant improvements when our model was used
in conjunction with Jelinek-Mercer smoothing.

Since term dependence is not fully taken into account in current unigram
language models [8], future work will consider the joint posterior probability
distribution across multiple terms. The challenge is that the variance of the
joint distribution is influenced by not only the variance of each term’s posterior
distribution but also the correlation between the terms.
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Appendix A

Since f(θt) = ln θt

1−θt
is infinitely differentiable in the neighborhood of the mean

of θt, the mean of f(θt) can be approximated as the mean of a Taylor series as:

E[f(θt)]

= E[f(θ̄t)] + E[(θt − θ̄t)f ′(θ̄t)] + E[
1
2
(θt − θ̄t)2f ′′(θ̄t)] + · · ·

= f(θ̄t) + 0 +
1
2
f ′′(θ̄t)V ar(θt) + · · ·

≈ f(θ̄t) +
f ′′(θ̄t)

2
V ar(θt) = ln

θ̄t

1 − θ̄t
+

2θ̄t − 1
2θ̄2

t (1 − θ̄t)2
V ar(θt)

(11)

f(θt) can be approximated by a first order Taylor series as f(θt) ≈ f(θ̄t) +
(θt − θ̄t)f ′(θ̄t). Therefore, the variance of f(θt) is approximated as:

V ar[f(θt)] ≈ 0 + V ar[(θt − θ̄t)f ′(θ̄t)] = [f ′(θ̄t)]2V ar(θt) =
V ar(θt)

θ̄2
t (1 − θ̄t)2

(12)
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