Language Models of Collaborative Filtering

Jun Wang

Department of Computer Science, University College London
Malet Place, London, WC1E 6BT, UK
jun_wang@acm.org

Abstract. Collaborative filtering is a major technique to make person-
alized recommendations about information items (movies, books, web-
pages etc) to individual users. In the literature, a common research ob-
jective is to predict unknown ratings of items for a user, on the condition
that the user has explicitly rated a certain amount of items. Neverthe-
less, in many practical situations, we may only have implicit evidence
of user preferences, such as “playback times of a music file” or “visiting
frequency of a web-site”. Most importantly, a more practical view of the
recommendation task is to directly generate a top-/N ranked list of items
that the user is most likely to like.

In this paper, we take these two concerns into account. Item ranking in
recommender systems is considered as a task highly related to document
ranking in text retrieval. Firstly, two practical item scoring functions
are derived by adopting the generative language modelling approach of
text retrieval. Secondly, to address the uncertainty associated with the
score estimation, we introduce a risk-averse model that penalizes the
less reliable scores. Our experiments on real data sets demonstrate that
significant performance gains have been achieved.

1 Introduction

The Digital Revolution on information storage and transmission increases the
amount of information that we deal with in our daily lives. Although we enjoy
the entertainment and convenience brought to us by such a variety of sources,
the volume of information is increasing far more quickly than our ability to digest
it. For instance, the Internet has become the most significant media source and
is growing at an exponential speed. But the user ability of obtaining useful
information in the Internet grows slowly. Tools that support for the effective
retrieval of relevant information are still primitive — most information retrieval
systems heavily rely on textual queries of users to identify their information needs
[13]. Queries constructed by keywords only are, however, not powerful enough to
express the needs of a particular user both semantically and contextually. To see
this, consider the following common search scenario: “find movies showing this
weekend in nearby cinemas that I most likely to like.” Such a user information
need requires the retrieval system at least to be able to capture user interest
(“most likely to like”). Unfortunately, most existing retrieval models and search
technologies are incapable of achieving such a realistic retrieval goal, because

they only focus on building the correspondence between textual queries and
documents and lack mechanisms to model individual users who issue queries.
Hence, it is essential to accurately model various user information needs beyond
queries. With the recent advances in Human-Computer Interfacing and sensor
technologies that make use of cameras, motion detectors, voice captures, GPSs
etc., we have witnessed a research transition from information (document) centric
computing into user centric computing; consider for example user profiling, that
attempts to broadly understand users’ various interests, intentions etc. on the
basis of the recorded human-computer interactions.

Also, large amounts of information exist in a dynamic form. To process
streams of incoming data, we need an information system that can play a more
active role during the information seeking process. Therefore, information filter-
ing systems arise [2]. In contrast to most retrieval systems that passively wait for
user queries to respond accordingly, they aim to actively filter out, refine and sys-
tematically represent the relevant information and intuitively ignore superfluous
computations on redundant data.

Combination of these two demands has created increasing interests in build-
ing a recommender system that can steer users towards their personal interests
and actively filter relevant information items on the users’ behalf. As one of
the dominant techniques, collaborative filtering has appeared in the domain of
Information Retrieval (IR) and Human-Computer Interaction (HCI) [8]. They
attempt to filter information items such as books, CDs, DVDs, movies, TV
programs, and electronics, based on a history of the user’s likes and dislikes. Ex-
amples include the Amazon’s book recommendation engine (amazon.com) and
the Netflix DVD recommendation engine (netflix.com). We believe recommender
systems will eventually support companies to realize a shift from offering mass
products and services to offering customized goods and services that efficiently
satisfy desires and needs of individual users.

In this paper, we would like to emphasize the following two crucial observa-
tions:

1. Although collaborative filtering exists in various forms in practice, its pur-
poses can be generally regarded as “item ranking” and “rating prediction”. They
are illustrated in Fig 1. The rating prediction (see Fig 1 (a) and (b)) aims at pre-
dicting an unknown rating of an item for the user, with the requirement that the
user has to explicitly rate a certain amount of items. This type of recommenda-
tion has been widely conceived and well studied in the research literature, since
the pioneering work on the MovieLens systems (http://movielens.umn.edu);
from the early work on filtering netnews [15] and the movie recommender sys-
tems ([9]) to the latest Netflix competition (http://www.netflixprize.com/), most
approaches accept by default that the rating prediction is the underlying task
for recommender systems. However, in many practical systems such as Amazon
(http://amazon.com) and Last.Fm (http://last.fm), it is sometimes more favor-
able to formulate collaborative filtering as an item ranking problem, because we
often face the situation where our ultimate task is to generate the top-N list of
the end user’s most favorite items (see Fig 1 (c¢) and (d)).

Riiedicting

Shawshank Redemption, The (1994)
grueudru:t\nn: LE s 8.2 i \If\\’slih =

Movie:

Movie Information (edit info) Forum Posts

These posts mention Shawshank
Starring: Tim Robbins, Morgan e, i (e
Freeman, Bob Gunton, William | 1gpic Author
Sadler, Clancy Brown, Gil

Bellows, James Whitmore st epougsll

Directed by: Frank Darabont tire favorite (shitdisturber)
i an-screen ...

Genre: Drama

Language: English Re: The Most

Available on: DYD, YHS Dissapainting (aymansousa)

|

Average rating: X K %KY Movie!

(4.5 stars) Re: are we not)

Rated by: 44982 users rhinos?

Links: IMDb, Rotten Tomatoes Re: are we not
Langrel)

(a) A snapshot of the MovieLens System (b) A diagram of rating prediction.

Remling

Recommended Artists (seean

The Prodigy
The Chemical Brothers
Beastie Bays

B Tom Zé

B Queens ofthe Stane Age
B Audioslave
= Bab Marley
B Fathoy Slim
¥ Tool
Daft Punk

(c) A snapshot of the Last.FM system (d) A diagram of item ranking.

Fig. 1. The Two Forms of Recommendation.

2. User profiles can be explicitly obtained by asking users to rate items that
they know. However these explicit ratings are hard to gather in a real system [5].
It is highly desirable to infer user preferences from implicit observations of user
interactions with a system. These implicit interest functions usually generate
frequency-counted profiles, like “playback times of a music file”, or “visiting
frequency of a web-site” etc. So far, academic research into frequency-counted
user profiles for collaborative filtering has been limited. A large body of research
work for collaborative filtering by default focuses on rating-based user profiles
[1,9,10,16,21].

This motivated us to conduct a formal study on probabilistic item ranking
for collaborative filtering. The remainder of the paper is organized as follows.
We first describe related work, and then establish the generative language model
for collaborative filtering. After that, we extend the model by considering the
uncertainty of the estimation. Finally, we provide an empirical evaluation of the
recommendation performance, and conclude our work.

2 Related Work

In the memory-based approaches, all rating examples are stored as-is into mem-
ory (in contrast to learning an abstraction), forming a heuristic implementation
of the “Word of Mouth” phenomenon. In the rating prediction phase, similar
users or (and) items are sorted based on the memorized ratings. Relying on the
ratings of these similar users or (and) items, a prediction of an item rating for
a test user can be generated. Examples of memory-based collaborative filter-
ing include user-based methods [3,9, 15], item-based methods [7, 16] and unified
methods [19]. The advantage of the memory-based methods over their model-
based alternatives is that less parameters have to be tuned; however, the data
sparsity problem is not handled in a principled manner.

In the model-based approaches, training examples are used to generate an
“abstraction” (model) that is able to predict the ratings for items that a test
user has not rated before. In this regard, many probabilistic models have been
proposed. For example, to consider user correlation, [14] proposed a method
called personality diagnosis (PD), treating each user as a separate cluster and
assuming a Gaussian noise applied to all ratings. It computes the probability
that a test user is of the same “personality type” as other users and, in turn, the
probability of his or her rating to a test item can be predicted. On the other hand,
to model item correlation, [3] utilizes a Bayesian Network model, in which the
conditional probabilities between items are maintained. Some researchers have
tried mixture models, explicitly assuming some hidden variables embedded in the
rating data. Examples include the aspect models [10,12], the cluster model [3]
and the latent factor model [4]. These methods require some assumptions about
the underlying data structures and the resulting ‘compact’ models solve the
data sparsity problem to a certain extent. However, the need to tune an often
significant number of parameters has prevented these methods from practical
usage. For instance, in the aspect models [10,12], an EM iteration (called ”fold-
in”) is usually required to find both the hidden user clusters or/and hidden item
clusters for any new user.

Memory-based approaches are commonly used for rating prediction, but they
can be easily extended for the purpose of item ranking. For instance, a ranking
score for a target item can be calculated by a summation over its similarity
towards other items that the target user liked (i.e. in the user preference list).
Taking this item-based view, we formally have the following basic ranking score:

Ou(l) = Z S](i/,i) (1)

/€Ly

where u and i denote the target user and item respectively, and i’ € L, denotes
any item in the preference list of user u. Sy is the similarity measure between
two items, and in practice cosine similarity and Pearson’s correlation are gen-
erally employed. To specifically target the item ranking problem, researchers in
[7] proposed an alternative, TFxIDF-like similarity measure, which is shown as

follows:

g Freq(i,1)
s1(i',7) = Freq(i') x Freq(i)® @

where Freq denotes the frequency counts of an item F'req(i’) or co-occurrence
counts for two items Freq(i’,i). o is a free parameter, taking a value between
0 and 1. On the basis of empirical observations, they also introduced two nor-
malization methods to further improve the ranking. In our previous work, we
have introduced the concept of relevance into collaborative filtering [17]. Ttems
can be then ranked by estimating the probability of the relevance between users
(preferences) and items [18,20]. In this paper, we take another angle, considering
a generative process between items and users.

3 A Statistic Language Model for Collaborative Filtering

Collaborative filtering aims at finding information items that a user is most likely
to like, given his or her preference. To achieve this, we could formally measure
how probable an item (denoted as) is to be suggested to a given user (denoted
as u): p(ilu), and then rank items accordingly:

o () = n(il) PP
o; log p(uli) + log p(i) — log p(u)
o log p(uli) + log p()

(3)

where logp(u) can be removed since it is independent of the target item ¢. The
item ranking has two parts: its likelihood towards the user preference p(u|é) and
its popularity p(i). The probability p(i) can be easily estimated by counting the
frequency from the collection.

To estimate the likelihood p(uli), we follow the argument of the language
model of information retrieval. In the language modelling approach of informa-
tion retrieval [6], one needs to assess how probable a query ¢ would be generated
from a document language model 64, and then rank each of the documents d
in the collection on the basis of the generative probability p(q|64). Similarly, in
collaborative filtering, we first choose an optimal generative model 6; for each
candidate item ¢; it captures the underlying distribution of users (or user pref-
erences) who liked the item. Probability p(u|6;) is then used to estimate how
probable a user preference (as a query) is to be generated by that model. Re-
placing it into Eq. (3) gives

p(ilu) oc; log p(ul6;) + log p(i) (4)

By doing this, we relate the language modelling of text retrieval and the col-
laborative filtering modelling at a probabilistic level. Yet, at the feature repre-
sentation level they are quite apart from each other, as their input data and pur-
poses are completely different. Consequently, applying the text retrieval model

to collaborative filtering is not trivial. The difficulty lies in the fact that in text
retrieval both queries and documents are represented by texts, which provide an
important information channel to link queries (user needs) and documents. Due
to the lack of relevance observations, the language models in text retrieval shift
their focus from directly estimating the correspondence (relevance) between user
needs (queries) and documents to estimating word statistics in the documents
and/or queries and then building up the link through these statistics. Conversely,
in collaborative filtering, in most cases, we do not have such extra information
to relate user preferences and information items. Instead, recorded in the system
are only user preferences, which are thought of as indirect observations of the
relevance between a user interest and an information item. Thus, the central
question in modelling collaborative filtering is how to relate users and items
through this usually very sparse user-item matrix, where its elements record the
frequency counts, like “playback times of a music file”, or “visiting frequency of
a web-site” etc.

The estimation of the likelihood p(u|6;) depends on the representation of the
user preference. From the data stored in the user-item matrix, if we use a set
of items i" € L, to present user u, and assume that each item 4’ in the user
preference L, is independently generated, we have

plilu) oci Y logp(i'|6;) + log p(i) (5)
'€ L,

In text retrieval, the interpretation of the likelihood function p(t|64) is relatively
straightforward as both queries and documents are represented by the same set
of features, i.e., words. Subsequently, 6, is estimated conveniently by looking at
the words occur in document d. By contrast, the interpretation of the likelihood
p(i'16;) in Eq. (5), which links the target item 7 to another item i’ in the target
user’s preference, is slightly different; it measures how probable an item ¢ would
be generated from a user preference where an item ¢ occurs. It is estimated by
considering the following two steps: 1) aggregating the user preferences in which
item i occurs, and 2) from them, calculating how frequent item ¢’ is also present -

the Maximum Likelihood Estimate (MLE) would be 6; = p(i'|6;) = CS(;)Z) where
¢(i',1) denotes the number of user preferences where both items ¢ and i’ occur,

and ¢(i) denotes the number of user preferences where item 4 occurs. The hat

on éz indicates that it is an estimated value.

Like text retrieval, due to the sparsity of the data, only considering the
co-occurrence statistics is unreliable. One can smooth the estimate from the col-
lection statistics; using the linear smoothing method [22], we have the following
ranking formula:

oui)= 3 In ()\P(i’|i)+ (1 —)\)P(z”)) 0

V€L

i) | i) i)
i;um(A—c(i) +(A)Zi,c(z"))H -

where the ranking score of a target item ¢ is essentially a combination of its
popularity (expressed by the prior probability P(i)) and its co-occurrence with
the items ¢ € L, in the preference list of the target user (expressed by the
conditional probability P(i’|7). A € [0, 1] is used as a linear smoothing parameter
to further smooth the conditional probability from a background model (P(i')).
Yo c(i’) =3, ¢(i) denotes the number of user preferences in the collection.
Alternatively, one can apply the Bayes-smoothing technique [22] to smooth
the estimation. More formally, we have:
g ./
b, = p(i'|6;) = M
(i) + p

where p is the smoothing parameter and p(i') = Zc»/(icl()i’)' Replacing Eq. (7) into

(7)

Eq. (5) results in the following Bayes-smoothing-based ranking formula:

(i i . C(i/)_l .
ouli) = Z In ()‘f'./i Zi'c(l))—i—ln c(z). ()
(i) + 1)

In summary, we have derived two ranking formulae in Eq. (6) and Eq. (8),
respectively, by following the school of thinking in the language modelling ap-
proaches of text retrieval. The two scoring functions are item-based as the scor-
ing relies on the co-occurrence statistics between items. It is worth noticing
that a parallel user-based method can similarly be derived by considering the
co-occurrence between users.

4 Risk-aware Ranking for Collaborative Filtering

As described, the classic language modelling approaches, thus including Eq. (6)
and Eq. (8), consider the model parameters as unknown fixed constants, and
apply point estimate such as the MLE, the linear-smoothing, or the Bayes-
smoothing technique. The main drawback of this approach is that exact measures
of the uncertainty associated with the estimation are not handled in a princi-
pled manner. As a result, unreliably-estimated items may be ranked highly in
the ranked list, reducing the retrieval performance of the top-N returned items.

To model the uncertainty of the estimate, we follow the Bayesian viewpoint,
considering parameter 0; itself has a probability distribution associated with
it. We propose to use variance Var(6;) to summarize the uncertainty, inspired
by the risk-aware language models introduced in [23]. A large variance indicates
that the estimate is unreliable and its rank score should be penalized accordingly.
Based on this, we have the following formula:

0; = Mean(0;) — gVar(Gi) 9)

where Mean(0;) is the mean of 6; while Var(6;) denotes its variance. b > 1, and
it is a parameter that adjusts the risk preference and can be tuned from data.

8

Table 1. Comparison with the other approaches. Precision is reported in the Last.FM
data set. The best results are in bold type. A Wilcoxon signed-rank test is conducted
and the significant ones (P-value < 0.05) over SuggestLib are marked as *.

Top-1 | Top-3 |Top-10
LM-LS 0.572 | 0.507 | 0.416
LM-BS 0.585%|0.535%|0.456*
SuggestLib| 0.547 | 0.509 | 0.421
(a) User Profile Length 5
Top-1 | Top-3 |Top-10
LM-LS 0.673 | 0.617 |0.517*
LM-BS 0.674*%|0.620*%|0.517*
SuggestLib| 0.664 | 0.604 | 0.503
(b) User Profile Length 10
Top-1 | Top-3 |Top-10
LM-LS 0.669 | 0.645 | 0.555
LM-BS 0.761*%|0.684% 0.568*
SuggestLib| 0.736 | 0.665 | 0.553
(c) User Profile Length 15

Here the user preference data is assumed to follow Multinomial distribution,
and the conjugate prior is Dirichlet distribution. Thus, the mean and variance
are obtained as follows:

Mean(6;) = M,Var(oi) B C(i'ai)(C(i) - C(i’,i))
o(i)? (c(i) + 1))

o) (10)

5 Experiments

5.1 Data Sets and Experiment Protocols

The standard data sets used in the evaluation of collaborative filtering algorithms
(i.e. MovieLens and Netflix) are rating-based, which are not suitable for testing
our method using implicit, frequency-counted user profiles. This paper adopts
two implicit user profile data sets.

The first data set comes from a well known social music web site: Last.FM.
It was collected from the play-lists of the users in the community by using a
plug-in in the users’ media players (for instance, Winamp, iTunes, XMMS etc).
Plug-ins send the title (song name and artist name) of every song users play to
the Last.FM server, which updates the user’s musical profile with the new song.
For our experiments, the triple {userID, artistID, Freq} is used.

The second data set was collected from one well-known collaborative tagging
Web site, del.icio.us. Unlike other studies focusing on directly recommending
contents (Web sites), here we intend to find relevance tags on the basis of user
profiles as this is a crucial step in such systems. For instance, the tag suggestion is
needed in helping users assigning tags to new contents, and it is also useful when

Table 2. Comparison with the other approaches. Precision is reported in the
Del.icio.us data set. The best results are in bold type. A Wilcoxon signed-rank test

is conducted and the significant ones (P-value < 0.05) over SuggestLib are marked as
*

Top-1 | Top-3 |Top-10
LM-LS 0.306*|0.253*|0.208*
LM-BS 0.253 | 0.227 | 0.173
SuggestLib| 0.168 | 0.141 | 0.107
(a) User Profile Length 5
Top-1 | Top-3 |Top-10
LM-LS 0.325*%|0.256*|0.207*
LM-BS 0.248 | 0.226 | 0.175
SuggestLib| 0.224 | 0.199 | 0.150
(b) User Profile Length 10
Top-1 | Top-3 |Top-10
LM-LS 0.322%|0.261*/0.211*
LM-BS 0.256 | 0.231 | 0.177
SuggestLib| 0.271 | 0.230 | 0.171
(c) User Profile Length 15

constructing a personalized “tag cloud” for the purpose of exploratory search .
The Web site has been crawled between May and October 2006. We collected
a number of the most popular tags, found which users were using these tags,
and then downloaded the whole profiles of these users. We extracted the triples
{userID, taglD, Freq} from each of the user profiles. User IDs are randomly
generated to keep the users anonymous.

For 5-fold cross-validation, we randomly divided this data set into a training
set (80% of the users) and a test set (20% of the users). Results are obtains by
averaging 5 different runs (sampling of training/test set). The training set was
used to estimate the model. The test set was used for evaluating the accuracy
of the recommendations on the new users, whose user profiles are not in the
training set. For each test user, 5, 10, or 15 items of a test user were put into the
user profile list. The remaining items were used to test the recommendations.
Our experiments here consider the recommendation precision, which measures
the proportion of recommended items that are ground truth items.

5.2 Performance

The Language Models We choose a state-of-the-art item ranking algorithm [7]
discussed in Section 2 as our strong baseline. We adopt their implementation, the
top-N suggest recommendation library !, which is denoted as SuggestLib. The
proposed language modelling approach of collaborative filtering in Eq. (6) is de-
noted as LM-LS while its variant using the Bayes’ smoothing given in Eq. (8) is de-
noted as LM-BS. The optimal parameters are tuned by applying cross-validation.

! http://glaros.dtc.umn.edu/gkhome/suggest /overview

10

0.68

—©— Model1

0.66 —8B— Model2 | q
—— Model3

0.64

0.62

06

0.58

Precision

0.56

0.54

0.5 . . .
1 5 10
Number of predicting items under 10 observed items for all users

Fig. 2. Recommendation Precision in Last.FM data set. Model 1: the linear smooth-
ing method; Model 2: risk-aware linear smoothing method; and Model 3: risk-aware
Maximum Likelihood Estimate method.

The results are shown in Table 1 and 2. From the tables, we can see that our

ranking methods, derived from the language models of text retrieval, performs
consistently better than the heuristic ranking method, SuggestLib, over all the
configurations. A Wilcoxon signed-rank test [11] is done to verify the significance.
We believe that the effectiveness of our methods is due to the fact that the models
naturally integrate frequency counts and probability estimation into the ranking
formula. For the two smoothing methods, we have obtained a mixed result - in the
Last.FM data, the Bayes smoothing method outperforms the linear smoothing,
while in the del.icio.us data, the linear smoothing is better than the Bayes
smoothing method.

The Risk-aware Ranking We continue our experiment with the risk-aware
model given in Eq. (9). As we intend to investigate whether the added variance
bit could improve the recommendation accuracy, the linear smoothing approach
(denoted as Model 1) is now regarded as a baseline, Two different risk-aware
models are evaluated: Model 2, using the linear smoothing to estimate the mean
(Mean(0;)), and Model 3, using the maximum likelihood to estimate the mean
(Mean(6;)). The results, under the three configurations top-1, top-10, and top-
15, are shown in Fig. 2 and Table 3. We can see that Model 2 and Model 3
significantly outperform Model 1 in all configurations. Model 2 is slightly better
than Model 3, implying that, the variance plays a more critical role than the
smoothing from the collection. And, even without smoothing from the collec-
tion, the risk-model that considers the variance only provides a robust scoring
function.

6 Conclusions

In this paper, we have presented a novel statistic model for item ranking in col-
laborative filtering. It is inspired by the widely-adopted language models of text

11

Table 3. Recommendation Precision in Last.FM. Model 1: the linear smoothing
method; Model 2: risk-aware linear smoothing model ; and Model 3: risk-aware Max-
imum Likelihood Estimate model. A Wilcoxon signed-rank test is conducted and the
significant ones (P-value < 0.05) over Model 1 the linear smoothing model are marked
as *.

Observed
Method | Parameter | Top-10 | Top-5 | Top-1
items
@® A=0.9949 0.4696 | 0.5081 | 0.5988
A=0.989
5 ® 0.4888* | 0.5281* | 0.6279*
b=22.9
® b =130.8 0.4786 | 0.5243 | 0.5925
A=0.99718 | 0.5131 | 0.5530 | 0.6029
A=0.9969
10 @] 0.5378* | 0.5938* | 0.6694*
b=16
b =170.8 0.5356 | 0.5925 | 0.6590
A=0.998363 | 0.5632 | 0.6146 | 0.6757
A=0.99712
15 ® 0.5969* | 0.6674* | 0.7526*
b=17.01
® b =190.8 0.5784 | 0.6482 | 0.7339

retrieval. To consider the uncertainty of the parameter estimation and reflect it
during the ranking, we then presented a risk-averse ranking model by consider-
ing the variance of the parameters. The experiments on two real data sets have
shown that the significance of our approaches.

One of the assumptions in our model is that the items in users’ profiles are
independent of each other. This is unrealistic in practice. In the future, we intend
to explore this dependence. It is also of great interest to study the method of
combing content descriptions under the proposed framework.

7 Acknowledgement

The experiment of the risk-aware model was conducted by Mofei Han when he
was working on his MSc thesis under the supervision of the author.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734-749, 2005.

2. N. J. Belkin and W. B. Croft. Information filtering and information retrieval: two
sides of the same coin? Commun. ACM, 35(12):29-38, 1992.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proceedings of the 14th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98), 1998.

J. Canny. Collaborative filtering with privacy via factor analysis. In SIGIR 02,
2002.

M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. In IUI
01, 2001.

B. W. Croft and J. Lafferty. Language Modeling for Information Retrieval.
Springer, 2003.

M. Deshpande and G. Karypis. Item-based top-N recommendation algorithms.
ACM Trans. Inf. Syst., 22(1):143-177, 2004.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to
weave an information tapestry. Commun. ACM, 35(12):61-70, 1992.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic frame-
work for performing collaborative filtering. In SIGIR ’99, 1999.

T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Info.
Syst., Vol 22(1):89-115, 2004.

D. Hull. Using statistical testing in the evaluation of retrieval experiments. In
SIGIR 93, 1993.

R. Jin, L. Si, and C. Zhai. A study of mixture models for collaborative filtering.
Inf. Retr., 9(3):357-382, 2006.

C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering
by personality diagnosis: A hybrid memory and model-based approach. In UAI
’00, 2000.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an
open architecture for collaborative filtering of netnews. In CSCW ’94, 1994.

B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering
recommendation algorithms. In WWW 01, 2001.

J. Wang. Relevance Models for Collaborative Filtering. Delft University of Tech-
nology, ISBN 978-90-9022932-4, 2008.
http://web4.cs.ucl.ac.uk/staff/jun.wang/papers/phdthesis.pdf.

J. Wang, A. P. de Vries, and M. J. Reinders. A user-item relevance model for
log-based collaborative filtering. In Proc. of ECIR06, London, UK, pages 37—48,
Berlin, Germany, 2006. Springer Berlin / Heidelberg.

J. Wang, A. P. de Vries, and M. J. Reinders. Unified relevance models for rating
prediction in collaborative filtering. ACM Trans. on Information System (TOIS),
2008.

J. Wang, S. E. Roberston, A. P. de Vries, and M. J. T. Reinders. Probabilistic
relevance models for collaborative filtering. Journal of Information Retrieval, 2008.
G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen. Scalable
collaborative filtering using cluster-based smoothing. In SIGIR ’05, 2005.

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to ad hoc information retrieval. In SIGIR ’01, 2001.

J. Zhu, J. Wang, M. Taylor, and I. Cox. Risky business: Modeling and exploiting
uncertainty in information retrieval. In SIGIR09, 2009.

