

COMPGA99

Dissertation

Defence against Profile Injection Attacks on

Collaborative Filtering
By (MSc Information Security)
Supervised by DR J WANG (Adastral Park – University College London)
August 2008

Disclaimer

This report is submitted as part requirement for the MSc Degree in Information Security at University College

London. It is substantially the result of my own work except where explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

 Abstract | ii

Abstract

Collaborative filtering is a method to make personalised recommendations on information

items, such as books and music, for a particular individual. It does this by looking at the items

that like-minded people prefer. Collaborative filtering is used by many popular websites. For

instance, the online retailer Amazon uses it to identify products that are likely to be of interest

to its customers. The video-sharing website YouTube also uses collaborative filtering, to

recommend videos to its users.

It has been previously shown that collaborative filtering is vulnerable to malicious

manipulation. Attackers, who might want to make their products frequently and highly

recommended, can try to introduce biased opinions into a recommender system. This could lead

to unfair and inaccurate item recommendations being produced.

This report describes work that we have undertaken to identify collaborative filtering attacks. In

particular, we present some novel classification features that can be used to very accurately

detect and neutralise all these attacks. These unique features are derived from observations on

the behaviour of users. Our most successful feature uses the observation that real users’

opinions are not missing at random, i.e. such a user is not likely to give their opinion on an item

they do not like.

 Contents | iii

Contents

1 Introduction..4

1.1 Scope..5

1.2 Outline..5

1.3 Main Contributions ..6

2 Related Work ...7

2.1 Collaborative Filtering ...7

2.2 Profile Injection Attacks on Collaborative Filtering..12

2.3 Current Defences against Profile Injection Attacks...18

3 Novel Features for Detecting Attack Profiles..24

3.1 RMAR: Ratings Missing At Random..24

3.2 RIC: Rated Items Consistency...28

3.3 MaxRatings: Maximum Ratings ..28

4 Experiments ...30

4.1 The Data Set...30

4.2 Results..30

5 Conclusions..45

Bibliography..47

 Introduction | 4

1 Introduction

The Internet is not as safe as it used to be. Fraud, phishing and spam and the like are now very

prevalent on the Internet. Unscrupulous people have forever been trying to deceive other

people, and this is no different on the Internet. Weaknesses in security are almost always

exploited by adversaries, especially if they can gain something from doing so.

Nowadays, there are a seemingly infinite number of items vying for our attention. This can be

readily seen on the Web, such as in online stores, news sites and—of course—search engine

results pages. Consequently, we expect ways to whittle available items down so that only

relevant ones are left. Probably the most simplest and obvious approach would be to present a

sorted list of the, say, five most popular items on offer. The BBC News website actually does

this, showing each visitor its five currently most read stories (see Figure 1 below). While this

has some value, what if the user is not interested in any of the stories? Or, what if a story the

user would find interesting is not shown? And, what if they have already read one of the

stories? Well the solution here would be to personalise the list of news stories for each

individual user.

Figure 1: Screenshot of the five currently most read stories on the BBC News website (news.bbc.co.uk) as at

10:08 on 10 August 2008.

Such personalised recommendation lists can be produced using recommender systems, which

try to identify items that are likely to be of interest to a particular user. To do this, a

 Introduction | 5

recommender system might compare the user’s preferences with those of the other users of the

system, e.g. if Boris and Dave have similar tastes, Boris is likely to be interested in the items

that Dave likes. This is a common recommendation technique, and is called collaborative

filtering [1]. Moreover, it is the focus of this report. Collaborative filtering can be viewed as a

scaled up, on-demand version of traditional word of mouth recommendation.

Users give their opinion on items to a collaborative recommender system, so that it can gauge

who shares similar preferences. However, an unscrupulous person could be masquerading as

one or more users. Suppose their objective is to make a certain item highly recommended. They

could try to achieve this by introducing biased opinions on the item into the recommender

system. This could lead to the item, which the attacker may have a special interest in, being

recommended to more people than usual. The motivation is clear: highly recommended items

tend to attract more interest. Continuing the previous example, the situation is similar to Gordon

befriending Boris solely to make Boris buy a book that he wrote himself.

Collaborative filtering is seen as one of the most effective ways to alleviate information

overload. The fact that a large number of high-profile websites, including Amazon, YouTube,

and Last.fm, implement collaborative filtering is testimony to this. Therefore, the integrity of

collaborative recommender systems is worth protecting.

1.1 Scope

This report concentrates on what are called profile injection attacks in the collaborative filtering

literature. In particular, the emphasis is on understanding and characterising the Random,

Average and Bandwagon profile injection attacks. The overriding aim of our project was to

develop a new way to detect these attacks, because current methods for this purpose are far

from perfect. This is especially true for the Average attack. This is the strongest attack, but

because of this it turns out to be the hardest to detect too. So detection of the Average attack

was given priority during the project.

1.2 Outline

Chapter 2 first introduces the collaborative filtering problem, some definitions that are used

throughout this report, and two commonly used collaborative filtering algorithms (including

how they work). Next, attacks on these algorithms from the literature are introduced and

 Introduction | 6

discussed. All these attacks use a technique called “profile injection”. Finally, the chapter looks

at how these profile injection attacks are currently being detected.

Chapter 3 proposes three measurable properties (features) of the attacks that were defined in

Chapter 2, for the purpose of attack detection. These features are called Ratings Missing At

Random (RMAR), Rated Items Consistency (RIC) and Maximum Ratings (MaxRatings).

Chapter 4 evaluates the new features proposed in Chapter 3, through some experiments on a

widely used film rating data set.

Chapter 5 concludes this report and discusses possible directions for future work.

1.3 Main Contributions

The main contributions of our project are:

• New classification features that facilitate more successful detection of current profile

injection attacks on collaborative filtering. The best feature is called RMAR and is

shown to accomplish perfect or near-perfect detection of current profile injection

attacks, including the traditionally difficult to detect Average attack. (Chapters 3 and 4)

• A new class of profile injection attack that is more difficult to detect than existing

attacks. (Chapter 3)

• A formal treatment of the complexity of actually mounting a profile injection attack.

(Chapter 2)

• The collaborative filtering source code written for experiments will imminently be

integrated into the UCL PANDA open source information retrieval platform1.

(Appendix)

1 More information about this software is available at http://www.adastral.ucl.ac.uk/~junwang/

 Related Work | 7

2 Related Work

This chapter first gives a detailed introduction to collaborative filtering and profile injection

attacks. After this, the current defences against profile injection attacks are presented.

Substantially more emphasis is given to the defence presented last, because this report builds on

it.

2.1 Collaborative Filtering

Collaborative filtering uses the assumption that similar people like—as well as dislike—the

same items. Conceptually, to create personalised recommendations for a given user, a

collaborative recommender system will first try to identify a group of other users who have the

most similar preferences to the user. Items that are popular amongst this group are then

recommended to the user.

Collaborative filtering is widely used and actively researched. Collaborative filtering is

implemented by various websites, including but not limited to Amazon, Apple’s iTunes Store

and—the eBay owned—StumbleUpon.

Two popular collaborative filtering algorithms are now going to be introduced. Both algorithms

output a number indicating how likely a given user will be interested in a given item. These will

be called the test user and test item respectively from now on. Both algorithms also make use of

a rating matrix R: Let U = {1, 2, …, m} be the set of users, I = {1, 2, …, n} the set of items, and

R the set of possible numerical ratings that a user can give to an item. R is depended on the

application, so for example it could be [1, 10]. Then R = (ru,i)m x n where ru,i ∈ R represents user

u has rated item i with ru,i while ru,i = Ø means u has not yet rated i (or has chosen not to rate it).

Moreover, user u’s (user) profile UPu = {(i, ru,i) : ru,i ≠ Ø} and similarly item i’s (item) profile

IPi = {(u, ru,i) : ru,i ≠ Ø}. In other words, u’s user profile is the set of items that u has rated along

with the associated ratings. And i’s item profile is the set of users that have rated i along with

 Related Work | 8

their respective ratings. So row u of R roughly corresponds to user u’s profile, whereas column

i of R approximately corresponds to item i’s profile. Figure 2 below illustrates this.

Figure 2: A fictitious rating matrix with 8 users and 12 items. User 5’s and item 7’s ratings are highlighted.

Null ratings are not explicitly shown, and are represented here by blank cells.

In Figure 2, user 5’s profile is {(3, 4), (5, 5), (6, 1), (7, 2), (8, 3), (9, 4), (10, 5)} and item 7’s

profile is {(2, 4), (3, 3), (5, 2), (6, 3), (8, 5)}. The size of a user or item profile is defined as the

number of ratings it contains (the cardinality), so the sizes of user 5’s and item 7’s profile are 7

and 5 respectively. By definition, the size of u’s user profile is equal to the number of items that

u has rated.

New users initially start with an empty user profile (row). Each user can change the contents of

their user profile (by adding item ratings), but obviously not that of another user. In other

words, a user has control of only his or her assigned row in R. A collaborative filtering

algorithm uses a rating matrix to associate a rating prediction to each pair of users and items.

This is illustrated below in Figure 3. A rating prediction on item i for user u is a guess at what

rating u would have given to i. So the job of a collaborative filtering algorithm is essentially to

accurately fill in the blanks of a given rating matrix.

 Related Work | 9

s r

R

(u, i)

Figure 3: A collaborative filtering algorithm, s, which uses rating matrix R. r is the rating prediction on item

i for user u. So r represents how likely user u will be interested in item i.

The first collaborative filtering algorithm that will be introduced concentrates on the similarities

between users, while the second focuses on item similarity. Both are reasonably accurate and

widely used.

2.1.1 User-Based Collaborative Filtering

In user-based collaborative filtering [2], a test item’s rating is predicted for a test user using the

similarities between their user profile and those of the other users. For example, if Boris and

Dave have similar tastes then Boris is likely to be interested in the items that Dave likes, and

vice versa. A high-level description of the user-based collaborative filtering procedure follows.

1. Start with all the other users’ profiles (i.e. all but the test user’s profile).

2. Disregard any user that has not rated the test item, leaving only the user profiles that

contain a rating for that item.

3. Ignore any remaining user profile that is considered to be too dissimilar to that of the

test user’s profile.

4. Combine the ratings for the test item from the left over user profiles to form the required

rating prediction, giving extra preference to ratings coming from the more similar users.

Filtering of users occurs in Step 2 and 3, and then a rating is collaboratively predicted in Step 4.

Similarity between two user profiles in Step 3 can be quantified using Pearson’s correlation or

cosine similarity [3]. The former is defined as:

 Related Work | 10

where u, v ∈ U are two users, J ⊆ I is the set of items that u and v have both rated (i.e. J = {i ∈

I : ru,i ≠ Ø and rv,i ≠ Ø}, and wr is the average of the ratings in w’s user profile UPw. While this

is a slightly modified version of the standard Pearson’s correlation, because of J, this function’s

range is still [-1, 1]. Here 1 represents maximum similarity between u and v, while -1 signifies

maximum dissimilarity. The similarities between the test user and every other user are

computed to determine which need to be filtered out. Two commonly used strategies for this are

to either keep: the k users that are most similar to the test user (k nearest neighbour approach);

or, all users that have a similarity above a certain threshold (such as 0.1 for Pearson’s

correlation). For the nearest neighbour approach, k = 20 is normally satisfactory.

For Step 4, ratings from the remaining users (from Step 3) can be combined together by taking a

weighted average. More precisely:

where u ∈ U and i ∈ I are the test user and test item respectively, and V is the set of remaining

users.

2.1.2 Item-based Collaborative Filtering

In item-based collaborative filtering [4], a rating for a test item is predicted for a test user via

item profile similarities—instead of user profile similarities, as in the user-based approach. The

item-based method is somewhat less obvious than the user-centric method, but the outcome is

still the same. The assumption here is that the test user likes and dislikes similar items. For

example, if they highly rated the James Bond film Casino Royale then they are likely to enjoy

its sequel, Quantum of Solace, as well. The similarity between two items comes from the

ratings given to them (i.e. similarity of the two respective item profiles). A high-level

description of item-based collaborative filtering follows.

 Related Work | 11

1. Start with all the other items’ profiles (i.e. all but the test item’s profile).

2. Disregard any item that has not been rated by the test user, leaving only the item profiles

that contain a rating from that user.

3. Ignore any remaining item profile that is considered to be too dissimilar to that of the

test item’s profile.

4. Combine the ratings given by the test user to the left over items to form the required

rating prediction, giving extra preference to ratings coming from the more similar items.

Filtering of items occurs in Step 2 and 3, and then a rating is collaboratively predicted in Step

4. Similarity between two item profiles in Step 3 can be measured using Pearson’s correlation

or cosine similarity. The latter has been adapted for the purpose of collaborative filtering, and is

defined as:

where i, j ∈ I are two items, V ⊆ U is the set of users that have rated both i and j (i.e. V = {u ∈

U : ru,i ≠ Ø and ru,j ≠ Ø}, and vr is the average of the ratings in w’s item profile IPw. This differs

from the standard cosine similarity formula in two ways, because of V and the subtraction of the

user rating means. The similarities between the test item and every other item are calculated,

and dissimilar items can be filtered out using one of the methods described above in the user-

based approach (nearest neighbour or threshold).

For Step 4, ratings from the remaining items (from Step 3) can be combined together by taking

a weighted average. More precisely:

 Related Work | 12

where u ∈ U and i ∈ I are the test user and test item respectively, and J is the set of remaining

items.

Item-based collaborative filtering is more scalable than the user-based method, because item

similarities usually stabilise, rarely fluctuating significantly after a short period of time—so the

output of w can be cached for quicker performance.

2.1.3 Why Recommender Systems are Targeted

With the increasingly competitive marketplace that most manufacturers experience, it is in their

interest to have their goods frequently and highly recommended. Normally this is achieved by

producing quality products with a unique selling point. Thus, companies that make inferior

items do not benefit from the increased sales that the rest enjoy. This could lead to dishonest

companies attempting to force their goods to be unjustifiably highly recommended. If they are

successful in doing this then various parties are affected. Honest manufacturers are affected,

because their possibly more suitable products are obscured—so they may see fewer sales.

Consumers are also affected, because they would receive biased recommendations. If customers

experience this a lot then their trust in the recommender system is likely to diminish. This is

also undesirable for the business operating the recommender system, because of the investment

made in it. Moreover, dishonest companies would effectively be gaining free advertising from

the operator.

2.2 Profile Injection Attacks on Collaborative Filtering

Most collaborative filtering algorithms—including the aforementioned user and item-based

ones—assume that the ratings they use to calculate recommendations are unbiased, and an

entirely true representation of what all the users think of the items they rated. However, due to

the open nature of collaborative filtering, a malicious user can easily give misleading item

ratings. This could lead to honest users receiving inaccurate predictions. Moreover, these users

would find it difficult to immediately tell if a rating prediction is accurate, because all they

know is that some users with similar profiles to them gave a like rating.

It is assumed that the malicious user here wants to affect the rating prediction on a particular

target item for a subset of target users (which could be the whole set of users). The attacker will

attempt this by inserting a fake user profile that contains a biased rating for the target item. It is

 Related Work | 13

also, of course, assumed that the attacker cannot see the rating matrix used by the collaborative

filtering algorithm. Thus, he can only inject new user profiles into the recommender system.

The reader might have already worked out how an attacker can manipulate the user-based

collaborative filtering algorithm. But if not, the answer lies in Step 2 and 3 of its high-level

description. It should be obvious that the attacker has to make his profile be considered in Step

4, implying he must not be filtered out in Step 2 and 3. Getting passed the first filter is easy:

simply provide a rating for the target item. More precisely, max R is given to increase the rating

prediction of the target item, while min R is given to decrease it. Negotiating the second filter

(Step 3) is much harder though. For this, the attacker has to somehow make his profile look

similar to those of the target users. There are various strategies to achieve this, and they will be

discussed in a later section. This is all well and good, but the attacker’s profile on its own is

very unlikely to have a significant effect on the prediction calculation (ratings from honest users

should overwhelm the rating from the attacker). To circumvent this problem, the attacker can

again exploit the openness of collaborative filtering. It is normally very easy to register as a new

user, so the attacker can build multiple profiles associated with fictitious identities. Now it is

possible for the attacker to completely influence the rating prediction for the target item—the

worst-case scenario. Note that as the number of attack profiles employed by the attacker

increases, the probability of at least one of them reaching Step 4 also increases.

Manipulating the item-based collaborative filtering algorithm is not as straightforward. This is

because an attacker has to know at least some of the items that each target user has rated (for

Step 2), in addition to making the target item’s profile similar to that of these items (for Step 3).

Recall that an item’s profile contains every user that rated it (and the rating each gave).

Therefore, a single attack profile can only add—at most—one rating to an item profile. In other

words, an attacker does not have much influence on what an item profile looks like. This means

that manipulating the similarities between items is relatively hard to do. However certain

subsets of users can be targeted in this case, by carefully constructing a number of attack

profiles [5].

2.2.1 The Anatomy of a Profile Injection Attack

So as not to distract the reader, a few details were purposefully omitted from the sketch attacks

above. These included how to generate artificial user profiles and the number of them required

 Related Work | 14

to mount a successful attack. These aspects are the most interesting part of an attack, and

receive special treatment in this section.

2.2.1.1 Attack Complexity

The literature does not treat the complexity of mounting a profile injection attack in a formal

manner. A rational attacker will want to know the exact cost and feasibility of mounting a

successful attack. We adopted the cryptographer Nicolas Courtois’ formal notion of security.

He says that the security of a system is a triple:

1. Adversarial Goal

2. Resources of the Adversary

3. Access to the System

For example, the security of a certain car could be good with respect to an attacker that wants to

(1) steal it, (2) has a toolbox, and (3) has access to the garage it is parked in. However, this may

not hold for another triple, e.g. changing (1) to “vandalise it”.

It has already been assumed that the adversary’s goal is to successfully mount a profile injection

attack. With respect to system access, it is also given that the attacker can only insert new user

profiles and ratings via legitimate channels, e.g. by clicking a “Sign up for an account” button

on a website. Consequently, this attack vector could be guarded with proactive or reactive

defences. For example, making users complete a CAPTCHA (Completely Automated Public

Turing test to tell Computers and Humans Apart) before creating a new account or accepting an

item rating may thwart an otherwise successful attack. Also related to system access is how

much information about the underlying rating matrix is published, which could be critical to the

effectiveness of an attack.

Profile injection attacks require statistics about the rating matrix before they can be executed.

Sometimes these statistics can be estimated using an outside source, e.g. the Internet Movie

Database website displays the average user vote for each film they have. This is classed as an

adversary resource. Another important tool for the attacker is suitable bots (software that

automates jobs) to create fictitious users and add item ratings to their profiles quickly. One

more equally crucial adversary resource is time. The time to create the necessary number of

attack profiles has to be taken into account.

 Related Work | 15

The strongest possible security notion here would be an attacker that wants to (1) alter a target

item’s rating prediction by an infinitesimal amount, (2) has full knowledge of any security

mechanisms employed and a copy of the rating matrix, and (3) has an infinite amount of time to

create fictitious user profiles. This triple is, however, hardly practical. A strong, yet realistic

triple is an adversary that wants to (1) substantially increase the rating prediction of a target

item, (2) can find out only a limited number of statistics about the rating matrix, and (3) has a

virtually infinite amount of time to create fictitious user profiles.

Although there are specific attack strategies to decrease the rating prediction of a particular item

[6], this report is not going to focus on them. This is because almost no economic advantage is

gained by employing such attacks. Although, someone may want to use these attacks, which are

said to “nuke” or sink an item, to damage the reputation of a company’s product.

2.2.1.2 Attack Terminology

This section introduces some important definitions about profile injection attacks. These

definitions are used extensively from here on in.

A profile injection attack involves inserting a number of user profiles, corresponding to spoofed

identities, into a rating matrix with the intention of increasing the rating prediction of a single

item (the target item) for a subset of users (the target users). Here, the number of profiles

injected is a percentage of the size of U, and is called the attack ratio. So an attack with a 10%

ratio would increase the size of U by 10%. Attacks with ratios ranging from 1% to 15% are the

most common in the literature. The attacker uses an attack strategy to build each user profile.

An attack strategy2 is an algorithm for generating a single user profile, called an attack profile,

for the purpose of profile injection. The overriding objective here is to create profiles that are

likely to be considered as similar to the target users. Making profiles that are difficult to detect

(i.e. indistinguishable from authentic user profiles) is also important though. This is because if

they were not, it would then be very easy to exclude them from the collaborative filtering

process—and hence foil the attack.

2 Attack strategies are also referred to as “attack models” in the literature.

 Related Work | 16

Recall a user profile—and hence an attack profile as well—is a set of item-rating pairs. Attack

strategies essentially define how items in an attack profile are chosen and rated. They all do this

by first partitioning the set of items I in four: IT, a singleton set composed of the target item; IS,

a set of special items that have certain characteristics; IF, a set of filler items that are randomly

chosen from I \ { IT ∪ IS}; and last but not least IØ, the set of remaining unrated items. Next, an

appropriate function is applied to each item in IT, IS, and IF to compute respective ratings. These

functions are fT : IT → {max R}, fS : IS → R, and fF : IF → R. Two attack profiles built according

to the same attack strategy are not necessarily identical, as fS and fF are almost always

randomised functions. The set of special items, IS, is seldom non-empty, but if it is then it is

normally very small. Filler items are a feature of all attack profiles and represent a

predetermined percentage of 1−I . This percentage is called the filler ratio, and is normally

chosen such that the size of attack profiles is consistent with that of a typical authentic profile

(to minimise the chance of detection). Thus, the majority of items in an attack profile are filler

items. Attack strategies basically differ only in how they rate filler items (their choice of fF).

The following pseudo-code outlines a complete generic profile injection attack. The special

item set is not included for clarity.

iT := the target item
IF := {}
filler_size := filler_ratio * (|I| - 1)
while (|IF| < filler_size)
{
 randomly choose iF from I \ {IT v IF}
 add iF to IF
}
attack_size := attack_ratio * |U|
while (attack_size-- > 0)
{
 attack_profile := {}
 add (iT, fT(iT)) to attack_profile
 for each iF in IF
 {
 add (iF, fF(iF)) to attack_profile
 }
 insert attack_profile into rating matrix
}

Some well-studied attack strategies from the literature will now be introduced. Each attack

strategy is formally defined, with definitions originating from [6] but adapted where necessary

to integrate with the notation introduced in this section.

 Related Work | 17

2.2.1.3 Random Attack

The original Random attack strategy [7] was one of the first published attacks against

collaborative filtering. The Random attack strategy simply involves rating each filler item

around the average rating across all users/items. More formally, fF(i) outputs a random Gaussian

distributed value with mean r and standard deviation s, where r is the arithmetic mean of the

non-null elements of the rating matrix R, and s is the standard deviation of the same set of

elements. For example, suppose the rating matrix has three users and four items and looks like

then () 7.39315345543 ≈++++++++=r . If item 4 is the target and 5 is the maximum

rating, a Random attack profile with a 100% filler ratio could be {(1, 3.7), (2, 3.7), (3, 3.7), (4,

5)}. Injecting this into the rating matrix would result in:

The Random attack has a relatively low attack complexity (with respect to rating matrix access

at least). If the average rating and spread are not publicly available, they can normally be

accurately guessed.

2.2.1.4 Average Attack

The original Average attack strategy was introduced at the same time as the Random attack, in

[7]. The Average attack strategy says that each filler item is rated around the average rating

given by all users for that item. More precisely, fF(i) outputs a random Gaussian distributed

value with mean ir and standard deviation si, where ir is the arithmetic mean of the ratings in

i’s item profile IPi, and si is the standard deviation of the same set of ratings. Using the original

rating matrix from the previous example, () 42531 =+=r , () 5.42542 =+=r , and

 Related Work | 18

() 3.331453 ≈++=r . So an Average attack profile targeting item 4 could be {(1, 4), (2, 4.5),

(3, 3.3), (4, 5)}.

The Average attack clearly has a considerably higher attack complexity than the Random one

(the average rating of each individual filler item has to be known). However, some websites,

including Amazon, display the average rating given to items that they offer. But if not, average

ratings can be estimated by, again, guessing or using an independent source. It can also be

imagined that the adversary is cooperating with an insider who can view the rating matrix

(insider attack).

The Average attack has been shown to be the strongest and most effective attack strategy [8],

offering the greatest chance of effecting a large rating prediction increase. It is easy to see why

this is true; Average attack profiles are statistically likely to be considered similar to those of

most genuine users. However, due to this fact alone, the Average attack has so far been the

hardest to detect. This has resulted in the attack receiving a lot of attention from researchers.

2.2.1.5 Bandwagon Attack

The Average attack clearly has a high attack complexity. The Bandwagon attack strategy was

proposed in [9] as a response to this, and is almost as effective as the Average attack. The

Bandwagon attack strategy is defined in exactly the same way as the Random attack, except

that the special items set is non-empty. IS contains a predetermined number of the most

frequently rated items. And fS(i) = max R.

The Bandwagon attack is an extension of the Random one. It has an attack complexity

somewhere between the Random and Average attacks. Popular items can usually be identified

using publicly available information. For instance, any book on the Richard & Judy show’s

incredibly successful Book Club reading list enjoys bestseller status.

2.3 Current Defences against Profile Injection Attacks

At present, there are essentially two main methods of countering profile injection attacks. One

is implementing robust collaborative filtering algorithms, which are not supposed to be unduly

affected by the presence of random noise or injected attack profiles. And the other method is

deploying an attack profile detection mechanism in front of an existing recommender system, so

that biased profiles from an attacker (hopefully) do not enter, and its collaborative filtering

 Related Work | 19

algorithm only sees authentic user profiles. Neither defence technique is completely impervious

to attack profiles, with each currently having varying degrees of success. An overview of both

follows.

2.3.1 Robust Collaborative Filtering

Some collaborative filtering algorithms have recently been designed from the ground up to

withstand profile injection attacks. Dimension reducing techniques such as singular value

decomposition (SVD) and principal component analysis (PCA) have been used to achieve this.

The idea behind using dimension reduction is that attack profiles in a rating matrix tend to add

very little information.

The state of the art robust collaborative filtering algorithms [10] offer satisfactory resistance to

Random attacks. However, Average attacks are still very effective against them. Further

information about robust collaborative filtering algorithms can be found in [10].

2.3.2 Attack Profile Detection

Genuine banknotes possess several observable features to help us distinguish them from

counterfeit ones. These include unique feeling paper, raised print, a metallic thread, a

watermark, high quality printing, a hologram, a ultra-violet feature, and microlettering. All of

these features can be found on any genuine £10 note and are shown, as ordered, below in Figure

4.

Figure 4: Images of the (disclosed) security features of a £10 note, courtesy of the Bank of England.

A decent counterfeit note will have, to some degree, most of these features (but certainly the

most obvious ones). Thus, a perfect counterfeit note will replicate each and every feature

flawlessly, so that even an expert cannot tell it apart from a genuine banknote. Conversely, a

poor counterfeit note would be recognised by any member of the general public. This could be

because of the absence of one or more features or a badly imitated feature. A trained expert will

not rely on the presence of just one feature to recognise a genuine note, because a counterfeiter

 Related Work | 20

may have managed to perfectly replicate it. Therefore the expert will examine each and every

feature he is aware of.

Like counterfeit banknotes, the vast majority of attack profiles lack certain features that genuine

user profiles normally possess—or have peculiar features that are not common amongst genuine

user profiles. However, the situation here is slightly more complicated, because a user with

unusual tastes, which dramatically depart from those of the majority, may inadvertently have

the characteristics of an attack profile.

The problem of defending against profile injection attacks can be reduced to designing a

classifier to detect attack profiles (similar to the banknote expert above). In particular, features

that readily distinguish attack profiles from genuine profiles have to be identified. Given a user

profile, a classifier will say whether it belongs to an attacker or not. Detected attack profiles can

then be discarded.

2.3.2.1 The Advantages of Attack Profile Detection

Attack profile detection is in a sense analogous to detecting email spam. Email messages that

are classed as spam can be filtered into a designated folder, for closer inspection, or simply

trashed. Ideally, spam detection should be done before messages are delivered to email clients,

so that they receive messages labelled as spam or no spam at all. The separation of spam

detector and email client yields numerous benefits. Firstly, each is able to concentrate on their

primary objective, which is accurately classifying messages and managing messages

respectively, and do it to the best of its ability. This is consistent with the UNIX philosophy of

doing one thing well. Another advantage is that any email client can benefit from the

specialised spam detection, so they do not have to be overly concerned with spam.

Likewise, using attack profile detection is beneficial, because it allows the use of any

collaborative filtering algorithm (robust or otherwise). Suspected attack profiles can be

discarded, instead of being inserted into the rating matrix, so that the collaborative filtering

algorithm does not have to assume the presence of attack profiles. As a result, collaborative

filtering researchers can concentrate on the problem of producing highly accurate rating

predictions. On the attack profile detection side, there are also numerous benefits. If the detector

is extensible, new features can be plugged in to improve detection of existing attacks or to

facilitate the detection of new attacks—akin to antivirus signature updates. Due to the fact that

user profiles are inspected individually, one at a time, this approach is indifferent to the number

 Related Work | 21

of profiles an attacker injects (attack size), and even the number of adversaries attempting to

manipulate the recommender system. The latter is particularly useful, because in reality it is

highly likely that at any one time there will be multiple attackers—each using different attack

strategies, and targeting different items. Such simultaneous attacks are rarely considered in

robust collaborative filtering literature (their experiments only include lone attacks). So

simultaneous attacks could ultimately be the Achilles’ heel of robust collaborative filtering

algorithms.

An overview of a selection of current attack profile features from the literature follows. It

should be noted that none are perfect at detecting all attacks.

2.3.2.2 RDMA: Rating Deviation from Mean Agreement

In 2005, Chirita et al. introduced a feature called RDMA in [11]. RDMA is defined as:

where u ∈ U, UPu is u’s user profile, IPi is item i’s profile, and ir is the arithmetic mean of the

ratings in i’s item profile.

RDMA measures how much a given user’s ratings depart from those of the other users. It does

this by inspecting each of the items that the user has rated, taking into account the difference

between the rating given to them and their average rating. The formula also considers how

many other users have given a rating to each of these items. This is because items with very few

ratings are more susceptible to profile injection attacks (an attacker’s ratings for such items can

quickly become authoritative). Thus an attack profile is expected to have a relatively large

RDMA value.

2.3.2.3 WDA: Weighted Degree of Agreement

In 2006, Williams et al. proposed a feature called WDA, which is derived from RDMA, in [12].

WDA is defined as:

 Related Work | 22

where u ∈ U, UPu is u’s user profile, IPi is item i’s profile, and ir is the arithmetic mean of the

ratings in i’s item profile. WDA is precisely the summation component of RDMA.

2.3.2.4 WDMA: Weighted Deviation from Mean Agreement

In [12] Williams et al. also introduced another RDMA derivative, called WDMA and is defined

as:

where u ∈ U, UPu is u’s user profile, IPi is item i’s profile, and ir is the arithmetic mean of the

ratings in i’s item profile. WDMA is identical to RDMA except that the denominator inside the

summation is squared. As a result, WDMA places more emphasis on rated items with fewer

ratings from other users.

2.3.2.5 DegSim: Degree of Similarity with Top Neighbours

In [11] Chirita et al. also proposed a feature called DegSim, which is defined as:

where u ∈ U, and V is a set of a pre-specified number of the most similar users to u according

to wpearson, the user similarity measure defined in Chapter 2. DegSim is the average similarity

between a given user and its V nearest neighbours. The reasoning behind this feature is that

attack profiles—by design—exhibit an unusually high amount of similarity between genuine

users. So attack profiles are expected to have a high DegSim value.

2.3.2.6 LengthVar: Length Variance

In 2006, Burke et al. introduced the LengthVar feature in [14], which is defined as:

 Related Work | 23

where u ∈ U, UPw is w’s user profile, and l is the average user profile size for the users in U.

The LengthVar feature measures how much a given user’s profile size deviates from that of the

other users. Assuming there are a large number of items, it is likely that a genuine user would

(and could) only rate a small proportion of these. This is in contrast to an attacker equipped with

an automated means of adding item ratings, which can rate a large number of items in a short

period of time. Thus, attack profiles with a significantly large filler ratio will have a noticeably

high LengthVar value.

The LengthVar feature was designed to target attack profiles containing an exceptionally large

number of filler items. It does a good job of this, but LengthVar is of limited use however. This

is the case because large attack profiles are not common (higher attack complexity), and not as

effective as attack profiles that are around the same size of genuine user profiles anyway.

Moreover, user profiles belonging to new users are almost always disproportionately small

initially. So until a new user has rated enough items, they are likely to be considered as an

attacker by LengthVar, which may lead to the possibility of a false alarm.

 Novel Features for Detecting Attack Profiles | 24

3 Novel Features for Detecting Attack

Profiles

This chapter proposes three original features for the purpose of user profile classification. The

new features are the crème de la crème of the ones that were conceived by us. Each looks at

unique aspects of attack profiles that have yet to be studied in the literature. Moreover, they are

applicable to all current attack strategies.

In our opinion, existing features work at the wrong abstraction levels to reliably differentiate

attack and genuine user profiles. For instance, Average attack profiles are mostly composed of

ratings such that when looked at individually, it is impossible to accurately say whether they

originated from a genuine user or an adversary. This is probably the main reason why the

Average attack has been so good at evading detection. To tackle this problem, we did what

clever people do when they want to solve a traditionally difficult problem: avoid it. To be more

precise, we approached the problem from a different angle.

Instead of looking one at a time at each rating that a particular user has given, we looked at

them as a whole and concentrated on what items they rated, not how they rated them. This

dramatically departs from the approach taken by most other people. Two of the features that are

proposed (RMAR and RIC) take advantage of this novel approach and yield statistically perfect

profile classification, accurately detecting all current attacks in experiments. In the light of these

results, we have modified the current attack strategies to create a new class of attack that is

more resistant to detection.

3.1 RMAR: Ratings Missing At Random

For [15] some users of Yahoo’s Internet radio service, LAUNCHcast, were asked about how

they rate the songs it plays. In one question they were asked how often they would rate a song

given their preference for it. The results from this user study (summarised below in Table 1)

 Novel Features for Detecting Attack Profiles | 25

show that these two aspects are related, such that LAUNCHcast users are much more likely to

rate songs that they love than ones they hate.

 Rating Frequency

Preference Level Never Infrequently Often

Hate 6.76 % 3.22 % 90.02 %

Do Not Like 4.69 % 8.61 % 86.70 %

Neutral 2.33 % 34.33 % 63.33 %

Like 0.11 % 2.02 % 97.87 %

Love 0.07 % 0.55 % 99.37 %

Table 1: Reproduced results of a LAUNCHcast user survey [15], where participants were asked how often

they would rate a song given their preference for it.

The frequency distribution of ratings in a well-known film and book data set are consistent with

this user study. These are illustrated below in Figure 5. Note the bias towards higher ratings in

both cases. The film data set is actually used in our experiments.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5

Rating

F
re

q
u

en
cy

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10

Rating

F
re

q
u

en
cy

Figure 5: Graphs of the frequency distribution of ratings in a particular MovieLens (left) and the Book-

Crossing (right) data set. Greater ratings indicate more liking for a film/book.

Assuming these results hold for all rating data sets used for collaborative filtering, this implies

that genuine users are more likely to provide a rating for items that they like than ones that they

do not. More precisely, for the cognoscenti, most absent ratings for genuine users should not be

missing at random (MAR). Conversely, attack profiles—since they are always mainly

composed of randomly chosen (filler) items—will by definition have a lot of absent ratings that

are MAR. Thus the presence of a large proportion of MAR ratings is a feature of attack profiles,

but not of genuine user profiles. While many researchers have proposed features based on the

 Novel Features for Detecting Attack Profiles | 26

randomness of item ratings to detect attack profiles, none have exploited the randomness of

chosen filler items.

We needed a way to accurately measure this feature, which is now called Ratings Missing At

Random (RMAR). Notice that a pair of two distinct items chosen at random is unlikely to have

similar item profiles —especially when the population of items is large. Consequently, each pair

of rated items in an attack profile is not likely to be similar, whereas the opposite of this is more

probable for genuine user profiles. With a set of user profiles known to belong to genuine users,

item similarity can be quantified using the adjusted cosine similarity measure, wcosine (from the

item-based collaborative filtering algorithm, which is defined in Chapter 2). Recall that for two

items, wcosine gives the strength of similarity between them, with 1 and –1 represent absolute

similarity and dissimilarly respectively. As a result the function RMAR: nI → [-1, 1] is defined

as:

where i1, i2, …, in are the items in a user profile, and wcosine is a function defined in Chapter 2.

So, here the similarity of each unique pair of items rated by a user is calculated, summed

together, and then normalised. This result is negated so that a positive value signifies a high

proportion of ratings missing at random present, while a negative value indicates a low amount.

Therefore we would expect attack profiles to have a positive RMAR, whereas genuine user

profiles have a negative RMAR. Moreover, the magnitude of the result represents the amount of

confidence we have in either result. Ideally, the outputs of wcosine should be cached. This makes

real-time attack detection much more feasible. The outputs can be cached, because they do not

usually fluctuate after items have received a sufficient number of ratings from users.

The key assumption with RMAR is that item similarities (the outputs of wcosine) are reasonably

accurate. This in turn means that the item profiles that wcosine uses are assumed to be mature and

stable. This is actually a fair assumption, and is precisely the one that the item-based

collaborative filtering algorithm makes. It is also assumed that genuine users rate items in a

non-random, reasoned fashion.

In theory, as the number of randomly chosen filler items in an attack profile increases, the more

likely it is that it will have a high RMAR, and therefore be more noticeable. This is very

 Novel Features for Detecting Attack Profiles | 27

advantageous, because the attack complexity now increases as the number of filler items in an

attack profile grows. This is very pertinent, because increasing the size of an attack profile is

traditionally not seen to be expensive to an attacker (they could simply rate another randomly

chosen item). Because of RMAR, filler items now have to be chosen more intelligently, in a

non-random fashion. Another major advantage of the RMAR feature is that it is applicable to all

current attack strategies. This is because each attack makes use of randomly chosen filler items

that make up the bulk of an attack profile.

There is however three possible scenarios where RMAR may come unstuck, unable to clearly

differentiate between genuine users and attackers. One is when any user profile, genuine or

otherwise, contains very few rated items. This is because such profiles may have a

disproportionate RMAR value, since there is little evidence to go on. Likewise, genuine users

that are unconventional in the way that they rate items may have a RMAR value similar to that

of attack profiles. This could be the case because such users deviate from the norm too much,

seemingly choosing items to rate randomly—what RMAR uses to separate attack profiles from

genuine ones. Finally, RMAR may be ineffective against Bandwagon attacks with a very large

number of special items, because these frequently rated items could be similar to each other.

3.1.1 RMAR-Resistant Attacks

For an attack profile to receive a favourable RMAR value, the adversary would need to gather

knowledge of potential filler items that are likely to be similar to each other—on top of

whatever other information their strategy requires. The new RMAR feature uses the fact that all

current attack strategies select filler items randomly. More precisely, each item distinct from the

target one and not already a special or filler item has an equal probability of being chosen.

Therefore, it would be interesting to see if attack strategies that choose filler items based on

popularity can go undetected. This is exactly what is done in our experiments.

Existing attack strategies (including the Random, Average, and Bandwagon ones) can be

modified to choose filler items proportionately to their popularity. Popular items are used in the

hope that RMAR will think these items are similar. More formally, an item i is selected to be a

filler item with a probability of ∑ =

I

j ji IPIP
1

. Note that unpopular items still have a chance of

being selected. In practice a roulette wheel, where probabilities are proportional to item

popularity, is used to choose filler items. An attack strategy that chooses filler items like this is

going to be said to use “popular filler items”, e.g. Average attack with popular filler items.

 Novel Features for Detecting Attack Profiles | 28

All current attacks use filler items that are simply chosen at random. Because this new attack

class requires the additional knowledge of which items are popular, it has the highest attack

complexity of all (on paper at least). However, this information may be available publicly. It

may even be available from the operator of the target recommender system. For example, the

Amazon website conveniently displays its 100 bestsellers in any category (e.g. books)—and

updates them hourly. Other information sources include the likes of the UK singles and album

charts.

3.2 RIC: Rated Items Consistency

The RMAR feature does not consider the item ratings in a user profile—just the items

themselves. Consider the case when RMAR encounters a pair of items that are totally

dissimilar. If the user happened to rate one of these items with the smallest possible rating and

the other with the largest allowable rating, he would still be penalised. RMAR has been

extended to take into account the consistency of item ratings (rated items consistency). The

function RIC: nn RI × → [-1, 1] is defined as:

where i1, i2, …, in are the items in a user profile, and r1, r2, …, rn are the corresponding ratings.

RIC is identical to RMAR except that it scales wcosine, and does not negate the double

summation so that higher RIC values indicate more item consistency. Thus, only genuine users

are expected to receive a positive RIC value.

3.3 MaxRatings: Maximum Ratings

It has been noticed in experiments that attack profiles tend to have a very low proportion of

items rated with the maximum possible rating (or a rating very close to the maximum). This

could be because the majority of items in an attack profile are either rated: around their

respective average ratings (in the case of the Average attack); or, the overall average rating (for

the Random and Bandwagon attacks). So an attacker’s ratings rarely stray too far from the

norm, which is unlikely to be close to the maximum allowable rating. Only the target item is

given an extreme rating by an attacker. Contrast this with genuine users, who reserve the

maximum possible rating for items they love (and the minimum rating for items they hate).

 Novel Features for Detecting Attack Profiles | 29

Because people normally have several favourite items, a genuine user’s profile is likely to

contain a number of maximum ratings. The maximum allowable rating also has a psychological

meaning to people, given to items that completely meet their needs. Thus, it is expected that

genuine user profiles contain more maximum ratings than those of attackers. Consequently the

function MaxRatings: U → [0, 1] is defined as:

where UPu is u’s user profile, and δ is a small positive number.

The dual to MaxRatings is Minimum Ratings (MinRatings), which looks at the proportion of

user ratings close to min R. In preliminary tests MinRatings performed very poorly, which was

quite surprising as the above reasoning for MaxRatings should logically be valid for minimum

ratings too. However, on closer inspection of the profiles of some genuine users, it was found

that they usually only contain a small proportion of items rated with the minimum allowable

rating. This is actually consistent with the results from the LAUNCHcast user survey above.

 Experiments | 30

4 Experiments

This chapter presents the results from experiments that investigated the properties of the new

classification features proposed in Chapter 3. In particular, we determined the new features are

better than existing ones at detecting attacks, and established when the new features work well

(and not so well). We experimented on a commonly used collection of ratings.

4.1 The Data Set

The MovieLens data set consisting of 100,000 ratings3 has been more or less adopted as the

standard for collaborative filtering experiments. A group within the University of Minnesota

compiled the data set. It contains 100,000 ratings from 943 users on 1682 films (items). Each

user has rated 20 or more films, and each rating is an integer ranging from 1 to 5, inclusive.

Greater ratings indicate more liking for a film. The mean rating is 3.5 (1 dp) and the ratings

have a standard deviation of 1.1 (1 dp). The average user profile size is 106.0 (1 dp) with a

standard deviation of 100.9 (1 dp). Additionally, the median profile size is 65. Therefore, to

avoid being too overt, attack profiles should be around these sizes, which correspond

approximately to filler ratios of 6% and 3% respectively.

We assumed that the MovieLens data set does not contain any ratings from an adversary. Hence

all the 943 users were assumed to have provided completely honest item ratings.

4.2 Results

What follows are the results from a selection of experiments.

3 At the time of writing, this MovieLens data set is available at http://www.grouplens.org/node/73

 Experiments | 31

4.2.1 Detection of Average Attacks using New Features

All the new features proposed in Chapter 3 were individually evaluated, and contrasted with the

state-of-the-art features defined in Chapter 2. To do this, the user profiles from the MovieLens

data set were randomly split into two halves. The first half was designated as the training set,

and the other was the test set (of genuine user profiles). The training set was used by the

classifiers, and as a basis for statistics to create test attack profiles. For a particular attack and

filler ratio, an attack profile was generated and then added to the test set. More attack profiles

were added until there was exactly the same number of attack profiles as there were genuine

ones. So the size of the final test set were twice that of the original test set. Each attack profile

was created with a fresh set of filler items and target item. As discussed in Chapter 2, note that

the attack ratio is irrelevant here. The test set was used only to assess the accuracy of a

classifier, and was unseen by the classifier whilst being trained.

To evaluate the individual features, a simple binary classifier that uses a threshold to

discriminate between attack profiles and genuine ones was used. The performance of this

classifier—and hence the features—was measured via receiver operating characteristic (ROC)

analysis [16]. ROC analysis originates from signal detection theory, and is used in many fields

including machine learning. The principal tool is the ROC curve, which is a graph of the

fraction of hits (the hit rate) and fraction of false alarms (the false alarm rate) made by a binary

classifier as its threshold is varied. The false alarm rate is on the x-axis of the graph, while the

hit rate is on the y-axis. The terms hit, correct rejection, false alarm, and miss in this context are

defined below:

• A hit is said to occur here if the classifier says an actual attack profile belongs to an

adversary. This is also called a true positive (TP).

• A correct rejection happens if the classifier says an actual genuine user profile belongs

to a real user. This is also called a true negative (TN).

• A false alarm happens if the classifier says an actual genuine user profile belongs to an

attacker. This is also called a false positive (FP).

• A miss occurs if the classifier says an actual attack profile belongs to a genuine user.

This is also called a false negative (FN).

 Experiments | 32

We used ROC curves, because they intuitively visualise the trade-off between different hit and

false alarm rates. While ROC curves are very useful for visualising and tuning the performance

of classifiers, this is subjective as it is difficult to accurately compare curves. Fortunately,

several statistics can be derived from a single ROC curve. One is the area under the ROC curve

(AUC) statistic, which is what the machine learning community tends to prefer. The AUC

statistic will thus always assume a value in [0, 1]. Higher values indicate better accuracy here,

with 1 signifying perfect detection. An AUC less than or equal to 0.5 means that using the

classifier in question is worse than just randomly guessing the classification of a user profile.

Suppose that attack profiles normally have a high value for a certain feature. The AUC has a

nice property in that it is equal to the probability that a random attack profile is given a higher

feature value than a random genuine user profile. The AUC was computed using this

established formula:

where G is the Gini coefficient:

where each (Xk, Yk-1) is a point on a ROC curve such that the sequence (Xk) is monotonically

increasing. So Xk is a false alarm rate and Yk is its corresponding hit rate value. In effect, the

AUC is approximated via the trapezium rule (a method to estimate a definite integral) and the

penultimate equation.

The opening experiment looks at how the features fare against the Average attack, which has so

far been the hardest to detect accurately. A test set was generated as per the stated method

above using a 3% filler ratio. This filler ratio was found to yield the most effective attacks,

which is consistent with other work, e.g. [6]. Three is also the median percentage of items that

users in the training and test set rated, so the LengthVar feature was not be called upon. Figure

6 below shows the resultant ROC curves for each feature.

 Experiments | 33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Alarm Rate

H
it

 R
at

e

RMAR

RIC

MaxRatings

RDMA

WDA

WDMA

DegSim

Figure 6: ROC curves indicating how well each feature detects some Average attack profiles with a 3% filler

ratio. Corresponding AUC statistics (3 dp): RMAR, 0.999; RIC, 0.998; MaxRatings (δ = 0.25), 0.855;

RDMA, 0.957; WDA, 0.797; WDMA, 0.919; DegSim (100 nearest neighbours), 0.991.

From Figure 6 it is clear to see that RMAR and RIC, while not perfect, are excellent features

and outperform the ones proposed by others. So for this particular test set, RMAR would

correctly rank a random attack profile and genuine profile with a 99.9 percent chance. DegSim

is a reasonable feature here. This is to be expected, as Average attack profiles are constructed

such that they are considered similar to as many users as possible. The MaxRatings feature is

satisfactory, but certainly not outstanding.

To see if RMAR and RIC are actually better than the current features at detecting the Average

attack, a significance test was carried out. A paired t-test was used, with a significance level of

0.01 (1%). Ten fresh, randomly generated test sets were used in this significance test. Table 2

summaries the results from this experiment.

 Experiments | 34

 Filler Ratio

Feature 1% 3% 6% 10%

RMAR 0.996 1.000 1.000 1.000

RIC 0.994 0.999 0.999 0.999

MaxRatings 0.795 0.887 0.910 0.932

RDMA 0.925 0.955 0.959 0.966

WDA 0.455 0.771 0.910 0.970

WDMA 0.871 0.915 0.921 0.934

DegSim 0.943 0.986 0.930 0.746

(a) Mean AUC statistics (3 dp)

 Filler Ratio

Feature v Feature 1% 3% 6% 10%

RMAR v RDMA 0.000 0.000 0.000 0.000

RMAR v WDA 0.000 0.000 0.000 0.000

RMAR v WDMA 0.000 0.000 0.000 0.000

RMAR v DegSim 0.000 0.000 0.000 0.000

RIC v RDMA 0.000 0.000 0.000 0.000

RIC v WDA 0.000 0.000 0.000 0.000

RIC v WDMA 0.000 0.000 0.000 0.000

RIC v DegSim 0.000 0.000 0.000 0.000

RMAR v RIC 0.001 0.002 0.010 0.004

(b) Associated p-values (3 dp). p-values less than or equal to 0.01 are in bold (all in this case).

Table 2: Results of the features for 10 different Average attack test sets for each filler ratio. MaxRatings had

δ = 0.25. And DegSim used 100 nearest neighbours.

Table 2 shows that RMAR achieves statistically perfect detection of Average attack profiles

with filler ratios greater than or equal to 3%. Additionally, RMAR and RIC are indeed

significantly better at distinguishing Average attackers from genuine users than the current

features. This is true for all the listed filler ratios, which are the most popular ones used in the

literature. Moreover, the performance of RMAR and RIC is relatively consistent over the filler

ratios, especially when compared to the other features. MaxRatings, RDMA, WDA and WDMA

appear to get progressively better as the filler ratio increases. For higher filler ratios, even up to

100%, RMAR exhibited comparable results. This was predicted to happen in Chapter 3. For the

sake of brevity, these results are omitted.

Table 2 also reveals a rather surprising result: RMAR is marginally better than RIC. Recall that

RIC is an extension of RMAR, and uses some rating data while the latter does not at all. This

 Experiments | 35

could suggest that, at least from the point of attack detection, rating values are not as important

as the actual items that have been rated by a particular user.

The DegSim results in Table 2 indicate when the Average attack is most effective. The

performance of DegSim peaked at the 3% filler ratio. This could mean that a filler ratio around

the median proportion of items rated by genuine users (3% for the data set under consideration)

is optimal.

4.2.1.1 Detection of Small Attack Profiles using RMAR

The RMAR feature measures the degree of similarity between items within a single user profile.

Thus, it would be very interesting to see how the feature is affected by particularly small user

profiles. It was hypothesised in Chapter 3 that RMAR might suffer in this situation, leading to

genuine users who have not rated many items being treated as an attacker. This was because the

rated items in such user profiles may inadvertently look like random selections. This is a very

important aspect, because all genuine users’ profiles start empty and will likely still be

considered as small during their infancy, until enough ratings have been provided.

Now, as previously mentioned, the users in the MovieLens data set have all rated at least 20

items (out of the possible 1682). This is reflected by 1% being the lowest filler ratio in the

previous experiment. A 1% filler ratio in this context corresponds to attack profiles of at least

size 17 (16 filler items + 1 target item). So, it would not be fair to immediately use a test set that

has attack profiles with a filler ratio smaller than 1%, for obvious reasons. Fortunately, the

MovieLens data set includes timestamps, to the second, denoting when a user submitted a rating

for an item. Thus user profiles from this data set can be shortened, by removing the most

recently added ratings. The resultant user profiles can and should still be considered as genuine,

because they are precisely what the (assumed genuine) original user profiles once looked like at

a certain time. Moreover, the timestamps provide sufficient granularity for accuracy.

To the best of our knowledge, filler ratios less than 1% have not been investigated so far in the

literature. Here, filler ratios of 0.8%, 0.6%, 0.4% and 0.2% will be examined. To put these into

perspective, the aforementioned filler ratios correspond to profile sizes of 13, 10, 7 and 4

respectively for the MovieLens data set, which has ratings on 1682 items. Figure 7 below shows

the ROC curves from some typical Average attack test sets.

 Experiments | 36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Alarm Rate

H
it

 R
at

e

0.8% fill

0.6% fill

0.4% fill

0.2% fill

Figure 7: ROC curves indicating how well the RMAR feature detects some typical Average attack profiles

with small filler ratios. Corresponding AUC statistics (3 dp): 0.8% fill, 0.989; 0.6% fill, 0.963; 0.4% fill,

0.936; 0.2% fill, 0.861.

The ROC curves in Figure 7 show that filler ratios less than 1% do affect RMAR. However, the

affect is certainly not adverse. Even with genuine users and Average attackers who have only

rated four items, the performance of RMAR is arguably still respectable. Very similar results

were encountered with small Random attacks, which is not surprising as RMAR does not take

into account item ratings.

The results suggest that, for this data set at least, most genuine users choose which items to rate

in a non-random fashion from the outset. We can also conclude that RMAR handles very small

attack and genuine user profiles reasonably well. Nevertheless, RMAR can be modified to say

that all profiles containing less than a certain number of ratings are genuine. This would

eliminate the possibility of false alarms for new users.

 Experiments | 37

4.2.2 Detection of Random and Bandwagon attacks using New Features

We will now look at the Random and Bandwagon attacks. Given the results from the previous

Average attack experiment, in theory RMAR should exhibit almost perfect detection

performance for the Random attack. This is because the feature does not measure anything

specific to the Average or Random attacks (recall these attacks are identical apart from how

they rate filler items). A 3% filler ratio was used again. Figure 8 shows the ROC curves from a

Random and a Bandwagon attack test set.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Alarm Rate

H
it

 R
at

e

RMAR RIC MaxRatings RDMA

WDA WDMA DegSim

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Alarm Rate

H
it

 R
at

e

RMAR RIC MaxRatings RDMA

WDA WDMA DegSim

(a) Random attack (b) Bandwagon attack

Figure 8: ROC curves indicating how well each feature detects some Random and Bandwagon attack

profiles with a 3% filler ratio. Corresponding AUC statistics (3 dp): RMAR, (a) 0.999, (b) 0.999; RIC, (a)

0.999, (b) 0.999; MaxRatings (δ = 0.25), (a) 0.839, (b), 0.668; RDMA, (a) 0.998, (b) 0.997; WDA, (a) 0.980, (b)

0.979; WDMA, (a) 0.996, (b) 0.995; DegSim (100 nearest neighbours), (a) 0.921, (b) 0.913.

Figure 8 indicates that RDMA, WDA and WDMA are much better at detecting Random and

Bandwagon attack profiles than Average ones. This is not surprising, because these attack

profiles’ filler items are always rated around the overall average (which is unlikely to be equal

to the filler items’ average ratings). As expected, RMAR does not appear to be affected by the

Random attack. This feature was not unduly affected by the Bandwagon attack either. For both

the Random and Bandwagon attack, the performance of DegSim took a visible hit. This

 Experiments | 38

demonstrates how effective the Average attack is, and the marked difference in effectiveness

between it and the two attacks in question. The MaxRatings feature did not perform very well

with the Bandwagon attack. This is almost certainly because the Bandwagon attack rates a small

selection of items with the maximum rating.

Table 3 below summaries the results from a significance test with Random attacks. As with the

previous experiment, a paired t-test was used with a significance level of 0.01 (1%).

 Filler Ratio

Feature 1% 3% 6% 10%

RMAR 0.994 1.000 1.000 1.000

RIC 0.994 1.000 1.000 0.999

MaxRatings 0.790 0.884 0.901 0.921

RDMA 0.993 0.995 0.998 0.997

WDA 0.757 0.954 0.995 0.994

WDMA 0.980 0.994 0.998 0.996

DegSim 0.838 0.921 0.774 0.508

(a) Mean AUC statistics (3 dp)

 Filler Ratio

Feature v Feature 1% 3% 6% 10%

RMAR v RDMA 0.310 0.001 0.009 0.008

RMAR v WDA 0.000 0.000 0.001 0.000

RMAR v WDMA 0.000 0.001 0.006 0.004

RMAR v DegSim 0.000 0.000 0.000 0.000

RIC v RDMA 0.282 0.002 0.018 0.024

RIC v WDA 0.000 0.000 0.001 0.001

RIC v WDMA 0.000 0.001 0.004 0.011

RIC v DegSim 0.000 0.000 0.000 0.000

RMAR v RIC 0.832 0.002 0.049 0.054

(b) Associated p-values (3 dp). p-values less than or equal to 0.01 are in bold.

Table 3: Results of the features for 10 different Random attack test sets for each filler ratio. MaxRatings

had δ = 0.25. And DegSim used 100 nearest neighbours.

Table 3 tells a somewhat different story to the Average attack one. While the performance of

the new features (RMAR, RIC and MaxRatings) is more or less the same for the Random

attack, DegSim is noticeably poorer whereas RDMA and its derivatives appear to be much

better. RDMA, WDA and WDMA may display this behaviour, because they are sensitive to

sizeable rating deviations from the norm—a feature of the Random attack. DegSim is likely to

 Experiments | 39

be worse at detecting Random attack profiles than Average ones, because Random attacks are

inherently weaker, unable to form strong positive correlations with genuine users. For higher

filler ratios, even up to 100%, RMAR and RIC exhibited comparable results for each attack.

This was predicted to happen for RMAR in Chapter 3. For the sake of brevity, these results are

omitted.

It should be noted that RMAR, again, accomplishes statistically perfect detection of attack

profiles with a filler ratio greater than 1% here. Interestingly, the table also shows that RMAR

and RIC are comparable in terms of performance in detecting Random attack profiles. RIC was

shown, above, to be worse at detecting Average attacks when compared to RMAR. Given that

the only difference between Random and Average attack profiles is how filler items are rated,

these results imply that the scaling component of RIC is superfluous (recall RIC is an extension

of RMAR, and largely have similar definitions). This is most likely to be because the Random

attack strategy says to rate all filler items around the average rating across the whole rating

matrix (3.5 for the MovieLens data set). Thus, all but one of the items (the target) in a Random

attack profile will be rated with approximately the same value. This means the scaling

component in the definition of RIC is almost always close to 1, effectively reducing RIC to

RMAR. This result strengthens the evidence that rating values are not as important for attack

detection as the actual items that have been rated by someone.

Results from a similar Bandwagon attack experiment are omitted, because they are largely the

same as the results for the Random attack. This was expected because the Bandwagon attack is

the same as the Random attack apart from one thing, which is the rating of a very small

selection of popular items. These special items are given the maximum rating by the attacker.

Since the amount of filler items still dominates a Bandwagon attack profile, RMAR and RIC

were not overly affected. And neither were the majority of other features. It was only

MaxRatings that was significantly affected. This is likely to have happened because of the

special items’ maximum ratings, which must have increased the proportion of maximally rated

items in an attack profile closer to the average.

4.2.3 Measuring the Effectiveness of a Recommender System

Augmented with an RMAR-based Attack Detection Algorithm

The previous experiments showed that the new RMAR feature can detect the Average, Random

and Bandwagon attacks with very high probability. It was also shown that the performance of

 Experiments | 40

RMAR visibly drops with any attack profiles that have a filler ratio of less than around 3%. In

particular, attack profiles with a filler ratio of 1% had a non-negligible chance of being missed

by RMAR. Also, on closer inspection of the results of the previous experiments, a few genuine

user profiles were misclassified as belonging to an attacker. In the light of this, we investigated

how a popular user-based collaborative filtering algorithm is affected by such conditions. An

attack detection algorithm based on RMAR using a discrimination threshold4 was used. It

discarded any profile classed as an attack one (so such profiles were not inserted into the rating

matrix and used by the recommendation system).

Here we are primarily interested in the accuracy and robustness of the collaborative filtering

algorithm. Accuracy is said to be good if the algorithm still produces sound rating predictions

after genuine user profiles classed as an attack profile have been discarded. And robustness is

said to be good if the algorithm still makes sound rating predictions after attack profiles classed

as a genuine user profile have been inserted into the rating matrix. For consistency with other

work in the literature, accuracy will be measured by the mean absolute error (MAE) metric, and

robustness will be measured by the prediction shift (PredShift) metric. MAE is defined as:

where T is a set of (unseen) test ratings (u, i, r) ∈ U × I × R and pu,i is the rating prediction of

item i for user u. MAE values closer to zero point to higher accuracy, and are better than values

further away from zero. The prediction shift measure was introduced in [17] and is defined as:

where UT ⊆ U and IT ⊆ I are sets of target users and target items respectively, the first term in

the inner summation is the rating prediction of item i for user u after an attack, and the second

term is the prediction before the same attack. So, prediction shift is the average prediction

difference over each target user and target item, and measures the overall affect of a particular

attack. A positive prediction shift for an attack implies it was successful, increasing the rating

4 The threshold was empirically set to 0.2.

 Experiments | 41

prediction on average for the target users and items. Moreover, the magnitude of the prediction

shift says how effective the attack was with respect to those users and items. Any negative

prediction shift for an attack clearly means it was largely of no use. The mean rating in the

MovieLens data set is 3.5 (1 dp). This implies that a successful attack will result in an average

prediction shift of approximately +1.5.

The MAE was calculated with a certain training and test set, before and after the RMAR-based

detection algorithm was applied to the training set. The training set initially had 80,000 ratings

and the test set had the remaining 20,000 ratings. Before the detector was run the recommender

system had a MAE of 0.76081 (5 dp). And after the detector was run it had a MAE of 0.76092

(5 dp). With a p-value of 0.293, this result is certainly not statistically significant. Thus, we can

conclude the detection algorithm did not negatively impact the accuracy of the recommender

system.

To calculate prediction shift, fifty random users and items were chosen to be targets. This

number of users and items was chosen for computational reasons. The user profiles from the

MovieLens data set were separated into two equal halves. One half was used by RMAR to

compute item similarities, and to generate attack profiles. The user-based collaborative filtering

algorithm used the other half (to compute rating predictions). The rating prediction for each

target user and target item pair was then calculated. Next, the attack profiles were injected into

the rating matrix used by the recommender system, so that post-attack rating predictions could

be produced. This yields the prediction shift for the recommender system without attack

detection. After this, the RMAR-based detection algorithm was run on the rating matrix used by

the collaborative filtering algorithm, discarding any suspected attack profiles. Using the

resultant rating matrix, rating predictions for the same users and items were then computed,

finally giving the prediction shift for the recommender system with attack detection. Figure 9

below shows the results of this experiment.

 Experiments | 42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Attack Ratio (%)

P
re

d
ic

ti
o

n
 S

h
if

t

No Detection RMAR-based Detection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Attack Ratio (%)

P
re

d
ic

ti
o

n
 S

h
if

t

No Detection RMAR-based Detection

(a) Average attack (b) Random attack

Figure 9: Graphs of the prediction shifts for some Average and Random attacks using a 1% filler ratio. A

user-based collaborative filtering algorithm provided the rating predictions.

Figure 9 shows that, even for attacks with the more covert 1% filler ratio, the RMAR-based

detection algorithm neutralised enough attacks to keep prediction shifts below 0.2 (this means

rating predictions are still relatively sound, with only a small error). All the prediction shift

results were statistically significant at the 99.9% level. Note that the detection algorithm is

relatively indifferent to attack size. When the same experiment was done for attacks with higher

filler ratios, the prediction shifts for the collaborative filtering algorithm augmented with attack

detection were virtually negligible. We can now conclude that the detection algorithm

substantially improves robustness and accuracy.

It should now be clear that the new RMAR feature is, beyond reasonable doubt, the best for

detecting current profile injection attack methods. Furthermore, it is also actually completely

sufficient for this job. The new feature works consistently well across all attacks and filler ratios

(even for ratios much less than 1%). Because RMAR can detect any attack that uses random

filler items, it is also applicable to the lesser-known Segment, Love/Hate, and Reverse

Bandwagon attacks in [6]. The last two attack strategies are specifically designed to sink a

target item’s rating. RMAR also defeats the even lesser known obfuscated attack class [18].

 Experiments | 43

4.2.4 Evaluation and Detection of Attacks with Non-Random Filler Items

A new class of profile injection attack was defined in Chapter 3. These attack strategies do not

choose filler items randomly, but select filler items based on their popularity. Popularity is

measured in terms of the number of ratings an item has received. This new class of attack was

created in response to the formation of the RMAR feature. To evaluate the strength of the new

attacks, we conducted a similar prediction shift experiment to the one before. The only

difference was the use of a 3% filler ratio, because this yielded the largest prediction shifts.

Here a 3% filler ratio corresponds to just 50 items. Figure 11 below shows the results of this

experiment.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16

Attack Ratio (%)

P
re

d
ic

ti
o

n
 S

h
if

t

Average Attack New Average Attack Random Attack New Random Attack

Figure 11: Graph of the prediction shifts for some new and old Average and Random attacks using a 3%

filler ratio. A user-based collaborative filtering algorithm provided the rating predictions.

Figure 11 indicates that the strength of the new and old attacks is comparable. Significance tests

at the level 0.05 said that none of the prediction shifts were significant. Thus, we can conclude

that using popular filler items in place of random ones is not disadvantageous. We are now in a

position to see if the new attack can avoid detection.

 Experiments | 44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Alarm Rate

H
it

 R
at

e

RMAR RIC MaxRatings RDMA

WDA WDMA DegSim

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Alarm Rate

H
it

 R
at

e

RMAR RIC MaxRatings RDMA

WDA WDMA DegSim

(a) Average attack with popular filler items (b) Random attack with popular filler items

Figure 11: ROC curves indicating how well each feature detects some Average and Random attack profiles

with a 3% filler ratio and popular filler items. Co rresponding AUC statistics (3 dp): RMAR, (a) 0.874, (b)

0.875; RIC, (a) 0.865, (b) 0.905; MaxRatings (δ = 0.25), (a) 0.877, (b), 0.857; RDMA, (a) 0.630, (b) 0.735;

WDA, (a) 0.450, (b) 0.533; WDMA, (a) 0.539, (b) 0.636; DegSim (100 nearest neighbours), (a) 0.757, (b)

0.574.

When compared to the ROC curves of the same attacks using random filler items (Figures 6 and

8), Figure 11 paints a very different picture. The figure shows the new class of attack affects the

performance of all the features apart from MaxRatings. In Chapter 3, it was conjectured that

RMAR would not be able to detect the new attacks well. This was because the filler items here

might be considered as similar. To some extent this is true. However, Figure 11 shows that the

performance of RMAR (and RIC and MaxRatings) is still respectable. This suggests that the

most popular items are not necessarily related. This could be because popularity is based on an

aggregation of all ratings. The above figure also shows that the new class of attack has a very

reasonable chance of evading the current features. This adds yet more evidence to our

conjecture that ratings values are not critical for attack detection.

From these results we can conclude that RMAR and RIC are not infallible. Our new attacks

give a possible direction for how to devise covert profile injection attacks.

 Conclusions | 45

5 Conclusions

This report has presented several novel classification features for detecting profile injection

attacks on collaborative filtering. They are novel because they are derived from observations on

user behaviour. This approach is dramatically different to the ones taken by those who proposed

the features described in Chapter 2. However, the results from experiments (in Chapter 4) show

that the new RMAR and RIC features (defined in Chapter 3) are consistently significantly better

than the current ones.

RMAR was found to be the most successful feature. It can be used to very accurately detect and

neutralise all the current profile injection attacks, including the Average, Random and

Bandwagon attacks. As mentioned before, the Average attack is the most difficult to detect.

More generally, we have shown that any profile injection attack using randomly chosen filler

items can be detected with very high probability. While this alone foils all current attacks, it

also forces any would-be attacker to devise a strategy to intelligently select filler items. This

substantially increases the complexity of any new attack. We have proposed and tested one such

attack, which chooses filler items based on popularity. This attack was shown to be as

successful in effecting prediction shifts as current attacks, but without having an exceedingly

high chance of being detected. The new features (RMAR, RIC and MaxRatings) were found to

be the best at detecting the new attack. However, perfectly accurate detection could not be

attained in this case.

There are now a number of directions for future work. On the defence side, one obvious route

would be to improve the detection of our new attack. The success of RMAR suggests that the

relationship between a user’s rated items yields useful information. RMAR uses the similarity

between item profiles, but other meaningful relationships (such as item genre) might further

facilitate the detection of the new attack. Because of RMAR, we have made the choice of filler

items as important as the choice of ratings, i.e. nontrivial. So, future work on the attack side

includes finding new ways to select filler items such that detection is harder. An optimal set of

 Conclusions | 46

filler items would actually look like a whole genuine user profile. Preferably, the new method to

select filler items would only need a minimal amount of knowledge about users.

 Bibliography | 47

Bibliography

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave

an information Tapestry. ACM 1992.

[2] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An Algorithmic Framework for

Performing Collaborative Filtering. ACM 1999.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive Algorithms

for Collaborative Filtering. UAI 1998.

[4] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based Collaborative Filtering

Recommendation Algorithms. WWW 2001.

[5] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Effective Attack Models for

Shilling Item-Based Collaborative Filtering Systems. WebKDD 2005.

[6] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Toward Trustworthy

Recommender Systems: An Analysis of Attack Models and Algorithm Robustness. ACM

2007.

[7] S. K. Lam, and J. Riedl. Shilling Recommender Systems for Fun and Profit. WWW

2004.

[8] B. Mehta. Unsupervised Shilling Detection for Collaborative Filtering. AAAI 2007.

[9] R. Burke, B. Mobasher, R. Zabicki, and R. Bhaumik. Identifying Attack Models for

Secure Recommendation. IUI 2005.

[10] B. Mehta, and W. Nejdl. Attack Resistant Collaborative Filtering. ACM 2008.

[11] P.-A. Chirita, W. Nejdl, and C. Zamfif. Preventing shilling attacks in online

 Bibliography | 48

recommender systems. ACM 2005.

[12] C. Williams, R. Bhaumik, R. Burke, and B. Mobasher. The Impact of Attack Profile

Classification on the Robustness of Collaborative Recommendation. WebKDD 2006.

[14] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik. Detecting Profile Injection

Attacks in Collaborative Recommender Systems. CEC 2006.

[15] B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney. Collaborative Filtering and the

Missing at Random Assumption. UAI 2007.

[16] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, Second Edition. Wiley.

2001.

[17] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. Collaborative

recommendation: A robustness analysis. ACM 2004.

[18] C. Williams, B. Mobasher, R. Burke, J. Sandvig, and R. Bhaumik. Detection of

Obfuscated Attacks in Collaborative Recommender Systems. ECAI 2006.

