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1. INTRODUCTION

Collaborative filtering (CF) algorithms use a collection of user profiles to identify
interesting “information” (items) for these users. These profiles result from asking
users explicitly to rate items (rating-based CF), or, they are inferred from log-
archives (log-based CF) [Hofmann 2004; Wang et al. 2006a]. The profiles can
be thought of as the evidence (observation) of relevance between users and items.
Thus, the task of collaborative filtering is to predict the unknown relevance between
the test user and the test item [Wang et al. 2006a].

Relevance is also a very important concept in the text retrieval domain and has
been heavily studied (e.g., [van Rijsbergen 1979; Lavrenko 2004]). Many probabilis-
tic approaches have been developed to model the estimation of relevance, ranging
from the traditional probabilistic models [Robertson and SparckJones 1976] to the
latest developments on language models of information retrieval [Lavrenko and
Croft 2001; Lafferty and Zhai 2003].

Despite the concept of relevance existing in both collaborative filtering and text
retrieval, collaborative filtering has often been formulated as a self-contained prob-
lem, apart from the classic information retrieval problem (i.e. ad hoc text retrieval).
Research started with memory-based approaches to collaborative filtering, that can
be divided in user-based approaches like [Resnick et al. 1994; Breese et al. 1998;
Herlocker et al. 1999; Jin et al. 2004] and item-based approaches like [Sarwar et al.
2001; Deshpande and Karypis 2004]. Given an unknown test rating (of a test item
by a test user) to be estimated, memory-based collaborative filtering first measures
similarities between the test user and all other users (user-based), or, between the
test item and all other items (item-based). Then, the unknown rating is predicted
by averaging the (weighted) known ratings of the test item by the similar users
(user-based), or the (weighted) known ratings of the similar items by the test user
(item-based).

The two approaches share the same drawback as the document-oriented and
query-oriented views in information retrieval (IR) [Robertson 2003]: neither presents
a complete view on the problem. In both the user-based and item-based approaches,
only partial information from the data embedded in the user-item matrix is em-
ployed to predict unknown ratings, i.e. using either correlation between user data
or correlation between item data. Because of the sparsity of user profile data, how-
ever, many ratings will not be available. Therefore, it is desirable to unify the
ratings from both similar users and similar items, to reduce the dependency on
data that is often missing. Even ratings made by other but similar users on other
but similar items can be used to make predictions [Wang et al. 2006b]. Not using
such ratings causes the data sparsity problem of memory-based approaches to col-
laborative filtering: for many users and items, no reliable recommendation can be
made because of a lack of similar ratings.

Thus it is of great interest to see how we can follow the school of thinking in
IR relevance models to solve the collaborative filtering problem, once we draw an
analogy between the concept of user and items in collaborative filtering and query
and documents in IR. This paper applies IR relevance models at a conceptual
level, setting up a unified probabilistic relevance framework to exploit more of the
data available in the user-item matrix. We establish the models of relevance by
ACM Journal Name, Vol. V, No. N, Month 20YY.
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considering user ratings of items as observations of the relevance between users
and items. Different from any other IR relevance models, the densities of the our
relevance models are estimated by applying the Parzen-window approach [Duda
et al. 2001]. This approach reduces the data sparsity encountered when estimating
the densities, providing a data-driven solution, i.e., without specifying the model
structure a priori. We then extend the Parzen-window density estimation into a
projected space, to provide a generalised distance measure which naturally includes
most of commonly used similarity measures into our framework.

We derive three types of models from the framework, namely the user-based rel-
evance model, the item-based relevance model and the unified relevance model. The
former two models represent a partial view of the problem. In the unified relevance
model, each individual rating in the user-item matrix may influence the prediction
for the unknown test rating (of a test item from a test user). The overall prediction
is made by averaging the individual ratings weighted by their contribution. The
weighting is controlled by three factors: the shape of the Parzen window, the two
(user and item) bandwidth parameters, and the distance metric to the test rat-
ing. The more a rating contributes towards the test rating, the higher the weight
assigned to that rating to make the prediction. Under the framework, the item-
based and user-based approaches are two special cases and they are systematically
combined. By doing this, our approach allows us to take advantage of user similar-
ity and item similarity embedded in the user-item matrix to improve probability
estimation and counter the problem of data sparsity.

The remainder of the paper is organized as follows. We first summarise related
work, introduce notation, and present additional background information for the
three main memory-based approaches, i.e., user-based, item-based and the com-
bined collaborative filtering approaches. We then introduce our unified relevance
prediction models. We provide an empirical evaluation of the relationship between
data sparsity and the different models resulting from our framework, and finally
conclude our work.

2. RELATED WORK

2.1 Collaborative Filtering

Collaborative filtering approaches are often classified as memory-based or model-
based. In the memory-based approach, all rating examples are stored as-is into
memory (in contrast to learning an abstraction). In the prediction phase, similar
users or items are sorted based on the memorized ratings. Based on the ratings
of these similar users or items, a recommendation for the test user can be gener-
ated. Different views of the correlations embedded in the user-item matrix lead
to two different types of approaches: user-based methods (looking at user correla-
tion) [Resnick et al. 1994; Breese et al. 1998; Herlocker et al. 1999; Jin et al. 2004]
and item-based methods (looking at item correlation) [Sarwar et al. 2001; Desh-
pande and Karypis 2004]. These approaches form a heuristic implementation of
the “Word of Mouth” phenomenon and are widely used in practice, e.g., [Herlocker
et al. 1999; Linden et al. 2003]. The advantage of the memory-based methods over
their model-based alternatives is that less parameters have to be tuned; however,
the data sparsity problem is not handled in a principled manner. Lately, researchers
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have introduced dimensionality reduction techniques to address the data sparsity
[Sarwar et al. 2000; Goldberg et al. 2001; Rennie and Srebro 2005]. But, as pointed
out in [Huang et al. 2004; Xue et al. 2005], some useful information may be dis-
carded during the reduction. [Xue et al. 2005] clusters the user data and applies
intra-cluster smoothing to reduce sparsity. [Hu and Lu 2006] extends this idea, by
further adding a linear interpolation between the user-based and item-based ap-
proaches within the user cluster. The similarity fusion method presented in [Wang
et al. 2006b] can be also regarded as an effort along this direction, which implicitly
clusters users and items simultaneously. Different from [Hu and Lu 2006], [Wang
et al. 2006b] takes a rather formal view on the fusion problem and proposes a multi-
layer linear smoothing model, showing that additional ratings from similar users
towards similar items are also valuable to counter the data sparsity.

In the model-based approach, training examples are used to generate a model
that is able to predict the ratings for items that a test user has not rated before.
In this regard, many probabilistic models have been proposed. For example, to
consider user correlation, [Pennock et al. 2000] proposed a method called personality
diagnosis (PD), treating each user as a separate cluster and assuming a Gaussian
noise applied to all ratings. It computes the probability that a test user is of
the same “personality type” as other users and, in turn, the probability of his or
her rating to a test item can be predicted. On the other hand, to model item
correlation, [Breese et al. 1998] utilizes a Bayesian Network model, in which the
conditional probabilities between items are maintained. Some researchers have tried
mixture models, explicitly assuming some hidden variables embedded in the rating
data. Examples include the aspect model [Hofmann 2004; Si and Jin 2003], the
cluster model [Breese et al. 1998] and the latent factor model [Canny 2002]. These
methods require some assumptions about the underlying data structures and the
resulting ‘compact’ models solve the data sparsity problem to a certain extent.
However, the need to tune an often significant number of parameters has prevented
these methods from practical usage.

In contrast, the work presented in this paper takes a data-driven approach with-
out assuming any data structure a priori, thus getting rid of the significant number
of model parameters. It extends the ideas in [Wang et al. 2006b] by further ex-
ploring the usage of the probabilistic model of text retrieval. The Parzen-window
method is adopted for probability estimation, causing a natural integration of user
and item correlations. As a result, the proposed prediction framework is of a gen-
eral natural. We shall see how some of the previously proposed methods, such as
the PD algorithm [Pennock et al. 2000], the Similarity Fusion method [Wang et al.
2006b] and the linear combination method [Hu and Lu 2006], are equivalent to one
of the simplified instantiations of our framework (Table III).

2.2 Probabilistic Models for Information Retrieval

Probabilistic (relevance) models for information (text) retrieval have been proposed
and tested over decades. Rather than giving a comprehensive overview, here we
mainly review the models that are related to the problem of collaborative filtering.

The two different document-oriented and query-oriented views on how to assign
a probability of relevance of a document to a user need result in two different
types of practical models [Robertson et al. 1982; Bodoff and Robertson 2004]. The
ACM Journal Name, Vol. V, No. N, Month 20YY.
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RSJ probabilistic model of information retrieval [Robertson and SparckJones 1976]
takes the query-oriented view, and estimates the log ratio of relevance versus non-
relevance given the document and the query. To instantiate this model, there is
no need to directly represent the documents (e.g., using terms) – the only task is
to represent queries in such a way that they will match well to those documents
that the user will judge as relevant. The document-oriented view has been first
proposed by Maron and Kuhn in [Maron and Kuhns 1960]. Here, documents are
indexed by terms carefully chosen such that they will match well to the query to
fulfill the user needs. Recently, the language modelling approach to information re-
trieval (e.g., [Ponte and Croft 1998]) builds upon the same document-oriented view.
In the basic language models, a unigram model is estimated for each document and
the likelihood of the document model with respect to the query is computed. Many
variations and extensions have been proposed (e.g., [Hiemstra 2001; Lafferty and
Zhai 2001; Zhai and Lafferty 2001]). The concept of relevance has been integrated
into the language modelling approach to information retrieval by [Lavrenko and
Croft 2001]. Several recent publications have further investigated the relationship
between the RSJ models and the language modelling approach to information re-
trieval [Lafferty and Zhai 2003; Robertson 2005].

The two views rely on fixing one variable and optimizing the other variable, i.e.,
fixing the query and tuning the document or the other way around [Robertson 2003].
[Robertson 2003] has pointed out the drawback that neither view represents the
problem of information retrieval completely. It seems intuitively desirable to treat
both the query and the document as variables, and to optimize both. [Robertson
et al. 1982] has illustrated this unified view to text retrieval using Fig. 1 (a). The
authors identified three types of information that can be used for retrieval systems:
1) data describing the relations between other queries in the same class (or in other
words similar queries) and this particular document, i.e. marginal information
about the column; 2) data describing the relations between this particular query
and other documents (similar documents), i.e. marginal information about the
row; and 3) data describing the relations between other (similar) queries and other
(similar) documents, i.e. the joint information about columns and rows.

The first literature proposing a unified model of information retrieval has been
of a theoretical nature only [Robertson et al. 1982; Robertson 2003]. A first im-
plementation of these ideas is found in [Bodoff 1999], where learning methods have
been introduced into the vector space model to incorporate relevance information.
Hereto, Multi-Dimensional Scaling (MDS) has been adopted to re-position the doc-
ument vectors and the query vectors such that document representations are moved
closer to queries when their relevance is observed, and away from queries when
their non-relevance is observed. Bodoff and Robertson [2004] modeled the joint
distribution of the observed documents, queries and relevances by assuming three
underlying stochastic processes in the data generations: 1) the observed documents
are generated by the true hidden document models, (2) the observed queries are
generated by the true hidden query models, and (3) the relevances are generated
by both the document and query models. A Maximum Likelihood (ML) method
was applied to estimates the model parameters.

Going back to the collaborative filtering problem, Fig 1 (b) illustrates an analogy
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b)

Fig. 1. Illustration of the joint data in text retrieval and collaborative filtering. (a) Query-
document joint data in text retrieval (reproduced from [Robertson et al. 1982]). (b) User-item
joint data in collaborative filtering.

between the concepts of users and items in CF and the concepts of documents and
queries in information retrieval. Like Robertson et al. [1982] did for documents
and queries in information retrieval, [Wang et al. 2006b] identified three types of
information embedded in the user-item matrix (see also Section 3.3): 1) ratings of
the same item by other users; 2) ratings of different items made by the same user,
and, 3) ratings of other (but similar) items made by other (but similar) users. This
paper explores deeper the usage of these three types of information in a unified
probabilistic framework.

3. BACKGROUND

This section introduces briefly the user- and item-based approaches to collaborative
filtering [Herlocker et al. 1999; Sarwar et al. 2001]. For A users and B items, the
user profiles are represented in a A × B user-item matrix X (Fig. 2(a)). Each
element xa,b = r indicates that user a rated item b by r, where r ∈ {1, ..., |R|} and
|R| is the number of rating scales. if the item has been rated, and elements xa,b = ∅
indicate that the rating is unknown.

The user-item matrix can be decomposed into row vectors,

X = [u1, . . . ,uA]T

ua = [xa,1, . . . , xa,B ]T , a = 1, . . . , A

corresponding to the A user profiles ua. Each row vector represents the item ratings
of a particular user. As discussed below, this decomposition leads to user-based
collaborative filtering.

Alternatively, the matrix can be represented by its column vectors,

X = [i1, ..., iB ]

ib = [x1,b, ..., xA,b]T , b = 1, ..., B

corresponding to the ratings by all A users for a specific item b. As will be shown,
this representation results in item-based recommendation algorithms.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b)

(c) (d)

Fig. 2. (a) The user-item matrix (b) User-based approaches (c) Item-based ap-
proaches (d) Combining user-based and item-based approaches.

3.1 User-based Collaborative Filtering

User-based collaborative filtering predicts a test user’s interest on a test item based
on the ratings of this test item from other similar users. Ratings by more similar
users contribute more to predicting the test item rating. The set of similar users can
be identified by employing a threshold on the similarity measure or just selecting
the top-N most similar users. In the top-N case, a set of top-N users similar to
test user a, Tu(ua), can be generated by ranking users in order of their similarities:

Tu(ua) = {uc|rank su(ua,uc) < N}, (1)

where su(ua,uc) is the similarity between users a and c. Cosine similarity and
Pearson Correlation are popular similarity measures in collaborative filtering, see
e.g. [Breese et al. 1998]. The similarity could also be learnt from training data
[Cheung and Tian 2004; Jin et al. 2004]. Notice that the formulation in Eq. 1
assumes that xc,b = ∅ =⇒ su(ua,uc) = 0, i.e., the users that did not rate the test
item b are not part of the top-N similar users Tu(ua).

Consequently, the predicted rating x̂a,b of test item b by test user a is computed
ACM Journal Name, Vol. V, No. N, Month 20YY.
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as

x̂a,b = xa +

∑

uc∈Tu(ua)

su(ua,uc) · (xc,b − xc)

∑

uc∈Tu(ua)

su(ua,uc)
, (2)

where xa and xc denote the average rating on all the rated items, made by users a
and c, respectively.

Existing methods differ in their treatment of unknown ratings from similar users
(i.e. the value xc,b = ∅). Missing ratings can be replaced by a 0 score, which lowers
the prediction, or the average rating of that similar user could be used (mean
imputation) [Breese et al. 1998; Herlocker et al. 1999]. Alternatively, [Xue et al.
2005] replaces missing ratings by an interpolation of the user’s average rating and
the average rating of his or her cluster (k-NN imputation).

Fig. 2(b) illustrates the user-based approach. In the figure, each user profile (row
vector) is sorted and re-indexed by its similarity towards the test user’s profile.
Notice in Eq. 2 and in Fig. 2(b) user-based collaborative filtering takes only a small
proportion of the user-item matrix into consideration for recommendation, i.e. only
the known test item ratings by similar users are used. We refer to these ratings as
the set of ‘similar user ratings’ (the blocks with upward diagonal pattern in Fig.
2(b)): SURa,b = {xc,b|uc ∈ Tu(ua)}. For readability, we drop the subscript a, b of
SURa,b in the remainder of the paper.

3.2 Item-based Collaborative Filtering

Item-based approaches such as [Deshpande and Karypis 2004; Linden et al. 2003;
Sarwar et al. 2001] apply the same idea using the similarity between items instead
of users. The unknown rating of a test item by a test user is predicted by averaging
the ratings of other similar items rated by this test user. Ratings from more similar
items are weighted stronger. Formally,

x̂a,b =

∑

id∈Ti(ib)
si(ib, id) · xa,d

∑

id∈Ti(ib)
si(ib, id)

, (3)

where item similarity si(ib, id) can be approximated by the cosine measure or Pear-
son correlation [Linden et al. 2003; Sarwar et al. 2001]. To remove the difference in
rating scale between users when computing the similarity, [Sarwar et al. 2001] has
proposed to adjust the cosine similarity by subtracting the user’s average rating
from each co-rated pair beforehand. Like the top-N similar users, a set of top-N
similar items towards test item b, denoted as Ti(ib), can be generated according to:

Ti(ib) = {id|rank si(ib, id) < N} (4)

Fig. 2(c) illustrates the item-based approaches. Each item (column vector) is sorted
and re-indexed according to its similarity towards the test item in the user-item
matrix. Eq. 3 shows that only the known similar item ratings by the test user are
taken into account for the prediction. We refer to the ratings used in the item-based
ACM Journal Name, Vol. V, No. N, Month 20YY.
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approach as the set of ‘similar item ratings’ (the blocks with downward diagonal
pattern in Fig. 2(c)): SIRa,b = {xa,d|id ∈ Ti(ib)}. Again, for simplicity, we drop
the subscript a, b of SIRa,b in the remainder of the paper.

3.3 Combining User-based and Item-based Approaches

When the ratings from these two sources are quite often not available, predictions
are often made by averaging ratings from ‘not-so-similar’ users or items. Therefore,
relying on SUR or SIR ratings only is undesirable.

In order to improve the accuracy of prediction, [Wang et al. 2006b] proposed to
combine both user-based and item-based approaches. Additionally, we pointed out
that the user-item matrix contains useful data beyond the previously used SUR
and SIR ratings. As illustrated in Fig. 2 (d), the similar item ratings made by
similar users may provide an extra source for prediction. They are obtained by
sorting and re-indexing rows and columns according to their similarities towards
the test user and the test item respectively. In the remainder, this part of the
matrix is referred to as ‘similar user item ratings’ (the grid blocks in Fig. 2(d)):
SUIRa,b = {xc,d|uc ∈ Tu(ua), id ∈ Ti(ib), c 6= a, d 6= b}.

The subscript a, b of SUIRa,b is dropped. Their similarity towards the target
rating xa,b, denoted as sui(xa,b, xc,d), can be calculated as follows:

sui(xa,b, xc,d) =
1√

(1/su(ua,uc))2 + (1/si(ib, id))2

(5)

where a Euclidean dis-similarity space is adopted such that the resulting combined
similarity is lower than either of them. Now we are ready to combine these three
types of ratings in a single collaborative filtering method. We treat each element
of the user-item matrix as a separate predictor. Its confidence for the prediction is
then estimated based upon its similarity towards the test rating. We then predict
the test rating by averaging the individual predictions weighted by their confidence.
Formally,

x̂a,b =
∑
xc,d

pa,b(xc,d)W
c,d
a,b , (6)

where

pa,b(xc,d) = xc,d − (xc − xa)− (xd − xb) (7)

can be treated as a normalization function when predicting rating xa,b from rating
xc,d. xa and xc are the average ratings by user a and c, and xb and xd are the
average ratings of item b and d. For each test rating xa,b, W c,d

a,b acts as a unified

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · Jun Wang et al.

weight matrix to combine the predictors from the three different sources:

W c,d
a,b =





su(ua,uc)P
xc,d∈SUR

su(ua,uc)
λ(1− δ) xc,d ∈ SUR

si(ib,id)P
xc,d∈SIR

si(ib,id) (1− λ)(1− δ) xc,d ∈ SIR

sui(xa,b,xc,d)P
xc,d∈SUIR

sui(xa,b,xc,d)δ xc,d ∈ SUIR

0 otherwise

, (8)

where λ ∈ [0, 1] and δ ∈ [0, 1] control the importance of the different rating sources.
This combination of ratings can be considered as two subsequent steps of linear in-
terpolation. First, predictions from SUR ratings are interpolated with SIR ratings,
controlled by λ. Next, the intermediate prediction is interpolated with predic-
tions from the SUIR data, controlled by δ. The second interpolation corresponds
to smoothing the SIR and SUR predictions with SUIR ratings as a background
model.

A bigger λ emphasizes user correlations, while smaller λ emphasizes item corre-
lations. When λ equals one, the algorithm corresponds to a user-based approach,
while λ equal to zero results in an item-based approach.

Tuning parameter δ controls the impact of smoothing from the background model
(i.e. SUIR). When δ approaches zero, the fusion framework becomes the mere
combination of user-based and item-based approaches without smoothing from the
background model.

4. PROBABILISTIC RELEVANCE PREDICTION MODELS

This section re-formulates the collaborative filtering problem in a probabilistic
framework. Motivated by the probabilistic relevance models proposed in text re-
trieval domain [Robertson and SparckJones 1976; Lafferty and Zhai 2003; Ponte
and Croft 1998], we introduce the concept of “relevance” into collaborative fil-
tering. By analogy with the relevance models in text retrieval, the collaborative
filtering problem can be solved by answering the following basic question: what is
the probability that this item is relevant to this user, given his or her profile?

To answer this question, firstly, let us define a sample space of relevance: ΦR and
let R be a random variable over the relevance space ΦR. Unlike the commonly used
binary relevance in text retrieval, in our case here, the relevance is multiple-valued.
Thus, let us define that ΦR has multiple values, which are observed from the rating
data: ΦR = {1, ..., |R|}, where |R| is the number of rating scales. From now on,
each known element (xa,b 6= ∅) in the user-item matrix is treated as an observation
of this multiple-scaled relevance. Secondly, let U be a discrete random variable over
the sample space of user id ’s: ΦU = {u1, ..., uA} and let I be a random variable
over the sample space of item id ’s: ΦI = {i1, ..., iB}, where A is the number of
users and B the number of items in the collection. In other words, U refers to the
user identifiers and I refers to the item identifiers.

We then denote P as a probability function on the joint sample space ΦU ×
ΦI × ΦR. A prediction model thus can be built by estimating the conditional
probability of the rating P (R|U, I), given the specified user and item identifiers.
The expectation of the unknown rating of a given item I = ib from a given user
ACM Journal Name, Vol. V, No. N, Month 20YY.
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U = ua can be formulated as follows:

x̂a,b =
|R|∑
r=1

rP (R = r|I = ib, U = ua) (9)

For simplicity, R = r, U = ua, and I = ib are denoted as r, ua, and ib, respectively.
Before proceeding, let us highlight how the current formulation using ratings

differs from the probabilistic model that we have proposed before for log-based CF
[Wang et al. 2006a]. In the log-based model, relevance variable r is binary, observed
as “the file is (not) downloaded” or the “web-site is (not) visited”. In that case,
ΦR has binary values ‘relevant’ r and ‘non-relevant’ r. The resulting model is a
ranking model, and does not attempt to predict the rating. Conversely, the model
proposed in this paper is a rating prediction model, that is especially targeted to
rating-based CF; i.e., the model predicts directly the number of stars that a user
would assign to the test item.

4.1 Three Different Relevance Models

The way to estimate P (r|ib, ua) plays an important role in our model. Three differ-
ent models, namely user-based relevance, item-based relevance and unified relevance
models can be derived if we apply the Bayes’ rule differently:

P (r|ib, ua) =





P (ua|r,ib)P (r|ib)
P (ua|ib)

User-based Relevance
P (ib|r,ua)P (r|ua)

P (ib|ua) Item-based Relevance
P (ua,ib|r)P (r)

P (ib,ua) Unified Relevance

(10)

Each of the three derivations represents a different view of the problem. We shall see
that the former two models (i.e. the user-based relevance model and the item-based
relevance model) represent a partial view of the collaborative filtering problem while
the third model unifies these partial views.

4.1.1 User-based Relevance Model. Applying the first factorization in Eq. 9, we
derive:

x̂a,b =
|R|∑
r=1

r
P (ua|r, ib)P (r|ib)

P (ua|ib)

=
∑|R|

r=1 rP (ua|r, ib)P (r|ib)
P (ua|ib)

=
∑|R|

r=1 rP (ua|r, ib)P (r|ib)∑|R|
r=1 P (ua|r, ib)P (r|ib)

,

(11)

where the final prediction relies on two probabilities: 1) The conditional probability
P (ua|r, ib) builds up a user space model conditioned on the target item and the
rating. It measures how probable a user may rate item ib as rating r and thus it
is the preference model of a user. 2) The probability P (r|ib) measures how likely
the target item ib may be rated as rating r. It can be regarded as a rating prior or
the rating model. Clearly, together the product of the two probabilities serves as
a weight for each rating scale r. The denominator, a sum over the different rating
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scales
∑|R|

r=1 P (ua|r, ib)P (r|ib), serves as a normalization factor. To simplify the
notation, we choose ri to denote the joint event between r and i (i.e. rating for
item i). Hence P (ua|r, ib) is written as P (ua|rib

).
Notice that, in the user preference model (P (ua|r, ib)) in Eq. 11, users are defined

by their ‘user identifiers’ in the user id space. To be able to make a prediction for
a new user, we need to build a feature representation and use it to relate the new
user to the training users. For this, instead of putting users in the original user
id space, we represent them by their ratings. So, P (ua|rib

) = P (ua|rib
), where

the vector ua = [xa,1, . . . , xa,B ]T denotes the B item ratings from user a. Unrated
items can be filled with the average rating value, or taken as a constant value 0
instead. Substituting user identifiers by their rating vectors in Eq. 11 gives:

x̂a,b =
∑|R|

r=1 rP (ua|rib
)P (r|ib)∑|R|

r=1 P (ua|rib
)P (r|ib)

(12)

4.1.2 Item-based Relevance Model. We derive the following equation the same
way, by factorizing P (r|ua, ib) in Eq. 9 as P (ib|ua, r)P (r|ua)/P (ib|ua):

x̂a,b =
∑|R|

r=1 rP (ib|r, ua)P (r|ua)
∑|R|

r=1 P (ib|r, ua)P (r|ua)
(13)

To simplify notation, let ru denote the joint event between r and u (i.e., the rating
from user u), and P (ib|r, ua) be written as P (ib|rua).

Following the same line of reasoning as for the user case above, an item can be
represented using each user’s rating as a feature, such that P (ib|rua) = P (ib|rua)
where the vector ib = [x1,b, . . . , xA,b]T denotes the A user ratings for item b. Again,
the missing ratings can be replaced by the average rating value or by a constant
value 0. This gives

x̂a,b =
∑|R|

r=1 rP (ib|rua)P (r|ua)
∑|R|

r=1 P (ib|rua)P (r|ua)
(14)

Probability P (ib|rua) conditions the item space on the user’s rating. It expresses
how probable an item is rated as value r by user ua, and can be regarded as the
preference model of an item. The probability P (r|ua) measures how likely the
target user ua may provide a rating as value r. It can be treated as a rating prior,
or, the target user’s rating model. Obviously, the final weight for each rating scale
is a product between these two models. The summation over different rating scales∑|R|

r=1 P (ib|rua)P (r|ua) in the denominator serves as a normalization factor.

4.1.3 Unified Relevance Model. Let us now introduce the unified relevance model.
We derive from Eq. 9:

x̂a,b =
∑|R|

r=1 rP (ua, ib|r)P (r)
∑|R|

r=1 P (ua, ib|r)P (r)
(15)
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Table I. Probabilities in the three different models.
Preference Model Rating Model

User-based Relevance P (ua|rib
) P (r|ib)

Item-based Relevance P (ib|rua ) P (r|ua)

Unified Relevance P (ua, ib|r) P (r)

Analogous to the two other derivations, we use ratings as features to represent users
and items, respectively: P (ua, ib|r) = P (ua, ib|r).

x̂a,b =
∑|R|

r=1 rP (ua, ib|r)P (r)
∑|R|

r=1 P (ua, ib|r)P (r)
(16)

The preference model now involves the user and item together.
Table I summarises the three different models derived from Eq. 9 (Eq. 12, 14

and 16). The weights to average the rating scales equal the product of a preference
model and a rating model. Since the three models are derived from the same root,
they are probabilistically equivalent, but the different factorizations lead to the
different probability estimations, so statistically they are inequivalent.

4.2 Probability Estimation

The next problem is how to estimate the probabilities listed in Table I. Because
the rating space is one-dimensional, the densities for the rating models can be
estimated by simply counting the frequency of the co-occurrences. For the density
estimations of the preference models however, the high dimensionality of the user
feature space and the item feature space complicates matters. Here, we use the non-
parametric Parzen-window method for density estimation (also known as kernel
density estimation). This approach extrapolates the density from the sample data.
The main advantage over a parametric approach is that we do not have to specify
the model structure a priori, but may determine it from the data itself.

4.2.1 Density Estimation for Rating Models. Estimating the three rating mod-
els corresponds to counting the co-occurrence frequencies of the three joint events:

P (r|ua) =

∑
ib

c(ua, ib, r)∑
ib,r c(ua, ib, r)

=
|Srua

|
|Sua |

(17a)

P (r|ib) =

∑
ua

c(ua, ib, r)∑
ua,r c(ua, ib, r)

=
|Srib

|
|Sib

| (17b)

P (r) =

∑
ua,ib

c(ua, ib, r)∑
ua,ib,r c(ua, ib, r)

=
|Sr|
|S| , (17c)

where c(ua, ib, r) ∈ {0, 1} denotes the co-occurrence function; c(ua, ib, r) equals one
if user ua rated item ib as r, zero otherwise. S(·) denotes the set of observed samples
where event (·) happened, |S(·)| its cardinality. For example, Srib

denotes the set
of observed samples with event (R = r, I = ib), so |Srib

| corresponds to the number
of times that this event happened,

∑
ua

c(ua, ib, r). S denotes the entire set of
observed samples and |S| its size, equal to

∑
ua,ib,r c(ua, ib, r).
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Table II. Commonly used Parzen kernel functions.
Rectangular 1

2 for |x| < 1, 0 otherwise
Triangular 1− |x|for|x| < 1, 0 otherwise
Biweight 15

16 (1− x2)2 for |x| < 1, 0 otherwise
Gaussian 1√

2π
e−x2/2

Bartlett - Epanechnikov 3
4 (1− x2/5)/

√
5 for |x| < √

5, 0 otherwise

4.2.2 Density Estimation for Preference Models. Given some observed samples
of a population, the Parzen-window method extrapolates the data to the entire
population by averaging from neighborhood observed samples. The neighborhood
samples are selected and weighted according to some pre-defined Parzen kernel
window functions. Usually, the Parzen kernel function is required to be non-negative
and symmetric, and it should integrate to one. Table II lists the most commonly
used Parzen kernels for univariate data. The multi-dimensional feature spaces in
which users and items are represented require a multivariate Parzen kernel (denoted
as K(y)), that can be obtained using a product of univariate Parzen kernels:

K(y) =
Q∏

q=1

Kq(yq), (18)

where y = [y1, ..., yQ] is a Q-dimensional vector. Kq is the univariate Parzen kernel
function for the qth dimension. We assume all univariate kernels to be equal:
Kq = K. The product of the univariate Parzen kernel assumes that the dimensions
(features) are locally independent (where the locality is defined by the univariate
Parzen kernel function K). Pluging in the bandwidth parameter, we have:

1
hQ

K(
y
h

) =
1

hQ
K(

y1

h
, ...,

yQ

h
) =

1
hQ

Q∏
q=1

K(
yq

h
), (19)

where to reduce the complexity of the model, we have assumed the bandwidth of
each Parzen window to be equal in each dimension, defined as h.

First, take preference models P (u|rib
) and P (i|rua) in the user-based and the

item-based relevance derivations. Both depend on a single feature vector; either
the user vector u or the item vector i. Directly applying the Parzen-window method
by using the univariate product Parzen kernel, we obtain the following equations
for the density estimations ([Duda et al. 2001]):

P (u|rib
) =

1
|Srib

|
∑

u′∈Srib

1
hu

B
K(

u− u′

hu
) (20a)

P (i|rua) =
1

|Srua
|

∑

i′∈Srua

1
hi

A
K(

i− i′

hi
), (20b)

where hi and hu are the bandwidth window parameters for the user vector and
item vector, respectively.
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Next, consider the preference model in the unified relevance case, P (ua, ib|r).
Probability estimation requires a density in the joint user-item feature space. We
employ a product of two univariate kernel density estimators:

P (ua, ib|r) =
1
|Sr|

∑

(u′,i′)∈Sr

1
hu

B
K(

u− u′

hu
)

1
hi

A
K(

i− i′

hi
), (21)

where Sr denotes the set of observed samples when event (R = r) happens, while
|Sr| denotes its size, equal to

∑
ua,ib

c(ua, ib, r).
The kernel density estimation can be interpreted as a mixture of the component

densities with an equal weight. Each mean of the component densities is located in
the place where the neighborhood observation is available. The shape of the density
is controlled by the Parzen kernel window function and its bandwidth parameter.
Thus, the final prediction can be expressed by the summation over the Parzen
kernels which are situated in the location of the neighborhood samples.

4.3 Rating Predictions

Consider now the problem of rating prediction in the user-based relevance model.
Substituting the user-based rating model of Eq. 17a and the user preference model
of Eq. 20a in the generic user-based relevance model of Eq. 12 gives:

x̂a,b =

∑|R|
r=1 r 1

|Srib
|
( ∑

u′∈Srib

1
hu

B K(u−u′
hu

)
) |Srib

|
|Sib

|
∑|R|

r=1
1

|Srib
|
( ∑

u′∈Srib

1
hu

B K(u−u′
hu

)
) |Srib

|
|Sib

|

(22)

Cancelling out the factors |Srib
| and |Sib

| simplifies Eq. 22 to:

x̂a,b =

∑|R|
r=1 r

( ∑
u′∈Srib

K(u−u′
hu

)
)

∑|R|
r=1

( ∑
u′∈Srib

K(u−u′
hu

)
) (23)

Combining the outer summation over r with the inner over u′ completes our
approach to perform rating prediction using the user-based relevance model:

x̂a,b =

∑
u′∈Sib

ru′,ib
K(u−u′

hu
)

∑
u′∈Sib

K(u−u′
hu

)
, (24)

where u′ ∈ Sib
denotes the (other) users who have rated item ib, and, ru′,ib

denotes
the rating of user u′ for item ib.

Rating prediction in the item-based relevance model is derived analogously:

x̂a,b =

∑
i′∈Sua

ri′,uaK( i−i′
hi

)
∑

i′∈Sua
K( i−i′

hi
)

, (25)

where i′ ∈ Sua denotes the other items rated by user ua, and, ri′,ua denotes the
rating of user i′ for item ua.

Finally, rating prediction with the unified relevance model:

x̂a,b =

∑
(u′,i′)∈S ru′,i′K(u−u′

hu
)K( i−i′

hi
)

∑
(u′,i′)∈S K(u−u′

hu
)K( i−i′

hi
)

, (26)
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where ru′,i′ denotes the rating of user u′ for item i′. Again, S denotes the entire
sample set S = S1 ∪ · · · ∪ S|R|.

The next step specifies the Parzen-window kernel function K and its bandwidth
parameter h. A common choice is to use the Gaussian density function as the
univariate Parzen kernel function:

1
hQ

K(
y
h

) =
1

(
√

2πh)
Q

e−
||y||2
2h2 =

1

(
√

2πh)
Q

∏
q

e−
||yq||2
2h2 (27)

Substituting the Gaussian Parzen-window in the above equations results in the
following preference models:

P (ua|rib
) =

1
|Srib

|(√2πhu)B

∑

u′∈Srib

e
− ||u−u′||2

2hu2

P (i|rua
) =

1
|Srua

|(√2πhi)A

∑

i′∈Srua

e
− ||i−i′||2

2hi
2

P (ua, ib|r) =
1
|Sr|

∑

(u′,i′)∈Sr

1
(
√

2πhu)B(
√

2πhi)A
e
− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2 (28)

Using these three probability estimates gives the final three equations for rating
prediction, corresponding to the three rating prediction models proposed in this
paper:

User-based Relevance Model:

x̂a,b =

∑
u′∈Sib

ru′,ib
· e−

||u−u′||2
2hu2

∑
u′∈Sib

e
− ||u−u′||2

2hu2

(29a)

Item-based Relevance Model:

x̂a,b =

∑
i′∈Sua

ri′,ua · e
− ||i−i′||2

2hi
2

∑
i′∈Sua

e
− ||i−i′||2

2hi
2

(29b)

Unified Relevance Model:

x̂a,b =

∑
(u′,i′)∈S ru′,i′ · e−

||u−u′||2
2hu2 e

− ||i−i′||2
2hi

2

∑
(u′,i′)∈S e

− ||u−u′||2
2hu2 e

− ||i−i′||2
2hi

2

(29c)

4.4 Cross-validated EM algorithm

Previous studies have shown that the type of Parzen kernel function has usually
only a marginal effect on the quality of density estimation; however, the choice of
the bandwidth window parameter h has a significant influence [Skurichina 1990].
In our case, the two bandwidth window parameters hu and hi need to be tuned to
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the data. If their value is too small, the estimated density is a collection of sharp
peaks positioned at the sample points, such that the density estimation still suffers
from the data sparsity. If their value is however too large, the density estimate is
over-smoothed, such that the underlying structure in the data is not preserved in
the estimated density.

The optimal bandwidth parameters can be found by maximising the following
cross-validated (leave the estimated u or i out) likelihood function [Duin 1976]:

ĥu, ĥi = arg max
hu,hi

∏

(u,i)∈Sr

1
|Sr − 1|

∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1
hB

u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)

(30)

This maximisation problem can be solved using the iterative Expectation maximi-
sation (EM) algorithm [Dempster et al. 1977; Paclik et al. 2000]. For readability,
we give the final expectation (E) and maximisation (M) steps here but leave the
detailed derivation for Appendix A:

—E step:

P (t)(u′, i′|u, i) =
e
− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

∑
u′ 6=u,i′ 6=i e

− ||u−u′||2
2hu2 e

− ||i−i′||2
2hi

2

(31a)

—M step:

h(t+1)
u =

√
1

B|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||u− u′||2) (31b)

h
(t+1)
i =

√
1

A|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||i− i′||2) (31c)

where t equals the number of the iteration.

4.5 A Generalised Distance Measure

The univariate Gaussian Parzen kernel used in the previous measures the distance
between users and item using Euclidean or L2 distance (||u− u′||2 and ||i− i′||2).
However, many alternative distances could be considered. A previous study [Her-
locker 2000] shows that the mean-squared difference is less effective for collaborative
filtering than Pearson correlation and the cosine measure. We could of course adapt
our framework using a different Parzen-window function, and try to set things up
such that the density estimation is based on the cosine measure instead of Euclidean
distance. Ideally, we would however like to generalise the Parzen-window density
estimation from the specific distance measure of our choice.

We can achieve this goal using the mathematics that has become known as the
kernel trick in the machine learning community [Schölkopf and Smola 2001]. Notice
that the term kernel will refer to a different kernel function than the one in the
Parzen-window density estimation; to avoid confusion, we use the term projection
kernel. The kernel trick transforms any algorithm that solely depends on the dot
product between two vectors, by replacing this dot product with the application of
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the projection kernel. It has been proven (based on the Moore-Aronszajn-Theorem)
that a positive definite projection kernel determines a unique function φ such that:

K(y,y′) =< φ(y), φ(y′) >, (32)

where <,> denotes the dot product. This equation is often used without knowing
the exact form of function φ; it suffices to know that it exists and is defined uniquely.
Schölkopf has shown that an even larger class of projection kernels (referred to as
conditionally positive definite functions) satisfies Eq. 32 [Schölkopf 2000].

Now, basic linear algebra allows us to relate the Euclidean distance in projected
space to the application of a projection kernel in user- or item-space:

||φ(y)− φ(y′)||2

=
∑

i

(φ(yi)− φ(y′i))
2

=
∑

i

{φ(yi)2 − 2φ(yi)φ(y′i) + φ(y′i)
2}

=
∑

i

φ(yi)2 +
∑

i

φ(y′i)
2 − 2

∑

i

φ(yi)φ(y′i)

= < φ(y), φ(y) > + < φ(y′), φ(y′) > −2 < φ(y), φ(y′) >

=K(y,y) +K(y′,y′)− 2K(y,y′)

(33)

Using a length-normalised projection kernel for which K(y,y) = 1 gives

||φ(y)− φ(y′)|| = K(y,y) +K(y′,y′)− 2K(y,y′) = 2− 2K(y,y′) (34)

So, computing a Euclidean distance in projected space is equivalent to using a
positive definite projection kernel K to compute distances in the original space.
This property allows us to perform Parzen-window density estimation with the
Gaussian kernel in the projected space, without actually knowing the function φ
(which is however defined uniquely by the choice of the projection kernel).

In the remainder, we use the length-normalised dot product as the projection
kernel (also known as the cosine kernel, denoted as Cos(y,y′) [Liu et al. 2004]):

K(y,y′) = Cos(y,y′) =
< y,y′ >√

< y,y >< y′,y′ >
(35)

Thus, we have:

||φ(y)− φ(y′)||2 = 2− 2Cos(y,y′) (36)

In this specific case, function φ is actually known and corresponds to vector
normalization:

φ(y) =
y√

< y,y >
=

y√∑
i(yi)2

(37)

Eq. 36 demonstrates that the cosine dissimilarity measure is indeed equivalent to
a Euclidean distance measure in the projected space. So, we can perform Parzen-
window density estimation with a Gaussian window function in the projected space:

Kh(φ(y), φ(y′)) =
J

h
e−

||φ(y)−φ(y′)||2
2h2 =

J

h
e−

1−Cos(y,y′)
h2 , (38)
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Table III. Relationship between the choice of Parzen kernel, bandwidth parameters and the pro-
jection kernel and CF algorithms.

Bandwidth Parzen Projection CF Algorithm
Parameters Kernel Kernel

hu ∈ IR Gaussian
Cosine User-based Relevance Model (Eq. 40a)
Null Eq. 29a and PD ([Pennock et al. 2000])

hi = ∞ Bartlett-Epanechnikov
Cosine User-based method, VS ([Breese et al. 1998])
Null User-based, Ringo ([Shardanand and Maes 1995])

hi ∈ IR Gaussian
Cosine Item-based Relevance Model (Eq. 40b)
Null Eq. 29b

hu = ∞ Bartlett-Epanechnikov
Cosine Item-based method, VS ([Sarwar et al. 2001]),
Null Item-based Relevance Model, Euclidean Distance

hu ∈ IR Gaussian
Cosine Unified Relevance Model (Eq. 40c)
Null Eq. 29c

hi ∈ IR Bartlett-Epanechnikov
Cosine ([Wang et al. 2006b]) and ([Hu and Lu 2006])
Null Unified Relevance Model, Euclidean Distance

where J is a normalization factor to obtain a Parzen window function, i.e., to satisfy
∫

y

J

h
e−

1−Cos(y,y′)
h2 dy = 1 (39)

It is easy to show that J ∈ IR since 1
he−

1−Cos(y,y′)
h2 is bounded in the y space.

By employing Eq. 38 instead of Eq. 27, we integrate the cosine similarity measure
into our final rating prediction models:

User-based Relevance Model:

x̂a,b =

∑
u′∈Sib

ru′,ib
e
− 1−Cos(u,u′)

h2
u

∑
u′∈Sib

e
− 1−Cos(u,u′)

h2
u

(40a)

Item-based Relevance Model:

x̂a,b =

∑
i′∈Sua

ri′,uae
− 1−Cos(i,i′)

h2
i

∑
i′∈Sua

e
− 1−Cos(i,i′)

h2
i

(40b)

Unified Relevance Model:

x̂a,b =

∑
(u′,i′)∈S ru′,i′e

− 1−Cos(u,u′)
h2

u e
− 1−Cos(i,i′)

h2
i

∑
(u′,i′)∈S e

− 1−Cos(u,u′)
h2

u e
− 1−Cos(i,i′)

h2
i

(40c)

Estimation of parameters hu and hi follows the same procedure as in the Euclidean
distance case, see Appendix A.

4.6 Discussion

The General Framework The proposed combination of Parzen-window kernel
density estimation with the relevance models provides a general framework for col-
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laborative filtering. The three rating prediction models listed in Eq. 40a, 40b and
40c, show how the final predictions are expressed by summations over rating influ-
ences from the neighborhood samples (from user neighbors Eq. 40a, item neighbors
Eq. 40b, or both the user and item neighbors Eq. 40c). Three factors determine the
influence of the neighborhood samples on the prediction: the type of Parzen ker-
nel, its bandwidth parameters, and, the distance of the neighborhood samples from
the sample to be predicted. The Parzen kernel smoothes the prediction, while the
projection kernel allows us to select the right distance measure. Different choices
for the bandwidth parameters, the Parzen-window kernel function or the projection
kernel lead to different approaches to collaborative filtering. For instance, it is easy
to see that using the Bartlett-Epanechnikov kernel (given in Table II) with hi equal
to one and hu to ∞ simplifies the unified relevance prediction formula in Eq. 26 to
the item-based cosine similarity method (using Eq. 36):

x̂a,b =

∑
i′∈Sua

ri′,ua
Cos(i, i′)∑

i′∈Sua
Cos(i, i′)

(41)

Table III summarises how the general framework can be specialised to various
previously known approaches.

The User-based and Item-Based Views The user-based relevance model
and item-based relevance model represent two different views for the problem. In
the user-based relevance model, we fix the target item ib. Conditioned on it, we
build up a user representation P (ua|ib, r) (See Fig. 3 (a)). This is analogous to the
document-oriented approaches in text retrieval [Maron and Kuhns 1960; Lafferty
and Zhai 2003], where queries represented by the terms are conditioned on the fixed
target document model P (Q|db, r).1 Conversely, in the item-based relevance model,
we fix the target user ua and conditioned on it, we build up an item representation
P (ib|ua, r) (see Fig. 3 (b)). This is analogous to the query-oriented approach in text
retrieval [Robertson and SparckJones 1976], where documents D are represented
by the terms and these representations are conditioned on the fixed query terms
P (D|qa, r).2

The Unified View Unlike the above two models, the unified relevance model in
Eq. 40c however provides a rather completed and unified view of the problem. In
this model, we do not fix the two variables: user and item. Instead, we construct a
unified model that relies on both the user representation and the item representation
P (ua, ib|r) (see Fig. 3 (c)). The model is solved by applying the kernel density
estimation and it provides a practical solution for the unification advocated in
[Robertson et al. 1982]. It can also be treated as a generalised version of the
similarity fusion approach to CF [Wang et al. 2006b].

The model intuitively provides a unified probabilistic framework to fuse user-
based and item-based approaches. In addition, the ratings from similar users for
similar items (the SUIR ratings) are employed to smooth the predictions. We
highlight the relationship to the similarity fusion method of [Wang et al. 2006b] by

1In the language modelling literature, the document-oriented approach is also referred to as a
query-generation model.
2The query-oriented approach is also known as a document-generation model for information
retrieval.
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dividing the entire set of observations S into three sets: the ratings from test user
Su, the ratings for test item Si, and the remaining ratings Sū,̄ı. Eq. 40c gives

x̂a,b =
1
H

( ∑

(u′,i′)∈S

ru′,i′e
− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)
h2

i

)

=
1
H

( ∑

(u′,i)∈Si

ru′,iE +
∑

(u,i′)∈Su

ru,i′F +
∑

(u′,i′)∈Sū,̄ı

ru′,i′G
)
,

(42)

where H is a normalization factor equal to
∑

(u′,i′)∈S

e
− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)
h2

i (43)

The three types of ratings ru′,i, ru,i′ and ru′,i′ that contribute to the prediction
are precisely the similar user ratings (SUR), the similar item ratings (SIR) and
the similar user towards similar item ratings (SUIR). E, F and G determine three
weights for averaging these ratings:

E = e
− 1−Cos(u,u′)

h2
u

F = e
− 1−Cos(i,i′)

h2
i

G = e
− 1−Cos(u,u′)

h2
u e

− 1−Cos(i,i′)
h2

i

(44)

The bandwidth parameters hu and hi control the width of the kernel function.
A small bandwidth value leads to spiky estimates while larger bandwidth values
over-smooth the observations with data from far away samples. The bandwidth
parameters also balance the contributions from the user side and the item side. A
small hu emphasizes user correlations, and a small hi emphasizes the item corre-
lations (see also the experiments corresponding to Fig. 9 and Fig. 10). When hu

approaches ∞, the unified relevance model corresponds to item-based collaborative
filtering, while an hi of ∞ results in user-based recommendation.

4.7 Computational Complexity

This section discusses the scalability of our collaborative filtering framework. The
computational complexity of the framework consists of the amount of time needed
for building the model (i.e. the EM estimation of the two bandwidth parameters and
the probability estimations), and that of making online recommendations for a new
user from the model. The EM algorithm is only needed during the model building
phase. Thus there are no iterative steps required in the online recommendation
phase. Furthermore, we propose an efficient method to calculate the kernel-based
similarities, largely reducing the computational complexity.

4.7.1 Offline Computation. In the model building phase, Eq. 29c simplifies the
probability estimations to the calculations of the kernel-based similarities. That
is, for any user pair and item pair, we need to calculate their kernel similarities

e
− ||u−u′||2

2hu2 and e
− ||i−i′||2

2hi
2 , respectively. To make the calculation efficient, we decom-

pose them into the distance measure part (||u − u′|| or ||i − i′||) and the kernel
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smoothing part (e−
•

2hu2 or e
− •

2hi
2 ). Thus, model building consists of two steps:

first computing two distance (dis-similarity) matrices and then estimating the two
bandwidth parameters.

For each element in the matrix, we require either B arithmetic operations for the
user-to-user distance or A arithmetic operations for the item-to-item distance. In
total the upper bound of the computational complexity is O(A2B +B2A), which is
roughly equal to a sum of the complexity of a user-based method [Herlocker et al.
1999] and that of an item-based method [Sarwar et al. 2001]. Since the data is
extremely sparse, with a proper data structure, the computation can be largely
reduced. This paper proposes to use two inverted files, respectively indexing users
and items about their ratings. When we calculate the distances, for instance, for
a given user, we do not need to go through all other users about their agreement
on all items. Instead, we first from the user indexing file get the set of items
that he or she has rated, and then go through these items, accessing a set of users
who have rated any of these items (from the item index file). By doing this, not
only do we exclude the users who do not share any commonly-rated item from the
computations, we also restrict the operations to those items that the two users both
rated. Thus the overall computation is much faster than the original user-based or
item-based methods, only requiring a linear time complexity that approximately
equals O((A+B)mn), where m is the average number of user ratings per item and
n is the average number of item ratings per user. In addition, it is unnecessary
to store all the non-zero elements in the distance matrices, as we shall see in our
experiment (Fig. 8) that keeping only the top-N nearest user neighbors and the
top-N nearest item neighbors improves prediction accuracy, where N is typically
in the range of (30...70).

Once we have the user (item) distance matrix that stores the top-N nearest
neighbors, the EM estimation of hi and hu becomes a relatively simple task because
it essentially averages the user or item distance from the distance matrices in an
iterative manner (see Eq. 31). For the sake of time efficiency, the E step and M step
can be computed together, where the computational complexity in each iteration is
given by O(ABN2) because we need to average all possible user-item pair (A×B
operations) and for each pair, we need to access N × N neighbors. In practice,
the complexity of the EM algorithm can be further reduced by sub-sampling both
training users and training items; our additional experiments (not reported) verified
that a small amount of training user-item pairs is sufficient to get the stable and
accurate estimations of hu and hi. We shall see in our experiment (Fig. 4) that the
EM algorithm converges fast, and a small number of iterations (3-5) suffices to get
relatively stable estimations in the tested data sets.

4.7.2 Online Computation. The online recommendation can be computed very
efficiently if we again utilize both the user and item indexing files. For a new user,
the computational complexity of his or her kernel similarity towards other users is
approximately given as O(mn) because on average we access his or her m rated
items and for each of these items access n users who rate it. The final prediction
corresponds to a weighted average from the ratings of the top-N nearest items and
the top-N nearest users, resulting in a computational complexity of O(N2), which
is independent of the number of users and items.
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(a) (b) (c)

Fig. 3. Illustration of the three different models. (a) User-based Relevance Model. (b) Item-based
Relevance Model. (c) Unified Relevance Model.

Table IV. Characteristics of the test data sets.

MovieLens 1 MovieLens 2 EachMovies 1 EachMovies 2
Num. of Users 943 500 2,000 10,000
Num. of Items 1682 1000 1,648 1,648
Avg. Num. of Rated Item Per User 106.0 87.7 90.0 96.3
Avg. Num. of User Rating Per Item 59.5 43.9 114.2 611.0
Sparsity 6.30% 8.77% 5.7% 6.11%
Rating Scales 5(1-5) 5(1-5) 6(1-6) 6(1-6))

5. EXPERIMENTS

5.1 Data Sets

We experimented with two movie rating data sets: the MovieLens [DataSet a] and
the EachMovie [DataSet b] data sets.

The MovieLens data set was collected by the GroupLens group through the
MovieLens web site during the period from September 1997 through April 1998.
It contains ratings by 943 users for 1682 movies (items). Each user has rated at
least 20 movies. The rating scale takes values from 1 ( the lowest rating) to 5 (the
highest rating). In addition, to compare with other approaches we also adopt a
widely-used subset [Si and Jin 2003], which contains 500 users and 1000 movies
(items), where each user has rated at least 40 items.

The EachMovie data set was collected by the Digital Equipment Research Center
during the period from 1995 to 1997. The rating scale was originally indicated as
the values from 0 (no star), 0.2 (one star) and up to 1 (five stars). For consistency
with the MovieLens data set, we transformed the rating scales to the values 1−−6,
with 1 being the lowest rating (i.e., no star) and 6 being the highest one (i.e., five
stars). To compare with other approaches, we adopt the two subsets described
in [Si and Jin 2003] and [Xue et al. 2005], which respectively contain 2,000 users
and 10,000 users. In both cases, each user has rated as least 40 items. The basic
characteristics of these two data sets with the different size are summarised in Table
IV. We mainly use the MovieLens 1 data set to conduct empirical analyses on our
models while using the other sets to conduct the performance tests.
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5.2 Evaluation Protocols

For testing, we assigned the users in the data set at random to a training user
and a test user set. Users in the training set are used as the basis for making
predictions, while our test users are considered the ground truth for measuring
prediction accuracy. Each test user’s ratings have been split into a set of observed
items and one of held-out items. The ratings of the observed items are input
for predicting the ratings of the held-out items (the test items). To improve our
measurements, each of the experimental setups has been repeated 20 times with
different random seeds.

For consistency with experiments reported in the literature, e.g., [Jin et al. 2004;
Sarwar et al. 2001; Xue et al. 2005]), we report our results using the mean absolute
error (MAE) evaluation metric. MAE corresponds to the average absolute deviation
of predictions to the ground truth data, for all test item ratings and test users:

MAE =

∑
a,b

|xa,b − x̂a,b|

L
, (45)

where L denotes the number of tested ratings. A smaller value indicates a better
performance.

5.3 Results

5.3.1 Parameter Estimation. This section conducts the experiments on the EM
estimation for the parameters hu and hi. We first test the convergence behavior
of the cross-validated EM method using MovieLens set 1. To reduce redundancy,
we only show the estimation results when we randomly select 400 users as the
training data. Notice that the estimation over other number of training users
behaves consistently. Fig. 4 shows that the EM algorithm converges in few iterations
(about 3) to the optimal bandwidth parameters (h2

u = 0.79 (Fig. 4(a)) and h2
i = 0.49

(Fig. 4(b))) with respect to the log likelihood object function (Fig. 4 (c)). Repeating
this experiment with different random initial values of hu and hi (have a relatively
large standard deviation in the figures), the EM algorithm converges to (almost)
the same optimal values (have a relatively small standard deviation in the figures).
Observe that the obtained bandwidth parameter hu is relatively larger than the
parameter hi. To explain this result, we investigate the influence of the distribution
of neighboring vectors on the parameter estimation. In our models, both the user
distance and item distance are measured by the cosine distance, i.e. 1−Cos(u,u′)
and 1 − Cos(u,u′) (Eq. 40a–40c). Fig. 5 plots the distributions of the top-50
nearest users and items as a histogram of 10 bins in the distance range of [0, 1]. It
shows that, on average, the user distances are larger than the item distances. So,
estimating the user density needs a bigger bandwidth parameter to smooth from
the neighborhood than that of the item density.

To show the sensitivity of the two bandwidth parameters regarding to the recom-
mendation performance, we plot the value of the bandwidth parameter (either hu

or hi) against the MAE measurement in Fig. 6. It shows that the two bandwidth
parameters are relatively stable in a wide range regarding to the MAE performance.
Also, comparing the optimal bandwidth parameters with the ones shown in Fig. 4
we can see that, although the EM algorithm uses a different objective function
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 4. Convergence behavior of the cross-validated EM algorithm: Using the cosine projection
kernel (400 training users in the MovieLens 1 data set).
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Fig. 5. Distribution of cosine distance in the MovieLens data set (400 training users in the
MovieLens 1 data set).
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Fig. 6. The sensitivity of the two parameters regarding to the MAE measurement (the remaining
543 test users in the MovieLens 1 data set).
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Fig. 7. The impact of the neighbor size on the parameter estimation. (400 training users in the
MovieLens 1 data set).

(log likelihood), it does give a reasonably good estimation of the two bandwidth
parameters in terms of the MAE.

In practice, recommendation systems make a trade-off between prediction accu-
racy and run-time system efficiency by pre-selecting the top-N nearest user neigh-
bors (SUR) and the top-N nearest item neighbors (SIR). These form a rating pool,
extended with the top-N×N nearest similar user to similar item neighbors (SUIR).
In total, we would have N × (N +2) neighbors. However, only the neighbors whose
ratings are available in the pool contribute to the predictions. Clearly, the param-
eter N affects the parameter estimation and therefore also the performance of our
fusion methods. Fig. 7 plots the estimated parameter values of hu and hi under dif-
ferent neighbor sizes, where the x axis represents the size of the pre-selected top-N
and the left y axis corresponds to the estimated value of the parameter (hu in Fig.
7(a) and hi in Fig. 7(b)). The right y axis shows the ‘true’ number of SUR, SIR
and SUIR within the pool that have to be retrieved to obtain non-empty ratings
for estimation. The graph shows that for low values of N , both parameters hu
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Fig. 8. The MAE performance under different neighbor size (the remaining 543 test users in the
MovieLens 1 data set).
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Fig. 9. The optimal bandwidth parameters with different user sparsity.

and hi increase fast. This shows that the new ratings introduced by increasing the
top-N contribute to improve the prediction accuracy, such that the corresponding
Parzen-window should cover the newly introduced ratings (so, the bandwidth pa-
rameters increase). Gradually however, this increase diminishes, because a large
top-N introduces more and more noisy ratings. Consequently, the parameter values
converge and the Parzen-window excludes the distant ratings from the estimation
process. Fig. 8 displays the MAE of the unified relevance model under different
neighbor sizes, to illustrate the effect of the estimated parameters on prediction
accuracy. The optimal result corresponds to N ' 50. The error increases only
slowly with larger values of N , due to the fact that the Parzen-window reduces the
effect of the noisy (distant) neighbors when they are introduced. We select 50 as
the optimal choice of N for the subsequent experiments.

5.3.2 Sparsity. This section investigates the effect of data sparsity on the per-
formance of our collaborative filtering methods in more detail. For this, we set up
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Fig. 10. The optimal bandwidth parameters under different item sparsity.
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Fig. 11. Performance of the three derived models under different sparsity in the MovieLens 1 data
set.

the following configurations: 1) Test User Sparsity : vary the number of items rated
by test users in the observed set, e.g. 5, 10, or 20 ratings per user. 2) Test Item
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Fig. 12. Performance of the three derived models under different sparsity in the EachMovie 1 data
set.

Sparsity : vary the number of users who have rated test items in the held-out set,
e.g. less than 15, 20, 25 (denoted as ‘< 15’, ‘< 20’, or ‘< 25’), or, unconstrained
(denoted as ‘No constraint’). Notice that the configurations of the user sparsity and
the item sparsity are not completely symmetrical in order to reflect the practical
situation.

The first experiment investigates the effect of data sparsity on parameter esti-
mation using the EM algorithm. We use the different sparsity configurations: user
sparsity: number of given ratings per user (5, 10, 15, 20) and item sparsity: max-
imum number of user rating per item (<15, <20, <25, <30, <40, <60, <100, No
constraint). For each configuration, we select 400 users in the MovieLens data set
to run the EM algorithm to obtain the optimal parameters hi and hu.

Fig. 9 (a) and (b) show, respectively, the optimal values of h2
u (y axis in Fig. 9

(a)) and h2
i (y axis in Fig. 9 (b)) under different user sparsity conditions (x axis).

The figures demonstrate that when the user sparsity decreases (and therefore the
number of given ratings per user increases), the optimal user bandwidth parameter
hu becomes smaller while the optimal item bandwidth parameter hi stays relatively
constant. This is due to the fact that, for a given test user, when the number of
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Table V. Comparison among the three derived models on the MovieLens 1 data set.
The MAE and P-value of the 10-fold Wilcoxon signed-rank test are reported (the
minimum P-value for 10-fold is 0.002).

User Sparsity 5 10 20 30 38
Unified RM 1.009 0.851 0.825 0.816 0.811
User-based RM 1.078 0.908 0.872 0.862 0.856
Item-based RM 1.070 0.972 0.939 0.905 0.883

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(a) Num. of user rating per item: <20
User Sparsity 5 10 20 30 38
Unified RM 0.987 0.826 0.799 0.791 0.786
User-based RM 1.045 0.869 0.836 0.826 0.821
Item-based RM 1.039 0.947 0.905 0.872 0.851

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(b) Num. of user rating per item: <30
User Sparsity 5 10 20 30 38
Unified RM 0.972 0.806 0.781 0.773 0.769
User-based RM 1.017 0.839 0.809 0.800 0.797
Item-based RM 1.018 0.922 0.875 0.841 0.823

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(c) Num. of user rating per item: <50
User Sparsity 5 10 20 30 38
Unified RM 0.957 0.787 0.761 0.753 0.749
User-based RM 0.987 0.809 0.780 0.772 0.769
Item-based RM 0.999 0.892 0.838 0.805 0.790

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(d) Num. of user rating per item: <100

item ratings provided by this user is small, it is difficult for the test user to find
other users who share ratings among the small amount of item ratings provided.
Consequently, the test user has less neighbors, calling for a wide Parzen-window (a
larger bandwidth parameter hu) such that the users with relatively large distance
can still contribute and smooth the density estimation (rating prediction). However,
as the number of item ratings per user increases, for a given test user, he or she has
more item ratings to be used to find similar users. In this case, the test user has more
neighbors. Thus, it is expected to have a smaller bandwidth parameter to produce a
narrow kernel so as to give more emphasis on the most similar users for the density
estimation. In both cases, bandwidth parameter hi varies less than hu, because
the item sparsity remains relatively constant. Fig. 10(a) and (b) demonstrate the
same behaviour when varying item sparsity. A low number of user ratings per item
results in a relatively large bandwidth parameter hi. Conversely, when the number
of user ratings per item increases, a small bandwidth parameter hi is obtained.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Unified Relevance Models for Rating Prediction in Collaborative Filtering · 31

Table VI. Comparison among the three derived models on the EachMovie 1 data
set. The MAE and P-value of the 10-fold Wilcoxon signed-rank test are reported
(the minimum P-value for 10-fold is 0.002).

User Sparsity 5 10 20 30 38
Unified RM 1.282 1.073 1.027 1.010 1.007
User-based RM 1.353 1.156 1.102 1.087 1.087
Item-based RM 1.290 1.153 1.104 1.070 1.059

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.557(>0.05) 0.002(<0.05) 0.002(<0.05) 0.004(<0.05) 0.010(<0.05)

(a) Num. of user rating per item: <20
User Sparsity 5 10 20 30 38
Unified RM 1.249 1.040 0.999 0.983 0.983
User-based RM 1.338 1.128 1.076 1.062 1.060
Item-based RM 1.293 1.155 1.098 1.069 1.059

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.006(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(b) Num. of user rating per item: <30
User Sparsity 5 10 20 30 38
Unified RM 1.238 1.025 0.986 0.972 0.971
User-based RM 1.326 1.095 1.049 1.028 1.028
Item-based RM 1.296 1.159 1.096 1.067 1.057

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(c) Num. of user rating per item: <50
User Sparsity 5 10 20 30 38
Unified RM 1.202 0.973 0.934 0.922 0.920
User-based RM 1.267 1.026 0.978 0.960 0.960
Item-based RM 1.263 1.098 1.033 1.006 0.999

- P-value P-value P-value P-value P-value
Unified - UserRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)
Unified - ItemRM 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05) 0.002(<0.05)

(d) Num. of user rating per item: <100

We conclude that the EM algorithm adapts the bandwidth parameters success-
fully to the different sparsity situations. Let us now compare the performance of
the three different models for rating prediction: the unified relevance model, the
user-based relevance model and the item-based relevance model (Eq. 40a–40c).

We vary user sparsity at 2, 10, 20, 30 and 38, and item sparsity ranging from
<20, <30, <50 to <100. In both the MovieLens 1 and EachMovie 1 data sets,
we randomly assign 400 users to the training set, and use the remaining users as
the test set. Fig. 11 and 12 summarise the results on the Movielens 1 and the
Eachmovie 1 data sets, respectively. The experiments with varying user and item
sparsity settings show that the MAE performance of each rating prediction model
improves with the number of given ratings per test user. Figures 11(c), 12(c) and
(d), demonstrate that the user-based relevance model improves more from a higher
number of given ratings per test item than the item-based relevance model does,
especially in the EachMovie case. At first sight, this is surprising as we would expect
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the item-based relevance model to improve most from a reduced item sparsity (i.e.,
from having a more reliable item-to-item similarity measure). Careful investigating
of this finding shows however that prediction accuracy does not only depend upon
the reliability of the similarity measure, but also relies on the number of similar
ratings that contribute to the predictions. The larger number of given ratings per
test item improves the reliability of the item-to-item similarity measure in the item-
based relevance model, but it also increases the number of ratings by users that
are similar to the test users (the SURs) in the user-based relevance model. Both
effects contribute to better rating predictions, but increasing the number of SURs
proves to be more beneficial.

Fig. 12(d) shows how the user-based relevance model gradually outperforms the
item-based relevance model as the number of given user rating per item increases.
More importantly however, we find that the unified relevance model outperforms
the user-based relevance model and the item-based relevance model in all sparsity
settings. Tables V and VI list more details of the performance comparison over the
two different data sets, to investigate the statistical significance of the performance
improvement obtained by the unified relevance model. It shows the P-value of a
Wilcoxon signed-rank test [Hull 1993] applied to each configuration. We conclude
that the unified relevance model consistently and significantly improves the rec-
ommendation performance over the user-based and item-based relevance models,
irrespective of the sparsity (except for the one exception in the top left corner of
Table VI, where the difference with the item-based relevance model is not signif-
icant). We conclude that the unified relevance model is indeed effective at fusing
the predictions from user and item aspects.

5.3.3 Comparison to other approaches. We continue with a comparison to re-
sults obtained with other methods. Each setting uses the optimal hu and hi learned
with the EM algorithm.

Recall that our unified model provides a very general framework for collabora-
tive filtering, particularly for those that make use of the neighborhood concept.
Thus, we first compare our unified model with other popular methods that need to
compute the paired similarities, for instance, the memory-based approaches. Also,
the Personality Diagnosis method (see [Pennock et al. 2000]) can be considered
as a neighborhood-based approach as it requires to pre-compute the conditional
probabilities (similarities) between two paired users. Table VII presents the com-
parison of our unified model to the the Personality Diagnosis (PD) method and the
four memory-based approaches, i.e., the used-based Pearson Correlation Coefficient
(UserPCC) and Vector Space (UserVS ) methods (see [Breese et al. 1998]), and the
item-based Pearson Correlation Coefficient (ItemPCC) and Vector Space (ItemVS)
methods (see [Sarwar et al. 2001]). In addition, we also conduct a significance test,
showing the P-value of a Wilcoxon signed-rank test applied to each configuration.
From the table, we can see that the recommendation performance of our unified
model is indeed significantly better than that of other alternatives that have been
considered.

Next we adopt the MovieLens 2 data set [Si and Jin 2003] (called the MovieRating
test bed in [Jin et al. 2004; Xue et al. 2005]) as well as the two EachMovie data
sets. We followed the evaluation procedure described in [Xue et al. 2005] and [Si
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Table VII. Comparison with other approaches on the EachMovie 1 and MovieLens
1 data sets. The MAE and P-value of the 10-fold Wilcoxon signed-rank test are
reported (the minimum P-value for 10-fold is 0.002).

Given Ratings 5 10 20 30
Unified RM 1.011 0.919 0.887 0.876
UserVS 1.108 1.041 1.023 1.018
UserPCC 1.079 0.954 0.911 0.893
ItemVS 1.101 1.025 0.998 0.988
ItemPCC 1.120 1.013 0.969 0.954
PD 1.187 1.084 1.055 1.050

- P-value P-value P-value P-value
Unified - UserVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - UserPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - PD 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)

(a) the EachMovie 1 data set.
Given Ratings 5 10 20 30
Unified RM 0.837 0.769 0.749 0.741
UserVS 0.900 0.845 0.832 0.828
UserPCC 0.888 0.803 0.775 0.762
ItemVS 0.910 0.829 0.803 0.794
ItemPCC 0.954 0.865 0.813 0.795
PD 0.927 0.865 0.837 0.827

- P-value P-value P-value P-value
Unified - UserVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - UserPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemVS 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - ItemPCC 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)
Unified - PD 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05) 0.002 (<0.05)

(b) the MovieLens 1 data set.

and Jin 2003], aiming to compare the performance of our unified model with the
state-of-art results of the mixture models [Si and Jin 2003] and the cluster-based
models [Xue et al. 2005]. Table VIII presents the comparison of our experimental
results to the six methods of [Si and Jin 2003], i.e., the two extensions of the Aspect
Models (AM c,AM d, see [Si and Jin 2003]), ‘Personality Diagnosis’ (PD) ([Pennock
et al. 2000]), the user-based Pearson Correlation Coefficient (PCC) ([Breese et al.
1998]), Vector Space (VC), and, Flexible Mixture Model (FMM) ([Si and Jin 2003]).
On the Eachmovie 1 data set, our method outperforms all of these methods in
all configurations. In the MovieLens 2 data set, only FMM attains comparable
results. However the FMM method has more computation complexity than our
unified model in the online recommendation phase as it requires the EM iterations
called “fold-in” to find both the hidden user clusters and item clusters for new
users.

Table IX shows our experimental results as well as the results listed in [Xue et al.
2005], i.e., the cluster-based Pearson Correlation Coefficient (SCBPCC) and the
cluster-based collaborative filtering (CBCF) ([Xue et al. 2005]), the Aspect Mod-
els (AM) ([Hofmann 2004]), ‘Personality Diagnosis’ (PD) ([Pennock et al. 2000]),
and the user-based Pearson Correlation Coefficient (PCC) and Vector Space (VC)
([Breese et al. 1998]). For both two test sets, our method outperforms these meth-
ods in all configurations. By unifying the ratings from both user and item aspects
for prediction, our unified relevance model is found to be effective in improving the
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Table VIII. Comparison with the result reported in [Si and Jin 2003]. The MAE is
reported.

Training Users: 200 400
Given Ratings: 5 10 20 5 10 20
Unified Model 1.05 0.97 0.94 1.04 0.96 0.93
PCC 1.22 1.16 1.13 1.22 1.16 1.13
VS 1.25 1.24 1.26 1.32 1.33 1.37
PD 1.19 1.16 1.15 1.18 1.16 1.15
AM a(20) 1.27 1.18 1.14 1.28 1.19 1.16
AM a(10) 1.18 1.17 1.16 1.15 1.14 1.13
FMM 1.07 1.04 1.02 1.05 1.03 1.01

(a) the EachMovie 1 data set
Training Users: 100 200
Given Ratings: 5 10 20 5 10 20
Unified Model 0.848 0.779 0.796 0.828 0.767 0.781
PCC 0.881 0.832 0.809 0.878 0.828 0.801
VS 0.859 0.834 0.823 0.862 0.950 0.854
PD 0.839 0.826 0.818 0.835 0.816 0.806
AM a(5) 0.882 0.856 0.836 0.891 0.850 0.818
AM a(2) 0.869 0.857 0.850 0.837 0.833 0.825
FMM 0.829 0.822 0.807 0.800 0.787 0.768

(b) the MovieLens 2 data set

Table IX. Comparison with the results reported in [Xue et al. 2005]. The MAE is
reported.

Training Users: 500 2000 6000
Given Ratings: 5 10 20 5 10 20 5 10 20
Unified Model 1.061 0.969 0.938 1.054 0.957 0.921 1.061 0.954 0.918
PCC 1.157 1.075 1.048 1.124 1.052 1.020 1.118 1.039 0.988
PD 1.148 1.145 1.140 1.129 1.087 1.043 1.101 1.063 1.051
AM 1.157 1.082 1.057 1.125 1.078 1.054 1.117 1.069 1.046
CBCF 1.207 1.132 1.089 1.187 1.113 1.063 1.197 1.111 1.060
SCBPCC 1.105 1.041 1.004 1.085 1.014 0.973 1.073 1.001 0.956

(a) the EachMovie 2 data set
Training Users: 100 200 300
Given Ratings: 5 10 20 5 10 20 5 10 20
Unified Model 0.848 0.779 0.796 0.828 0.767 0.781 0.799 0.7552 0.764
PCC 0.874 0.836 0.818 0.859 0.829 0.813 0.849 0.841 0.820
PD 0.849 0.817 0.808 0.836 0.815 0.792 0.827 0.815 0.789
AM 0.963 0.922 0.887 0.849 0.837 0.815 0.820 0.822 0.796
CBCF 0.924 0.896 0.890 0.908 0.879 0.852 0.847 0.846 0.821
SCBPCC 0.848 0.819 0.789 0.831 0.813 0.784 0.822 0.810 0.778

(b) the MovieLens 2 data set

prediction accuracy for recommendation consistently.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a unified probabilistic model for collaborative filtering. We
explain how to use Parzen-window density estimation for acquiring the probabil-
ities of the proposed unified relevance model. We generalised the kernel density
estimation by applying the ‘kernel trick’, and showed that the often used cosine
measure is a suitable projection kernel function. The resulting method has been
shown to produce highly accurate predictions on common benchmark data.

The probabilistic framework calls for interesting future work. Firstly, we intend
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to explore smoothing techniques as an extra technique to tackle data sparsity. For
instance, it is possible to use interpolation smoothing to introduce a background
model into the density estimation. Secondly, we plan to look at other IR models for
collaborative filtering problems, especially in the situation where we need to pose
collaborative filtering as an item ranking problem. The well-known Probability
Ranking Principle (PRP) of information retrieval [Robertson 1997] is of particular
interest as it provides a theoretical guideline for ranking documents (items). In this
regard, we will investigate the possible usages of other ranking models such as the
language modelling of information retrieval [Croft and Lafferty 2003; Wang et al.
2006a] and the BM25 ranking formulas [Robertson and Walker 1994]. Thirdly,
to deal with different scenarios in recommender systems, we will investigate the
possible integration of other text retrieval techniques (more specifically, query ex-
pansion and relevance feedback). Fourthly, since our methods are general models
for co-occurrence data, it is also worthwhile seeking the possible usage of the mod-
els beyond collaborative filtering. We are particularly interested in applying the
unified relevance model for the unification of document and query generation in
text retrieval.
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A. CROSS-VALIDATED EM ALGORITHM

This appendix derives a cross-validated expectation maximisation algorithm to se-
lect an optimal value of the smoothing parameters hu and hi. Of course, this
depends for a large part on the data: on the number of data points and their
distribution. Other factors of influence are the Parzen window function and the
optimality criterion.
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The goal is to select hu and hi such that they maximise the likelihood function:

ĥu, ĥi = arg max
hu,hi

∏

(u,i)∈Sr

P (u, i|r)

= arg max
hu,hi

∏

(u,i)∈Sr

1
|Sr|

∑

(u′,i′)∈Sr

1
hB

u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)

(46)

It is easy to see that the joint distribution reaches an absolute maximum when
hu = 0 and hi = 0. [Duin 1976] has proposed cross-validated maximum likelihood
estimation to remove this anomaly,

ĥu, ĥi = arg max
hu,hi

∏

(u,i)∈Sr

1
|Sr − 1|

∑
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1
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u
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u− u′
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)

1
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i

K(
i− i′

hi
)

(47)

This equation can be solved using the iterative expectation maximisation (EM)
algorithm (e.g., [Paclik et al. 2000]).

The Parzen-window density estimation method can be interpreted as a gener-
ative model with a large mixture of |Sr − 1| (because of cross-validation) com-
ponent densities with equal weight, where the means of the component densities
(assuming a symmetric window function) are located at each observation. Test
samples u and i are generated from component densities with means u′ and i′, i.e.,
P (u, i|u′, i′ : hu,hi), with a prior probability of selecting that component equal to
P (u′, i′) = 1/|Sr − 1|. Applying Bayes’ rule to turn P (u, i|u′, i′) into P (u′, i′|u, i)
gives :

P (u′, i′|u, i) =
P (u′, i′)P (u, i|u′, i′ : hu,hi)∑

u′ 6=u,i′ 6=i P (u′, i′)P (u, i|u′, i′ : hu,hi)

=
(1/|Sr − 1|) 1

hB
u
K(u−u′

hu
) 1

hA
i
K( i−i′

hi
)

∑
u′ 6=u,i′ 6=i(1/|Sr − 1|) 1

hB
u
K(u−u′

hu
) 1

hA
i
K( i−i′

hi
)

=
K(u−u′

hu
)K( i−i′

hi
)

∑
u′ 6=u,i′ 6=i K(u−u′

hu
)K( i−i′

hi
)

(48)

Equation 48 gives the E-step of the EM algorithm. The M-step of the EM algo-
rithm uses a lower-bound Λ(hu, hi|h(t)

u , h
(t)
i ) to approximate the original maximum

likelihood function, and then maximises the lower-bound. The E-step and M-step
are iteratively applied until the algorithm converges to a (local) maximum [Tomasi
2004]. This lower-bound towards the log form of the cross-validated likelihood func-
tion is obtained from Jensen’s Inequality, which states that for any concave function
f , such that:

f(
∑

i

pixi) ≥
∑

i

pif(xi),

where
∑

i pi = 1, pi ≥ 0 and xi ≥ 0. Because the logarithm is concave in the range
of (0, 1], Jensen’s Inequality can be used to derive a lower bound for the likelihood
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function shown in Eq. 47:

∏

∀(u,i):(u,i)∈Sr

1
|Sr − 1|

∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1
hB

u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)

∝
∑

∀(u,i):(u,i)∈Sr

ln
( 1
|Sr − 1|

∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1
hB

u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)
)

=
∑

∀(u,i):(u,i)∈Sr

ln
( ∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

1
|Sr − 1|

1
hB

u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)
)

=
∑

∀(u,i):(u,i)∈Sr

ln
( ∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

P (t)(u′, i′|u, i)
1

|Sr−1|
1

hB
u
K(u−u′

hu
) 1

hA
i
K( i−i′

hi
)

P (t)(u′, i′|u, i)

)

≥
∑

∀(u,i):(u,i)∈Sr

∑

(u′,i′)∈Sr∧(u′ 6=u)∧(i′ 6=i)

P (t)(u′, i′|u, i) ln
1

|Sr−1|
1

hB
u
K(u−u′

hu
) 1

hA
i
K( i−i′

hi
)

P (t)(u′, i′|u, i)

=Λ(hu, hi|h(t)
u , h

(t)
i )

(49)

Thus we have the following lower-bound towards the log form of the cross-validated
likelihood function:

Λ(hu, hi|h(t)
u , h

(t)
i ) =

∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr−1|
1

hB
u
K(u−u′

hu
) 1

hA
i
K( i−i′

hi
)

P (t)(u′, i′|u, i)

=
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr − 1|
1

hB
u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)

−
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln P (t)(u′, i′|u, i)

(50)

The last term can be dropped since it is independent of hu and hi:

h(t+1)
u =arg max

hu

Λ(hu, hi|h(t)
u , h

(t)
i )

= arg max
hu

∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr − 1|
1

hB
u

K(
u− u′

hu
)

1
hA

i

K(
i− i′

hi
)

(51)

Solve the maximisation problem of Eq. 51 by taking the derivative of Λ with respect
to hu. In the case of a Gaussian kernel, first convert the product inside the natural
logarithm into a sum of −B ln hu, − ||u−u′||2

2hu
2 and a part that does not depend on
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hu:

∂

∂hu
Λ(hu, hi|h(t)

u , h
(t)
i )

=
∂

∂hu

∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i) ln
1

|Sr − 1|
1

hu
B

e
− ||u−u′||2

2hu2
1

hi
A

e
− ||i−i′||2

2hi
2

=
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
(−B

hu

+
||u− u′||2

h3
u

)

=
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
−B

hu

+
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
||u− u′||2

h3
u

=
−B|Sr|

hu

+
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)
||u− u′||2

h3
u

= 0

(52)

Therefore, we have:

h(t+1)
u =

√
1

B|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||u− u′||2) (53)

Similarly, we have for hi:

h
(t+1)
i =

√
1

A|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||i− i′||2) (54)

In all, we have our cross-validated EM algorithm to estimate the two bandwidth
parameters:

—E step:

P (t)(u′, i′|u, i) =
e
− ||u−u′||2

2hu2 e
− ||i−i′||2

2hi
2

∑
u′ 6=u,i′ 6=i e

− ||u−u′||2
2hu2 e

− ||i−i′||2
2hi

2

(55a)

—M step:

h(t+1)
u =

√
1

B|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||u− u′||2) (55b)

h
(t+1)
i =

√
1

A|Sr|
∑

u,i

∑

u′ 6=u,i′ 6=i

P (t)(u′, i′|u, i)(||i− i′||2) (55c)
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