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Abstract 

Collaborative filtering is a method to make personalised recommendations on information 

items, such as books and music, for a particular individual. It does this by looking at the items 

that like-minded people prefer. Collaborative filtering is used by many popular websites. For 

instance, the online retailer Amazon uses it to identify products that are likely to be of interest 

to its customers. The video-sharing website YouTube also uses collaborative filtering, to 

recommend videos to its users. 

It has been previously shown that collaborative filtering is vulnerable to malicious 

manipulation. Attackers, who might want to make their products frequently and highly 

recommended, can try to introduce biased opinions into a recommender system. This could lead 

to unfair and inaccurate item recommendations being produced. 

This report describes work that we have undertaken to identify collaborative filtering attacks. In 

particular, we present some novel classification features that can be used to very accurately 

detect and neutralise all these attacks. These unique features are derived from observations on 

the behaviour of users. Our most successful feature uses the observation that real users’ 

opinions are not missing at random, i.e. such a user is not likely to give their opinion on an item 

they do not like. 
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1 Introduction 

The Internet is not as safe as it used to be. Fraud, phishing and spam and the like are now very 

prevalent on the Internet. Unscrupulous people have forever been trying to deceive other 

people, and this is no different on the Internet. Weaknesses in security are almost always 

exploited by adversaries, especially if they can gain something from doing so. 

Nowadays, there are a seemingly infinite number of items vying for our attention. This can be 

readily seen on the Web, such as in online stores, news sites and—of course—search engine 

results pages. Consequently, we expect ways to whittle available items down so that only 

relevant ones are left. Probably the most simplest and obvious approach would be to present a 

sorted list of the, say, five most popular items on offer. The BBC News website actually does 

this, showing each visitor its five currently most read stories (see Figure 1 below). While this 

has some value, what if the user is not interested in any of the stories? Or, what if a story the 

user would find interesting is not shown? And, what if they have already read one of the 

stories? Well the solution here would be to personalise the list of news stories for each 

individual user. 

 

Figure 1: Screenshot of the five currently most read stories on the BBC News website (news.bbc.co.uk) as at 

10:08 on 10 August 2008. 

Such personalised recommendation lists can be produced using recommender systems, which 

try to identify items that are likely to be of interest to a particular user. To do this, a 
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recommender system might compare the user’s preferences with those of the other users of the 

system, e.g. if Boris and Dave have similar tastes, Boris is likely to be interested in the items 

that Dave likes. This is a common recommendation technique, and is called collaborative 

filtering [1]. Moreover, it is the focus of this report. Collaborative filtering can be viewed as a 

scaled up, on-demand version of traditional word of mouth recommendation. 

Users give their opinion on items to a collaborative recommender system, so that it can gauge 

who shares similar preferences. However, an unscrupulous person could be masquerading as 

one or more users. Suppose their objective is to make a certain item highly recommended. They 

could try to achieve this by introducing biased opinions on the item into the recommender 

system. This could lead to the item, which the attacker may have a special interest in, being 

recommended to more people than usual. The motivation is clear: highly recommended items 

tend to attract more interest. Continuing the previous example, the situation is similar to Gordon 

befriending Boris solely to make Boris buy a book that he wrote himself. 

Collaborative filtering is seen as one of the most effective ways to alleviate information 

overload. The fact that a large number of high-profile websites, including Amazon, YouTube, 

and Last.fm, implement collaborative filtering is testimony to this. Therefore, the integrity of 

collaborative recommender systems is worth protecting. 

1.1 Scope 

This report concentrates on what are called profile injection attacks in the collaborative filtering 

literature. In particular, the emphasis is on understanding and characterising the Random, 

Average and Bandwagon profile injection attacks. The overriding aim of our project was to 

develop a new way to detect these attacks, because current methods for this purpose are far 

from perfect. This is especially true for the Average attack. This is the strongest attack, but 

because of this it turns out to be the hardest to detect too. So detection of the Average attack 

was given priority during the project. 

1.2 Outline 

Chapter 2 first introduces the collaborative filtering problem, some definitions that are used 

throughout this report, and two commonly used collaborative filtering algorithms (including 

how they work). Next, attacks on these algorithms from the literature are introduced and 
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discussed. All these attacks use a technique called “profile injection”. Finally, the chapter looks 

at how these profile injection attacks are currently being detected. 

Chapter 3 proposes three measurable properties (features) of the attacks that were defined in 

Chapter 2, for the purpose of attack detection. These features are called Ratings Missing At 

Random (RMAR), Rated Items Consistency (RIC) and Maximum Ratings (MaxRatings). 

Chapter 4 evaluates the new features proposed in Chapter 3, through some experiments on a 

widely used film rating data set. 

Chapter 5 concludes this report and discusses possible directions for future work. 

1.3 Main Contributions 

The main contributions of our project are: 

• New classification features that facilitate more successful detection of current profile 

injection attacks on collaborative filtering. The best feature is called RMAR and is 

shown to accomplish perfect or near-perfect detection of current profile injection 

attacks, including the traditionally difficult to detect Average attack. (Chapters 3 and 4) 

• A new class of profile injection attack that is more difficult to detect than existing 

attacks. (Chapter 3) 

• A formal treatment of the complexity of actually mounting a profile injection attack. 

(Chapter 2) 

• The collaborative filtering source code written for experiments will imminently be 

integrated into the UCL PANDA open source information retrieval platform1. 

(Appendix) 

                                                 

1 More information about this software is available at http://www.adastral.ucl.ac.uk/~junwang/ 
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2 Related Work 

This chapter first gives a detailed introduction to collaborative filtering and profile injection 

attacks. After this, the current defences against profile injection attacks are presented. 

Substantially more emphasis is given to the defence presented last, because this report builds on 

it. 

2.1 Collaborative Filtering 

Collaborative filtering uses the assumption that similar people like—as well as dislike—the 

same items. Conceptually, to create personalised recommendations for a given user, a 

collaborative recommender system will first try to identify a group of other users who have the 

most similar preferences to the user. Items that are popular amongst this group are then 

recommended to the user. 

Collaborative filtering is widely used and actively researched. Collaborative filtering is 

implemented by various websites, including but not limited to Amazon, Apple’s iTunes Store 

and—the eBay owned—StumbleUpon. 

Two popular collaborative filtering algorithms are now going to be introduced. Both algorithms 

output a number indicating how likely a given user will be interested in a given item. These will 

be called the test user and test item respectively from now on. Both algorithms also make use of 

a rating matrix R: Let U = {1, 2, …, m} be the set of users, I = {1, 2, …, n} the set of items, and 

R the set of possible numerical ratings that a user can give to an item. R is depended on the 

application, so for example it could be [1, 10]. Then R = (ru,i)m x n where ru,i ∈ R represents user 

u has rated item i with ru,i while ru,i = Ø means u has not yet rated i (or has chosen not to rate it). 

Moreover, user u’s (user) profile UPu = {(i, ru,i) : ru,i ≠ Ø} and similarly item i’s (item) profile 

IPi = {(u, ru,i) : ru,i ≠ Ø}. In other words, u’s user profile is the set of items that u has rated along 

with the associated ratings. And i’s item profile is the set of users that have rated i along with 
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their respective ratings. So row u of R roughly corresponds to user u’s profile, whereas column 

i of R approximately corresponds to item i’s profile. Figure 2 below illustrates this. 

 

Figure 2: A fictitious rating matrix with 8 users and 12 items. User 5’s and item 7’s ratings are highlighted. 

Null ratings are not explicitly shown, and are represented here by blank cells. 

In Figure 2, user 5’s profile is {(3, 4), (5, 5), (6, 1), (7, 2), (8, 3), (9, 4), (10, 5)} and item 7’s 

profile is {(2, 4), (3, 3), (5, 2), (6, 3), (8, 5)}. The size of a user or item profile is defined as the 

number of ratings it contains (the cardinality), so the sizes of user 5’s and item 7’s profile are 7 

and 5 respectively. By definition, the size of u’s user profile is equal to the number of items that 

u has rated. 

New users initially start with an empty user profile (row). Each user can change the contents of 

their user profile (by adding item ratings), but obviously not that of another user. In other 

words, a user has control of only his or her assigned row in R. A collaborative filtering 

algorithm uses a rating matrix to associate a rating prediction to each pair of users and items. 

This is illustrated below in Figure 3. A rating prediction on item i for user u is a guess at what 

rating u would have given to i. So the job of a collaborative filtering algorithm is essentially to 

accurately fill in the blanks of a given rating matrix. 
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s r 

R 

(u, i) 

 

Figure 3: A collaborative filtering algorithm, s, which uses rating matrix R. r is the rating prediction on item 

i for user u. So r represents how likely user u will be interested in item i. 

The first collaborative filtering algorithm that will be introduced concentrates on the similarities 

between users, while the second focuses on item similarity. Both are reasonably accurate and 

widely used. 

2.1.1 User-Based Collaborative Filtering 

In user-based collaborative filtering [2], a test item’s rating is predicted for a test user using the 

similarities between their user profile and those of the other users. For example, if Boris and 

Dave have similar tastes then Boris is likely to be interested in the items that Dave likes, and 

vice versa. A high-level description of the user-based collaborative filtering procedure follows. 

1. Start with all the other users’ profiles (i.e. all but the test user’s profile). 

2. Disregard any user that has not rated the test item, leaving only the user profiles that 

contain a rating for that item. 

3. Ignore any remaining user profile that is considered to be too dissimilar to that of the 

test user’s profile. 

4. Combine the ratings for the test item from the left over user profiles to form the required 

rating prediction, giving extra preference to ratings coming from the more similar users. 

Filtering of users occurs in Step 2 and 3, and then a rating is collaboratively predicted in Step 4. 

Similarity between two user profiles in Step 3 can be quantified using Pearson’s correlation or 

cosine similarity [3]. The former is defined as: 
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where u, v ∈ U are two users, J ⊆  I is the set of items that u and v have both rated (i.e. J = {i ∈ 

I : ru,i ≠ Ø and rv,i ≠ Ø}, and wr  is the average of the ratings in w’s user profile UPw. While this 

is a slightly modified version of the standard Pearson’s correlation, because of J, this function’s 

range is still [-1, 1]. Here 1 represents maximum similarity between u and v, while -1 signifies 

maximum dissimilarity. The similarities between the test user and every other user are 

computed to determine which need to be filtered out. Two commonly used strategies for this are 

to either keep: the k users that are most similar to the test user (k nearest neighbour approach); 

or, all users that have a similarity above a certain threshold (such as 0.1 for Pearson’s 

correlation). For the nearest neighbour approach, k = 20 is normally satisfactory. 

For Step 4, ratings from the remaining users (from Step 3) can be combined together by taking a 

weighted average. More precisely: 

 

where u ∈ U and i ∈ I are the test user and test item respectively, and V is the set of remaining 

users. 

2.1.2 Item-based Collaborative Filtering 

In item-based collaborative filtering [4], a rating for a test item is predicted for a test user via 

item profile similarities—instead of user profile similarities, as in the user-based approach. The 

item-based method is somewhat less obvious than the user-centric method, but the outcome is 

still the same. The assumption here is that the test user likes and dislikes similar items. For 

example, if they highly rated the James Bond film Casino Royale then they are likely to enjoy 

its sequel, Quantum of Solace, as well. The similarity between two items comes from the 

ratings given to them (i.e. similarity of the two respective item profiles). A high-level 

description of item-based collaborative filtering follows. 
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1. Start with all the other items’ profiles (i.e. all but the test item’s profile). 

2. Disregard any item that has not been rated by the test user, leaving only the item profiles 

that contain a rating from that user. 

3. Ignore any remaining item profile that is considered to be too dissimilar to that of the 

test item’s profile. 

4. Combine the ratings given by the test user to the left over items to form the required 

rating prediction, giving extra preference to ratings coming from the more similar items. 

Filtering of items occurs in Step 2 and 3, and then a rating is collaboratively predicted in Step 

4. Similarity between two item profiles in Step 3 can be measured using Pearson’s correlation 

or cosine similarity. The latter has been adapted for the purpose of collaborative filtering, and is 

defined as: 

 

where i, j ∈ I are two items, V ⊆  U is the set of users that have rated both i and j (i.e. V = {u ∈ 

U : ru,i ≠ Ø and ru,j ≠ Ø}, and vr  is the average of the ratings in w’s item profile IPw. This differs 

from the standard cosine similarity formula in two ways, because of V and the subtraction of the 

user rating means. The similarities between the test item and every other item are calculated, 

and dissimilar items can be filtered out using one of the methods described above in the user-

based approach (nearest neighbour or threshold). 

For Step 4, ratings from the remaining items (from Step 3) can be combined together by taking 

a weighted average. More precisely: 
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where u ∈ U and i ∈ I are the test user and test item respectively, and J is the set of remaining 

items. 

Item-based collaborative filtering is more scalable than the user-based method, because item 

similarities usually stabilise, rarely fluctuating significantly after a short period of time—so the 

output of w can be cached for quicker performance. 

2.1.3 Why Recommender Systems are Targeted 

With the increasingly competitive marketplace that most manufacturers experience, it is in their 

interest to have their goods frequently and highly recommended. Normally this is achieved by 

producing quality products with a unique selling point. Thus, companies that make inferior 

items do not benefit from the increased sales that the rest enjoy. This could lead to dishonest 

companies attempting to force their goods to be unjustifiably highly recommended. If they are 

successful in doing this then various parties are affected. Honest manufacturers are affected, 

because their possibly more suitable products are obscured—so they may see fewer sales. 

Consumers are also affected, because they would receive biased recommendations. If customers 

experience this a lot then their trust in the recommender system is likely to diminish. This is 

also undesirable for the business operating the recommender system, because of the investment 

made in it. Moreover, dishonest companies would effectively be gaining free advertising from 

the operator. 

2.2 Profile Injection Attacks on Collaborative Filtering 

Most collaborative filtering algorithms—including the aforementioned user and item-based 

ones—assume that the ratings they use to calculate recommendations are unbiased, and an 

entirely true representation of what all the users think of the items they rated. However, due to 

the open nature of collaborative filtering, a malicious user can easily give misleading item 

ratings. This could lead to honest users receiving inaccurate predictions. Moreover, these users 

would find it difficult to immediately tell if a rating prediction is accurate, because all they 

know is that some users with similar profiles to them gave a like rating. 

It is assumed that the malicious user here wants to affect the rating prediction on a particular 

target item for a subset of target users (which could be the whole set of users). The attacker will 

attempt this by inserting a fake user profile that contains a biased rating for the target item. It is 
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also, of course, assumed that the attacker cannot see the rating matrix used by the collaborative 

filtering algorithm. Thus, he can only inject new user profiles into the recommender system. 

The reader might have already worked out how an attacker can manipulate the user-based 

collaborative filtering algorithm. But if not, the answer lies in Step 2 and 3 of its high-level 

description. It should be obvious that the attacker has to make his profile be considered in Step 

4, implying he must not be filtered out in Step 2 and 3. Getting passed the first filter is easy: 

simply provide a rating for the target item. More precisely, max R is given to increase the rating 

prediction of the target item, while min R is given to decrease it. Negotiating the second filter 

(Step 3) is much harder though. For this, the attacker has to somehow make his profile look 

similar to those of the target users. There are various strategies to achieve this, and they will be 

discussed in a later section. This is all well and good, but the attacker’s profile on its own is 

very unlikely to have a significant effect on the prediction calculation (ratings from honest users 

should overwhelm the rating from the attacker). To circumvent this problem, the attacker can 

again exploit the openness of collaborative filtering. It is normally very easy to register as a new 

user, so the attacker can build multiple profiles associated with fictitious identities. Now it is 

possible for the attacker to completely influence the rating prediction for the target item—the 

worst-case scenario. Note that as the number of attack profiles employed by the attacker 

increases, the probability of at least one of them reaching Step 4 also increases. 

Manipulating the item-based collaborative filtering algorithm is not as straightforward. This is 

because an attacker has to know at least some of the items that each target user has rated (for 

Step 2), in addition to making the target item’s profile similar to that of these items (for Step 3). 

Recall that an item’s profile contains every user that rated it (and the rating each gave). 

Therefore, a single attack profile can only add—at most—one rating to an item profile. In other 

words, an attacker does not have much influence on what an item profile looks like. This means 

that manipulating the similarities between items is relatively hard to do. However certain 

subsets of users can be targeted in this case, by carefully constructing a number of attack 

profiles [5]. 

2.2.1 The Anatomy of a Profile Injection Attack 

So as not to distract the reader, a few details were purposefully omitted from the sketch attacks 

above. These included how to generate artificial user profiles and the number of them required 
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to mount a successful attack. These aspects are the most interesting part of an attack, and 

receive special treatment in this section. 

2.2.1.1 Attack Complexity 

The literature does not treat the complexity of mounting a profile injection attack in a formal 

manner. A rational attacker will want to know the exact cost and feasibility of mounting a 

successful attack. We adopted the cryptographer Nicolas Courtois’ formal notion of security. 

He says that the security of a system is a triple: 

1. Adversarial Goal 

2. Resources of the Adversary 

3. Access to the System 

For example, the security of a certain car could be good with respect to an attacker that wants to 

(1) steal it, (2) has a toolbox, and (3) has access to the garage it is parked in. However, this may 

not hold for another triple, e.g. changing (1) to “vandalise it”. 

It has already been assumed that the adversary’s goal is to successfully mount a profile injection 

attack. With respect to system access, it is also given that the attacker can only insert new user 

profiles and ratings via legitimate channels, e.g. by clicking a “Sign up for an account” button 

on a website. Consequently, this attack vector could be guarded with proactive or reactive 

defences. For example, making users complete a CAPTCHA (Completely Automated Public 

Turing test to tell Computers and Humans Apart) before creating a new account or accepting an 

item rating may thwart an otherwise successful attack. Also related to system access is how 

much information about the underlying rating matrix is published, which could be critical to the 

effectiveness of an attack. 

Profile injection attacks require statistics about the rating matrix before they can be executed. 

Sometimes these statistics can be estimated using an outside source, e.g. the Internet Movie 

Database website displays the average user vote for each film they have. This is classed as an 

adversary resource. Another important tool for the attacker is suitable bots (software that 

automates jobs) to create fictitious users and add item ratings to their profiles quickly. One 

more equally crucial adversary resource is time. The time to create the necessary number of 

attack profiles has to be taken into account. 
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The strongest possible security notion here would be an attacker that wants to (1) alter a target 

item’s rating prediction by an infinitesimal amount, (2) has full knowledge of any security 

mechanisms employed and a copy of the rating matrix, and (3) has an infinite amount of time to 

create fictitious user profiles. This triple is, however, hardly practical. A strong, yet realistic 

triple is an adversary that wants to (1) substantially increase the rating prediction of a target 

item, (2) can find out only a limited number of statistics about the rating matrix, and (3) has a 

virtually infinite amount of time to create fictitious user profiles. 

Although there are specific attack strategies to decrease the rating prediction of a particular item 

[6], this report is not going to focus on them. This is because almost no economic advantage is 

gained by employing such attacks. Although, someone may want to use these attacks, which are 

said to “nuke” or sink an item, to damage the reputation of a company’s product. 

2.2.1.2 Attack Terminology 

This section introduces some important definitions about profile injection attacks. These 

definitions are used extensively from here on in. 

A profile injection attack involves inserting a number of user profiles, corresponding to spoofed 

identities, into a rating matrix with the intention of increasing the rating prediction of a single 

item (the target item) for a subset of users (the target users). Here, the number of profiles 

injected is a percentage of the size of U, and is called the attack ratio. So an attack with a 10% 

ratio would increase the size of U by 10%. Attacks with ratios ranging from 1% to 15% are the 

most common in the literature. The attacker uses an attack strategy to build each user profile. 

An attack strategy2 is an algorithm for generating a single user profile, called an attack profile, 

for the purpose of profile injection. The overriding objective here is to create profiles that are 

likely to be considered as similar to the target users. Making profiles that are difficult to detect 

(i.e. indistinguishable from authentic user profiles) is also important though. This is because if 

they were not, it would then be very easy to exclude them from the collaborative filtering 

process—and hence foil the attack. 

                                                 

2 Attack strategies are also referred to as “attack models” in the literature. 
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Recall a user profile—and hence an attack profile as well—is a set of item-rating pairs. Attack 

strategies essentially define how items in an attack profile are chosen and rated. They all do this 

by first partitioning the set of items I in four: IT, a singleton set composed of the target item; IS, 

a set of special items that have certain characteristics; IF, a set of filler items that are randomly 

chosen from I \ { IT ∪  IS}; and last but not least IØ, the set of remaining unrated items. Next, an 

appropriate function is applied to each item in IT, IS, and IF to compute respective ratings. These 

functions are fT : IT → {max R}, fS : IS → R, and fF : IF → R. Two attack profiles built according 

to the same attack strategy are not necessarily identical, as fS and fF are almost always 

randomised functions. The set of special items, IS, is seldom non-empty, but if it is then it is 

normally very small. Filler items are a feature of all attack profiles and represent a 

predetermined percentage of 1−I . This percentage is called the filler ratio, and is normally 

chosen such that the size of attack profiles is consistent with that of a typical authentic profile 

(to minimise the chance of detection). Thus, the majority of items in an attack profile are filler 

items. Attack strategies basically differ only in how they rate filler items (their choice of fF). 

The following pseudo-code outlines a complete generic profile injection attack. The special 

item set is not included for clarity. 

iT := the target item 
IF := {} 
filler_size := filler_ratio * (|I| - 1) 
while (|IF| < filler_size) 
{ 
    randomly choose iF from I \ {IT v IF} 
    add iF to IF 
} 
attack_size := attack_ratio * |U| 
while (attack_size-- > 0) 
{ 
    attack_profile := {} 
    add (iT, fT(iT)) to attack_profile 
    for each iF in IF 
    { 
        add (iF, fF(iF)) to attack_profile 
    } 
    insert attack_profile into rating matrix 
} 

Some well-studied attack strategies from the literature will now be introduced. Each attack 

strategy is formally defined, with definitions originating from [6] but adapted where necessary 

to integrate with the notation introduced in this section. 
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2.2.1.3 Random Attack 

The original Random attack strategy [7] was one of the first published attacks against 

collaborative filtering. The Random attack strategy simply involves rating each filler item 

around the average rating across all users/items. More formally, fF(i) outputs a random Gaussian 

distributed value with mean r  and standard deviation s, where r  is the arithmetic mean of the 

non-null elements of the rating matrix R, and s is the standard deviation of the same set of 

elements. For example, suppose the rating matrix has three users and four items and looks like 

 

then ( ) 7.39315345543 ≈++++++++=r . If item 4 is the target and 5 is the maximum 

rating, a Random attack profile with a 100% filler ratio could be {(1, 3.7), (2, 3.7), (3, 3.7), (4, 

5)}. Injecting this into the rating matrix would result in: 

 

The Random attack has a relatively low attack complexity (with respect to rating matrix access 

at least). If the average rating and spread are not publicly available, they can normally be 

accurately guessed. 

2.2.1.4 Average Attack 

The original Average attack strategy was introduced at the same time as the Random attack, in 

[7]. The Average attack strategy says that each filler item is rated around the average rating 

given by all users for that item. More precisely, fF(i) outputs a random Gaussian distributed 

value with mean ir  and standard deviation si, where ir  is the arithmetic mean of the ratings in 

i’s item profile IPi, and si is the standard deviation of the same set of ratings. Using the original 

rating matrix from the previous example, ( ) 42531 =+=r , ( ) 5.42542 =+=r , and 
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( ) 3.331453 ≈++=r . So an Average attack profile targeting item 4 could be {(1, 4), (2, 4.5), 

(3, 3.3), (4, 5)}. 

The Average attack clearly has a considerably higher attack complexity than the Random one 

(the average rating of each individual filler item has to be known). However, some websites, 

including Amazon, display the average rating given to items that they offer. But if not, average 

ratings can be estimated by, again, guessing or using an independent source. It can also be 

imagined that the adversary is cooperating with an insider who can view the rating matrix 

(insider attack). 

The Average attack has been shown to be the strongest and most effective attack strategy [8], 

offering the greatest chance of effecting a large rating prediction increase. It is easy to see why 

this is true; Average attack profiles are statistically likely to be considered similar to those of 

most genuine users. However, due to this fact alone, the Average attack has so far been the 

hardest to detect. This has resulted in the attack receiving a lot of attention from researchers. 

2.2.1.5 Bandwagon Attack 

The Average attack clearly has a high attack complexity. The Bandwagon attack strategy was 

proposed in [9] as a response to this, and is almost as effective as the Average attack. The 

Bandwagon attack strategy is defined in exactly the same way as the Random attack, except 

that the special items set is non-empty. IS contains a predetermined number of the most 

frequently rated items. And fS(i) = max R. 

The Bandwagon attack is an extension of the Random one. It has an attack complexity 

somewhere between the Random and Average attacks. Popular items can usually be identified 

using publicly available information. For instance, any book on the Richard & Judy show’s 

incredibly successful Book Club reading list enjoys bestseller status. 

2.3 Current Defences against Profile Injection Attacks 

At present, there are essentially two main methods of countering profile injection attacks. One 

is implementing robust collaborative filtering algorithms, which are not supposed to be unduly 

affected by the presence of random noise or injected attack profiles. And the other method is 

deploying an attack profile detection mechanism in front of an existing recommender system, so 

that biased profiles from an attacker (hopefully) do not enter, and its collaborative filtering 
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algorithm only sees authentic user profiles. Neither defence technique is completely impervious 

to attack profiles, with each currently having varying degrees of success. An overview of both 

follows. 

2.3.1 Robust Collaborative Filtering 

Some collaborative filtering algorithms have recently been designed from the ground up to 

withstand profile injection attacks. Dimension reducing techniques such as singular value 

decomposition (SVD) and principal component analysis (PCA) have been used to achieve this. 

The idea behind using dimension reduction is that attack profiles in a rating matrix tend to add 

very little information. 

The state of the art robust collaborative filtering algorithms [10] offer satisfactory resistance to 

Random attacks. However, Average attacks are still very effective against them. Further 

information about robust collaborative filtering algorithms can be found in [10]. 

2.3.2 Attack Profile Detection 

Genuine banknotes possess several observable features to help us distinguish them from 

counterfeit ones. These include unique feeling paper, raised print, a metallic thread, a 

watermark, high quality printing, a hologram, a ultra-violet feature, and microlettering. All of 

these features can be found on any genuine £10 note and are shown, as ordered, below in Figure 

4. 

        

Figure 4: Images of the (disclosed) security features of a £10 note, courtesy of the Bank of England. 

A decent counterfeit note will have, to some degree, most of these features (but certainly the 

most obvious ones). Thus, a perfect counterfeit note will replicate each and every feature 

flawlessly, so that even an expert cannot tell it apart from a genuine banknote. Conversely, a 

poor counterfeit note would be recognised by any member of the general public. This could be 

because of the absence of one or more features or a badly imitated feature. A trained expert will 

not rely on the presence of just one feature to recognise a genuine note, because a counterfeiter 
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may have managed to perfectly replicate it. Therefore the expert will examine each and every 

feature he is aware of. 

Like counterfeit banknotes, the vast majority of attack profiles lack certain features that genuine 

user profiles normally possess—or have peculiar features that are not common amongst genuine 

user profiles. However, the situation here is slightly more complicated, because a user with 

unusual tastes, which dramatically depart from those of the majority, may inadvertently have 

the characteristics of an attack profile. 

The problem of defending against profile injection attacks can be reduced to designing a 

classifier to detect attack profiles (similar to the banknote expert above). In particular, features 

that readily distinguish attack profiles from genuine profiles have to be identified. Given a user 

profile, a classifier will say whether it belongs to an attacker or not. Detected attack profiles can 

then be discarded. 

2.3.2.1 The Advantages of Attack Profile Detection 

Attack profile detection is in a sense analogous to detecting email spam. Email messages that 

are classed as spam can be filtered into a designated folder, for closer inspection, or simply 

trashed. Ideally, spam detection should be done before messages are delivered to email clients, 

so that they receive messages labelled as spam or no spam at all. The separation of spam 

detector and email client yields numerous benefits. Firstly, each is able to concentrate on their 

primary objective, which is accurately classifying messages and managing messages 

respectively, and do it to the best of its ability. This is consistent with the UNIX philosophy of 

doing one thing well. Another advantage is that any email client can benefit from the 

specialised spam detection, so they do not have to be overly concerned with spam. 

Likewise, using attack profile detection is beneficial, because it allows the use of any 

collaborative filtering algorithm (robust or otherwise). Suspected attack profiles can be 

discarded, instead of being inserted into the rating matrix, so that the collaborative filtering 

algorithm does not have to assume the presence of attack profiles. As a result, collaborative 

filtering researchers can concentrate on the problem of producing highly accurate rating 

predictions. On the attack profile detection side, there are also numerous benefits. If the detector 

is extensible, new features can be plugged in to improve detection of existing attacks or to 

facilitate the detection of new attacks—akin to antivirus signature updates. Due to the fact that 

user profiles are inspected individually, one at a time, this approach is indifferent to the number 
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of profiles an attacker injects (attack size), and even the number of adversaries attempting to 

manipulate the recommender system. The latter is particularly useful, because in reality it is 

highly likely that at any one time there will be multiple attackers—each using different attack 

strategies, and targeting different items. Such simultaneous attacks are rarely considered in 

robust collaborative filtering literature (their experiments only include lone attacks). So 

simultaneous attacks could ultimately be the Achilles’ heel of robust collaborative filtering 

algorithms. 

An overview of a selection of current attack profile features from the literature follows. It 

should be noted that none are perfect at detecting all attacks. 

2.3.2.2 RDMA: Rating Deviation from Mean Agreement 

In 2005, Chirita et al. introduced a feature called RDMA in [11]. RDMA is defined as: 

 

where u ∈ U, UPu is u’s user profile, IPi is item i’s profile, and ir  is the arithmetic mean of the 

ratings in i’s item profile. 

RDMA measures how much a given user’s ratings depart from those of the other users. It does 

this by inspecting each of the items that the user has rated, taking into account the difference 

between the rating given to them and their average rating. The formula also considers how 

many other users have given a rating to each of these items. This is because items with very few 

ratings are more susceptible to profile injection attacks (an attacker’s ratings for such items can 

quickly become authoritative). Thus an attack profile is expected to have a relatively large 

RDMA value. 

2.3.2.3 WDA: Weighted Degree of Agreement 

In 2006, Williams et al. proposed a feature called WDA, which is derived from RDMA, in [12]. 

WDA is defined as: 
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where u ∈ U, UPu is u’s user profile, IPi is item i’s profile, and ir  is the arithmetic mean of the 

ratings in i’s item profile. WDA is precisely the summation component of RDMA. 

2.3.2.4 WDMA: Weighted Deviation from Mean Agreement 

In [12] Williams et al. also introduced another RDMA derivative, called WDMA and is defined 

as: 

 

where u ∈ U, UPu is u’s user profile, IPi is item i’s profile, and ir  is the arithmetic mean of the 

ratings in i’s item profile. WDMA is identical to RDMA except that the denominator inside the 

summation is squared. As a result, WDMA places more emphasis on rated items with fewer 

ratings from other users. 

2.3.2.5 DegSim: Degree of Similarity with Top Neighbours 

In [11] Chirita et al. also proposed a feature called DegSim, which is defined as: 

 

where u ∈ U, and V is a set of a pre-specified number of the most similar users to u according 

to wpearson, the user similarity measure defined in Chapter 2. DegSim is the average similarity 

between a given user and its V  nearest neighbours. The reasoning behind this feature is that 

attack profiles—by design—exhibit an unusually high amount of similarity between genuine 

users. So attack profiles are expected to have a high DegSim value. 

2.3.2.6 LengthVar: Length Variance 

In 2006, Burke et al. introduced the LengthVar feature in [14], which is defined as: 
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where u ∈ U, UPw is w’s user profile, and l  is the average user profile size for the users in U. 

The LengthVar feature measures how much a given user’s profile size deviates from that of the 

other users. Assuming there are a large number of items, it is likely that a genuine user would 

(and could) only rate a small proportion of these. This is in contrast to an attacker equipped with 

an automated means of adding item ratings, which can rate a large number of items in a short 

period of time. Thus, attack profiles with a significantly large filler ratio will have a noticeably 

high LengthVar value. 

The LengthVar feature was designed to target attack profiles containing an exceptionally large 

number of filler items. It does a good job of this, but LengthVar is of limited use however. This 

is the case because large attack profiles are not common (higher attack complexity), and not as 

effective as attack profiles that are around the same size of genuine user profiles anyway. 

Moreover, user profiles belonging to new users are almost always disproportionately small 

initially. So until a new user has rated enough items, they are likely to be considered as an 

attacker by LengthVar, which may lead to the possibility of a false alarm. 
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3 Novel Features for Detecting Attack 

Profiles 

This chapter proposes three original features for the purpose of user profile classification. The 

new features are the crème de la crème of the ones that were conceived by us. Each looks at 

unique aspects of attack profiles that have yet to be studied in the literature. Moreover, they are 

applicable to all current attack strategies. 

In our opinion, existing features work at the wrong abstraction levels to reliably differentiate 

attack and genuine user profiles. For instance, Average attack profiles are mostly composed of 

ratings such that when looked at individually, it is impossible to accurately say whether they 

originated from a genuine user or an adversary. This is probably the main reason why the 

Average attack has been so good at evading detection. To tackle this problem, we did what 

clever people do when they want to solve a traditionally difficult problem: avoid it. To be more 

precise, we approached the problem from a different angle. 

Instead of looking one at a time at each rating that a particular user has given, we looked at 

them as a whole and concentrated on what items they rated, not how they rated them. This 

dramatically departs from the approach taken by most other people. Two of the features that are 

proposed (RMAR and RIC) take advantage of this novel approach and yield statistically perfect 

profile classification, accurately detecting all current attacks in experiments. In the light of these 

results, we have modified the current attack strategies to create a new class of attack that is 

more resistant to detection. 

3.1 RMAR: Ratings Missing At Random 

For [15] some users of Yahoo’s Internet radio service, LAUNCHcast, were asked about how 

they rate the songs it plays. In one question they were asked how often they would rate a song 

given their preference for it. The results from this user study (summarised below in Table 1) 
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show that these two aspects are related, such that LAUNCHcast users are much more likely to 

rate songs that they love than ones they hate. 

 Rating Frequency 

Preference Level Never Infrequently Often 

Hate 6.76 % 3.22 % 90.02 % 

Do Not Like 4.69 % 8.61 % 86.70 % 

Neutral 2.33 % 34.33 % 63.33 % 

Like 0.11 % 2.02 % 97.87 % 

Love 0.07 % 0.55 % 99.37 % 

Table 1: Reproduced results of a LAUNCHcast user survey [15], where participants were asked how often 

they would rate a song given their preference for it. 

The frequency distribution of ratings in a well-known film and book data set are consistent with 

this user study. These are illustrated below in Figure 5. Note the bias towards higher ratings in 

both cases. The film data set is actually used in our experiments. 
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Figure 5: Graphs of the frequency distribution of ratings in a particular MovieLens (left) and the Book-

Crossing (right) data set. Greater ratings indicate more liking for a film/book. 

Assuming these results hold for all rating data sets used for collaborative filtering, this implies 

that genuine users are more likely to provide a rating for items that they like than ones that they 

do not. More precisely, for the cognoscenti, most absent ratings for genuine users should not be 

missing at random (MAR). Conversely, attack profiles—since they are always mainly 

composed of randomly chosen (filler) items—will by definition have a lot of absent ratings that 

are MAR. Thus the presence of a large proportion of MAR ratings is a feature of attack profiles, 

but not of genuine user profiles. While many researchers have proposed features based on the 
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randomness of item ratings to detect attack profiles, none have exploited the randomness of 

chosen filler items. 

We needed a way to accurately measure this feature, which is now called Ratings Missing At 

Random (RMAR). Notice that a pair of two distinct items chosen at random is unlikely to have 

similar item profiles —especially when the population of items is large. Consequently, each pair 

of rated items in an attack profile is not likely to be similar, whereas the opposite of this is more 

probable for genuine user profiles. With a set of user profiles known to belong to genuine users, 

item similarity can be quantified using the adjusted cosine similarity measure, wcosine (from the 

item-based collaborative filtering algorithm, which is defined in Chapter 2). Recall that for two 

items, wcosine gives the strength of similarity between them, with 1 and –1 represent absolute 

similarity and dissimilarly respectively. As a result the function RMAR: nI  → [-1, 1] is defined 

as: 

 

where i1, i2, …, in are the items in a user profile, and wcosine is a function defined in Chapter 2. 

So, here the similarity of each unique pair of items rated by a user is calculated, summed 

together, and then normalised. This result is negated so that a positive value signifies a high 

proportion of ratings missing at random present, while a negative value indicates a low amount. 

Therefore we would expect attack profiles to have a positive RMAR, whereas genuine user 

profiles have a negative RMAR. Moreover, the magnitude of the result represents the amount of 

confidence we have in either result. Ideally, the outputs of wcosine should be cached. This makes 

real-time attack detection much more feasible. The outputs can be cached, because they do not 

usually fluctuate after items have received a sufficient number of ratings from users. 

The key assumption with RMAR is that item similarities (the outputs of wcosine) are reasonably 

accurate. This in turn means that the item profiles that wcosine uses are assumed to be mature and 

stable. This is actually a fair assumption, and is precisely the one that the item-based 

collaborative filtering algorithm makes. It is also assumed that genuine users rate items in a 

non-random, reasoned fashion. 

In theory, as the number of randomly chosen filler items in an attack profile increases, the more 

likely it is that it will have a high RMAR, and therefore be more noticeable. This is very 
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advantageous, because the attack complexity now increases as the number of filler items in an 

attack profile grows. This is very pertinent, because increasing the size of an attack profile is 

traditionally not seen to be expensive to an attacker (they could simply rate another randomly 

chosen item). Because of RMAR, filler items now have to be chosen more intelligently, in a 

non-random fashion. Another major advantage of the RMAR feature is that it is applicable to all 

current attack strategies. This is because each attack makes use of randomly chosen filler items 

that make up the bulk of an attack profile. 

There is however three possible scenarios where RMAR may come unstuck, unable to clearly 

differentiate between genuine users and attackers. One is when any user profile, genuine or 

otherwise, contains very few rated items. This is because such profiles may have a 

disproportionate RMAR value, since there is little evidence to go on. Likewise, genuine users 

that are unconventional in the way that they rate items may have a RMAR value similar to that 

of attack profiles. This could be the case because such users deviate from the norm too much, 

seemingly choosing items to rate randomly—what RMAR uses to separate attack profiles from 

genuine ones. Finally, RMAR may be ineffective against Bandwagon attacks with a very large 

number of special items, because these frequently rated items could be similar to each other. 

3.1.1 RMAR-Resistant Attacks 

For an attack profile to receive a favourable RMAR value, the adversary would need to gather 

knowledge of potential filler items that are likely to be similar to each other—on top of 

whatever other information their strategy requires. The new RMAR feature uses the fact that all 

current attack strategies select filler items randomly. More precisely, each item distinct from the 

target one and not already a special or filler item has an equal probability of being chosen. 

Therefore, it would be interesting to see if attack strategies that choose filler items based on 

popularity can go undetected. This is exactly what is done in our experiments. 

Existing attack strategies (including the Random, Average, and Bandwagon ones) can be 

modified to choose filler items proportionately to their popularity. Popular items are used in the 

hope that RMAR will think these items are similar. More formally, an item i is selected to be a 

filler item with a probability of ∑ =

I

j ji IPIP
1

. Note that unpopular items still have a chance of 

being selected. In practice a roulette wheel, where probabilities are proportional to item 

popularity, is used to choose filler items. An attack strategy that chooses filler items like this is 

going to be said to use “popular filler items”, e.g. Average attack with popular filler items. 
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All current attacks use filler items that are simply chosen at random. Because this new attack 

class requires the additional knowledge of which items are popular, it has the highest attack 

complexity of all (on paper at least). However, this information may be available publicly. It 

may even be available from the operator of the target recommender system. For example, the 

Amazon website conveniently displays its 100 bestsellers in any category (e.g. books)—and 

updates them hourly. Other information sources include the likes of the UK singles and album 

charts. 

3.2 RIC: Rated Items Consistency 

The RMAR feature does not consider the item ratings in a user profile—just the items 

themselves. Consider the case when RMAR encounters a pair of items that are totally 

dissimilar. If the user happened to rate one of these items with the smallest possible rating and 

the other with the largest allowable rating, he would still be penalised. RMAR has been 

extended to take into account the consistency of item ratings (rated items consistency). The 

function RIC: nn RI ×  → [-1, 1] is defined as: 

 

where i1, i2, …, in are the items in a user profile, and r1, r2, …, rn are the corresponding ratings. 

RIC is identical to RMAR except that it scales wcosine, and does not negate the double 

summation so that higher RIC values indicate more item consistency. Thus, only genuine users 

are expected to receive a positive RIC value. 

3.3 MaxRatings: Maximum Ratings 

It has been noticed in experiments that attack profiles tend to have a very low proportion of 

items rated with the maximum possible rating (or a rating very close to the maximum). This 

could be because the majority of items in an attack profile are either rated: around their 

respective average ratings (in the case of the Average attack); or, the overall average rating (for 

the Random and Bandwagon attacks). So an attacker’s ratings rarely stray too far from the 

norm, which is unlikely to be close to the maximum allowable rating. Only the target item is 

given an extreme rating by an attacker. Contrast this with genuine users, who reserve the 

maximum possible rating for items they love (and the minimum rating for items they hate). 
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Because people normally have several favourite items, a genuine user’s profile is likely to 

contain a number of maximum ratings. The maximum allowable rating also has a psychological 

meaning to people, given to items that completely meet their needs. Thus, it is expected that 

genuine user profiles contain more maximum ratings than those of attackers. Consequently the 

function MaxRatings: U → [0, 1] is defined as: 

 

where UPu is u’s user profile, and δ is a small positive number. 

The dual to MaxRatings is Minimum Ratings (MinRatings), which looks at the proportion of 

user ratings close to min R. In preliminary tests MinRatings performed very poorly, which was 

quite surprising as the above reasoning for MaxRatings should logically be valid for minimum 

ratings too. However, on closer inspection of the profiles of some genuine users, it was found 

that they usually only contain a small proportion of items rated with the minimum allowable 

rating. This is actually consistent with the results from the LAUNCHcast user survey above. 
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4 Experiments 

This chapter presents the results from experiments that investigated the properties of the new 

classification features proposed in Chapter 3. In particular, we determined the new features are 

better than existing ones at detecting attacks, and established when the new features work well 

(and not so well). We experimented on a commonly used collection of ratings. 

4.1 The Data Set 

The MovieLens data set consisting of 100,000 ratings3 has been more or less adopted as the 

standard for collaborative filtering experiments. A group within the University of Minnesota 

compiled the data set. It contains 100,000 ratings from 943 users on 1682 films (items). Each 

user has rated 20 or more films, and each rating is an integer ranging from 1 to 5, inclusive. 

Greater ratings indicate more liking for a film. The mean rating is 3.5 (1 dp) and the ratings 

have a standard deviation of 1.1 (1 dp). The average user profile size is 106.0 (1 dp) with a 

standard deviation of 100.9 (1 dp). Additionally, the median profile size is 65. Therefore, to 

avoid being too overt, attack profiles should be around these sizes, which correspond 

approximately to filler ratios of 6% and 3% respectively. 

We assumed that the MovieLens data set does not contain any ratings from an adversary. Hence 

all the 943 users were assumed to have provided completely honest item ratings. 

4.2 Results 

What follows are the results from a selection of experiments. 

                                                 

3 At the time of writing, this MovieLens data set is available at http://www.grouplens.org/node/73 
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4.2.1 Detection of Average Attacks using New Features 

All the new features proposed in Chapter 3 were individually evaluated, and contrasted with the 

state-of-the-art features defined in Chapter 2. To do this, the user profiles from the MovieLens 

data set were randomly split into two halves. The first half was designated as the training set, 

and the other was the test set (of genuine user profiles). The training set was used by the 

classifiers, and as a basis for statistics to create test attack profiles. For a particular attack and 

filler ratio, an attack profile was generated and then added to the test set. More attack profiles 

were added until there was exactly the same number of attack profiles as there were genuine 

ones. So the size of the final test set were twice that of the original test set. Each attack profile 

was created with a fresh set of filler items and target item. As discussed in Chapter 2, note that 

the attack ratio is irrelevant here. The test set was used only to assess the accuracy of a 

classifier, and was unseen by the classifier whilst being trained. 

To evaluate the individual features, a simple binary classifier that uses a threshold to 

discriminate between attack profiles and genuine ones was used. The performance of this 

classifier—and hence the features—was measured via receiver operating characteristic (ROC) 

analysis [16]. ROC analysis originates from signal detection theory, and is used in many fields 

including machine learning. The principal tool is the ROC curve, which is a graph of the 

fraction of hits (the hit rate) and fraction of false alarms (the false alarm rate) made by a binary 

classifier as its threshold is varied. The false alarm rate is on the x-axis of the graph, while the 

hit rate is on the y-axis. The terms hit, correct rejection, false alarm, and miss in this context are 

defined below: 

• A hit is said to occur here if the classifier says an actual attack profile belongs to an 

adversary. This is also called a true positive (TP). 

• A correct rejection happens if the classifier says an actual genuine user profile belongs 

to a real user. This is also called a true negative (TN). 

• A false alarm happens if the classifier says an actual genuine user profile belongs to an 

attacker. This is also called a false positive (FP). 

• A miss occurs if the classifier says an actual attack profile belongs to a genuine user. 

This is also called a false negative (FN). 
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We used ROC curves, because they intuitively visualise the trade-off between different hit and 

false alarm rates. While ROC curves are very useful for visualising and tuning the performance 

of classifiers, this is subjective as it is difficult to accurately compare curves. Fortunately, 

several statistics can be derived from a single ROC curve. One is the area under the ROC curve 

(AUC) statistic, which is what the machine learning community tends to prefer. The AUC 

statistic will thus always assume a value in [0, 1]. Higher values indicate better accuracy here, 

with 1 signifying perfect detection. An AUC less than or equal to 0.5 means that using the 

classifier in question is worse than just randomly guessing the classification of a user profile. 

Suppose that attack profiles normally have a high value for a certain feature. The AUC has a 

nice property in that it is equal to the probability that a random attack profile is given a higher 

feature value than a random genuine user profile. The AUC was computed using this 

established formula: 

 

where G is the Gini coefficient: 

 

where each (Xk, Yk-1) is a point on a ROC curve such that the sequence (Xk) is monotonically 

increasing. So Xk is a false alarm rate and Yk is its corresponding hit rate value. In effect, the 

AUC is approximated via the trapezium rule (a method to estimate a definite integral) and the 

penultimate equation. 

The opening experiment looks at how the features fare against the Average attack, which has so 

far been the hardest to detect accurately. A test set was generated as per the stated method 

above using a 3% filler ratio. This filler ratio was found to yield the most effective attacks, 

which is consistent with other work, e.g. [6]. Three is also the median percentage of items that 

users in the training and test set rated, so the LengthVar feature was not be called upon. Figure 

6 below shows the resultant ROC curves for each feature. 
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Figure 6: ROC curves indicating how well each feature detects some Average attack profiles with a 3% filler 

ratio. Corresponding AUC statistics (3 dp): RMAR, 0.999; RIC, 0.998; MaxRatings (δ = 0.25), 0.855; 

RDMA, 0.957; WDA, 0.797; WDMA, 0.919; DegSim (100 nearest neighbours), 0.991. 

From Figure 6 it is clear to see that RMAR and RIC, while not perfect, are excellent features 

and outperform the ones proposed by others. So for this particular test set, RMAR would 

correctly rank a random attack profile and genuine profile with a 99.9 percent chance. DegSim 

is a reasonable feature here. This is to be expected, as Average attack profiles are constructed 

such that they are considered similar to as many users as possible. The MaxRatings feature is 

satisfactory, but certainly not outstanding. 

To see if RMAR and RIC are actually better than the current features at detecting the Average 

attack, a significance test was carried out. A paired t-test was used, with a significance level of 

0.01 (1%). Ten fresh, randomly generated test sets were used in this significance test. Table 2 

summaries the results from this experiment. 



 Experiments | 34 

 Filler Ratio 

Feature 1% 3% 6% 10% 

RMAR 0.996 1.000 1.000 1.000 

RIC 0.994 0.999 0.999 0.999 

MaxRatings 0.795 0.887 0.910 0.932 

RDMA 0.925 0.955 0.959 0.966 

WDA 0.455 0.771 0.910 0.970 

WDMA 0.871 0.915 0.921 0.934 

DegSim 0.943 0.986 0.930 0.746 

(a) Mean AUC statistics (3 dp) 

 Filler Ratio 

Feature v Feature 1% 3% 6% 10% 

RMAR v RDMA 0.000 0.000 0.000 0.000 

RMAR v WDA 0.000 0.000 0.000 0.000 

RMAR v WDMA 0.000 0.000 0.000 0.000 

RMAR v DegSim 0.000 0.000 0.000 0.000 

RIC v RDMA 0.000 0.000 0.000 0.000 

RIC v WDA 0.000 0.000 0.000 0.000 

RIC v WDMA 0.000 0.000 0.000 0.000 

RIC v DegSim 0.000 0.000 0.000 0.000 

RMAR v RIC 0.001 0.002 0.010 0.004 

(b) Associated p-values (3 dp). p-values less than or equal to 0.01 are in bold (all in this case). 

Table 2: Results of the features for 10 different Average attack test sets for each filler ratio. MaxRatings had 

δ = 0.25. And DegSim used 100 nearest neighbours. 

Table 2 shows that RMAR achieves statistically perfect detection of Average attack profiles 

with filler ratios greater than or equal to 3%. Additionally, RMAR and RIC are indeed 

significantly better at distinguishing Average attackers from genuine users than the current 

features. This is true for all the listed filler ratios, which are the most popular ones used in the 

literature. Moreover, the performance of RMAR and RIC is relatively consistent over the filler 

ratios, especially when compared to the other features. MaxRatings, RDMA, WDA and WDMA 

appear to get progressively better as the filler ratio increases. For higher filler ratios, even up to 

100%, RMAR exhibited comparable results. This was predicted to happen in Chapter 3. For the 

sake of brevity, these results are omitted. 

Table 2 also reveals a rather surprising result: RMAR is marginally better than RIC. Recall that 

RIC is an extension of RMAR, and uses some rating data while the latter does not at all. This 
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could suggest that, at least from the point of attack detection, rating values are not as important 

as the actual items that have been rated by a particular user. 

The DegSim results in Table 2 indicate when the Average attack is most effective. The 

performance of DegSim peaked at the 3% filler ratio. This could mean that a filler ratio around 

the median proportion of items rated by genuine users (3% for the data set under consideration) 

is optimal. 

4.2.1.1 Detection of Small Attack Profiles using RMAR 

The RMAR feature measures the degree of similarity between items within a single user profile. 

Thus, it would be very interesting to see how the feature is affected by particularly small user 

profiles. It was hypothesised in Chapter 3 that RMAR might suffer in this situation, leading to 

genuine users who have not rated many items being treated as an attacker. This was because the 

rated items in such user profiles may inadvertently look like random selections. This is a very 

important aspect, because all genuine users’ profiles start empty and will likely still be 

considered as small during their infancy, until enough ratings have been provided. 

Now, as previously mentioned, the users in the MovieLens data set have all rated at least 20 

items (out of the possible 1682). This is reflected by 1% being the lowest filler ratio in the 

previous experiment. A 1% filler ratio in this context corresponds to attack profiles of at least 

size 17 (16 filler items + 1 target item). So, it would not be fair to immediately use a test set that 

has attack profiles with a filler ratio smaller than 1%, for obvious reasons. Fortunately, the 

MovieLens data set includes timestamps, to the second, denoting when a user submitted a rating 

for an item. Thus user profiles from this data set can be shortened, by removing the most 

recently added ratings. The resultant user profiles can and should still be considered as genuine, 

because they are precisely what the (assumed genuine) original user profiles once looked like at 

a certain time. Moreover, the timestamps provide sufficient granularity for accuracy. 

To the best of our knowledge, filler ratios less than 1% have not been investigated so far in the 

literature. Here, filler ratios of 0.8%, 0.6%, 0.4% and 0.2% will be examined. To put these into 

perspective, the aforementioned filler ratios correspond to profile sizes of 13, 10, 7 and 4 

respectively for the MovieLens data set, which has ratings on 1682 items. Figure 7 below shows 

the ROC curves from some typical Average attack test sets. 
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Figure 7: ROC curves indicating how well the RMAR feature detects some typical Average attack profiles 

with small filler ratios. Corresponding AUC statistics (3 dp): 0.8% fill, 0.989; 0.6% fill, 0.963; 0.4% fill, 

0.936; 0.2% fill, 0.861. 

The ROC curves in Figure 7 show that filler ratios less than 1% do affect RMAR. However, the 

affect is certainly not adverse. Even with genuine users and Average attackers who have only 

rated four items, the performance of RMAR is arguably still respectable. Very similar results 

were encountered with small Random attacks, which is not surprising as RMAR does not take 

into account item ratings.  

The results suggest that, for this data set at least, most genuine users choose which items to rate 

in a non-random fashion from the outset. We can also conclude that RMAR handles very small 

attack and genuine user profiles reasonably well. Nevertheless, RMAR can be modified to say 

that all profiles containing less than a certain number of ratings are genuine. This would 

eliminate the possibility of false alarms for new users. 
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4.2.2 Detection of Random and Bandwagon attacks using New Features 

We will now look at the Random and Bandwagon attacks. Given the results from the previous 

Average attack experiment, in theory RMAR should exhibit almost perfect detection 

performance for the Random attack. This is because the feature does not measure anything 

specific to the Average or Random attacks (recall these attacks are identical apart from how 

they rate filler items). A 3% filler ratio was used again. Figure 8 shows the ROC curves from a 

Random and a Bandwagon attack test set. 
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(a) Random attack (b) Bandwagon attack 

Figure 8: ROC curves indicating how well each feature detects some Random and Bandwagon attack 

profiles with a 3% filler ratio. Corresponding AUC statistics (3 dp): RMAR, (a) 0.999, (b) 0.999; RIC, (a) 

0.999, (b) 0.999; MaxRatings (δ = 0.25), (a) 0.839, (b), 0.668; RDMA, (a) 0.998, (b) 0.997; WDA, (a) 0.980, (b) 

0.979; WDMA, (a) 0.996, (b) 0.995; DegSim (100 nearest neighbours), (a) 0.921, (b) 0.913. 

Figure 8 indicates that RDMA, WDA and WDMA are much better at detecting Random and 

Bandwagon attack profiles than Average ones. This is not surprising, because these attack 

profiles’ filler items are always rated around the overall average (which is unlikely to be equal 

to the filler items’ average ratings). As expected, RMAR does not appear to be affected by the 

Random attack. This feature was not unduly affected by the Bandwagon attack either. For both 

the Random and Bandwagon attack, the performance of DegSim took a visible hit. This 
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demonstrates how effective the Average attack is, and the marked difference in effectiveness 

between it and the two attacks in question. The MaxRatings feature did not perform very well 

with the Bandwagon attack. This is almost certainly because the Bandwagon attack rates a small 

selection of items with the maximum rating. 

Table 3 below summaries the results from a significance test with Random attacks. As with the 

previous experiment, a paired t-test was used with a significance level of 0.01 (1%). 

 Filler Ratio 

Feature 1% 3% 6% 10% 

RMAR 0.994 1.000 1.000 1.000 

RIC 0.994 1.000 1.000 0.999 

MaxRatings 0.790 0.884 0.901 0.921 

RDMA 0.993 0.995 0.998 0.997 

WDA 0.757 0.954 0.995 0.994 

WDMA 0.980 0.994 0.998 0.996 

DegSim 0.838 0.921 0.774 0.508 

(a) Mean AUC statistics (3 dp) 

 Filler Ratio 

Feature v Feature 1% 3% 6% 10% 

RMAR v RDMA 0.310 0.001 0.009 0.008 

RMAR v WDA 0.000 0.000 0.001 0.000 

RMAR v WDMA 0.000 0.001 0.006 0.004 

RMAR v DegSim 0.000  0.000 0.000 0.000 

RIC v RDMA 0.282 0.002 0.018 0.024 

RIC v WDA 0.000 0.000 0.001 0.001 

RIC v WDMA 0.000 0.001 0.004 0.011 

RIC v DegSim 0.000 0.000 0.000 0.000 

RMAR v RIC 0.832 0.002 0.049 0.054 

(b) Associated p-values (3 dp). p-values less than or equal to 0.01 are in bold. 

Table 3: Results of the features for 10 different Random attack test sets for each filler ratio. MaxRatings 

had δ = 0.25. And DegSim used 100 nearest neighbours. 

Table 3 tells a somewhat different story to the Average attack one. While the performance of 

the new features (RMAR, RIC and MaxRatings) is more or less the same for the Random 

attack, DegSim is noticeably poorer whereas RDMA and its derivatives appear to be much 

better. RDMA, WDA and WDMA may display this behaviour, because they are sensitive to 

sizeable rating deviations from the norm—a feature of the Random attack. DegSim is likely to 
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be worse at detecting Random attack profiles than Average ones, because Random attacks are 

inherently weaker, unable to form strong positive correlations with genuine users. For higher 

filler ratios, even up to 100%, RMAR and RIC exhibited comparable results for each attack. 

This was predicted to happen for RMAR in Chapter 3. For the sake of brevity, these results are 

omitted. 

It should be noted that RMAR, again, accomplishes statistically perfect detection of attack 

profiles with a filler ratio greater than 1% here. Interestingly, the table also shows that RMAR 

and RIC are comparable in terms of performance in detecting Random attack profiles. RIC was 

shown, above, to be worse at detecting Average attacks when compared to RMAR. Given that 

the only difference between Random and Average attack profiles is how filler items are rated, 

these results imply that the scaling component of RIC is superfluous (recall RIC is an extension 

of RMAR, and largely have similar definitions). This is most likely to be because the Random 

attack strategy says to rate all filler items around the average rating across the whole rating 

matrix (3.5 for the MovieLens data set). Thus, all but one of the items (the target) in a Random 

attack profile will be rated with approximately the same value. This means the scaling 

component in the definition of RIC is almost always close to 1, effectively reducing RIC to 

RMAR. This result strengthens the evidence that rating values are not as important for attack 

detection as the actual items that have been rated by someone. 

Results from a similar Bandwagon attack experiment are omitted, because they are largely the 

same as the results for the Random attack. This was expected because the Bandwagon attack is 

the same as the Random attack apart from one thing, which is the rating of a very small 

selection of popular items. These special items are given the maximum rating by the attacker. 

Since the amount of filler items still dominates a Bandwagon attack profile, RMAR and RIC 

were not overly affected. And neither were the majority of other features. It was only 

MaxRatings that was significantly affected. This is likely to have happened because of the 

special items’ maximum ratings, which must have increased the proportion of maximally rated 

items in an attack profile closer to the average. 

4.2.3 Measuring the Effectiveness of a Recommender System 

Augmented with an RMAR-based Attack Detection Algorithm 

The previous experiments showed that the new RMAR feature can detect the Average, Random 

and Bandwagon attacks with very high probability. It was also shown that the performance of 
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RMAR visibly drops with any attack profiles that have a filler ratio of less than around 3%. In 

particular, attack profiles with a filler ratio of 1% had a non-negligible chance of being missed 

by RMAR. Also, on closer inspection of the results of the previous experiments, a few genuine 

user profiles were misclassified as belonging to an attacker. In the light of this, we investigated 

how a popular user-based collaborative filtering algorithm is affected by such conditions. An 

attack detection algorithm based on RMAR using a discrimination threshold4 was used. It 

discarded any profile classed as an attack one (so such profiles were not inserted into the rating 

matrix and used by the recommendation system). 

Here we are primarily interested in the accuracy and robustness of the collaborative filtering 

algorithm. Accuracy is said to be good if the algorithm still produces sound rating predictions 

after genuine user profiles classed as an attack profile have been discarded. And robustness is 

said to be good if the algorithm still makes sound rating predictions after attack profiles classed 

as a genuine user profile have been inserted into the rating matrix. For consistency with other 

work in the literature, accuracy will be measured by the mean absolute error (MAE) metric, and 

robustness will be measured by the prediction shift (PredShift) metric. MAE is defined as: 

 

where T is a set of (unseen) test ratings (u, i, r) ∈ U ×  I ×  R and pu,i is the rating prediction of 

item i for user u. MAE values closer to zero point to higher accuracy, and are better than values 

further away from zero. The prediction shift measure was introduced in [17] and is defined as: 

 

where UT ⊆  U and IT ⊆  I are sets of target users and target items respectively, the first term in 

the inner summation is the rating prediction of item i for user u after an attack, and the second 

term is the prediction before the same attack. So, prediction shift is the average prediction 

difference over each target user and target item, and measures the overall affect of a particular 

attack. A positive prediction shift for an attack implies it was successful, increasing the rating 

                                                 

4 The threshold was empirically set to 0.2. 
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prediction on average for the target users and items. Moreover, the magnitude of the prediction 

shift says how effective the attack was with respect to those users and items. Any negative 

prediction shift for an attack clearly means it was largely of no use. The mean rating in the 

MovieLens data set is 3.5 (1 dp). This implies that a successful attack will result in an average 

prediction shift of approximately +1.5. 

The MAE was calculated with a certain training and test set, before and after the RMAR-based 

detection algorithm was applied to the training set. The training set initially had 80,000 ratings 

and the test set had the remaining 20,000 ratings. Before the detector was run the recommender 

system had a MAE of 0.76081 (5 dp). And after the detector was run it had a MAE of 0.76092 

(5 dp). With a p-value of 0.293, this result is certainly not statistically significant. Thus, we can 

conclude the detection algorithm did not negatively impact the accuracy of the recommender 

system. 

To calculate prediction shift, fifty random users and items were chosen to be targets. This 

number of users and items was chosen for computational reasons. The user profiles from the 

MovieLens data set were separated into two equal halves. One half was used by RMAR to 

compute item similarities, and to generate attack profiles. The user-based collaborative filtering 

algorithm used the other half (to compute rating predictions). The rating prediction for each 

target user and target item pair was then calculated. Next, the attack profiles were injected into 

the rating matrix used by the recommender system, so that post-attack rating predictions could 

be produced. This yields the prediction shift for the recommender system without attack 

detection. After this, the RMAR-based detection algorithm was run on the rating matrix used by 

the collaborative filtering algorithm, discarding any suspected attack profiles. Using the 

resultant rating matrix, rating predictions for the same users and items were then computed, 

finally giving the prediction shift for the recommender system with attack detection. Figure 9 

below shows the results of this experiment. 
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(a) Average attack (b) Random attack 

Figure 9: Graphs of the prediction shifts for some Average and Random attacks using a 1% filler ratio.  A 

user-based collaborative filtering algorithm provided the rating predictions. 

Figure 9 shows that, even for attacks with the more covert 1% filler ratio, the RMAR-based 

detection algorithm neutralised enough attacks to keep prediction shifts below 0.2 (this means 

rating predictions are still relatively sound, with only a small error). All the prediction shift 

results were statistically significant at the 99.9% level. Note that the detection algorithm is 

relatively indifferent to attack size. When the same experiment was done for attacks with higher 

filler ratios, the prediction shifts for the collaborative filtering algorithm augmented with attack 

detection were virtually negligible. We can now conclude that the detection algorithm 

substantially improves robustness and accuracy. 

It should now be clear that the new RMAR feature is, beyond reasonable doubt, the best for 

detecting current profile injection attack methods. Furthermore, it is also actually completely 

sufficient for this job. The new feature works consistently well across all attacks and filler ratios 

(even for ratios much less than 1%). Because RMAR can detect any attack that uses random 

filler items, it is also applicable to the lesser-known Segment, Love/Hate, and Reverse 

Bandwagon attacks in [6]. The last two attack strategies are specifically designed to sink a 

target item’s rating. RMAR also defeats the even lesser known obfuscated attack class [18]. 
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4.2.4 Evaluation and Detection of Attacks with Non-Random Filler Items 

A new class of profile injection attack was defined in Chapter 3. These attack strategies do not 

choose filler items randomly, but select filler items based on their popularity. Popularity is 

measured in terms of the number of ratings an item has received. This new class of attack was 

created in response to the formation of the RMAR feature. To evaluate the strength of the new 

attacks, we conducted a similar prediction shift experiment to the one before. The only 

difference was the use of a 3% filler ratio, because this yielded the largest prediction shifts. 

Here a 3% filler ratio corresponds to just 50 items. Figure 11 below shows the results of this 

experiment. 
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Figure 11: Graph of the prediction shifts for some new and old Average and Random attacks using a 3% 

filler ratio.  A user-based collaborative filtering algorithm provided the rating predictions. 

Figure 11 indicates that the strength of the new and old attacks is comparable. Significance tests 

at the level 0.05 said that none of the prediction shifts were significant. Thus, we can conclude 

that using popular filler items in place of random ones is not disadvantageous. We are now in a 

position to see if the new attack can avoid detection. 
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(a) Average attack with popular filler items (b) Random attack with popular filler items 

Figure 11: ROC curves indicating how well each feature detects some Average and Random attack profiles 

with a 3% filler ratio and popular filler items. Co rresponding AUC statistics (3 dp): RMAR, (a) 0.874, (b) 

0.875; RIC, (a) 0.865, (b) 0.905; MaxRatings (δ = 0.25), (a) 0.877, (b), 0.857; RDMA, (a) 0.630, (b) 0.735; 

WDA, (a) 0.450, (b) 0.533; WDMA, (a) 0.539, (b) 0.636; DegSim (100 nearest neighbours), (a) 0.757, (b) 

0.574. 

When compared to the ROC curves of the same attacks using random filler items (Figures 6 and 

8), Figure 11 paints a very different picture. The figure shows the new class of attack affects the 

performance of all the features apart from MaxRatings. In Chapter 3, it was conjectured that 

RMAR would not be able to detect the new attacks well. This was because the filler items here 

might be considered as similar. To some extent this is true. However, Figure 11 shows that the 

performance of RMAR (and RIC and MaxRatings) is still respectable. This suggests that the 

most popular items are not necessarily related. This could be because popularity is based on an 

aggregation of all ratings. The above figure also shows that the new class of attack has a very 

reasonable chance of evading the current features. This adds yet more evidence to our 

conjecture that ratings values are not critical for attack detection. 

From these results we can conclude that RMAR and RIC are not infallible. Our new attacks 

give a possible direction for how to devise covert profile injection attacks. 
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5 Conclusions 

This report has presented several novel classification features for detecting profile injection 

attacks on collaborative filtering. They are novel because they are derived from observations on 

user behaviour. This approach is dramatically different to the ones taken by those who proposed 

the features described in Chapter 2. However, the results from experiments (in Chapter 4) show 

that the new RMAR and RIC features (defined in Chapter 3) are consistently significantly better 

than the current ones. 

RMAR was found to be the most successful feature. It can be used to very accurately detect and 

neutralise all the current profile injection attacks, including the Average, Random and 

Bandwagon attacks. As mentioned before, the Average attack is the most difficult to detect. 

More generally, we have shown that any profile injection attack using randomly chosen filler 

items can be detected with very high probability. While this alone foils all current attacks, it 

also forces any would-be attacker to devise a strategy to intelligently select filler items. This 

substantially increases the complexity of any new attack. We have proposed and tested one such 

attack, which chooses filler items based on popularity. This attack was shown to be as 

successful in effecting prediction shifts as current attacks, but without having an exceedingly 

high chance of being detected. The new features (RMAR, RIC and MaxRatings) were found to 

be the best at detecting the new attack. However, perfectly accurate detection could not be 

attained in this case. 

There are now a number of directions for future work. On the defence side, one obvious route 

would be to improve the detection of our new attack. The success of RMAR suggests that the 

relationship between a user’s rated items yields useful information. RMAR uses the similarity 

between item profiles, but other meaningful relationships (such as item genre) might further 

facilitate the detection of the new attack. Because of RMAR, we have made the choice of filler 

items as important as the choice of ratings, i.e. nontrivial. So, future work on the attack side 

includes finding new ways to select filler items such that detection is harder. An optimal set of 
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filler items would actually look like a whole genuine user profile. Preferably, the new method to 

select filler items would only need a minimal amount of knowledge about users.
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