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Abstract

Collaborative filtering is a method to make perdmea recommendations on information
items, such as books and music, for a particuldividual. It does this by looking at the items
that like-minded people prefer. Collaborative filtgy is used by many popular websites. For
instance, the online retailer Amazon uses it toifie products that are likely to be of interest
to its customers. The video-sharing website YouTalbe uses collaborative filtering, to

recommend videos to its users.

It has been previously shown that collaborativierihg is vulnerable to malicious
manipulation. Attackers, who might want to makertpeoducts frequently and highly
recommended, can try to introduce biased opiniottsa recommender system. This could lead

to unfair and inaccurate item recommendations bpioduced.

This report describes work that we have underta@edentify collaborative filtering attacks. In
particular, we present some novel classificati@iuees that can be used to very accurately
detect and neutralise all these attacks. Theseaiari@tures are derived from observations on
the behaviour of users. Our most successful feaitsge the observation that real users’
opinions are not missing at random, i.e. such aigs®ot likely to give their opinion on an item

they do not like.
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1 Introduction

The Internet is not as safe as it used to be. Fhighing and spam and the like are now very
prevalent on the Internet. Unscrupulous people lh@never been trying to deceive other
people, and this is no different on the Interneéakhesses in security are almost always

exploited by adversaries, especially if they caim gamething from doing so.

Nowadays, there are a seemingly infinite numbetenfs vying for our attention. This can be
readily seen on the Web, such as in online stoss sites and—of course—search engine
results pages. Consequently, we expect ways tdlevhitailable items down so that only
relevant ones are left. Probably the most sim@ledtobvious approach would be to present a
sorted list of the, say, five most popular itemsoffier. The BBC News website actually does
this, showing each visitor its five currently mosad stories (see Figure 1 below). While this
has some value, what if the user is not interesteahy of the stories? Or, what if a story the
user would find interesting is not shown? And, wihétey have already read one of the
stories? Well the solution here would be to perbsadhe list of news stories for each

individual user.

MOST POPULAR STORIES MO

E-MAILED READ WATCGHEDSLISTEMED

Stag party man drowns at seaside
\Wornan rider dies at horse trials
Heawy rain brings flooding damage
Georgia 'pulls out of § Cssetia’

T can surf but I can't have a bath'

Figure 1: Screenshot of the five currently most red stories on the BBC News website (news.bbc.co.dg at
10:08 on 10 August 2008.

Such personalised recommendation lists can be peadusing recommender systems, which

try to identify items that are likely to be of inést to a particular user. To do this, a
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recommender system might compare the user’s prefesawith those of the other users of the
system, e.g. if Boris and Dave have similar taddesis is likely to be interested in the items
that Dave likes. This is a common recommendatiohrtejue, and is callecbllaborative

filtering [1]. Moreover, it is the focus of this report. Gdiorative filtering can be viewed as a

scaled up, on-demand version of traditional wordholith recommendation.

Users give their opinion on items to a collabomtigcommender system, so that it can gauge
who shares similar preferences. However, an unatwup person could be masquerading as
one or more users. Suppose their objective is teemaertain item highly recommended. They
could try to achieve this by introducing biasednapms on the item into the recommender
system. This could lead to the item, which theckita may have a special interest in, being
recommended to more people than usual. The mativaiclear: highly recommended items
tend to attract more interest. Continuing the masiexample, the situation is similar to Gordon

befriending Boris solely to make Boris buy a bob#étthe wrote himself.

Collaborative filtering is seen as one of the neddctive ways to alleviate information
overload. The fact that a large number of high-fgatebsites, including Amazon, YouTube,
and Last.fm, implement collaborative filtering estimony to this. Therefore, the integrity of

collaborative recommender systems is worth pratgcti

1.1 Scope

This report concentrates on what are catiedfile injection attacks in the collaborative filtering
literature. In particular, the emphasis is on ustierding and characterising the Random,
Average and Bandwagon profile injection attackse dkerriding aim of our project was to
develop a new way to detect these attacks, becamsnt methods for this purpose are far
from perfect. This is especially true for the Avgeaattack. This is the strongest attack, but
because of this it turns out to be the hardesetedl too. So detection of the Average attack

was given priority during the project.

1.2 Outline

Chapter 2 first introduces the collaborative filtgrproblem, some definitions that are used
throughout this report, and two commonly used taltative filtering algorithms (including
how they work). Next, attacks on these algorithrognfthe literature are introduced and
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discussed. All these attacks use a technique cadledile injection”. Finally, the chapter looks

at how these profile injection attacks are cursebding detected.

Chapter 3 proposes three measurable propertigasidsaof the attacks that were defined in
Chapter 2, for the purpose of attack detectionsé&Heatures are called Ratings Missing At
Random (RMAR), Rated Items Consistency (RIC) andimMam Ratings (MaxRatings).

Chapter 4 evaluates the new features proposedapt€h3, through some experiments on a

widely used film rating data set.

Chapter 5 concludes this report and discusseslpeshrections for future work.

1.3 Main Contributions

The main contributions of our project are:

* New classification features that facilitate morecassful detection of current profile
injection attacks on collaborative filtering. Thedb feature is called RMAR and is
shown to accomplish perfect or near-perfect deiaaiif current profile injection

attacks, including the traditionally difficult teetect Average attack. (Chapters 3 and 4)

* A new class of profile injection attack that is mdalifficult to detect than existing
attacks. (Chapter 3)

« A formal treatment of the complexity of actually uming a profile injection attack.
(Chapter 2)

» The collaborative filtering source code written &xperiments will imminently be
integrated into the UCL PANDA open source inforroatietrieval platforrh

(Appendix)

! More information about this software is availaatéttp://www.adastral.ucl.ac.uk/~junwang/
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2 Related Work

This chapter first gives a detailed introductiorttdiaborative filtering and profile injection
attacks. After this, the current defences agairdilp injection attacks are presented.
Substantially more emphasis is given to the def@nesented last, because this report builds on
it.

2.1 Collaborative Filtering

Collaborative filtering uses the assumption thatilsir people like—as well as dislike—the
same items. Conceptually, to create personalisshmmendations for a given user, a
collaborative recommender system will first tryidentify a group of other users who have the
most similar preferences to the user. Items th@apapular amongst this group are then

recommended to the user.

Collaborative filtering is widely used and activegsearched. Collaborative filtering is
implemented by various websites, including butlmoited to Amazon, Apple’s iTunes Store

and—the eBay owned—StumbleUpon.

Two popular collaborative filtering algorithms arew going to be introduced. Both algorithms
output a number indicating how likely a given usdt be interested in a given item. These will
be called theest user andtest item respectively from now on. Both algorithms also make of

a rating matrixR: LetU ={1, 2, ...,m} be the set of user$={1, 2, ...,n} the set of items, and
R the set of possible numerical ratings that a aaergive to an itenR is depended on the
application, so for example it could be [1, 10]enlR = (ryj)mxn Wherery; [ R represents user
u has rated itemwith r; whiler,j = @ meansi has not yet rated(or has chosen not to rate it).
Moreover, useu's (user) profileUP, = {(i, ry;) : ru; # @} and similarly itemi’s (item) profile

IP; = {(u, ry;) : ry; # G}. In other wordsy’s user profile is the set of items thahas rated along

with the associated ratings. Aiid item profile is the set of users that have rataldng with
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their respective ratings. So ranof R roughly corresponds to usés profile, whereas column

I of R approximately corresponds to itets profile. Figure 2 below illustrates this.

lterm T'sratings

.

1] 2 3 4|5
1 203 4|5
112134 511
2134 5 112 3
lsera's ratings —e 4 a1 2|34 4
1 2 3[4|5 1
1123 4 5
1 21344 1| 2

Figure 2: A fictitious rating matrix with 8 users and 12 items. User 5’'s and item 7’s ratings are hidighted.

Null ratings are not explicitly shown, and are repesented here by blank cells.

In Figure 2, user 5’s profile is {(3, 4), (5, 58,(1), (7, 2), (8, 3), (9, 4), (10, 5)} and itens7’
profile is {(2, 4), (3, 3), (5, 2), (6, 3), (8, 5)The size of a user or item profile is definedres
number of ratings it contains (the cardinality) tlse sizes of user 5’s and item 7’s profile are 7
and 5 respectively. By definition, the sizeuds user profile is equal to the number of itemgd tha

u has rated.

New users initially start with an empty user pm@fijftow). Each user can change the contents of
their user profile (by adding item ratings), buvmusly not that of another user. In other
words, a user has control of only his or her agsigow inR. A collaborative filtering

algorithm uses a rating matrix to associate agagtirediction to each pair of users and items.
This is illustrated below in Figure 3. A rating gretion on itemi for useru is a guess at what
ratingu would have given ta So the job of a collaborative filtering algorithsnessentially to
accurately fill in the blanks of a given rating mnat

Relatec Work | 8



Py

(u, iy — s —p

Figure 3: A collaborative filtering algorithm, s, which uses rating matrix R.r is the rating prediction on item

i for user u. Sor represents how likely usemu will be interested in itemi.

The first collaborative filtering algorithm that Mbe introduced concentrates on the similarities
between users, while the second focuses on iteitasiyn Both are reasonably accurate and

widely used.
2.1.1 User-Based Collaborative Filtering

In user-based collaborative filtering [2], a tdst’s rating is predicted for a test user using the
similarities between their user profile and thokthe other users. For example, if Boris and
Dave have similar tastes then Boris is likely tarterested in the items that Dave likes, and

vice versa. A high-level description of the usesdzhcollaborative filtering procedure follows.
1. Start with all the other users’ profiles (i.8.lat the test user’s profile).

2. Disregard any user that has not rated thettagst ieaving only the user profiles that

contain a rating for that item.

3. Ignore any remaining user profile that is coased to be too dissimilar to that of the

test user’s profile.

4. Combine the ratings for the test item from #fé dver user profiles to form the required

rating prediction, giving extra preference to rgircoming from the more similar users.

Filtering of users occurs in Step 2 and 3, and then a raticajl aboratively predicted in Step 4.
Similarity between two user profiles in Step 3 banquantified using Pearson’s correlation or

cosine similarity [3]. The former is defined as:
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Z(ru,j - 7:u)(’rv,j - Fv)

jed
Wpearson (u: ’U) =
Z(Tu,j — 7y)? Z("'v,j —7y)’
jed jed

whereu, v [J U are two users] [ 1 is the set of items thatandv have both rated (i.8.={i [
| :ryi # D andry; # @}, and T, is the average of the ratingsvirs user profileUP,,. While this

is a slightly modified version of the standard RBeais correlation, because &fthis function’s
range is still [-1, 1]. Here 1 represents maximumilarity betweernu andv, while -1 signifies
maximum dissimilarity. The similarities between thet user and every other user are
computed to determine which need to be filtered ®wib commonly used strategies for this are
to either keep: thke users that are most similar to the test useeérest neighbour approach);
or, all users that have a similarity above a ceraieshold (such as 0.1 for Pearson’s
correlation). For the nearest neighbour approkeh20 is normally satisfactory.

For Step 4, ratings from the remaining users (f&tep 3) can be combined together by taking a

weighted average. More precisely:

> w(u,v)(re; — 1)

veV

> lw(u, )

veV

p(U, 7/) =Ty +

whereu [0 U andi [ | are the test user and test item respectivelyVasdhe set of remaining

users.
2.1.2 Item-based Collaborative Filtering

In item-based collaborative filtering [4], a ratifay a test item is predicted for a test user via
item profile similarities—instead of user profilierslarities, as in the user-based approach. The
item-based method is somewhat less obvious thanstrecentric method, but the outcome is
still the same. The assumption here is that theuses likes and dislikes similar items. For
example, if they highly rated the James Bond filasi@o Royale then they are likely to enjoy
its sequel, Quantum of Solace, as well. The simyl@etween two items comes from the
ratings given to them (i.e. similarity of the twaspective item profiles). A high-level

description of item-based collaborative filterirajléws.
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1. Start with all the other items’ profiles (i.dl. laut the test item’s profile).

2. Disregard any item that has not been rated éyet$t user, leaving only the item profiles

that contain a rating from that user.

3. Ignore any remaining item profile that is coesetl to be too dissimilar to that of the

test item’s profile.

4. Combine the ratings given by the test useredeft over items to form the required

rating prediction, giving extra preference to rgircoming from the more similar items.

Filtering of items occurs in Step 2 and 3, and then a rasing|aboratively predicted in Step
4. Similarity between two item profiles in Stepéhdbe measured using Pearson’s correlation
or cosine similarity. The latter has been adapbedhfe purpose of collaborative filtering, and is

defined as:

Z(rv,i - Fv)(rv,j —Ty)

.. Vv
Weosine (Z;]) - ve
Z(rv,i — ) Z (To,j — )
veV veEV

wherei, j U | are two itemsy [ U is the set of users that have rated bathdj (i.e.V ={u U
U :ryi # @ andr; # @}, andT, is the average of the ratingsvirs item profilelPy. This differs

from the standard cosine similarity formula in tways, because &f and the subtraction of the
user rating means. The similarities between thigte® and every other item are calculated,
and dissimilar items can be filtered out using ohthe methods described above in the user-

based approach (nearest neighbour or threshold).

For Step 4, ratings from the remaining items (fidtap 3) can be combined together by taking
a weighted average. More precisely:

> w(i,§) - ru,
plu,i) = 257
> w(i, )

jeJ
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whereu [J U andi [ | are the test user and test item respectivelyJasthe set of remaining

items.

Item-based collaborative filtering is more scalablen the user-based method, because item
similarities usually stabilise, rarely fluctuatisgynificantly after a short period of time—so the

output ofw can be cached for quicker performance.
2.1.3 Why Recommender Systems are Targeted

With the increasingly competitive marketplace timatst manufacturers experience, it is in their
interest to have their goods frequently and highgommended. Normally this is achieved by
producing quality products with a unique sellingmoThus, companies that make inferior
items do not benefit from the increased salestti@atest enjoy. This could lead to dishonest
companies attempting to force their goods to beatifjably highly recommended. If they are
successful in doing this then various parties #exted. Honest manufacturers are affected,
because their possibly more suitable products laseuved—so they may see fewer sales.
Consumers are also affected, because they wowd/ecbiased recommendations. If customers
experience this a lot then their trust in the rec@nder system is likely to diminish. This is

also undesirable for the business operating th@metender system, because of the investment
made in it. Moreover, dishonest companies wouldatiifely be gaining free advertising from

the operator.

2.2 Profile Injection Attacks on Collaborative Filtering

Most collaborative filtering algorithms—includinbea aforementioned user and item-based
ones—assume that the ratings they use to cala@etenmendations are unbiased, and an
entirely true representation of what all the usknsk of the items they rated. However, due to
the open nature of collaborative filtering, a mialics user can easily give misleading item
ratings. This could lead to honest users receiwiagcurate predictions. Moreover, these users
would find it difficult to immediately tell if a téng prediction is accurate, because all they

know is that some users with similar profiles terthgave a like rating.

It is assumed that the malicious user here warafféat the rating prediction on a particular
target item for a subset dérget users (which could be the whole set of users).akteeker will

attempt this by inserting a fake user profile tt@itains a biased rating for the target item. It is
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also, of course, assumed that the attacker caeedhe rating matrix used by the collaborative

filtering algorithm. Thus, he can only inject neseu profiles into the recommender system.

The reader might have already worked out how atlkét can manipulate the user-based
collaborative filtering algorithm. But if not, trenswer lies in Step 2 and 3 of its high-level
description. It should be obvious that the attatles to make his profile be considered in Step
4, implying he must not be filtered out in Stepn2l 8. Getting passed the first filter is easy:
simply provide a rating for the target item. Moregsely, maxR is given to increase the rating
prediction of the target item, while miis given to decrease it. Negotiating the secolier fi
(Step 3) is much harder though. For this, the kétabas to somehow make his profile look
similar to those of the target users. There armuarstrategies to achieve this, and they will be
discussed in a later section. This is all well godd, but the attacker’s profile on its own is
very unlikely to have a significant effect on thegiction calculation (ratings from honest users
should overwhelm the rating from the attacker)cifoumvent this problem, the attacker can
again exploit the openness of collaborative fitigrilt is normally very easy to register as a new
user, so the attacker can build multiple profilesaziated with fictitious identities. Now it is
possible for the attacker to completely influertoe tating prediction for the target item—the
worst-case scenario. Note that as the numberaflafirofiles employed by the attacker

increases, the probability of at least one of theathing Step 4 also increases.

Manipulating the item-based collaborative filteri@gorithm is not as straightforward. This is
because an attacker has to know at least some dkths that each target user has rated (for
Step 2), in addition to making the target item’sfipe similar to that of these items (for Step 3).
Recall that an item’s profile contains every uget rated it (and the rating each gave).
Therefore, a single attack profile can only add-mast—one rating to an item profile. In other
words, an attacker does not have much influenogtat an item profile looks like. This means
that manipulating the similarities between itemeelatively hard to do. However certain
subsets of users can be targeted in this casgrbfutly constructing a number of attack

profiles [5].
2.2.1 The Anatomy of a Profile Injection Attack

So as not to distract the reader, a few detaile \warposefully omitted from the sketch attacks

above. These included how to generate artificial psofiles and the number of them required
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to mount a successful attack. These aspects aredbeinteresting part of an attack, and

receive special treatment in this section.
2.2.1.1 Attack Complexity

The literature does not treat the complexity of mting a profile injection attack in a formal
manner. A rational attacker will want to know theet cost and feasibility of mounting a
successful attack. We adopted the cryptographeslddCourtois’ formal notion of security.

He says that the security of a system is a triple:
1. Adversarial Goal
2. Resources of the Adversary
3. Access to the System

For example, the security of a certain car coulddad with respect to an attacker that wants to
(1) steal it, (2) has a toolbox, and (3) has actefise garage it is parked in. However, this may

not hold for another triple, e.g. changing (1) varidalise it”.

It has already been assumed that the adversarglsggm successfully mount a profile injection
attack. With respect to system access, it is alsnghat the attacker can only insert new user
profiles and ratings via legitimate channels, bygclicking a “Sign up for an account” button

on a website. Consequently, this attack vectorcdcbalguarded with proactive or reactive
defences. For example, making users complete a CMAT(Completely Automated Public
Turing test to tell Computers and Humans Apartpletreating a new account or accepting an
item rating may thwart an otherwise successfuthttalso related to system access is how
much information about the underlying rating matsiyublished, which could be critical to the

effectiveness of an attack.

Profile injection attacks require statistics abthgt rating matrix before they can be executed.
Sometimes these statistics can be estimated usingtaide source, e.g. the Internet Movie
Database website displays the average user voeatbr film they have. This is classed as an
adversary resource. Another important tool fordtiacker is suitable bots (software that
automates jobs) to create fictitious users andtadd ratings to their profiles quickly. One
more equally crucial adversary resource is time fiilne to create the necessary number of

attack profiles has to be taken into account.
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The strongest possible security notion here woeldribattacker that wants to (1) alter a target
item’s rating prediction by an infinitesimal amou(®) has full knowledge of any security
mechanisms employed and a copy of the rating matna (3) has an infinite amount of time to
create fictitious user profiles. This triple isMn@ver, hardly practical. A strong, yet realistic
triple is an adversary that wants to (1) substéytiacrease the rating prediction of a target
item, (2) can find out only a limited number oftscs about the rating matrix, and (3) has a

virtually infinite amount of time to create fictius user profiles.

Although there are specific attack strategies twekse the rating prediction of a particular item
[6], this report is not going to focus on them. §t8 because almost no economic advantage is
gained by employing such attacks. Although, someoag want to use these attacks, which are

said to “nuke” or sink an item, to damage the rapah of a company’s product.
2.2.1.2 Attack Terminology

This section introduces some important definitiaheut profile injection attacks. These

definitions are used extensively from here on in.

A profileinjection attack involves inserting a number of user profiles, esponding to spoofed
identities, into a rating matrix with the intentiohincreasing the rating prediction of a single
item (the target item) for a subset of users (dngdt users). Here, the number of profiles
injected is a percentage of the sizéJofand is called thattack ratio. So an attack with a 10%
ratio would increase the size dfby 10%. Attacks with ratios ranging from 1% to 18% the
most common in the literature. The attacker usesti@ck strategy to build each user profile.

An attack strategy? is an algorithm for generating a single user pepfialled arattack profile,

for the purpose of profile injection. The overriginbjective here is to create profiles that are
likely to be considered as similar to the targerasMaking profiles that are difficult to detect
(i.e. indistinguishable from authentic user prd)les also important though. This is because if
they were not, it would then be very easy to exeltiiem from the collaborative filtering

process—and hence foil the attack.

2 Attack strategies are also referred to as “attaolels” in the literature.
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Recall a user profile—and hence an attack pro§levaell—is a set of item-rating pairs. Attack
strategies essentially define how items in an kfpaofile are chosen and rated. They all do this
by first partitioning the set of itemign four: I, a singleton set composed of the target item;

a set ofspecial items that have certain characteristits;a set ofiller items that are randomly
chosen from \ {I+ O Ig}; and last but not leasg, the set of remainingnrated items. Next, an
appropriate function is applied to each itentifs, andlr to compute respective ratings. These
functions ard+ : I+ — {max R}, fs: Is— R, andfr : I - R. Two attack profiles built according
to the same attack strategy are not necessarinyiodé, asfs andfe are almost always
randomised functions. The set of special itelgss seldom non-empty, but if it is then it is

normally very small. Filler items are a featureatifattack profiles and represent a

predetermined percentage|b|f—1. This percentage is called thier ratio, and is normally

chosen such that the size of attack profiles isistent with that of a typical authentic profile
(to minimise the chance of detection). Thus, thgontg of items in an attack profile are filler

items. Attack strategies basically differ only iovihnthey rate filler items (their choice ).

The following pseudo-code outlines a complete gemefile injection attack. The special

item set is not included for clarity.

the target item

iT:z
e = {}
filler_size :=filler_ratio * (|I] - 1)
while (|l1g < filler_size)
{
random y choose i froml \ {lt v Ig
add igto I
}
attack_size := attack_ratio * |
while (attack_size-- > 0)
{
attack_profile := {}
add (i1, fr(it)) to attack _profile
for each igin Ig
add (if fe(ig)) to attack profile
}
insert attack profile into rating matrix
}

Some well-studied attack strategies from the liteawill now be introduced. Each attack
strategy is formally defined, with definitions angting from [6] but adapted where necessary

to integrate with the notation introduced in thestson.

Relatec Work | 16



2.2.1.3 Random Attack

The original Random attack strategy [7] was ontheffirst published attacks against
collaborative filtering. Th&andom attack strategy simply involves rating each filler item
around the average rating across all users/iternse Kbrmally,f=(i) outputs a random Gaussian
distributed value with mean and standard deviatianwherer is the arithmetic mean of the
non-null elements of the rating matix ands is the standard deviation of the same set of

elements. For example, suppose the rating mataxtrae users and four items and looks like

1 2 3 4
1131414
2 14| 3
K 113

thent = (3+4+5+5+4+3+5+1+3)/9= 37. Ifitem 4 is the target and 5 is the maximum
rating, a Random attack profile with a 100% filtatio could be {(1, 3.7), (2, 3.7), (3, 3.7), (4,

5)}. Injecting this into the rating matrix wouldswelt in:

12 3 4
1134148
2 51413
al s 11 3
4137|3727 4

The Random attack has a relatively low attack cexipl (with respect to rating matrix access
at least). If the average rating and spread areunalicly available, they can normally be
accurately guessed.

2.2.1.4 Average Attack

The original Average attack strategy was introduatetthe same time as the Random attack, in
[7]. The Average attack strategy says that each filler item is rated around theaye rating
given by all users fahat item. More preciselyf(i) outputs a random Gaussian distributed
value with meart; and standard deviatian wherer; is the arithmetic mean of the ratings in
I's item profilelP;, ands is the standard deviation of the same set ofgatilsing the original
rating matrix from the previous examplg,= (3+5)/2=4, f, =(4+5)/2= 45, and
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r= (5+4+1)/3= 3.3. So an Average attack profile targeting item 4lddoe {(1, 4), (2, 4.5),
(3, 3.3), (4, 5)}.

The Average attack clearly has a considerably migtiack complexity than the Random one
(the average rating of each individual filler ité¥xas to be known). However, some websites,
including Amazon, display the average rating giteeitems that they offer. But if not, average
ratings can be estimated by, again, guessing ngusi independent source. It can also be
imagined that the adversary is cooperating witimaier who can view the rating matrix

(insider attack).

The Average attack has been shown to be the stsbagd most effective attack strategy [8],
offering the greatest chance of effecting a lasgag prediction increase. It is easy to see why
this is true; Average attack profiles are statalyclikely to be considered similar to those of
most genuine users. However, due to this fact alineeAverage attack has so far been the

hardest to detect. This has resulted in the atwdiving a lot of attention from researchers.
2.2.1.5 Bandwagon Attack

The Average attack clearly has a high attack coxigleThe Bandwagon attack strategy was
proposed in [9] as a response to this, and is dlawsffective as the Average attack. The
Bandwagon attack strategy is defined in exactly the same way as the Randtawla except
that the special items set is non-empycontains a predetermined number of the most

frequently rated items. Anig(i) = maxR.

The Bandwagon attack is an extension of the Rarmtman It has an attack complexity
somewhere between the Random and Average attamfsla® items can usually be identified
using publicly available information. For instaneay book on the Richard & Judy show’s

incredibly successful Book Club reading list enjbgstseller status.

2.3 Current Defences against Profile Injection Attacks

At present, there are essentially two main metlubd®untering profile injection attacks. One

is implementing robust collaborative filtering atgbms, which are not supposed to be unduly
affected by the presence of random noise or injeatack profiles. And the other method is
deploying an attack profile detection mechanisrfrant of an existing recommender system, so
that biased profiles from an attacker (hopefullg)rbt enter, and its collaborative filtering
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algorithm only sees authentic user profiles. Neittefence technique is completely impervious
to attack profiles, with each currently having vagydegrees of success. An overview of both

follows.
2.3.1 Robust Collaborative Filtering

Some collaborative filtering algorithms have retebeen designed from the ground up to
withstand profile injection attacks. Dimension reithg techniques such as singular value
decomposition (SVD) and principal component anal{BICA) have been used to achieve this.
The idea behind using dimension reduction is titatk profiles in a rating matrix tend to add

very little information.

The state of the art robust collaborative filteraigorithms [10] offer satisfactory resistance to
Random attacks. However, Average attacks arevstijl effective against them. Further

information about robust collaborative filteringyatithms can be found in [10].
2.3.2 Attack Profile Detection

Genuine banknotes possess several observableggabunelp us distinguish them from
counterfeit ones. These include unique feeling papesed print, a metallic thread, a
watermark, high quality printing, a hologram, aadviolet feature, and microlettering. All of

these features can be found on any genuine £10andtare shown, as ordered, below in Figure

Figure 4: Images of the (disclosed) security feates of a £10 note, courtesy of the Bank of England.

A decent counterfeit note will have, to some degneast of these features (but certainly the
most obvious ones). Thus, a perfect counterfee moll replicate each and every feature
flawlessly, so that even an expert cannot telpé@rafrom a genuine banknote. Conversely, a
poor counterfeit note would be recognised by angnbvex of the general public. This could be
because of the absence of one or more featurebamly imitated feature. A trained expert will

not rely on the presence of just one feature togeise a genuine note, because a counterfeiter

Relatec Work | 19



may have managed to perfectly replicate it. Theesfioe expert will examine each and every

feature he is aware of.

Like counterfeit banknotes, the vast majority déek profiles lack certain features that genuine
user profiles normally possess—or have peculigufea that are not common amongst genuine
user profiles. However, the situation here is $ligmore complicated, because a user with
unusual tastes, which dramatically depart fromehafthe majority, may inadvertently have

the characteristics of an attack profile.

The problem of defending against profile injectaitacks can be reduced to designing a
classifier to detect attack profiles (similar te thanknote expert above). In particular, features
that readily distinguish attack profiles from gamiprofiles have to be identified. Given a user
profile, a classifier will say whether it belongséan attacker or not. Detected attack profiles can
then be discarded.

2.3.2.1 The Advantages of Attack Profile Detection

Attack profile detection is in a sense analogousgi@cting email spam. Email messages that
are classed as spam can be filtered into a desdjh@itler, for closer inspection, or simply
trashed. Ideally, spam detection should be donaréehessages are delivered to email clients,
so that they receive messages labelled as spamspam at all. The separation of spam
detector and email client yields numerous bendfitstly, each is able to concentrate on their
primary objective, which is accurately classifyimgssages and managing messages
respectively, and do it to the best of its abilifiis is consistent with the UNIX philosophy of
doing one thing well. Another advantage is that amgail client can benefit from the

specialised spam detection, so they do not hatse toverly concerned with spam.

Likewise, using attack profile detection is benilicbecause it allows the use of any
collaborative filtering algorithm (robust or othase®). Suspected attack profiles can be
discarded, instead of being inserted into the gatiatrix, so that the collaborative filtering
algorithm does not have to assume the presendéackarofiles. As a result, collaborative
filtering researchers can concentrate on the prolaieproducing highly accurate rating
predictions. On the attack profile detection sttieye are also numerous benefits. If the detector
is extensible, new features can be plugged in fwore detection of existing attacks or to
facilitate the detection of new attacks—akin tovanis signature updates. Due to the fact that
user profiles are inspected individually, one atree, this approach is indifferent to the number
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of profiles an attacker injects (attack size), amen the number of adversaries attempting to
manipulate the recommender system. The latterrtcpkarly useful, because in reality it is
highly likely that at any one time there will be Itiple attackers—each using different attack
strategies, and targeting different items. Suchukaneous attacks are rarely considered in
robust collaborative filtering literature (theirgatiments only include lone attacks). So
simultaneous attacks could ultimately be the Aekilheel of robust collaborative filtering

algorithms.

An overview of a selection of current attack pmfiéatures from the literature follows. It

should be noted that none are perfect at deteatirajtacks.
2.3.2.2 RDMA: Rating Deviation from Mean Agreement

In 2005, Chirita et al. introduced a feature calaMA in [11]. RDMA is defined as:

1 |r — 7i

whereu [J U, UPy is u's user profile]P; is itemi’s profile, andr; is the arithmetic mean of the

ratings ini’s item profile.

RDMA measures how much a given user’s ratings dépan those of the other users. It does
this by inspecting each of the items that the hasrrated, taking into account the difference
between the rating given to them and their averatijeg. The formula also considers how
many other users have given a rating to each sktliems. This is because items with very few
ratings are more susceptible to profile injectittacks (an attacker’s ratings for such items can
quickly become authoritative). Thus an attack pea expected to have a relatively large
RDMA value.

2.3.2.3 WDA: Weighted Degree of Agreement

In 2006, Williams et al. proposed a feature calldA, which is derived from RDMA, in [12].
WDA is defined as:

r— i

1P|

WDA(u) = [UP,|- RDMA(u) = Y _
(¢,7)CUP,
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whereu LI U, UPy is u's user profile|P; is itemi’s profile, andr; is the arithmetic mean of the

ratings ini’s item profile. WDA is precisely the summation gooment of RDMA.
2.3.2.4 WDMA: Weighted Deviation from Mean Agreement

In [12] Williams et al. also introduced another RBMerivative, called WDMA and is defined

as:

1 |r — 74l
WDMA(u) =
“EWRl &, T

whereu Ll U, UPy is u's user profile|P; is itemi’s profile, andr; is the arithmetic mean of the

ratings ini’s item profile. WDMA is identical to RDMA excephat the denominator inside the
summation is squared. As a result, WDMA places meonphasis on rated items with fewer

ratings from other users.
2.3.2.5 DegSim: Degree of Similarity with Top Neighbours
In [11] Chirita et al. also proposed a featureezhlDegSim, which is defined as:

1
m Z Wpear son (u, v)

vEV

DegSim(u) =

whereu [ U, andV is a set of a pre-specified number of the mosiiaimsers tai according

t0 Wpearson, the user similarity measure defined in Chapt&eéSim is the average similarity

between a given user and 4 nearest neighbours. The reasoning behind thigrea that

attack profiles—by design—exhibit an unusually haghount of similarity between genuine

users. So attack profiles are expected to havghalbegSim value.

2.3.2.6 LengthVar: Length Variance

In 2006, Burke et al. introduced the LengthVar deatn [14], which is defined as:
UP| 1

Y (UP|=1)

vel

LengthVar(u) =
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whereu [ U, UP, isw's user profile, and is the average user profile size for the usets.in
The LengthVar feature measures how much a giversys®file size deviates from that of the
other users. Assuming there are a large numbe¢erofi it is likely that a genuine user would
(and could) only rate a small proportion of theHas is in contrast to an attacker equipped with
an automated means of adding item ratings, whiohrae a large number of items in a short
period of time. Thus, attack profiles with a sigrahtly large filler ratio will have a noticeably
high LengthVar value.

The LengthVar feature was designed to target apackies containing an exceptionally large
number of filler items. It does a good job of thist LengthVar is of limited use however. This
is the case because large attack profiles areamton (higher attack complexity), and not as
effective as attack profiles that are around timeesaize of genuine user profiles anyway.
Moreover, user profiles belonging to new usersattrest always disproportionately small
initially. So until a new user has rated enoughmgethey are likely to be considered as an

attacker by LengthVar, which may lead to the pabsilof a false alarm.
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3 Novel Features for Detecting Attack

Profiles

This chapter proposes three original featureshfermiurpose of user profile classification. The
new features are the creme de la creme of thetbaewere conceived by us. Each looks at
unique aspects of attack profiles that have ybeetstudied in the literature. Moreover, they are
applicable to all current attack strategies.

In our opinion, existing features work at the wraixgtraction levels to reliably differentiate
attack and genuine user profiles. For instancey#ye attack profiles are mostly composed of
ratings such that when looked at individuallysiimpossible to accurately say whether they
originated from a genuine user or an adversarys iBhprobably the main reason why the
Average attack has been so good at evading detediiotackle this problem, we did what
clever people do when they want to solve a tradfiily difficult problem: avoid it. To be more

precise, we approached the problem from a diffesiagte.

Instead of looking one at a time at each ratingj @ahaarticular user has given, we looked at
them as a whole and concentrateduat items they rated, ndiow they rated them. This
dramatically departs from the approach taken bytmoiber people. Two of the features that are
proposed (RMAR and RIC) take advantage of this happroach and yield statistically perfect
profile classification, accurately detecting alfr@nt attacks in experiments. In the light of these
results, we have modified the current attack sgrateto create a new class of attack that is

more resistant to detection.

3.1 RMAR: Ratings Missing At Random

For [15] some users of Yahoo's Internet radio servi AUNCHcast, were asked about how
they rate the songs it plays. In one question thene asked how often they would rate a song

given their preference for it. The results fronsthser study (summarised below in Table 1)
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show that these two aspects are related, suchA#NCHcast users are much more likely to

rate songs that they love than ones they hate.

Rating Frequency
Preference Level Never Infrequently Often
Hate 6.76 % 3.22 % 90.02 %
Do Not Like 4.69 % 8.61 % 86.70 %
Neutral 2.33% 34.33% 63.33 %
Like 0.11 % 2.02 % 97.87 %
Love 0.07 % 0.55 % 99.37 %

Table 1: Reproducedresults of a LAUNCHcast user survey [15], where pgéicipants were asked how often

they would rate a song given their preference fotti

The frequency distribution of ratings in a well-kmofilm and book data set are consistent with
this user study. These are illustrated below iruféd. Note the bias towards higher ratings in

both cases. The film data set is actually usediregperiments.
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Figure 5: Graphs of the frequency distribution of ratings in a particular MovieLens (left) and the Bod-

Crossing (right) data set. Greater ratings indicatemore liking for a film/book.

Assuming these results hold for all rating data sised for collaborative filtering, this implies
that genuine users are more likely to provide mgdor items that they like than ones that they
do not. More precisely, for the cognoscenti, maisieat ratings for genuine users shawtbe
missing at random (MAR). Conversely, attack prafiesince they are always mainly
composed of randomly chosen (filler) items—will dgfinition have a lot of absent ratings that
are MAR. Thus the presence of a large proportioMAR ratings is a feature of attack profiles,

but not of genuine user profiles. While many reslears have proposed features based on the
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randomness of item ratings to detect attack psafiene have exploited the randomness of

chosen filler items.

We needed a way to accurately measure this feattnieh is now called Ratings Missing At
Random (RMAR). Notice that a pair of two distinigtms chosen at random is unlikely to have
similar item profiles —especially when the popudatpf items is large. Consequently, each pair
of rated items in an attack profile is not liketylie similar, whereas the opposite of this is more
probable for genuine user profiles. With a setsdriprofiles known to belong to genuine users,
item similarity can be quantified using the adjdstesine similarity measur@issne (from the
item-based collaborative filtering algorithm, whishdefined in Chapter 2). Recall that for two

items,Weosine gives the strength of similarity between themhwilitand —1 represent absolute

similarity and dissimilarly respectively. As a résthe functionRMAR: 1" — [-1, 1] is defined

as:
_1 n n
RMAR(iv, iz, ... in) = 7 D D Weosine (i, ik)
(2) =1 k=j5+1
whereiy, iy, ..., 1, are the items in a user profile, angsne is a function defined in Chapter 2.

So, here the similarity of each unique pair of serated by a user is calculated, summed
together, and then normalised. This result is reehab that a positive value signifies a high
proportion of ratings missing at random preseni|endnnegative value indicates a low amount.
Therefore we would expect attack profiles to hapesitive RMAR, whereas genuine user
profiles have a negative RMAR. Moreover, the magietof the result represents the amount of
confidence we have in either result. Ideally, thgats ofwgsne Should be cached. This makes
real-time attack detection much more feasible. Giputs can be cached, because they do not
usually fluctuate after items have received a sigfit number of ratings from users.

The key assumption with RMAR is that item similest (the outputs ofiesine) are reasonably
accurate. This in turn means that the item profte$wg.sne Uses are assumed to be mature and
stable. This is actually a fair assumption, angrecisely the one that the item-based
collaborative filtering algorithm makes. It is alassumed that genuine users rate items in a

non-random, reasoned fashion.

In theory, as the number of randomly chosen fiteems in an attack profile increases, the more

likely it is that it will have a high RMAR, and thefore be more noticeable. This is very
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advantageous, because the attack complexity nawases as the number of filler items in an
attack profile grows. This is very pertinent, besmincreasing the size of an attack profile is
traditionally not seen to be expensive to an aga¢tey could simply rate another randomly
chosen item). Because of RMAR, filler items now &y be chosen more intelligently, in a
non-random fashion. Another major advantage oRNEAR feature is that it is applicable to all
current attack strategies. This is because eaabkattakes use of randomly chosen filler items

that make up the bulk of an attack profile.

There is however three possible scenarios where RMy come unstuck, unable to clearly
differentiate between genuine users and attackers.is when any user profile, genuine or
otherwise, contains very few rated items. Thisasause such profiles may have a
disproportionate RMAR value, since there is ligledence to go on. Likewise, genuine users
that are unconventional in the way that they reen$ may have a RMAR value similar to that
of attack profiles. This could be the case becaush users deviate from the norm too much,
seemingly choosing items to rate randomly—what RMASRS to separate attack profiles from
genuine ones. Finally, RMAR may be ineffective agaBandwagon attacks with a very large
number of special items, because these frequeattyd items could be similar to each other.

3.1.1 RMAR-Resistant Attacks

For an attack profile to receive a favourable RMydRue, the adversary would need to gather
knowledge of potential filler items that are liketybe similar to each other—on top of
whatever other information their strategy requifdse new RMAR feature uses the fact that all
current attack strategies select filler items raniyo More precisely, each item distinct from the
target one and not already a special or filler iteaa an equal probability of being chosen.
Therefore, it would be interesting to see if attatiategies that choose filler items based on

popularity can go undetected. This is exactly whatone in our experiments.

Existing attack strategies (including the Randowerage, and Bandwagon ones) can be
modified to choose filler items proportionatelytbeir popularity. Popular items are used in the

hope that RMAR will think these items are simillsiore formally, an item is selected to be a
filler item with a probability oﬂIPi|/Z‘j":l‘le ‘ . Note that unpopular items still have a chance of

being selected. In practice a roulette wheel, wheobabilities are proportional to item
popularity, is used to choose filler items. An ektatrategy that chooses filler items like this is

going to be said to use “popular filler items”, .eAyerage attack with popular filler items.
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All current attacks use filler items that are signphosen at random. Because this new attack
class requires the additional knowledge of whiemg are popular, it has the highest attack
complexity of all (on paper at least). Howeverstimformation may be available publicly. It
may even be available from the operator of thestargcommender system. For example, the
Amazon website conveniently displays its 100 bdélstsein any category (e.g. books)—and
updates them hourly. Other information sourcesuielthe likes of the UK singles and album

charts.

3.2 RIC: Rated Items Consistency

The RMAR feature does not consider the item ratingsuser profile—just the items
themselves. Consider the case when RMAR encouateas of items that are totally
dissimilar. If the user happened to rate one ad¢htems with the smallest possible rating and
the other with the largest allowable rating, he ldatill be penalised. RMAR has been
extended to take into account the consistencyeat ratings (rated items consistency). The

functionRIC: | "xR" — [-1, 1] is defined as:

1 «— (max R — |r; — r¢|)
RIC (iy,19,..., s T1sT2y ey T) = 70 Z Z Weosine (1, 1k ) R
2) =1 k=j+1 max
whereiy, iz, ..., 1, are the items in a user profile, andr, ..., r, are the corresponding ratings.

RIC is identical to RMAR except that it scal@gsne, and does not negate the double
summation so that higher RIC values indicate migm iconsistency. Thus, only genuine users

are expected to receive a positive RIC value.

3.3 MaxRatings: Maximum Ratings

It has been noticed in experiments that attackilpsofend to have a very low proportion of
items rated with the maximum possible rating (oatang very close to the maximum). This
could be because the majority of items in an atpaokle are either rated: around their
respective average ratings (in the case of theageeattack); or, the overall average rating (for
the Random and Bandwagon attacks). So an attaalkings rarely stray too far from the
norm, which is unlikely to be close to the maximaliowable rating. Only the target item is
given an extreme rating by an attacker. Contrastwith genuine users, who reserve the
maximum possible rating for items they love (anel tinimum rating for items they hate).
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Because people normally have several favouritestengenuine user’s profile is likely to
contain a number of maximum ratings. The maximuowalble rating also has a psychological
meaning to people, given to items that completetentheir needs. Thus, it is expected that
genuine user profiles contain more maximum ratthgs those of attackers. Consequently the

functionMaxRatings: U — [0, 1] is defined as:

1 i _
MazxRatings(u) = Z { 1 ifmaxR -6 <r<maxR

herwi
|\UP,| iy 0 otherwise

whereUP, is u’'s user profile, and is a small positive number.

The dual to MaxRatings is Minimum Ratings (MinRgsh which looks at the proportion of
user ratings close to mR In preliminary tests MinRatings performed verypdg, which was
quite surprising as the above reasoning for Maxfgatshould logically be valid for minimum
ratings too. However, on closer inspection of theifes of some genuine users, it was found
that they usually only contain a small proportidritems rated with the minimum allowable

rating. This is actually consistent with the resditom the LAUNCHcast user survey above.
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4 Experiments

This chapter presents the results from experintbatsnvestigated the properties of the new
classification features proposed in Chapter 3antiqular, we determined the new features are
better than existing ones at detecting attacks eatablished when the new features work well

(and not so well). We experimented on a commongdullection of ratings.

4.1 The Data Set

The MovieLens data set consisting of 100,000 rafihgs been more or less adopted as the
standard for collaborative filtering experimentsgiup within the University of Minnesota
compiled the data set. It contains 100,000 ratfraya 943 users on 1682 films (items). Each
user has rated 20 or more films, and each ratiag isteger ranging from 1 to 5, inclusive.
Greater ratings indicate more liking for a film.élmean rating is 3.5 (1 dp) and the ratings
have a standard deviation of 1.1 (1 dp). The aweusgr profile size is 106.0 (1 dp) with a
standard deviation of 100.9 (1 dp). Additionallyg tmedian profile size is 65. Therefore, to
avoid being too overt, attack profiles should beuad these sizes, which correspond

approximately to filler ratios of 6% and 3% respeadly.

We assumed that the MovielLens data set does ntdinany ratings from an adversary. Hence
all the 943 users were assumed to have providegletely honest item ratings.

4.2 Results

What follows are the results from a selection gieskments.

% At the time of writing, this MovieLens data setigilable at http://www.grouplens.org/node/73
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4.2.1 Detection of Average Attacks using New Features

All the new features proposed in Chapter 3 wereviddally evaluated, and contrasted with the
state-of-the-art features defined in Chapter 2dd ohis, the user profiles from the MovieLens
data set were randomly split into two halves. Titst half was designated as the training set,
and the other was the test set (of genuine usétgw) The training set was used by the
classifiers, and as a basis for statistics to ertt attack profiles. For a particular attack and
filler ratio, an attack profile was generated amehtadded to the test set. More attack profiles
were added until there was exactly the same nuoflettack profiles as there were genuine
ones. So the size of the final test set were tifiaeof the original test set. Each attack profile
was created with a fresh set of filler items andaaitem. As discussed in Chapter 2, note that
the attack ratio is irrelevant here. The test s&t used only to assess the accuracy of a

classifier, and was unseen by the classifier wbisihg trained.

To evaluate the individual features, a simple hirddassifier that uses a threshold to
discriminate between attack profiles and genuiresamas used. The performance of this
classifier—and hence the features—was measure@egaver operating characteristic (ROC)
analysis [16]. ROC analysis originates from sigihetiection theory, and is used in many fields
including machine learning. The principal toolhe ROC curve, which is a graph of the
fraction of hits (the hit rate) and fraction ofdalalarms (the false alarm rate) made by a binary
classifier as its threshold is varied. The falggralrate is on thg-axis of the graph, while the

hit rate is on thg-axis. The terms hit, correct rejection, falsemlaand miss in this context are
defined below:

e A hitis said to occur here if the classifier says @naa@ttack profile belongs to an
adversary. This is also called a true positive (TP)

« A correct rgection happens if the classifier says an actual genwsee profile belongs

to a real user. This is also called a true negdive.

« A falsealarm happens if the classifier says an actual genwsee profile belongs to an

attacker. This is also called a false positive (FP)

A missoccurs if the classifier says an actual attackilerbelongs to a genuine user.

This is also called a false negative (FN).
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We used ROC curves, because they intuitively visedhe trade-off between different hit and
false alarm rates. While ROC curves are very udefulisualising and tuning the performance
of classifiers, this is subjective as it is difficto accurately compare curves. Fortunately,
several statistics can be derived from a single R@®e. One is the area under the ROC curve
(AUC) statistic, which is what the machine learnammmunity tends to prefer. The AUC
statistic will thus always assume a value in [OHigher values indicate better accuracy here,
with 1 signifying perfect detection. An AUC lesathor equal to 0.5 means that using the
classifier in question is worse than just randogugssing the classification of a user profile.
Suppose that attack profiles normally have a hggjuesfor a certain feature. The AUC has a
nice property in that it is equal to the probapitiiat a random attack profile is given a higher
feature value than a random genuine user profie. AUC was computed using this
established formula:

AUC = %

whereG is the Gini coefficient:
n
1-> (Xp+ Xp-1) (Vi — Yio1)
k=1

where eachX, Yk.1) is a point on a ROC curve such that the sequétgés monotonically
increasing. S& is a false alarm rate ani is its corresponding hit rate value. In effecg th
AUC is approximated via the trapezium rule (a mdttmestimate a definite integral) and the

penultimate equation.

The opening experiment looks at how the featuresdgainst the Average attack, which has so
far been the hardest to detect accurately. A t#sias generated as per the stated method
above using a 3% filler ratio. This filler ratio s/éound to yield the most effective attacks,
which is consistent with other work, e.g. [6]. Téiie also the median percentage of items that
users in the training and test set rated, so tingth&/ar feature was not be called upon. Figure

6 below shows the resultant ROC curves for eadufea
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Figure 6: ROC curves indicating how well each featte detects some Average attack profiles with a 3%lfer
ratio. Corresponding AUC statistics (3 dp): RMAR, 0Q999; RIC, 0.998; MaxRatings § = 0.25), 0.855;
RDMA, 0.957; WDA, 0.797; WDMA, 0.919; DegSim (100earest neighbours), 0.991.

From Figure 6 it is clear to see that RMAR and Ri@ile not perfect, are excellent features
and outperform the ones proposed by others. Sihiparticular test set, RMAR would
correctly rank a random attack profile and genuyircdile with a 99.9 percent chance. DegSim
is a reasonable feature here. This is to be exgpheaseAverage attack profiles are constructed
such that they are considered similar to as maaksuss possible. The MaxRatings feature is

satisfactory, but certainly not outstanding.

To see if RMAR and RIC are actually better thandheent features at detecting the Average
attack, a significance test was carried out. Agaititest was used, with a significance level of
0.01 (1%). Ten fresh, randomly generated testvgete used in this significance test. Table 2

summaries the results from this experiment.
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Filler Ratio
Feature 1% 3% 6% 10%
RMAR 0.996 1.000 1.000 1.000
RIC 0.994 0.999 0.999 0.999
MaxRatings 0.795 0.887 0.910 0.932
RDMA 0.925 0.955 0.959 0.966
WDA 0.455 0.771 0.910 0.970
WDMA 0.871 0.915 0.921 0.934
DegSim 0.943 0.986 0.930 0.746

(a) Mean AUC statistics (3 dp)

Filler Ratio
Feature v Feature 1% 3% 6% 10%
RMAR v RDMA 0.000 0.000 0.000 0.000
RMAR v WDA 0.000 0.000 0.000 0.000
RMAR v WDMA 0.000 0.000 0.000 0.000
RMAR v DegSim 0.000 0.000 0.000 0.000
RIC v RDMA 0.000 0.000 0.000 0.000
RIC v WDA 0.000 0.000 0.000 0.000
RIC v WDMA 0.000 0.000 0.000 0.000
RIC v DegSim 0.000 0.000 0.000 0.000
RMAR v RIC 0.001 0.002 0.010 0.004

(b) Associatedp-values (3 dp).p-values less than or equal to 0.01 are in bold (ah this case).

Table 2: Results of the features for 10 different #erage attack test sets for each filler ratio. MaxRtings had

0 = 0.25. And DegSim used 100 nearest neighbours.

Table 2 shows that RMAR achieves statistically @errfietection of Average attack profiles
with filler ratios greater than or equal to 3%. Aduhally, RMAR and RIC are indeed
significantly better at distinguishing Average akers from genuine users than the current
features. This is true for all the listed filletics, which are the most popular ones used in the
literature. Moreover, the performance of RMAR ar@ & relatively consistent over the filler
ratios, especially when compared to the other featiMaxRatings, RDMA, WDA and WDMA
appear to get progressively better as the fillao iacreases. For higher filler ratios, even up to
100%, RMAR exhibited comparable results. This wasligted to happen in Chapter 3. For the

sake of brevity, these results are omitted.

Table 2 also reveals a rather surprising resultARMs marginally better than RIC. Recall that

RIC is an extension of RMAR, and uses some ratatg dhile the latter does not at all. This
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could suggest that, at least from the point ofc&ttdetection, rating values are not as important

as the actual items that have been rated by apkntiuser.

The DegSim results in Table 2 indicate when therAge attack is most effective. The
performance of DegSim peaked at the 3% filler raflus could mean that a filler ratio around
the median proportion of items rated by genuineu& for the data set under consideration)

is optimal.
4.2.1.1 Detection of Small Attack Profiles using RMAR

The RMAR feature measures the degree of similaetyveen items within a single user profile.
Thus, it would be very interesting to see how #mdre is affected by particularly small user
profiles. It was hypothesised in Chapter 3 that RMAight suffer in this situation, leading to
genuine users who have not rated many items beatetd as an attacker. This was because the
rated items in such user profiles may inadverteothk like random selections. This is a very
important aspect, because all genuine users’ peofitart empty and will likely still be

considered as small during their infancy, until egio ratings have been provided.

Now, as previously mentioned, the users in the Mens data set have all rated at least 20
items (out of the possible 1682). This is refledvgdL% being the lowest filler ratio in the
previous experiment. A 1% filler ratio in this cert corresponds to attack profiles of at least
size 17 (16 filler items + 1 target item). So, wld not be fair to immediately use a test set that
has attack profiles with a filler ratio smaller th&%, for obvious reasons. Fortunately, the
MovieLens data set includes timestamps, to therskaenoting when a user submitted a rating
for an item. Thus user profiles from this datacsat be shortened, by removing the most
recently added ratings. The resultant user profiasand should still be considered as genuine,
because they are precisely what the (assumed ggrariginal user profiles once looked like at
a certain time. Moreover, the timestamps providécent granularity for accuracy.

To the best of our knowledge, filler ratios lesartli% have not been investigated so far in the
literature. Here, filler ratios of 0.8%, 0.6%, 0.4%d 0.2% will be examined. To put these into
perspective, the aforementioned filler ratios cgpond to profile sizes of 13, 10, 7 and 4
respectively for the MovieLens data set, which faismgs on 1682 items. Figure 7 below shows

the ROC curves from some typical Average attacksets.
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Figure 7: ROC curves indicating how well the RMAR €ature detects some typical Average attack profiles
with small filler ratios. Corresponding AUC statistics (3 dp): 0.8% fill, 0.989; 0.6% fill, 0.963; 0.% fill,
0.936; 0.2% fill, 0.861.

The ROC curves in Figure 7 show that filler raless than 1% do affect RMAR. However, the
affect is certainly not adverse. Even with genuisers and Average attackers who have only
rated four items, the performance of RMAR is ardyalill respectable. Very similar results
were encountered with small Random attacks, wisctot surprising as RMAR does not take

into account item ratings.

The results suggest that, for this data set at, leasst genuine users choose which items to rate
in a non-random fashion from the outset. We can edsmclude that RMAR handles very small
attack and genuine user profiles reasonably welieitheless, RMAR can be modified to say
that all profiles containing less than a certaimber of ratings are genuine. This would

eliminate the possibility of false alarms for negets.
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4.2.2 Detection of Random and Bandwagon attacks using New Features

We will now look at the Random and Bandwagon agaGiven the results from the previous
Average attack experiment, in theory RMAR shoulbikit almost perfect detection
performance for the Random attack. This is bectheséeature does not measure anything
specific to the Average or Random attacks (reba¢ attacks are identical apart from how
they rate filler items). A 3% filler ratio was usadain. Figure 8 shows the ROC curves from a

Random and a Bandwagon attack test set.

—e— RMAR —8—RIC MaxRatings RDMA —e— RMAR —a—RIC MaxRatings RDMA
—¥— WDA —e— WDMA —+— DegSim —%— WDA —e— WDMA —+— DegSim

1 554 HF_’WH*H-W*W
0.9 ?
08 #®
b

P HH- PR HRHIR

Hit Rate
Hit Rate

0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

False Alarm Rate False Alarm Rate
(a) Random attack (b) Bandwagon attack

Figure 8: ROC curves indicating how well each featie detects some Random and Bandwagon attack
profiles with a 3% filler ratio. Corresponding AUC statistics (3 dp): RMAR, (a) 0.999, (b) 0.999; RIC(a)
0.999, (b) 0.999; MaxRatingsd = 0.25), (a) 0.839, (b), 0.668; RDMA, (a) 0.99&)(0.997; WDA, (a) 0.980, (b)
0.979; WDMA, (a) 0.996, (b) 0.995; DegSim (100 nexat neighbours), (a) 0.921, (b) 0.913.

Figure 8 indicates that RDMA, WDA and WDMA are mumttter at detecting Random and
Bandwagon attack profiles than Average ones. Ehmt surprising, because these attack
profiles’ filler items are always rated around theerall average (which is unlikely to be equal
to the filler items’ average ratings). As expectet)AR does not appear to be affected by the
Random attack. This feature was not unduly affebiethe Bandwagon attack either. For both

the Random and Bandwagon attack, the performanbegim took a visible hit. This
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demonstrates how effective the Average attacknd,the marked difference in effectiveness
between it and the two attacks in question. The Rédigs feature did not perform very well
with the Bandwagon attack. This is almost certabdgause the Bandwagon attack rates a small

selection of items with the maximum rating.

Table 3 below summaries the results from a sigmiioe test with Random attacks. As with the

previous experiment, a pairédest was used with a significance level of 0.0%)1

Filler Ratio
Feature 1% 3% 6% 10%
RMAR 0.994 1.000 1.000 1.000
RIC 0.994 1.000 1.000 0.999
MaxRatings 0.790 0.884 0.901 0.921
RDMA 0.993 0.995 0.998 0.997
WDA 0.757 0.954 0.995 0.994
WDMA 0.980 0.994 0.998 0.996
DegSim 0.838 0.921 0.774 0.508

(a) Mean AUC statistics (3 dp)

Filler Ratio
Feature v Feature 1% 3% 6% 10%
RMAR v RDMA 0.310 0.001 0.009 0.008
RMAR v WDA 0.000 0.000 0.001 0.000
RMAR v WDMA 0.000 0.001 0.006 0.004
RMAR v DegSim 0.000 0.000 0.000 0.000
RIC v RDMA 0.282 0.002 0.018 0.024
RIC v WDA 0.000 0.000 0.001 0.001
RIC v WDMA 0.000 0.001 0.004 0.011
RIC v DegSim 0.000 0.000 0.000 0.000
RMAR v RIC 0.832 0.002 0.049 0.054

(b) Associatedp-values (3 dp).p-values less than or equal to 0.01 are in bold.

Table 3: Results of the features for 10 different Rndom attack test sets for each filler ratio. MaxR#ngs
had ¢ = 0.25. And DegSim used 100 nearest neighbours.

Table 3 tells a somewhat different story to the rage attack one. While the performance of
the new features (RMAR, RIC and MaxRatings) is narkess the same for the Random
attack, DegSim is noticeably poorer whereas RDMA igsderivatives appear to be much
better. RDMA, WDA and WDMA may display this behantpbecause they are sensitive to

sizeable rating deviations from the norm—a featirdne Random attack. DegSim is likely to
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be worse at detecting Random attack profiles thegr@ge ones, because Random attacks are
inherently weaker, unable to form strong positigerelations with genuine users. For higher
filler ratios, even up to 100%, RMAR and RIC exkeloi comparable results for each attack.
This was predicted to happen for RMAR in Chaptdfd@.the sake of brevity, these results are

omitted.

It should be noted that RMAR, again, accomplishasssically perfect detection of attack
profiles with a filler ratio greater than 1% helrterestingly, the table also shows that RMAR
and RIC are comparable in terms of performancestaading Random attack profiles. RIC was
shown, above, to be worse at detecting Averagelatt@hen compared to RMAR. Given that
the only difference between Random and Averagelafieofiles is how filler items are rated,
these results imply that the scaling componentl@f iR superfluous (recall RIC is an extension
of RMAR, and largely have similar definitions). hs most likely to be because the Random
attack strategy says to rate all filler items abthre average rating across the whole rating
matrix (3.5 for the MovielLens data set). Thusall one of the items (the target) in a Random
attack profile will be rated with approximately te@me value. This means the scaling
component in the definition of RIC is almost alwaysse to 1, effectively reducing RIC to
RMAR. This result strengthens the evidence thatgatalues are not as important for attack

detection as the actual items that have been gtsdmeone.

Results from a similar Bandwagon attack experinagatomitted, because they are largely the
same as the results for the Random attack. Thisswaected because the Bandwagon attack is
the same as the Random attack apart from one thimgh is the rating of a very small

selection of popular items. These special itemgaen the maximum rating by the attacker.
Since the amount of filler items still dominateBandwagon attack profile, RMAR and RIC
were not overly affected. And neither were the mbjf other features. It was only
MaxRatings that was significantly affected. Thisikely to have happened because of the
special items’ maximum ratings, which must haveeased the proportion of maximally rated

items in an attack profile closer to the average.

4.2.3 Measuring the Effectiveness of a Recommender System
Augmented with an RMAR-based Attack Detection Algorithm

The previous experiments showed that the new RM&dRIFe can detect the Average, Random

and Bandwagon attacks with very high probabilityvds also shown that the performance of

Experiments | 39



RMAR visibly drops with any attack profiles thatvesa filler ratio of less than around 3%. In
particular, attack profiles with a filler ratio @6 had a non-negligible chance of being missed
by RMAR. Also, on closer inspection of the reswitshe previous experiments, a few genuine
user profiles were misclassified as belonging tatacker. In the light of this, we investigated
how a popular user-based collaborative filterirgpathm is affected by such conditions. An
attack detection algorithm based on RMAR usingsarithination threshoftwas used. It
discarded any profile classed as an attack onsu@o profiles were not inserted into the rating
matrix and used by the recommendation system).

Here we are primarily interested in the accuraay mbustness of the collaborative filtering
algorithm. Accuracy is said to be good if the aithon still produces sound rating predictions
after genuine user profiles classed as an attaifkghave been discarded. And robustness is
said to be good if the algorithm still makes souatthg predictions after attack profiles classed
as a genuine user profile have been inserted etoating matrix. For consistency with other
work in the literature, accuracy will be measurgdhe mean absolute error (MAE) metric, and

robustness will be measured by the prediction $RiridShift) metric. MAE is defined as:

1
MAE = W Z |r — puil
(u,i,r)ET

whereT is a set of (unseen) test ratingsi(r) LU U x | x Randpy; is the rating prediction of
itemi for useru. MAE values closer to zero point to higher accyrand are better than values

further away from zero. The prediction shift measwas introduced in [17] and is defined as:
PredShift(Ur,Ir) = € Z 1 Z (Pyi = Puni)
7 | ez Ul welr o

whereUr [0 U andlt [J | are sets of target users and target items respsgtthe first term in
the inner summation is the rating prediction oftefor useru after an attack, and the second
term is the prediction before the same attackp8agiction shift is the average prediction
difference over each target user and target itewh naeasures the overall affect of a particular

attack. A positive prediction shift for an attaokglies it was successful, increasing the rating

* The threshold was empirically set to 0.2.
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prediction on average for the target users andsitdfhoreover, the magnitude of the prediction
shift says how effective the attack was with resp@those users and items. Any negative
prediction shift for an attack clearly means it uargely of no use. The mean rating in the
MovieLens data set is 3.5 (1 dp). This implies #haticcessful attack will result in an average

prediction shift of approximately +1.5.

The MAE was calculated with a certain training &est set, before and after the RMAR-based
detection algorithm was applied to the training $ée training set initially had 80,000 ratings
and the test set had the remaining 20,000 ratBefere the detector was run the recommender
system had a MAE of 0.76081 (5 dp). And after teeedtor was run it had a MAE of 0.76092
(5 dp). With gp-value of 0.293, this result is certainly not stttially significant. Thus, we can
conclude the detection algorithm didt negatively impact the accuracy of the recommender

system.

To calculate prediction shift, fifty random userslatems were chosen to be targets. This
number of users and items was chosen for compottieasons. The user profiles from the
MovielLens data set were separated into two equeesaOne half was used by RMAR to
compute item similarities, and to generate attacklps. The user-based collaborative filtering
algorithm used the other half (to compute ratingdiotions). The rating prediction for each
target user and target item pair was then calall®ext, the attack profiles were injected into
the rating matrix used by the recommender systerthat post-attack rating predictions could
be produced. This yields the prediction shift fog tecommender system without attack
detection. After this, the RMAR-based detectioroathm was run on the rating matrix used by
the collaborative filtering algorithm, discardingyasuspected attack profiles. Using the
resultant rating matrix, rating predictions for g@me users and items were then computed,
finally giving the prediction shift for the recommaer system with attack detection. Figure 9

below shows the results of this experiment.
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Figure 9: Graphs of the prediction shifts for someAverage and Random attacks using a 1% filler ratio. A

user-based collaborative filtering algorithm provided the rating predictions.

Figure 9 shows that, even for attacks with the ncoreert 1% filler ratio, the RMAR-based
detection algorithm neutralised enough attackstplkprediction shifts below 0.2 (this means
rating predictions are still relatively sound, withly a small error). All the prediction shift
results were statistically significant at the 99.8%el. Note that the detection algorithm is
relatively indifferent to attack size. When the saexperiment was done for attacks with higher
filler ratios, the prediction shifts for the collatative filtering algorithm augmented with attack
detection were virtually negligible. We can now clude that the detection algorithm
substantially improves robustness and accuracy.

It should now be clear that the new RMAR featurdoesond reasonable doubt, the best for
detecting current profile injection attack methdéstthermore, it is also actually completely
sufficient for this job. The new feature works cstently well across all attacks and filler ratios
(even for ratios much less than 1%). Because RM&Rdetect any attack that uses random
filler items, it is also applicable to the lessemelvn Segment, Love/Hate, and Reverse
Bandwagon attacks in [6]. The last two attack styes are specifically designed to sink a

target item’s rating. RMAR also defeats the evessde known obfuscated attack class [18].
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4.2.4 Evaluation and Detection of Attacks with Non-Random Filler Items

A new class of profile injection attack was definedChapter 3. These attack strategies do not
choose filler items randomly, but select fillemite based on their popularity. Popularity is
measured in terms of the number of ratings an itasreceived. This new class of attack was
created in response to the formation of the RMA®RUee. To evaluate the strength of the new
attacks, we conducted a similar prediction shifieekment to the one before. The only
difference was the use of a 3% filler ratio, beestlss yielded the largest prediction shifts.
Here a 3% filler ratio corresponds to just 50 itefigure 11 below shows the results of this
experiment.
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Figure 11: Graph of the prediction shifts for somenew and old Average and Random attacks using a 3%

filler ratio. A user-based collaborative filtering algorithm provided the rating predictions.

Figure 11 indicates that the strength of the nesv@d attacks is comparable. Significance tests
at the level 0.05 said that none of the predicsioifts were significant. Thus, we can conclude
that using popular filler items in place of randones is not disadvantageous. We are now in a

position to see if the new attack can avoid dedecti
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Figure 11: ROC curves indicating how well each feare detects some Average and Random attack profiles
with a 3% filler ratio and popular filler items. Co rresponding AUC statistics (3 dp): RMAR, (a) 0.874(b)
0.875; RIC, (a) 0.865, (b) 0.905; MaxRating® (= 0.25), (a) 0.877, (b), 0.857; RDMA, (a) 0.63®)(0.735;
WDA, (a) 0.450, (b) 0.533; WDMA, (a) 0.539, (b) 036; DegSim (100 nearest neighbours), (a) 0.757, (b)
0.574.

When compared to the ROC curves of the same attesikg random filler items (Figures 6 and
8), Figure 11 paints a very different picture. Tigeire shows the new class of attack affects the
performance of all the features apart from MaxRgirin Chapter 3, it was conjectured that
RMAR would not be able to detect the new attackk. Wais was because the filler items here
might be considered as similar. To some extentishizie. However, Figure 11 shows that the
performance of RMAR (and RIC and MaxRatings) il stspectable. This suggests that the
most popular items are not necessarily relatecs ¢buld be because popularity is based on an
aggregation of all ratings. The above figure alsovgs that the new class of attack has a very
reasonable chance of evading the current featlines.adds yet more evidence to our

conjecture that ratings values are not criticaldiback detection.

From these results we can conclude that RMAR a@ld®é not infallible. Our new attacks

give a possible direction for how to devise coyedfile injection attacks.
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5 Conclusions

This report has presented several novel classticd¢atures for detecting profile injection
attacks on collaborative filtering. They are novetause they are derived from observations on
user behaviour. This approach is dramatically diffé to the ones taken by those who proposed
the features described in Chapter 2. However,dhelts from experiments (in Chapter 4) show
that the new RMAR and RIC features (defined in GaiaB) are consistently significantly better

than the current ones.

RMAR was found to be the most successful feattirgan be used to very accurately detect and
neutralise all the current profile injection attackcluding the Average, Random and
Bandwagon attacks. As mentioned before, the Aveattgek is the most difficult to detect.

More generally, we have shown tlaaly profile injection attack using randomly chosefefil

items can be detected with very high probabilityniM/this alone foils all current attacks, it

also forces any would-be attacker to devise aegjyato intelligently select filler items. This
substantially increases the complexity of any ndéac. We have proposed and tested one such
attack, which chooses filler items based on popylarhis attack was shown to be as
successful in effecting prediction shifts as curatacks, but without having an exceedingly
high chance of being detected. The new featuresARMRIC and MaxRatings) were found to
be the best at detecting the new attack. Howeesfegtly accurate detection could not be
attained in this case.

There are now a number of directions for futurekw@n the defence side, one obvious route
would be to improve the detection of our new attddie success of RMAR suggests that the
relationship between a user’s rated items yieléggullsnformation. RMAR uses the similarity
between item profiles, but other meaningful relaginips (such as item genre) might further
facilitate the detection of the new attack. BecaafdeMAR, we have made the choice of filler
items as important as the choice of ratings, oetnivial. So, future work on the attack side

includes finding new ways to select filler itemglsuhat detection is harder. An optimal set of
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filler items would actually look like a whole gemei user profile. Preferably, the new method to

select filler items would only need a minimal ambahknowledge about users.
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