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Abstract

A key problem in automating proof by mathematical induction is choosing an induc-
tion rule suitable for a given conjecture. Since Boyer & Moore’s NQTHM system the
standard approach has been based on recursion analysis, which uses a combination of
induction rules based on the relevant recursive function definitions. However, there are
practical examples on which such techniques are known to fail.

Recent research has tried to improve automation by delaying the choice of induc-
tive rule until later in the proof, but these techniques suffer from two serious problems.
Firstly, a lack of search control: specifically, in controlling the application of ‘specu-
lative’ proof steps that partially commit to a choice of induction rule. Secondly, a lack
of generality: they place significant restrictions on the form of induction rule that can
be chosen.

In this thesis we describe a new delayed commitment strategy for inductive proof
that addresses these problems. The strategy dynamically creates an appropriate in-
duction rule by proving schematic proof goals, where unknown rule structure is rep-
resented by meta-variables which become instantiated during the proof. This is ac-
companied by a proof that the generated rule is valid. The strategy achieves improved
control over speculative proof steps via a novel speculation critic. It also generates
a wider range of useful induction rules than other delayed commitment techniques,
partly because it removes unnecessary restrictions on the individual proof cases, and
partly because of a new technique for generating the rule’s overall case structure.

The basic version of the strategy has been implemented using the AClam proof
planner. The system was extended with a novel proof critics architecture for this pur-
pose. An evaluation shows the strategy is a useful and practical technique, and demon-

strates its advantages.
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Chapter 1

Introduction

The last thing one knows in constructing a work is what to put first.

— BLAISE PASCAL, PENSEES

Mathematical induction is a technique used extensively in theorem proving systems
for proving properties about objects that involve repetition. Because of the ubiquity of
iteration and recursion in computer systems, it is especially useful when applied to
software and hardware verification.

Given the arduous nature of formal proof development, automated theorem proving
has been the subject of research since the inception of Artificial Intelligence in the
1950s. Progress has been especially difficult in automating inductive proof, because
of the particular search problems introduced by induction [Boyer and Moore, 1992].
Specifically, finding the appropriate induction rules, lemmas and generalisations for a
given problem [Bundy, 2001].

This thesis describes a novel approach to automating the first of these tasks: induc-
tion rule creation. It is also concerned with showing how proof planning [Bundy, 1988]

can be used to effectively realise these ideas.
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1.1 Motivation

Attempts to automate induction rule creation were, like much work in inductive theo-
rem proving, dominated by the seminal work of Robert S. Boyer and J. Strother Moore
[Boyer and Moore, 1979] for many years after its publication. The Boyer-Moore The-
orem Prover introduced the what has been called the induction heuristic: to prove a
property of a recursive function, try using an induction rule that has the same recursive
structure as that function.

Boyer & Moore’s approach is surprisingly powerful, and their theorem prover is
still in use over 20 years later, along with systems based on the same essential ideas
[Stevens, 1990]. However the late-1980s and 1990s saw a resurgence of work in in-
duction theorem proving. Many recent developments have been based on the idea of
rippling [Bundy et al., 1993], a heuristic for guiding proofs of the step case subgoals
generated by applying an induction rule. Rippling has brought more sophisticated
heuristic control to inductive theorem proving, and been used to get a purchase on
some hard search problems, including the choice of induction rule.

Tied up with rippling has been the development of proof planning architectures
for automated theorem proving [Bundy, 1988]. Proof planners are ideally suited to re-
alise sophisticated heuristic strategies, and inductive proof via rippling has been a long
running test-case, most notably with work on proof critics [Ireland and Bundy, 1996].

The individual and collective success of the rippling and proof planning paradigms
has been an important motivation behind this project.

Recent developments in automating induction rule creation have tried to overcome
two disadvantages with the Boyer-Moore approach. Firstly, choosing an induction rule
at the beginning of the proof is often unreliable, as one cannot easily anticipate how

a given choice will work out. [Kraan, 1994] begins a proof with a schematic goal, to
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see how the proof develops before selecting a known induction rule. Secondly, it is not
always enough to use induction rules with the recursive structure taken from predefined
recursive functions. [Protzen, 1995] takes a lazy generation approach to delaying the
induction choice, dynamically creating a completely new rule with the information
gleaned from the proof.

The main weaknesses of these “wait and see’ approaches to induction rule creation

are:

Lack of heuristic control Although both employ forms of rippling to bring some
measure of search control, they also both involve ‘speculative’ steps which can

be applied freely and ad-infinitum, causing serious search problems.

Lack of generality The constraints placed on the form of induction rules that can be
selected/created are overly restrictive, which limits the inductive problems that

can be solved. Specifically:

Restrictions on rule style In [Kraan, 1994] the rule must be constructor style,
and in [Protzen, 1995] it must be destructor style — neither technique al-

lows both, or a mixture of styles.

Restrictions on case structure The cases of the rule are derived from the re-
cursive functions used in the proof. Solutions with novel case structures

cannot be found.

The main motivation for this thesis is to address these weaknesses.
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1.2 Aims of the Thesis

Our aim was to design, implement and evaluate a strategy for inductive proof with the

following properties:

e The choice of a step case is delayed until the middle of its proof, and this choice
is used as a basis for constructing a new valid induction rule. This gives the
strategy those advantages over Boyer & Moore’s work that were demonstrated

in previous research.

e The search is more tightly controlled than previous work on delayed-commitment
induction rule creation. This is especially important in dealing with ‘speculative’

steps.

e The strategy has the ability to create a wider range of useful induction rules, i.e.
rules that will allow more problems to be solved. This means lifting constraints

on rule style and case structure.

e Itis a practical and useful approach to automating inductive proof.

As well as providing a theorem proving strategy ‘in the abstract’, we aim to show
that the proof planning approach provides an excellent architecture in which to im-
plement the strategy. In particular, the techniques of middle-out reasoning and proof
critics allow sophisticated search control techniques to be realised in a clean and un-

derstandable way.

1.3 An Example

To give the reader a better intuition for the kind of proof strategy we intend to auto-

mate, and for some the problems with previous approaches, we now give an illustrative
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example. Consider the following theorem, taken from [Paulson, 1991]:
vx:1.VL:list(t).foldleft_tr(o,x,1) = x o foldleft_tr(o,id, 1)

The theorem holds given the following properties of o and definition of foldleft_tr, a
tail-recursive function that applies a two-argument function over the elements of a list
(see Appendix B for a definition of foldleft_tr and all other functions that appear in this

thesis):

Xo(YoZ) = (XoY)oZ
Xoid = X
foldleft_tr(F,A,nil) = A

foldleft_tr(F,A,H :: T) = foldleft_tr(F,F(A,H),T)

As we will see in Chapter 2, the standard techniques for induction selection (derived
from the work of Boyer & Moore) would suggest using structural list induction on I,
based on the recursive structure of foldleft_tr. However, it turns out that such a proof is
unsuccessful, because the term substituted into the right-hand side | cannot be removed
— there is no rewrite that move H :: T out of this position.

In [Paulson, 1991] a lemma is introduced in order to prove the theorem:
foldleft_tr(F,A,L <> (X ::nil)) = F(foldleft_tr(F,A,L), X)

where <> is the append function for list (again, see Appendix B for a definition of
<>). The lemma motivates the invention of a new induction rule, which proves the

theorem:
= ®(nil)
®(x) F P(x<>(y:nil))
VI list(T). (1)
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Interestingly, the induction rule cannot be generated from the given function def-
initions, which means standard techniques for automation cannot prove the theorem.
Instead, the rule is motivated entirely by the lemma.

More advanced induction selection techniques also have difficulty with this exam-
ple. Middle-out induction [Kraan, 1994] can select the induction rule and complete
the proof if the rule is already known — this is unlikely as it was created specifically
for this proof. Lazy induction [Protzen, 1995] cannot solve the problem because the
required induction rule falls outside the class of rules it is able to generate.

The induction strategy presented in this thesis is capable of generating this novel

induction rule from the lemma, and proving that the rule is valid. Briefly, it does this

by:

1. Generating a step case using an improved version of the middle-out reasoning
techniques described in [Kraan, 1994], where the lemma suggest the step case

of the induction.
2. Proving the step case is wellfounded.

3. Determining the form of the base case, which requires a novel case split to be

generated.

4. Proving the base case.

1.4 Contributions

This thesis makes a number of original contributions to the understanding of automat-

ing induction rule creation:

e It provides a novel dynamic strategy fulfilling the aims set out in §1.2.
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e We give experimental evidence for the effectiveness of the strategy in proving

theorems that require novel induction rules.

e The significance of restrictions on induction rule style imposed in previous work

is clarified.
We also contribute to automated theorem proving in general:

e \We argue that when delaying choices during proof, a schema-based approach

has search advantages over a lazy-generation approach.

e State-of-the-art techniques of proof planning are tested, and we make some orig-

inal contributions to the design and use of proof critics.

e We describe a novel procedure for generating the missing cases of a case anal-
ysis. By expressing the problem as one of correcting a faulty conjecture, two

previously separate areas of automated deduction are brought together.

e We present To-rewriting, an original technique for controlling search during
non-confluent rewriting — applicable to e.g. rippling. A proof of the complete-

ness of Te-rewriting, a useful restriction of the technique, is given.

e The induction strategy provides a detailed case study of how creative steps in

proof can be delayed and these decisions driven by subsequent proof.

1.5 Organisation of the Thesis

Looking from a distance, Chapters 1 to 3 lay out the groundwork to the main thesis,

Chapters 4 to 8 set forth a body of novel heuristic techniques for effectively creating
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induction rules, and Chapters 9 to 15 discuss their implementation, evaluation and
subsequent reflection on this work.

In greater detail, the thesis is structured as follows:

Foundations

e Chapter 1, Introduction

The motivations, aims, contributions and structure of the thesis.

e Chapter 2, Literature Survey
A survey of the relevant research literature: some background on inductive the-
orem proving, the main concepts of rippling and proof planning, and previous

work on induction rule creation and validation.

e Chapter 3, Induction Rule Structure
We reflect on what previous research tells us about how inductive proof is af-

fected by the structure of induction rules and variations on the rippling heuristic.

The Induction Strategy

e Chapter 4, Step Case Creation
Describes the strategy for obtaining a step case proof by delaying key choices

until the middle of the proof.

e Chapter 5, Synthesis of Case Structure
Here a strategy for the proof that the rule contains all the required cases is de-

scribed. Failure of the proof can be exploited to generate the missing cases.

e Chapter 6, Induction Rule Creation

We describe how a candidate step case is used as a basis for constructing and
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validating a new induction rule: an unsuccessful attempt to prove that the rule is

valid is analysed in order to complete the rule.

Search Control

e Chapter 7, Controlling Speculation
Speculative ripple steps make decisions about the form of the induction rule,
but are non-terminating. We describe a proof critic that controls speculation by

using it only when it will fix a failed ripple proof.

e Chapter 8, Controlling Rewrite Search
Rewriting is at the heart of our strategy. This chapter reports how the rewrit-
ing search can be pruned by avoiding repetition of orthogonal rippling steps in

different orders.

Implementation

e Chapter 9, A Proof Planner with Critics
We describe the extension of the AClam proof planner with a novel critics mech-
anism, in order to implement our induction strategy. The planner uses criticals

to combine critics into complex strategies.

e Chapter 10, The Dynamis System
Describes the Dynamis system — the implementation of the induction strategy

as a set of methods and critics in the AClam proof planner.

Evaluation & Reflection

e Chapter 11, Experimental Evaluation

The implementation of the induction strategy is tested on a variety of inductive
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problems.

e Chapter 12, Case Studies
We present some detailed case studies of proof attempts using the Dynamis sys-

tem, and reflect on their success or failure.

e Chapter 13, Related & Further Work
This chapter discusses the induction strategy with respect to Kraan’s middle-out
induction selection and Protzen’s lazy generation of induction rules, along with

directions for future research.

e Chapter 14, Conclusions
We assess the contributions made by the thesis, and conclude whether our aims

have been met.

Appendices

e Appendix A, Glossary

An explanation of some techincal terms and notation.

e Appendix B, Datatype & Function Definitions

Definitions for all the functions and datatypes used in this thesis.

e Appendix C, Dynamis Documentation

Details of running the Dynamis system, and the lower level methods.

e Appendix D, Dynamis Traces

Full traces from the evaluation, available in electronic form?.

LFrom ht t p: // homepages. i nf . ed. ac. uk/ $9362054/ t hesi s



Chapter 2

Literature Survey

2.1 Introduction

This chapter reviews a range of background material that is related to this thesis. The
initial sections give an overview of mathematical induction (82.2) and its use in mech-
anised theorem proving (82.3). 8§2.4 describes proof planning, a central topic of this
thesis.

The automation of inductive proof is surveyed in 82.5 onwards. Rippling, a tech-
nique for guiding step case proofs in described in §2.5. The standard approach to
induction rule creation, recursion analysis, is examined in 82.6. The state-of-the-art in
automating the choice of induction rule works by delaying the choice of rule into the
middle of the proof (§2.7) and creating induction rules from this information (82.8).

82.9 looks at automating proofs of the construction of well-ordered relations satis-
fying a given set of constraints. This has mainly been dealt with in the literature in the

context of proving program termination.

11
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2.2 Proof by Induction

Mathematical induction can be roughly characterised as an argument which proves a
proposition by appealing to some other instance of that proposition, and where it can
be argued that this appeal process will eventually stop.

Such arguments have appeared throughout the history of mathematics: from the
Pythagoreans of Ancient Greece [van der Waerden, 1961], and the 12th century Ara-
bic mathematician al-Karaji [Rashed, 1994], to later European mathematicians, no-
tably Pierre de Fermat, with his ‘method of infinite descent’ [Burton, 1988], and Blaise
Pascal describing his Triangle Arithmetique [Pascal, 1665]. However, the first explicit
formulation of an induction principle (along with the name) was given by Augustus
DeMorgan in 1838 [Burton, 1988].

Today, induction is a common proof technique in many areas of mathematics. It
very often appears as Peano induction, often called ‘the’ principle of mathematical
induction, or the more general complete induction. These forms can be expressed as

the following inference rules:

Peano Induction
®(0)
VkeN. (k) — P(k+1)
Vne N. d(n)

Complete Induction

VxeN. (VWyeN.y<x— ®(y)) — P(x)
Vx € N. ®(x)

2.2.1 Noetherian Induction

Peano and complete induction are inductions over N, the set of natural numbers. Al-

though less common, induction over other sets appears in the mathematical literature,
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e.g. induction over the ordinals. Indeed, inductive arguments may be made over any
set.

This generality is captured by Noetherian induction, also known as well-founded
induction, a generalisation of complete induction to a set A and relation <. The relation
~< must be well-founded over the set A, defined as there being no infinite descending
chains x1 > X2 > X3 > ... such that x; € A for all i. It can be expressed as the following

inference rule:

Noetherian Induction

VxeA (VWeAy<x— ®(y)) — P(x)
Vx € A. ®d(x)

< w.f. over A

All induction principles can be derived from this general scheme. For example, to

derive structural induction over the natural numbers:
1. Let A= nat and <=<, this discharges the side condition.
2. Perform a case split on the premise: x = 0 or x = s(u).
3. Inthe x =s(u) case, lety = u.

4. Simplify w.r.t. the definition of <.

2.3 Inductive Theorem Proving

In this section we briefly survey the use of inductive proof in theorem provers —

computer systems that assist with or perform logical proof.
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2.3.1 Reasoning about Computer Systems

Inductive reasoning is well-suited to proving properties of objects that contain repe-
tition, and so has found many applications in proving properties about both software
and hardware systems. In fact, the use of induction was proposed in one of the earliest
papers on this field [McCarthy, 1963]. This work has developed into the verification by
proof paradigm: the computer system is modelled as a set of mathematical definitions,
along with a specification of the expected behaviour as a set of theorems. Proving
these theorems verifies the correctness of the system relative to the specification. Note
that there may still be a ‘gap’ between the specification-as-theorem and the system
requirements.

Verification proofs can be carried out without machine support, which suffices for
small systems e.g. [Burstall, 1969, Paulson, 1991]. However, this technique becomes
impractical for anything but toy systems, as one cannot be sure that the proof is correct
any more than the original system — although a failed hand proof can still reveal er-
rors. Formalisation of the specification and proof in a particular logic can increase con-
fidence in the correctness of individual steps, but mistakes are still possible, and there
is an additional problem of a huge increase in the proof size [Nederpelt et al., 1994].

For these reasons, formal verification proofs of computer systems are often carried
out with the aid of a computer. Proof checking programs allow a human user to reliably
develop formal proofs, whilst also providing computer support for the huge ‘book
keeping’ tasks that such proofs require. Induction is often a core proof technique
in theorem proving systems, for example HOL [Gordon and Melham, 1993], ACL2
[Kaufmann and Moore, 1996], PVS [Owre et al., 1996], ISABELLE [Paulson, 1989],
CoQ [Huet et al., 1997] or NUPRL [Allen et al., 2000].
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2.3.2 Formalised Mathematics

Although research into theorem proving, especially inductive theorem proving, has fo-
cused heavily on computer system verification, these programs have been used to de-
velop formal logical proofs in many domains. Most notably, theorem proving systems
such as Automath [Nederpelt et al., 1994] and Mizar [Trybulec and Blair, 1985] have
been used to formalise large areas of mathematics. Given the ubiquity of induction in
mathematics, induction can play a large part in these proof developments. For example,
Shankar’s development of Gddel’s Incompleteness Theorems in the NQTHM system
[Shankar, 1994]. Shankar chose these results to demonstrate that “serious’ mathemati-
cal results are amenable to mechanisation.

For a more detailed survey of formal mathematics and theorem proving systems,

see [Harrison, 1996].

2.3.3 Interaction and Automation

Many formal proof tools provide some computer support for the reasoning process
itself, e.g. by incorporating decision procedures for common domains. This adds a new
dimension to theorem proving systems, with programs ranging from completely user-
driven to the totally automatict, with many varieties of theorem prover/user interaction
between.

Automation has considerabe advantages in reducing the time and effort spent on
formal proof development, which can be exceptionally long and tedious [Shankar, 1994].
Automated reasoning has long been a goal of Artificial Intelligence, in particular au-

tomating mathematical reasoning [Newell et al., 1956].

LAlthough systems that “fully automate’ proof search often require significant input from their users
in the form of system configuration, e.g. Otter [McCune, 1990].
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2.3.4 Explicit vs Implicit Induction

Attempts to automate inductive proof have fallen into two distinct camps:

Explicit Induction Proof using inductive inference rules, i.e. special cases of the

Noetherian induction rule (see §2.2.1).

Implicit Induction Proving a statement by showing that if assumed true then it does
not create an inconsistency, which is equivalent to performing an inductive proof

[Comon, 2001]. Also known as proof by consistency or inductionless induction.

This thesis deals with the automation of explicit induction, and below we survey only
work from this area. However, it is first worth noting a few aspects of the implicit
induction approach.

Implicit induction techniques differ in how they check the consistency of the spec-
ification after the addition of the conjecture. For example, the technique presented in
[Jouannaud and Kounalis, 1989] orients an equational specification into a convergent
rewrite system and uses Knuth-Bendix completion [Knuth and Bendix, 1970] to check
that no previously unequal constructor terms have been made equal.

Research in implicit induction has been a process of gradually lifting the constraints
the technique places on the specification. Recently the area has been generalised and
extended within a single framework [Comon and Nieuwenhuis, 2000], which requires
the specification to be an I-Axiomatisation. These restrictions are a disadvantage when
compared to explicit induction. Another disadvantage is the relative unintuitiveness of
the technique, making it unsuited to interactive systems and difficult to design good
heuristics for automation.

Amongst its advantages are the fact that modern versions of the technique are refu-

tationally complete [Bachmair, 1991] — they are guaranteed to reject non-theorems



Chapter 2. Literature Survey 17

— and the ability to easily handle mutually recursive definitions. Both are areas where
explicit induction work has traditionally been weak. Implicit induction has been imple-
mented in systems such as UNICOM [Gramlich, 1990], SPIKE [Bouhoula et al., 1992],
and RRL [Kapur and Zhang, 1995] (which is also capable of explicit induction).

The rest of this chapter looks at previous A.l. research on automating explicit in-

duction, which is more relevant to our thesis.

2.3.5 Generalisation & Lemma Speculation

In his survey of automated induction [Bundy, 2001], Bundy identified the three key
problems in automating inductive proof: constructing induction rules, introducing in-
termediate lemmas, and generalising conjectures. This section briefly discusses work
on the second two problems, before looking at the first, which is the main subject of
this thesis.

In general, intermediate lemmas and generalisations are required in inductive proofs
because the cut rule is required for inductive theories [Kreisel, 1965]. The cut rule uses

a ‘cut formula’ A to prove another formula A:

MLAFA r=A
Mr=A

As A could be any formula, this rule poses a considerable challenge for automating
backwards proof, and special search heuristics are required to find suitable cut formu-
lae. The cut formula A may be a generalisation or a lemma — the distinction is vague,
and is based on whether showing that A follows from I"; A is trivial, in that A is some-
how a simpler form of A [Hesketh, 1991]. However, the distinction is reflected in the
separate collections of heuristics that have been developed for each case.

Techniques for finding a cut formula which generalises the current goal date back
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to [Aubin, 1976], and can be grouped into three main types, all of which have been

shown to assist in automatic proof:

Generalising Apart This replaces a single universal variable with two or more new
ones. For example, ¥x.@(x,X) is generalised to Vx.vy.@(x,y). One way to do this
uses primary recursion paths — variables nested only within recursive argument

positions — to find candidates for separation [Aubin, 1976].

Generalising Subterms One or more compound subterms are replaced by a fresh uni-
versal variable. This can be done by selecting suitable identical subterms on

either side of an equality or implication [Boyer and Moore, 1979].

Generalising Accumulators Here a constant is replaced with a variable in the accu-
mulator argument of a function. This often requires additional term structure to
be added elsewhere in the formula, to retain its validity. Early work attempted to

guess the extra term structure through trial and error [Aubin, 1976].

In [Castaing, 1985] the mismatch between induction hypothesis and conclusion is used
to perform the first two forms of generalisation. For a survey of work on generalisation
up to 1990 see [Hummel, 1990].

These three forms of generalisation have been unified within a single framework
that delays the choice of generalisation using meta-variables [Hesketh, 1991], using
proof planning (see §82.4 below). Building upon this work, Ireland used failed proof
attempts to better focus the use of meta-variables when constructing generalisations of
accumulator [Ireland and Bundy, 1996], and a similar approach has also been used for
the other forms of generalisation [Maclean, 1999]. For more detail see our discussions
of proof critics in 82.4.4 and §2.5.5 below.

The discovery of intermediate lemmas has been less well-studied. Ireland’s work
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on proof critics addressed lemma speculation as well as generalisation, and used a
failed proof attempt to build a schematic lemma that would assist with the proof
[Ireland, 1992, Ireland and Bundy, 1996]. Walsh used patterns of divergence in in-
ductive proofs in the SPIKE system to speculate lemmas that would allow the proof to
proceed [Walsh, 1996]. Constraint-based approaches to lemma speculation and accu-
mulator generalisation have been developed in RRL [Kapur and Subramaniam, 1996,

Kapur and Sakhanenko, 2003].

2.4 Proof Planning

Proof planning is an approach to automated theorem proving originally designed to
reduce proof search by raising it to a meta-level [Bundy, 1988, Bundy et al., 1991].
Classical theorem proving explores step-by-step a search space of inference rules ap-
plied ‘backwards’ to a goal formula. In proof planning the search is conducted with
methods, A.l.-style planning operators which describe common patterns of reasoning
in the object logic via meta-logical pre- and post-conditions. Methods can represent
proof steps larger than a single inference. They are applied to meta-level goals, which
are meta-logical representations of (possibly multiple) goals in the object logic.

Proof planning systems use methods to build an abstract proof tree, or proof plan,
which can then be used to find an object level proof, e.g. by running tactics correspond-
ing to methods (see 8§2.4.1). There need not be a guarantee that any corresponding
object level proofs can be found or even exist, although most proof planning literature
assumes that there is.

Meta-level goals and the meta-logical formulae in method conditions can express

both legal and heuristic statements about proof goals. Legal statements are about the
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form of the object goals, e.g. when a method could be applied. Heuristic statements
help guide the proof search, e.g. saying when a method should be applied. Methods
and meta-level goals are usually designed by system authors or users, and typically
oriented towards a specific domain where a set of heuristics is known, e.g. summing
series [Free, 1992]. In [Bundy, 1991] a methodology for good method design is de-
scribed, proposing evaluation criteria such as generality and parsimony. There has
also been some recent work on automatically learning method sets from examples
[Jamnik et al., 2002].

The intended advantage of proof planning is that the planning search space is sig-
nificantly smaller than the original object level search space. Conversely, the plan
space is likely to be incomplete. Both these things depend entirely on the particular
method set.

Another aim of proof planning is to provide declarative, as opposed to procedu-
ral, specifications of methods which can be reasoned about mechanically, not just
executed. This facilitates the automatic learning [Jamnik et al., 2002] and adaptation

[Huang et al., 1995] of proof methods.

2.4.1 Clam: Advance Planning

The first proof planning system was Clam [Bundy et al., 1991, van Harmelen, 1996].
It built upon the tactic based approach to theorem proving, e.g. the HOL system
[Gordon and Melham, 1993], where common patterns of inference rules are captured
in tactics, a small program which automates the search for a proof fragment by ap-
plying rules according to the given pattern. In Clam, a method is considered to be a
specification for a tactic, providing conditions for its application and the effects it has

on the goal. A given tactic may have multiple methods, corresponding to its use in
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different situations.

The Clam system was designed to work in conjunction with a tactic-based theo-
rem prover, specifically the Oyster system, an implementation of Martin-L6f’s Type
Theory. It constructs a proof plan which is used to guide Oyster to a proof, by replac-
ing methods with their corresponding tactics [Bundy et al., 1990b]. Hence planning is
done in advance of proving.

The default method set in Clam is designed for inductive proof, and is described in
detail in 82.5. Clam has also successfully been combined with HOL instead of Oyster,
with minimal adjustment to the default inductive method set [Boulton et al., 1998].
Given that HOL’s logic is classical higher-order logic rather than Martin-Lof Type
Theory, this illustrates the generality of proof methods.

Clam method conditions are written in Prolog, a logic programming language. This
allows both the specification in a declarative style, i.e. as meta-logical statements, and
their evaluation as Prolog programs. However, in practice it is possible to write pro-
cedural style conditions in Prolog, and Clam method designers often do this to e.g.

improve their efficiency or implement complex strategies.

2.4.2 AClam: Methodicals and Higher Order Meta-Logic

AClam [Richardson et al., 1998, Dennis and Brotherston, 2002] is the successor to the
Clam system. Like Clam, AClam is an planning system, producing plans to be con-
verted into tactics. Unlike Clam, which has Oyster, there is no specific underlying
tactic-based theorem prover. There are plans to make AClam more ‘logic indepen-
dent’, enabling the same proof plans to be used over a variety of logics?.

Method conditions are now written in A-Prolog [Nadathur and Miller, 1998] a higher-

2Lucas Dixon, personal communication.
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order version of Prolog. Having a higher-order meta-logic has allowed a much more
concise, natural and declarative expression of methods.

Another significant aspect of AClam is the use of methodicals to ‘join together’
methods to specify larger ones, in much the same way that tactics are formed using
tacticals. This is extremely useful when describing large and complex strategies —
a common problem in Clam. It also allows a more declarative specification of such
strategies. A semantics for these method expressions, based on continuations, is given

in [Richardson and Smaill, 2001].

2.4.3 QMEGA: Hierarchical Proof Planning

The QMEGA system [Benzmiiller et al., 1997], [Kerber, 1998] is another proof plan-
ning implementation, but differs from the Clam family in a number of important as-
pects. Most importantly, it does not differentiate between methods, tactics and infer-
ence rules: everything is a method. When a method is applied, further planning is
carried out to construct a proof that an object level proof exists. This process bottoms
out with the application of methods corresponding to inference rules. Hence the proof
plan is a hierarchy, both in the normal “proof tree’ sense, and in that some methods can
be expanded to another proof plan. The architecture allows planning and proving to
be interleaved, rather than planning being done in advance. This lets QMEGA recover
after forming faulty plans which have no corresponding proof.

Another important difference from Clam is the system’s division of preconditions
into declarative and procedural aspects, as well method slots for posting constraints,

and the use of constraint reasoning [Melis et al., 2000].
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2.4.4 Proof Critics

Failed proof attempts can often provide useful information about the form a successful
proof might take. Proof critics are an extension to the proof planning architecture that
embody this idea, and were first proposed in [Ireland, 1992]. Critics analyse failed
planning attempts and perform patches to the proof plan which might lead to success.
Just as methods describe the common structure of proofs, critics describe exceptions
to this structure and how they can be handled.

Ireland developed a set of four wave critics [Ireland and Bundy, 1996] which re-
spond to the failure of the wave method, from the induction method set in Clam. These
have been implemented in the Clam v3 system. We will look at the wave critics in
more detail in §2.5.5.

Critics have also been used to suggest generalisations [Maclean, 1999] and fix di-
vergent proof attempts [Walsh, 1996] in inductive proofs, and to guide co-induction
proofs [Dennis et al., 2000]. Their use in improving user-interaction in inductive the-
orem proving is described in [Ireland et al., 1999] and [Jackson, 1999].

In the remaining sections of this chapter, we look at various techniques used in the

automation of inductive proof.

2.5 Rippling

Rippling is a heuristic technique designed to guide rewriting of step case goals during
inductive proof [Hutter, 1990, Bundy et al., 1993]. It exploits the common structure in
these goals: that both the inductive hypotheses and conclusion are derived from the
original goal, and so have a common syntactic structure.

Rippling makes two assumptions. Firstly, that the hypothesis and conclusion differ
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because of some additional term structure, and that the goal can be solved by removing
these differences. Although this is not necessarily true?, it is a feature of most inductive
theorem proving (ITP) systems, which makes rippling widely applicable. The second
assumption is that the common syntactic structure is maintained throughout the proof
of the subgoal. Aubin was the first to remark that this holds true in many step case
proofs [Aubin, 1976].

The key idea is to restrict the manipulation of the conclusion and/or hypotheses
so that the proof fits these assumptions. Its aim is to remove differences between
hypothesis and conclusion, allowing the hypothesis to be used to prove the conclusion,
known as fertilisation, and hence prove the step case. A rewrite step is only allowed if

it meets the following criteria:

Skeleton Preservation The common syntactic structure between hypothesis and con-

clusion, known as the skeleton, is preserved.

Difference Removal The step helps ‘remove the differences’, in that unwanted term

structure is either
1. Moved towards the top of the term, leaving a subterm which is ‘less differ-
ent’ from the skeleton, or

2. Moved towards a position in the conclusion which corresponds to a univer-

sal variable in the hypothesis, where it won’t prevent fertilisation, or

3. Removed completely.

Because it restricts the rewriting like this, rippling is a heuristic strategy. Most work

on rippling has considered a straightforward rewriting environment, although it has

3For example, consider the step case X < y, ®(X) - ®(y).
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been successfully integrated with other ATP techniques, e.g. matrix theorem proving
[Pientka and Kreitz, 1999].

A number of formalisms have been developed for rippling, namely wave annota-
tion, C-Equations and embeddings. These are described in the next three sections,

along with the details of the rippling heuristic, and some variations on it.

2.5.1 Wave Annotation

The wave annotation approach to rippling [Bundy et al., 1993, Basin and Walsh, 1996]
introduces new functions (or wave annotations) into a term to indicate the differences
between it and another target term. The special unary function wf is introduced above
term structure that does not appear in the target, and another function wh is introduced
above the term structure that does. For example, the difference between the hypothesis
and conclusion of the step case (2.1) is indicated by the annotation shown in (2.2). (The
uppercase variables indicate meta-variables that have been substituted for universally

quantified variables in the hypothesis, a standard technique in ITP.)

X+Y =Y+x F s(X)+y=y+s(X) (2.2)

X+Y =Y +x F wf(s(wh(x)))+y=y+wf(s(wh(x))) (2.2)

The term structure that falls inside a wf and outside a wh is known as a wave front,
whereas the contents of the function wh is known as a wave hole. In (2.2) there are two
wave fronts s(...), and two wave holes with contents x.

Another special function snk is used to indicate a sink — a position which cor-
responds to a variable in the target which can be instantiated with any term, i.e. a

universal object or meta-variable. (2.3) shows an example of sink annotation, where
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capital letters denote meta-variables.
X+Y =Y +x F wf(s(wh(x)))+snk(y) =snk(y) +wf(s(wh(x)))  (2.3)

To make annotated terms more readable, the *box-and-hole’ notation is usually used*:
wave fronts are enclosed by boxes, wave holes are underlined and sinks are marked

with |...], e.g. (2.4) depicts (2.3) in box-and-hole notation.

X+Y =Y +x F o sx)| + Ly =yl +]s(x) (2.4)

Terms can be annotated automatically by difference unification [Basin and Walsh, 1993].
Certain constraints on the placing of annotations ensure terms are well-annotated, for
instance wf(wf(x)) is disallowed. Nested wave fronts and multiple wave holes in a
wave front are permitted.

The skeleton of a term can be computed by replacing terms wave fronts with the
contents of their wave hole, and sinks with the corresponding meta-variable®. A term
can be annotated with respect to several targets simultaneously by having multiple
wave holes in a wave front — this gives a set of skeletons, each resulting from a
different choice of wave holes. This is useful when guiding step cases with more than
one induction hypothesis.

The criteria of skeleton preservation (see §2.5) is enforced by allowing only rewrite
rules which can be annotated so that the skeletons of the left and right sides are identical
(or in the case of multiple wave holes, that the right side’s skeletons are a nonempty
subset of the left’s). An annotated rewrite rule is called a wave rule — see Figure 2.5.1.
Rippling is carried out by rewriting with wave rules, ensuring that the annotations

match, modulo equivalent wave annotations. I.e. during search we must normalise the

4In fact this notation predates the wf/wh formalism.
5Alan Bundy, unpublished research note.
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SO +Y = [sxy)| (25)
X+[sv = x| 2.6)
s¥)| =[s)] = x=v 2.7)

Figure 2.1: Three rewrite rules annotated as measure-decreasing wave rules. Only one
of the many possible annotations is shown for each rule. The upwards arrows denote
outwards wave fronts, which are moved to the top of the term during rippling. (2.5) and

(2.6) preserve skeleton X +Y, whereas (2.7) preserves X =Y.

annotation with respect to Ax.wh(wf(x)) = Ax.x. An example of a rippling proof using
wave annotation is shown in Figure 2.5.1.

Difference removal is achieved by marking wave fronts as travelling outwards to-
wards the top of the term or inwards towards a sink. All wave fronts initially travel
outwards, but can be redirected inwards, but not vice-versa. A wave measure captures
the informal notion of progress described above, taking account of the number and
depth of outwards and inwards wave fronts [Basin and Walsh, 1996]. Wave rules are
only permitted if they decrease this measure, and hence the rippling strategy is termi-
nating. Various wave measures have been proposed in an attempt to better model this
process.

Note that a rewrite rule can produce several wave rules, although only a few will
be applicable at any one time. The process can be fully automated. This give rise to a
useful solution to the problem with traditional rewriting techniques that need to orient
equations in one particular direction to ensure termination: often an equation needs to
be used in both directions. For example, associativity axioms. With rippling each use

can correspond to the application of a different wave rule, both derived from the same
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XY =Yx F [s] + ly) =yl +[s00)]
X+Y =Y+x F s(x+LyJ)T:{yJ+ s(x)T
x+Y =Y 4x s D] =y 0]

X+Y=Y+x + XxX+|y]=y+[X]

true

Figure 2.2: A ripple proof of the step case from the proof of the commutativity of +.
The proof uses wave rules (2.5), (2.6) and (2.7) (see Figure 2.5.1) in that order. The
outwards wave fronts are moved outwards and are eventually removed, allowing fertili-

sation in the final step. The skeleton X+Y =Y + X is preserved throughout.

equation.

The rippling heuristic is implemented via wave annotation in the Clam proof plan-
ner (see §2.4.1), where the meta-level representation of formulae allows annotating
functions to be added without changing the underlying logic [Bundy et al., 1991]. It
has been successfully used as a basis for a inductive method set [Bundy et al., 1991].
[Bundy and Green, 1996] is an experimental comparison of the relative performance of
rippling and standard rewriting in Clam. For a more extensive explanation of rippling

see [Bundy et al., 1993]. A more formal account is given in [Basin and Walsh, 1996].

2.5.2 The c-Calculus

The ¢-calculus is another rippling formalism which is presented in [Hutter, 1990]
and [Hutter, 1997]. Its formulation of rippling is similar to that of wave annotation.
The fundamental difference is that annotations are represented by colouring individual

symbols in a term, rather than by introducing special functions.
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For instance the step case (2.4) can be represented in the ¢-calculus as (2.8), with
symbols in the skeleton coloured sk and those in the context, i.e. within wave fronts,

coloured cx.
X—I—Y NV +X - SCX(XSk) +skysk:ysk +SkSCX(XSk) (28)

Wave rules are represented using colour variables that can take any colour value, or a
value restricted by a colour sort hierarchy. For example, the wave rule (2.5) is written

as the coloured rewrite rule (2.9), where the Greek letters are colour variables.
SCX(xG) _|_SkY|3 — SCX(xC( —I—SkY B) (29)

[Hutter, 1997] defines a unification procedure for coloured terms, allowing coloured
rewriting to be defined, which is used to implement rippling. Termination is achieved
by orienting the wave rules into a terminating rewrite system on a case-by-case basis,
rather than using a universal wave measure, although [Protzen, 1995] gives an account
of how the wave measure approach of [Basin and Walsh, 1996] can be formalised in
the ¢-calculus.

The c-calculus has a slightly wider coverage of skeleton preserving proofs, as
there exist skeleton preserving rewrite proofs that it can capture that wave annotation
cannot. Whether these are useful in practice is not known. A further advantage is
the uniqueness of its representation, which avoids having to normalise the annotation
during search. The coloured annotation approach has been generalised to other forms
of search control [Hutter, 2000].

The calculus has been implemented in the INKA system, an inductive theorem

prover [Hutter and Sengler, 1996].
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2.5.3 Term Embeddings

A major drawback of the annotation approaches to rippling described above is transfer-
ring it to a higher-order setting. Under B-reduction the skeleton of a term can become
broken, and wave or coloured annotations give rise to ill-annotated terms, or terms in
which the skeleton is not preserved. To overcome this the ¢ -calculus has been extended
to cope with higher-order syntax [Hutter and Kohlhase, 1997]. An alternative approach
to higher-order rippling using embeddings is described in [Smaill and Green, 1996],
and has been implemented in the AClam proof planner [Dennis and Brotherston, 2002].

A term embedding is a mapping from a term tree to another term tree, the target
term. Those parts of the target term not in the range of this mapping correspond to
wave fronts, and so embeddings can be used to formalise rippling. Because of the
higher order setting, quantification, A-abstraction and functions may all be optionally
mapped by the embedding.

The embeddings are represented in AClam by a tree labelled with term positions:
the embedding e embeds term t; into term t,, written e : t; S tp, iff for a position p
in e with label g the symbol at p in t; and g in to are identical. Wave fronts are
implicit in this representation: they are the term addresses that do not appear on the
embedding tree. However, key features of wave annotation (see §2.5.1) can be still
replicated in this representation: a wave front can be given a direction by marking the
embedding tree node that maps to immediately ‘beneath’ it in the target term. As a
result, embeddings can only represent blocks of wave fronts that all have the same
direction. Sinks can also be represented by marking the appropriate leaf nodes of the
embedding tree. A wave measure has been developed for embeddings that is similar to
the one used for wave annotation [Dennis and Brotherston, 2002].

When applied to a step case proof, each induction hypothesis is embedded into the
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induction conclusion. A rewrite step is allowed if the hypotheses can be re-embedded
into the conclusion, with the possibility of dropping an unembeddable hypothesis from
the embedded set as long as this does not make the set empty.

The advantage of the embedding formalism is that the rippling annotation is sepa-
rate from the term structure, so that B-reduction cannot produce ill-formed annotation
(although the embedding will have to be recomputed), and the underlying logic does
not need to be modified, e.g. unification does not need to account for wave annotation.

Furthermore, in the case of multiple rippling targets the embeddings approach does
not suffer from the problem of *‘mixed skeletons’. This problem arises in other rippling
approach because the interdependancies between different wave holes are ignored,
leading to bogus skeletons that can misguide the search. Yoshida proposed coloured
rippling [Yoshida et al., 1994] to prevent skeleton mixing in the wave annotation ap-
proach.

In a naive embeddings implementation the separation of the annotation and the
term means that the entire embedding does have to be recomputed with each step.

However, more efficient implementations are possible®.

2.5.4 Creational Rippling

Standard rippling can be used to guide constructor style step-cases, where induction
terms, and hence wave fronts, only appear in the induction conclusion. In destructor
style step cases induction terms are substituted into the hypotheses, therefore wave
fronts also appear in the hypotheses. For example, (2.10) shows a destructor style step

case from the proof of the commutativity of 4, with an annotated induction hypothesis.

pX)| +(Y+Z2)=(p(X) | +Y)+Z F X+ (y+2)=(x+Yy)+z (2.10)

6Jonathan Whittle, personal communication.
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Creational rippling is an extension to rippling that can be used to guide step case
proofs with annotated hypotheses [Bundy et al., 1993, Hutter, 1997]. This is done by
rippling the conclusion so that a wave front is created there which matches the wave
front in the hypothesis. Such a step can lead to non-termination under wave measures,
as the number of wave fronts is increased, so additional steps must be taken to ensure
termination.

In [Hutter, 1997] creational rippling is called the ‘blowing up of terms’, using
context-creating ¢-equations to introduce the new wave fronts. In [Bundy et al., 1993]
creational wave rules are defined, which contain anti-wave fronts that can match with
wave fronts in the hypotheses — after a creational ripple the matching wave fronts are
erased, leaving an ‘expanded’ skeleton. Although skeleton preservation is violated, the
step is acceptable because both hypothesis and conclusion still have a common skele-
ton. In both formalisms the creational ripple can produce additional wave fronts in the
conclusion that need to be rippled away — hence it is also known as rippling across,
as the hypothesis wave front appears to have been moved across to the conclusion.

The literature on rippling does not describe creational rippling in the same depth as
the standard technique, and it has not been formalised to the same extent. Essentially
the same approach is outlined in both the wave annotation and ¢-calculus formalisms:
before standard rippling is applied a phase of creational rippling takes place, where
a creational step is taken providing some wave front in the hypothesis is matched by
the new wave fronts. In the case of multiple induction hypotheses, a creational ripple
can introduce wave fronts which match wave fronts in only some of the hypotheses.
In this case the unviable hypotheses are discarded from the rippling process, i.e. their
corresponding wave holes are erased.

Creational rippling has been implemented experimentally in the AClam system



Chapter 2. Literature Survey 33

[Gow and Bundy, 2000]. Protzen criticises the technique for being ‘complex and un-
intuitive’ [Protzen, 1995] — probably due to its poor theoretical development and de-

scription compared to standard rippling.

2.5.5 The Wave Critics

Proof critics are used to describe common exceptions to proof planning methods, re-
sponding to a pattern of failed preconditions that suggests a particular amendment to
the proof plan (see §82.4.4). Proof critics was first examined in the context of rippling,
with the introduction of the wave critics [Ireland, 1992, Ireland and Bundy, 1996].
These four critics respond to the failure of the wave method, which implements a
single ripple rewrite in the Clam proof planner. Each critic corresponds to a particular

pattern of failure in the wave method’s preconditions. Those preconditions are:

Wave Front The goal contains a wave front.
Wave Rule A wave rule can ripple this wave front.
Condition Any condition on the wave rule can be discharged.

Sinkable Any inwards wave fronts are above for sinks or outwards wave fronts. Recall
that wave fronts can be rippled inwards to a sink position where they match a
universal variable in a hypothesis (see §2.5.1). Alternatively, they may meet an

outward wave front and “‘cancel each other out’.

Table 2.1 shows how the failure of the wave preconditions triggers the various wave
critics. Partial success in applying a wave rule means that adding some term structure
(say, s(s(x)) instead of s(x)) would allow the rule to be applied.

The critics respond to rippling failure by generalising the original conjecture, in-

troducing a case analysis into the step case proof, revising an induction term in the
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Generalisation Case Induction  Lemma
Precondition Analysis  Revision Discovery
Wave Front Yes Yes Yes Yes
Wave Rule Yes Yes Partial No
Condition Yes No
Sinkable No

Table 2.1: Association between wave method failure and the wave critics. Yes, Partial
and No indicate the precondition succeeds, partially succeeds (see main text) or fails

respectively. Taken from [Ireland and Bundy, 1996].

induction rule, or by attempting to find a lemma that will allow rippling to continue.
With the exception of the case analysis critic, the wave critics perform these tasks us-
ing middle-out reasoning, i.e. introducing a solution with one or more meta-variables
that are appropriately instantiated later in the proof search.

[Ireland and Bundy, 1996] reports success in using the wave critics to find auto-
matic proofs to many theorems previously unsolvable using rippling, and other in-
ductive techniques. Further development of the generalisation critic is reported in

[Ireland and Bundy, 1999].

2.6 Recursion Analysis

We now look at previous work on automating the selection of induction rules. The
standard approach to rule selection is recursion analysis, based upon techniques devel-
oped by Boyer and Moore [Boyer and Moore, 1979]. This uses the dual inductions of

terminating recursive functions that appear in the goal. The dual induction rule 1t of a
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recursive function f corresponds to a relation identical to the computation order of f.
The termination of f guarantees the well-foundedness of this relation, and hence the
validity of the rule.

To prove a particular conjecture a heuristic is used to suggest a set of induction
rules: if the function f appears in the conjecture with recursive arguments X1,...,Xn
then use the dual induction rule I+ with induction variables x1,...,x, (providing x;
are all universal variables). This is known as the duality heuristic’. The set of raw
suggestions given by the heuristic undergoes two more stages of processing. First
the system attempts to i) disregard some rules as inherently inferior to others and ii)
combine rules together, to form rules superior to their constituents. The notion of
superiority of induction rules can vary between systems, as we shall see below.

Finally an induction is selected by considering the induction terms substituted into
the conjecture by each rule and the effects this will have on the subsequent proof. An
occurrence of an induction term in the conjecture is flawed if it prevents the symbolic
evaluation of the surrounding term using the recursive definitions, otherwise it is un-
flawed. A rule is selected based on the number of flawed and unflawed induction terms

it will produce (see [Stevens, 1988] for details).

2.6.1 Subsumption

The first system to incorporate recursion analysis was NQTHM, also known as the
Boyer-Moore Theorem Prover [Boyer and Moore, 1979, Boyer and Moore, 1988]. The
system considers an induction rule superior to another if it subsumes the other rule.

Subsumption can be defined as:

e Rule A is subsumed by rule B iff there is a repeated form of A such that each step

“1t is also known as the induction heuristic e.g. [Walther, 1992].
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case of this rule is directly subsumed by a step case of rule B.

e The N-repeated form of a rule is constructed by applying the substitutions of
each step case to each step case of the (N — 1)-repeated form (see [Stevens, 1990]

for details).

e Step case Sp is directly subsumed by step case Sg iff the conditions of Sg imply
the conditions of S and each hypothesis/conclusion substitution of Sa is a subset

of a hypothesis/conclusion substitution in Sg.

Informally, subsumption can be seen as considering rule B superior if it is an extension
of N applications of rule A, for some N. NQTHM combines induction rules by merging.

Merging two valid rules produces a third valid rule which subsumes the original two.

2.6.2 Subsumption Reconstructed

Although NQTHM was very successful at selecting appropriate induction rules and the
system was well documented in [Boyer and Moore, 1979], this approach lacked any
real theoretical foundation explaining why it worked. Because of this Stevens carried
out a rational reconstruction of Boyer and Moore’s recursion analysis [Stevens, 1988,
Stevens, 1990]. He provided theoretical explanations of why these techniques often
chose appropriate inductions, which lead him to identify and correct a number of flaws
in the original process.

The reconstruction was based upon an informal meta-theory of inductive proofs
— explanations about how and why inductive proofs succeed or fail. The key idea
of this theory is that appropriate induction rules introduce induction terms that allow
hypothesis and conclusion to be rewritten to match each other. These induction terms

need to be dealt with — we need rewrite rules that involve these terms in the context they
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have been substituted into. If we use induction I+ dual to function f in the conjecture,
then we can use the recursive definition of f to deal with some of the terms introduced
by It:. The danger is that a rule might introduce side-effects i.e. terms that cannot be
dealt with using the recursive definitions available. Rule B is therefore superior if it
subsumes rule A, as it will substitute ‘dealable’ terms into the same places as A, and
will possibly allow A’s side-effects to be dealt with as well.

Among the advantages of Stevens’s recursion analysis is the use of the merging
algorithm to perform the subsumption test — if rule A subsumes rule B then merging A
and B simply returns A. His improved merging algorithm also allows, in some cases,
repeated forms of rules to merged, finding a common subsuming induction rule for two

rules.

2.6.3 Containment

Subsumption is not the only method of measuring the relative superiority of induction
rules. Walther has proposed containment as an alternative method [Walther, 1993], and
from this he developed an alternative set of techniques for improving, disregarding
and combining destructor style induction rules® suggested during recursion analysis
[Walther, 1993, Walther, 1994a]. These have been implemented in a version of the the
INKA inductive theorem prover [Hutter and Sengler, 1996].

Containment is defined as: rule A is contained by rule B iff <aC<p, Where < is
the well-founded relation corresponding to valid induction rule I. Hence the rule with
the larger relation is considered superior, which is equivalent to preferring the rule
with the logically stronger induction hypotheses. This can be seen as a meta-theory of

inductive proofs that differs from, but does not necessarily oppose, Stevens’s theory.

8A destructor style induction rule only substitutes induction terms into induction hypotheses of step
cases.
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[Walther, 1993] describes a containment test which is sufficient to show contain-
ment between two induction rules: rule A is contained by B if for each hypothesis Ha
in a step case Sa of A the following formula is true (taking all free variables to be
universally quantified):

cond(Sa) — \/ (cond(SB)/\ \/ [ /\ HB(X):HA(X)]>

Se5(B) Hges (S5) xedom(Hg)

where s (B) are the step cases of rule B, # (S) and cond(S) are the hypotheses and
conditions of step case S, dom(H) is the domain of hypothesis H’s substitution and
H (x) the effect of that substitution on variable x. The test is carried out by passing a
set of these containment formulae to an inductive theorem prover.

If neither <aC < Or <gC<a can be shown using this test, then the rules are com-
bined by taking the separated union of A and B [Walther, 1993]. This is an induction
rule corresponding to the relation < U <g constructed so that the conditions of the
step-cases are mutually exclusive. Although this union always exists, it is not guar-
anteed well-founded. The rule can be shown valid if it passes a quasi-commutation
test. As with the containment test this involves discharging certain formulae using the
inductive theorem prover, but they tend to be harder to prove. In the last resort the
system can attempt a direct well-foundedness proof of the separated union.

[Walther, 1993] also defines range and domain generalisations: operations which
modify an individual induction rule A to produce a rule A’ that contains A. Both
these operations correspond to procedures for extracting an induction rule from a
terminating recursive function definition discussed in [Boyer and Moore, 1979] and
[Stevens, 1990]. As with separated union, the generalised induction rule is not guaran-
teed well-founded.

Walther claims that his recursion analysis is superior to Boyer and Moore’s ap-

proach (see [Walther, 1994a] for his comparison). His techniques are capable, in
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some cases, of constructing induction rules that require fewer supporting lemmata than
Stevens’s approach. However unlike Stevens, he does not address repeated forms and
non-destructor style induction rules. The relative strengths of the two approaches has
not yet been properly investigated, and it is unclear if either is superior, or perhaps if

some combination of the two would be optimal.

2.6.4 Ripple Analysis

One of the major advantages of rippling is that it provides a strong normative model of
how inductive proofs should proceed, and this model can be used to suggest solutions
to other problems in automated induction. For example, when selecting an induction
rule we can choose the rule that is most likely to allow subsequent rippling to succeed.
Ripple analysis [Bundy et al., 1989] is an induction selection technique that takes this
approach.

Induction terms appearing in the step-case will be annotated as wave fronts. Given
a set of induction rules and a set of wave rules, ripple analysis suggests those rules that
introduce wave fronts that can be rippled in the first step of the proof. This provides
a set of raw suggestions which can be combined and disregarded using the techniques
of recursion analysis. Indeed, ripple analysis can be seen as an extension of recursion
analysis, as both consider the effect the induction will have on the first step of the step-
case proofs. The former considers a rippling proof, the latter symbolic evaluation with
the recursive definitions.

This comparison indicates the advantages this technique has over recursion anal-
ysis. Firstly, it may use any lemmata known to the system if they can be annotated
as wave rules. They may suggest appropriate inductions different from any dual to

functions in the conjecture. Secondly, the restrictions on rippling can disallow an in-
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appropriate induction even though recursion analysis suggests it [Bundy, 2001]. If an
induction term may only be dealt with by rippling in using a recursive definition, but
there is no sink position in which to put the wave front (see §2.5) then the proof is
likely to fail. Recursion analysis would suggest this induction, ripple analysis would

not, given that there is no applicable wave rule.

2.7 Delaying the Choice of Induction Rule

Recursion analysis and ripple analysis are the standard approaches to induction rule
selection, but have two significant disadvantages [Bundy, 2001]. Firstly, they can only
select an induction rule from a predetermined space, and the suitable choices may not
be in that set [Protzen, 1995]. For recursion analysis this ‘dual space’ of induction rules
is determined by the recursive functions in the conjecture and the operators for induc-
tion rule combination. Ripple analysis can select induction rules not in the conjecture’s
dual space, but these must be supplied a priori, e.g. by the user.

Their second disadvantage is they must guess the effects of the induction choice
using only the structure of the conjecture and a one-step lookahead for each induction
term. This can obviously go wrong, as events later in the proof may determine why
this a bad choice, and more importantly, what a good choice would be.

In this section we look at an approach to induction rule selection which overcome
the second problem by delaying the choice of induction rule until the middle of the

proof. In §2.8 two techniques which tackle the first problem are examined.
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2.7.1 Periwinkle: Middle-Out Induction Selection

In her Periwinkle system Ina Kraan used middle-out reasoning to select an induction
rule from a prestored set [Kraan, 1994, Kraan et al., 1996]. The system performs bet-
ter than recursion analysis because it looks ahead into the proof by delaying the choice
of induction rule, via middle-out reasoning [Bundy et al., 1990a]. This represents un-
known terms in a proof with meta-variables, variables that may be instantiated to first
or higher-order objects in the object level language. As the proof proceeds, the meta-
variables are instantiated to allow proof steps to happen. If the proof is completed
then the meta-variables should be instantiated to the required terms. The main dif-
ficulty with this technique is controlling instantiation, as without proper control the
proof could easily diverge. A model of the structure of successful proofs is required to
provide this control [Hesketh, 1991].

In the case of middle-out induction, second-order meta-variables are used to repre-
sent the induction terms of the as yet unknown induction rule choice. This gives us a

schematic step case to be rippled, e.g. °

--------------------------------------------

Fa(x)i+(B(y)i+ic@) = (aAX)i+iB(y))+c(2): (2.11)

________________

________________

A proof of this step-case is searched for, instantiating the meta-variables as it proceeds.
If successful, this yields a set of induction terms and uses these to select an induction
rule from a prestored set. The proofs of the base cases are then completed.

The dashed wave fronts in (2.11) indicate potential wave fronts, which can be made
definite to allow a wave rule to match during the proof. Steps in the rippling proof are

either definite or speculative, depending on whether or not any definite wave fronts

9Here the meta-variables are written as 2,3, ¢, ...
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are rippled. An example of a speculative ripple is the application of rule (2.5) to the

schematic step-case (2.11) to give the conclusion:

I I

----------------------------------

(o) i+ (B i+c@))] =(s(2X)| +i3y))+c@) (212

____________________________________

----------------

In this example A has been instantiated to Au.s(2 (u)) and a definite wave front has
been created around these terms. On the LHS this wave front is rippled outwards and
there is now the possibility of a definite ripple on the RHS.

Rippling provides much of the control necessary for this kind of middle-out reason-
ing, as it provides a strong model of step-case proofs and so severely restricts the appli-
cable rewrite rules. However, it is non-terminating in the presence of meta-variables,
and so Kraan imposed further restrictions on the step-case proof. Firstly, a definite
ripple or the application of the induction hypothesis is always preferred to a specula-
tive ripple. Secondly, only a single speculative ripple is allowed during a proof. This
second limitation is somewhat over-restrictive, and Kraan suggests alternative methods
need to be developed, such as a middle-out induction proof critic1?

Another potential problem with middle-out induction is the need for higher-order
unification when instantiating meta-variables, as this is only semi-decidable and does
not guaranteed a unique most general unifier. Therefore Periwinkle is restricted to uni-
fying higher-order patterns, a subset of higher-order terms with decidable unification
and a unique most general unifier. This subset appears to be sufficient for representing
induction terms. In contrast, other approaches to middle-out reasoning have accepted
the undecidability of full unification [Hesketh, 1991, Ireland and Bundy, 1996].

Note that Periwinkle cannot find a step cases which are destructor style (i.e. with
compound induction terms in the hypotheses) or which have multiple inductive hy-

potheses.

10This problem is addressed in Chapter 7.
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2.8 Creating Novel Induction Rules

Recall that apart from lack of foresight into the proof, the other major disadvantage
of recursion and ripple analysis was their dependence on a space of induction rules
predetermined by available recursive functions, and possibly the user. In this section
we look at techniques which lift this restriction, in that they can create induction rules

“from scratch’.

2.8.1 Labelled Fragments

The need for novel induction orderings is especially important in proofs of existence
theorems. Here an assertion can be made about a recursive function without its recur-
sive structure being known. For example, the following theorem asserts the existence

of a quotient q and remainder r for pairs of Peano natural numbers:
Vx,y:nat. Ju,vinat.y 0 — (X=(q X y)+rAr<y)

Proving the theorem involves finding witnesses for the unknowns q and r and showing
they satisfy the theorem. This can be done by synthesising the witness during the proof
of the theorem. Therefore the form of induction used will determine the recursive
structure of each witness. In many cases the appropriate form of induction is not
dual to any recursive function given in the problem specification [Bundy, 2001]. Also,
although the conjecture may be provable using known induction rules, another witness
with a simpler proof may be found with other forms of induction!®. This is the case
for the quotient-remainder example above [Hutter, 1994]. Roughly speaking, we may

not even have the appropriate dual induction to hand, as we don’t yet know what form

1This is especially important when synthesising a program from its specification — an existence
theorem — as a more desirable program may correspond to this witness.
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the witness will be. Hence approaches such as recursion analysis, which rely on a
predetermined space of induction rules, perform badly on existence proofs.

[Hutter, 1994] describes a dynamic approach for constructing an induction order-
ing appropriate to a given existence conjecture. First a set of induction variables are
selected by using abstracted ¢-equations (see 82.5) called labelled fragments. A set of
variables is found such that context, or wave fronts in rippling terminology, introduced
at these positions could be rippled out. The analysis ignores the form these wave fronts
might take and only checks if there are ¢-equations that could move some wave front
in the right direction.

A destructor style induction rule is then synthesised by ‘blowing up’ some part
of the conjecture using a context creating ¢-equation (equivalent to a creational wave
rule) and then propagating these wave fronts to the induction variables to give a set of
induction terms. The resulting induction rule can lie outside the dual induction space,
so the technique may create a ‘novel’ induction rule. Walther’s methods (see §2.9.1)
are used to establish this induction as well-founded. Hutter gives various heuristic

strategies for creating and moving wave fronts in existence theorems.

2.8.2 Lazy Induction

Lazy induction is another approach designed to generate induction rules not con-
structed from known function definitions [Protzen, 1994, Protzen, 1995]. It is re-
stricted to destructor-style induction rules, where induction terms are only substituted
into the hypotheses.

The technique constructs a destructor style induction rule during the proof search
for the rule’s base and step cases. It assumes the conclusion of each case is equivalent

to the conjecture, then creates and removes wave fronts using ripple-like rewriting, and
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generates suitable induction hypotheses on demand. Protzen uses Hutter’s C-Calculus,
adapted to have wave annotation’s directed wave fronts. This enables the usual general
termination argument (see §2.5).

This lazy generation of induction hypotheses leaves decisions about the form of
induction to fertilisation steps. Before fertilisation there is no explicit representation
of the unknown induction. This can be constrasted with Kraan’s ‘schematic step case’
approach (see §2.7.1), where these decisions are made by rippling steps and meta-
variables store this information explicitly before fertilisation occurs. These different
approaches to delayed commitment are contrasted further in §13.5.

To prove a conjecture Vxy,...,Xn. W, lazy induction begins with the conclusion @

and an empty hypothesis list, and transforms it using the following operations:

Wave Front Introduction: Rewriting the conclusion with a measure increasing wave

rule in order to create wave fronts. This is always the first step of the proof.
Rippling: Wave fronts are rippled outwards, or into sinks.

Case Split: Rewriting motivates a case-split. Each case becomes a separate case of

the induction rule.

Hypothesis Generation: If an instance of the conjecture can be used to rewrite the

conclusion, then it is added as a hypothesis and used for fertilisation.

Equate Induction Variables: If Hypothesis Generation can’t be applied because
two occurrences of an induction variable have to be instantiated to different

terms, then attempt to prove that these terms are equal.

Note that Wave Front Introduction is always applicable to the conclusion, so further
controls are required to prevent divergence. Protzen’s thesis [Protzen, 1995] does not

deal with this issue.
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The well-foundedness of the resulting rule is guaranteed by using Walther’s esti-

mation calculus (see §2.9.1) at the end of the proof, or by ensuring:

a) that only defining equations of terminating functions are used by Wave Front

Introduction,

b) that only p-bounded functions are moved towards induction variables, where p

is the argument containing the variable and

c) that a subset of variables always appear in their induction terms, and at least one
of these is instantiated to a non-variable term in each hypothesis (this condition

is not made explicit by Protzen, but it seems to me to be necessary).

As the case-structure of the induction rule has been constructed by case-splits during
the proof, it is guaranteed to be case complete, and hence sound.

[Protzen, 1995] reports that lazy induction was implemented as an extension to the
INKA inductive theorem prover [Hutter and Sengler, 1996], although this implemen-

tation is no longer available.

An Example of Lazy Induction

To illustrate lazy induction, we now present a proof of the theorem evenp from the
Clam library [van Harmelen, 1996] using destructor style definitions of even and +

(see Appendix B). We assume the lemma even(s(s(x))) = even(x) is available.

- even(x) Aeven(y) — even(x+Y)
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Case Split and Wave Front Introduction using the definition of even gives three

cases:

- even(0) Aeven(y) — even(0+y) (2.13)

- even(s(0)) Aeven(y) — even(s(0) +y) (2.14)

X#0,x#5s(0) F even(|p(p(x)) T)/\even(y)—>even(x+y) (2.15)

The cases (2.13) and (2.14) are trivial, and case (2.15) continues with two Wave Front

Introductions with the definition of +:

x£0,x£5(0) F even([p(p(x))|') Aeven(y) — even(|s(s([p(p(x)) | +))| )

Rippling with the lemma gives us:

x#£0,x£s(0) - even([p(p(x))|) Aeven(y) — even([p(p(x))| +y)

Now Hypothesis Generation can produce a suitable induction hypothesis, use it to

fertilise:

X # 0,x #5s(0), even(p(p(x))) Aeven(y) — even(p(p(x))+y) F true

The proof satisfies the well-foundedness conditions (a)—(c) given above, so the induc-

tion is sound and the proof is complete.

2.9 Termination Analysis

The problem of proving a given induction rule well-founded is similar to proving the
termination of a recursive function — both require a well-founded relation to be pro-

vided under which the recursive cases decrease. It is in this context that the significant
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research into automating well-foundedness proofs has been done. Termination of a re-
cursive function®? is usually established by proving that for some subset P of the func-
tion argument positions, there is a termination function which is always less by some
known well-founded order for the values in the recursive calls than the initial values.
More formally, for an n-ary function f there is some fixed P = {i1, ..., ik} C{1,...,n},
a termination function m and a well-founded relation <, such that for each recursive

call in a defining equation:
¢— f(ag,...,an) = ... f(by,...,bp)...
the following termination hypothesis is true:
¢ — m(bi,, ..., bi,) <m(a,, ..., a,) (2.16)

In this section we look at three approaches which allow this process to be automated.

2.9.1 The Estimation Calculus

In the Boyer-Moore theorem prover (see 82.6), proving termination of recursive func-
tions was given a degree of automation. However, the system depended entirely on the
presence of suitable induction lemmas to prove termination. It was up to the user to
formulate these lemmas, and this constituted the most difficult part of the process.
Walther’s estimation calculus [Walther, 1988, Walther, 1994b] attempts to auto-
matically prove termination in a way similar to the Boyer-Moore theorem prover, but
has the ability to synthesise suitable induction lemmas without user assistance. It can
prove termination of destructor style functions defined over freely generated data types.

It uses a single kind of measure function, the size order #; : T — N, which counts the

2not including mutual or nested recursive functions.
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number of reflexive constructors in a constructor ground term of type T, i.e. the con-
structors of type 1" — 1 for any n. For example, the number of occurrences of s in a
nat, or cons in a list(nat).

The method depends upon the notion of argument bounded functions. A function

f is p-bounded iff for all terms ty, .. . ,t, of the correct typelS:
f(tla ---:tn) g#tp

Such properties of functions can be found automatically. Given a p-bounded function
f, adifference function AP f is synthesised — a predicate that recognises when the bound

<# can be made strict. Hence:
Apf(tp> — f(t_‘]_, ey tn) <#tp

This will play the réle of an induction lemma. The actual estimation calculus can be
used to deduce that for some term t containing variable x, t <z x. It decomposes t
to a series of subterms by replacing the top p-bounded function by the pth argument,
eventually reaching x. The difference equivalent A(t,x) is simultaneously constructed
by the calculus as the disjunction of the corresponding difference functions applied to

each subterm. From this and the induction lemmata, it follows that:
Alt,x) =t <gX

Showing the termination of single argument destructor style recursive function f in-

volves:
1. Finding each recursive call § — f(x) =... f(t)...

2. Deducing t <# X in the estimation calculus.

Bwhere x <4y denotes #;(X) <w #(y)
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3. Proving the termination hypothesis ¢ — A(t,x).

The technique extends to functions with several arguments. It has been implemented
in the INKA inductive theorem prover [Hutter and Sengler, 1996] and shown to be
successful in practice. Walther’s methods have also been extended for use with arbi-
trary polynomial-norm measure functions [Giesl, 1995a] and recursive functions de-

fined over non-freely generated data types [Sengler, 1996].

2.9.2 Reducer/Conserver Analysis

[McAllester and Arkoudas, 1996] describes a simplification of the estimation calculus,
which is guaranteed terminating for the class of “Walther recursive’ functions. Walther
recursion is defined by set of simple syntactic requirements for function and type defi-
nitions.

Functions can be classified as conservers or reducers of their pth arguments, cor-
responding to a non-strict or strict bound on the function by the argument. These are
expressed in conserver and reducer lemmas using the <y relation —a reducer f can be

asserted by a reducer lemma of the form:

f(xl7"'7xn) S#d(xp)

where d is a destructor function'*. The simplified calculus uses reducer and conserver
lemmas in two capacities: as a termination checker or as a way of obtaining new lem-
mas from known terminating functions. Unlike the estimation calculus it does not
produce termination hypotheses that require an inductive theorem prover to discharge,
but purely by manipulating reducer and conserver lemmas. Hence it is less power-
ful than Walther’s original methods, but has the advantage of always terminating for

Walther recursive functions.

Yje. d(c(xa,...,%)) = x for some constructor cand i € [n].
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2.9.3 Using Term Orders

There exists large bodies of research on the termination of logic programs and term
rewriting systems (see [Dershowitz, 1987] and [Schreye and Decorte, 1994] respec-
tively). This suggests an alternative route to automating termination proofs of recur-
sive functions, and equivalently well-foundedness proofs of induction rules, than those
outlined above: adapt automated techniques from these areas to deal with recursive
functions.

Giesl has considered this approach and concluded that [Giesl, 1995c]:

e Techniques for logic program analysis are currently unsuitable, as these are only
semi-automatic, i.e. like Boyer and Moore’s system they require the user to per-

form the significant tasks.

e Although there are several automated procedures for term rewriting systems,

these are not directly applicable to recursive functions.

The problem with the latter techniques is that they prove termination hypotheses (2.16)
using term orders — well-founded orders on the terms of the data types a1,...,an. In
general, this approach is not sound for recursive functions, because different terms may
evaluate to the same constructor term, but will not be equivalent under the term order.
For example, nil and delete(0,0 :: nil) are equivalent, but will not be treated as such
by a term order. Term orders do not always respect the semantics of functions.

[Giesl, 1995c] describes three possible solutions to this problem:
1. Use term orders which respect the semantics of the recursive functions.
2. Consider recursive functions as term rewriting systems.

3. Eliminate defined functions from the termination hypotheses.
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The former two are rejected on the grounds that they impose strong requirements on
the termination proofs, which would significantly reduce the power of the approach.
Giesl develops the third solution, introducing new undefined functions which bound
the defined functions that are to be eliminated. He describes a procedure for transform-
ing a set of termination hypotheses into a set of constraints, where defined functions
symbols are replaced by the new undefined function symbols. Any well-founded term
order satisfying the constraints will also satisfy the original termination hypotheses.
Automatic techniques for the synthesis of wellfounded term orders can now be
used to prove the termination of the recursive function, e.g. those in [Steinbach, 1995],

[Giesl, 1995b] or [Dershowitz and Hoot, 1993].

2.10 Summary

This chapter has surveyed the literature on proof planning and automating inductive

proof. We draw attention to the following features:

e Proof planning provides a theorem proving architecture that allows a declarative
specification of proof strategies. Far greater search control can be exercised than

with object-level search.

e Rippling is a heuristic technique for controlling search in inductive step cases.
The expectations it provides for the form of the step case proof have allowed
researchers to make progress with other problems in automated induction: gen-

eralisation, lemma speculation and rule selection.

e The standard technique for induction rule selection is recursion analysis. It is

limited to selecting from an incomplete space of induction rules determined by
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the recursive functions known to the system. Its one-step lookahead into the

proof can also be inadequate.

e Improvements on recursion analysis have delayed the choice of induction rule
until later in the proof. Some approaches also attempts to generate a novel ap-
propriate rule during the proof [Protzen, 1995]. The main problems with these
techniques are poor search control and the restrictions they place on the form of

induction rules.



Chapter 3

Induction Rule Structure

When dealing with such a schematic axiom, how can a prover sensibly
guess which instances of (the schema) to consider? Without a really good
way to answer such questions, one meets with the futility of the British
Museum Algorithm?.

— ROBERT S. BOYER & J STROTHER MOORE, ON THE DIFFICULTY
OF AUTOMATING INDUCTIVE REASONING

3.1 Introduction

The literature on automated induction, described in Chapter 2, contains a variety of
logical and heuristic theories of inductive proof. The relationships between these the-
ories is not always clear: for example, R-descriptions [Walther, 1992] and rippling
[Bundy et al., 1993] are described in quite different terms (see 82.5 and §2.6).

This raises important questions for anyone considering the automation of mathe-

matical induction, namely:

1. What definition of an induction rule should be used? For example, some authors

Iwhich “enumerates... all Hilbert style proofs, until it finds a proof of the given theorem, as though
visiting the British Museum, where one gets to see at least one example of everything.”

54
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restrict their theories to destructor style rules, e.g. [Protzen, 1995], while others

also use constructor style, e.g. [Bundy et al., 1993].

2. Once an induction rule has been applied, how should the proof of the resulting
subgoals be guided? Rippling is a successful approach. However, there are a

number of possible variants (see §2.5).

These questions are particularly relevant to this thesis, in considering (i) what kind
of induction rules should a system attempt to create and (ii) what constitutes a good
choice with respect to the proof search heuristics being used. This chapter provides
answers to both these questions?, providing a theory for the automation of inductive
proof. Our theory will be taken as a basis for the remainder of the thesis.

The concept of simple induction rules is proposed as a definition of induction rules
that is suitable for automated proof, because it is compatible with rippling heuristics.
We show that current rippling techniques are easily extended for use with this class
of rule, by giving a fresh account of creational rippling [Bundy et al., 1993] via term
embeddings. Simple induction rules generalise the concepts of induction rule used in
much previous work on automated induction, and we argue that this improves automa-
tion.

Figure 3.1 shows an example of the kind of induction rule we discuss in this chap-

ter, and illustrates some useful pieces of terminology.

3.2 Syntactic Restrictions

As explained in §2.2.1, all induction rules are derivable from the Noetherian Induction

rule. However, the full rule is rarely used in automated theorem provers, because it is

2Any answers to these questions depend, in part, on the logical setting in which the inductive rea-
soning takes place. However, only a sequent-based typed higher-order logic is considered in this thesis.
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Case Qondition Inductlon Terms

I— @(0

} Base Cases

) £ B (3(0))
méo q:»(p( )) - ®(s(x)) } stepcase
= Yz : nat.®(z)
Induction Hypothesis Induction\ConcIusion

Figure 3.1: An example induction rule, with the common names for various parts.

an axiom with several higher order variables [Boyer and Moore, 1992]. This means it
may not be expressible in a system’s logic, and when it is, the presence of higher order
variables present search and unification problems, unless carely controlled.

A system can get round this problem of expressiveness by computing the necessary
instantiation ‘behind the scenes’ and using the resulting derived rule, e.g. NQTHM’s
induction rules are expressed in unquantified first-order logic. But still, such systems
do not consider the full range of possible instantiations. Instead they typically employ
some syntactically restricted class of induction rules.

Examples of such classes are constructor style induction rules, which are used
by the Clam [van Harmelen, 1996] and AClam [Richardson et al., 2000] proof plan-
ners and the RRL system [Kapur and Zhang, 1995], and destructor style induction
rules, which are used by NQTHM [Boyer and Moore, 1979] and the INKA system
[Walther, 1992, Protzen, 1995]. Destructor style induction rules may be formalised
using R-Descriptions [Walther, 1992].

The disadvantage with using a restricted class of induction rules is that there may be

problems that can only be solved, or can be more easily solved, using an induction rule
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outside of this class. (We look at the problems of restricting a system to constructor and
destructor style in §3.5.) For instance, Clam cannot typically solve simple problems
about destructor style functions, as the appropriate rule is often destructor style. There
is a tension here between generality needed to solve a range of problems, and the search

control issues of using an unrestricted definition of induction rule.

3.3 Simple Induction Rules

We now describe simple induction rules, a class of induction rules designed to gen-
eralise constructor and destructor style rules, whilst still being suitable for automated

proof.

Definition 1 (Simple Induction Rule) A simple induction rule is an inference rule

with a conclusion of the form - V.x . ®, and premises of the form
C1, ....Ck, B1(¥91.9), ...,B0(¥9h.®) F o(®)
for h,k > 0 and substitutions 84,. .., 8y, 0 such that

1. Forallie [h]

7;uUDom(6;) = Dom(0) = x

2. For all i € [k], each case condition C; is a literal not of the form 6'(vVy'.®) for

any substitution © and set of variables o',

Informally, the definition gives a schematic description of a premise consisting of
case conditions (C;), induction hypotheses (6;(V2;.®)) and induction conclusion o(®).
Clause (1) insists that in each premise the universally quantified variables in the rule’s

consequent (x) are substituted for in the conclusion (Dom(o)) and either substituted
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for, or universally quantified, in each hypothesis (9; UDom(6;)). Clause (2) ensures
that case conditions are not induction hypotheses.

As an example, consider the induction rule from 8§1.3:

= @(nil)

®P(x) F P(x<>(y:nil))
VI list(T). (1)

This is a simple induction rule. Following Definition 1 it has x = {lI}. The base case
has the parameters k =0, h =0 and o = {nil/l}. The step case has the parameters
k=0,h=1,91=0061={x/I} and o= {(x <> (y::nil))/l}.

On the other hand, the Noetherian induction rule (see §82.2.1) is not a simple induc-

tion rule:
eA (WeA y<x— dy)) — P(x)
Vx € A. ®(x)

It is not a simple rule because its premise has the wrong syntactic structure to match
Definition 1.

Simple induction rules are more general than the constructor and destructor style
of induction rules found in the literature. We can obtain constructor (resp. destructor)
induction rules by restricting the substitution 6; (resp. o) to only introduce atomic
terms — variables or constant symbols.

Simple induction rules are suitable for automation because we can use rippling-
like heuristics to guide the proof of the resulting subgoals: the induction conclusion
o(®) and the induction hypotheses 6;(vV9;.®) are both instances of the same formula,
modulo universal quantification. However, before we can use simple rules and rippling
together, there are some technical problems to consider.

Firstly, wave-fronts may appear in both the conclusion and hypotheses of step

cases. As discussed in §2.5.4, creational rippling has been proposed as a technique
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for rippling hypothesis wave-fronts, but it is relatively ill-defined. It was presented
in the wave-annotation formalism [Bundy et al., 1993], but has not yet been extended
to the more general embeddings approach [Smaill and Green, 1996]. This problem is
dealt with in the next section.

Secondly, it is possible that hypothesis and conclusion substitutions for a given
variable do not share any common subterms, making the calculation of a common
skeleton impossible, and so preventing standard rippling. We do not deal with this
problem in this thesis, but simply note that there are proposed extensions to rippling to
deal with lack of common subterms, e.g. hole-less wave-fronts3. Consquently, below

we will assume that such a common subterm does exist.

3.4 Creational Rippling

To define creational rippling in an embeddings framework, consider a step case with
conclusion C. Each induction hypothesis H is associated with a set of triples (Sk, e1, e2),
such that e : Sk S H and e : Sk < C. Sk is a common skeleton that embeds in both
this induction hypothesis and the conclusion.

Below we describe how the initial embeddings are computed and how creational
rippling takes place. Our account differs significantly from the original wave-annotation

presentation [Bundy et al., 1993], although the underlying ideas are the same.

3.4.1 Initial Embeddings

Initially we can assume H = 8(Vy.®) and C = o(®P) for substitutions 6 and o and set

of variables o (see Definition 1). To compute the initial triples for H we consider each

3Alan Bundy, unpublished research note.
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x € Dom(o) — 9 and compute the set Sy of common subterms of 8(x) and o(x) — as

discussed above, we are assuming such a Sy is non-empty. Define a substitution p by
1. For x € Dom(0) — o substitute a term from Sy.
2. For x € o substitute o(x).

It is easily shown that a common skeleton for H and C is given by p(®): For case (1)
Sx is embeds into B(x) in the hypothesis and o(x) in the conclusion, as it is a subterm of
both. For case (2) o(x) embeds into a variable bound by Vo~ in the hypothesis — recall
that any term embeds into a universal variable of the same type — and a(x) trivially
embeds into itself in the conclusion. By Definition 1 these are the only two cases that
need to be considered.

Note there may be multiple possible ps, and so multiple common skeletons. Each

skeleton has a corresponding triple, with the embeddings computed in the usual way.

3.4.2 Ripple Steps

We assume that some wave measure wm over embeddings is available, such as the one
in [Smaill and Green, 1996]. The usual definition of rippling via embeddings is used
(see §2.5), extended to cover multiple skeletons/hypotheses. Informally, a successful
ripple step requires us to reduce the measure in at least one of the embeddings of the
skeleton into the conclusion, and to remain constant in those that are not reduced. If
the measure increases for an embedding then we can allow it to be discarded, providing
that at least one viable embedding remains.

A ripple step is formally defined as follows:

1. Rewrite the conclusion.
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2. Attempt to embed each skeleton into the new conclusion. At least one must

embed.

3. Check the step has reduced the sequent wave measure.

Definition 2 (Sequent Wave Measure) The sequent wave measure Wmgeq is defined
for a sequent S as a multiset, containing wmpy,(H) for each induction hypothesis H in
S.

The hypothesis wave measure wmpyy, is defined for an induction hypothesis H as

a multiset, containing wm(ey) for each triple (Sk,es,e2) associated with H.

As the measure is reduced with each step, rippling is terminating.

The sequent wave measure characterises valid rippling steps, but it is not a good
way of comparing two valid rippling steps, because needlessly throwing away hy-
potheses/skeletons reduces the measure. Instead, one step is prefered over another if it

preserves more hypotheses, else if it preserves more skeletons.

3.4.3 Creational Ripple Steps

A creational step is one which introduces extra context into the conclusion to match
context already in the hypotheses, and hence is inherently wave-measure increasing.
The matching context can be made part of the skeleton, as it is shared by hypothesis
and conclusion — a process called neutralisation, because the corresponding wave-
fronts ‘cancel each other out’, leaving the underlying term structure behind. Hence
neutralisation expands the skeleton.

A creational ripple step is defined as:

1. Rewrite the conclusion.
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2. Attempt to embed each skeleton into the new conclusion. At least one must

embed.
3. Check the wave measure has increased.
4. Apply neutralisation exhaustively. It must apply at least once.

After neutralisation the wave measure may have been increased, decreased or remained

constant. We now define neutralisation:

Definition 3 (Neutralisation) A triple of formulae Sk, H and C such that Sk < H and
Sk S C, undergo neutralisation iff another formulae Sk’ (the expanded skeleton) can

be found such that
1. e: Sk .S Sk’ for some e # ejq
2. Sk S H
3. SkSC

Note that the above definition does not give an algorithm for neutralisation.
The termination of creational rippling is guaranteed, despite the fact that it in-

creases the wave measure, by the following measure.

Definition 4 (Difference Measure) The sequent difference measure dmsgyq is defined
for a sequent S as a multiset, containing #(H) — #(Sk) for each triple (Sk,e,e2) as-

sociated with an inductive hypothesis H in S, where # measures the size of a term.

A creational ripple step removes zero or more triples from the sequent, so the dif-

ference measure is not increased by the step. Each step is followed by at least one
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neutralisation, so at least one triple has its skeleton expanded. As #(H) remains con-
stant for each triple, the value of #(H) — #(Sk) is reduced for at least one triple. Hence
the difference measure is reduced by neutralisation.

Furthermore, the combination of standard and creational ripple steps is terminating,
as standard rippling preserves skeleton, and so cannot increase the difference measure.
Hence a lexographic measure of the difference measure, followed by the sequent wave

measure, ensures termination.

3.5 A Comparison of Rule Styles

Having defined simple induction rules and the rippling heuristics compatible with
them, this section compares their use with that of constructor and destructor style rules.
Recall that simple induction rule is a more general definition than both these styles. We

argue that there are two significant advantages to using simple induction rules:

1. The approach is not restricted to problems concerning either constructor or de-

structor style functions.

2. Even if one restricts function definitions to one or the other style, using only
the corresponding style of induction rule is inadequate, because of the role that

lemmas can play in proofs.

3.5.1 Problem with Function Style

Restricting a system to constructor or destructor style induction makes proofs involv-
ing other styles of function definition difficult. This is consistent with Stevens ac-

count of inductive proof [Stevens, 1990], which, put simply, is that a dual rule of a
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relevant function f should be used, and the term structure this introduces must be re-
moved/matched using the definition of f. If f is constructor (resp. destructor) style,
the suitable dual rule is constructor (resp. destructor) style. A ‘destructor style only’
system will have difficulty dealing with f, because a suitable destructor style rule will
introduce term structure into the step case hypotheses which cannot be removed by the
constructor style definition of f. A similar argument holds against ‘constructor style
only’ systems.

Of course, this is an over simplification: lemmas could be used to remove/match
the problematic term structure, so it may be possible for a destructor style system to
work with constructor style functions, and vice versa. However, there is no guarantee
that suitable lemmas will be provided, or that they can be easily generated, or even that

such lemmas will exist.

3.5.2 Problem with the Use of Lemmas

The problem with function style is not necessarily significant, as many authors choose
to work with one particular function style. However, there is a more compelling argu-
ment to use simple induction rules, given that Stevens’s theory does not account for all
inductive proofs. There are theorems that require non-dual inductions for their solution
(see [Protzen, 1995] or 81). One possible scenario is that a non-dual rule can be used
because it introduces term structure that can be removed by a given lemma — extend-
ing Stevens’s theory, we could say the induction rule was a dual rule to the lemma. By
analogy with the functional case, lemmas could be classed as constructor or destructor
style, depending on the style of their dual rules.

The problem arises because there is no guarantee that the style of the given lemma

will be the same as the chosen function style. For example, a destructor style system
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may have access to a constructor style lemma about its destructor style functions which
suggests a suitable dual rule for a particular problem. Such a system could not find the
straightforward solution of using this lemma to suggest the constructor style dual rule.
Of course, it may find a solution if it has a suitable destructor style lemma, but as
is often the case in inductive theorem proving (or theorem proving in general) this
may not be available. Thus the destructor style system fails to take advantage of the
lemma resources made available to it. A similar argument holds against constructor
style systems. Hence restricting the rule style can reduce the power of a system even

if one sticks to the corresponding function style.

3.6 Summary

In this chapter we have:

e Discussed the problem of choosing a suitable definition of induction rule that
we have argued is specific enough to avoid the search control problems of the
full higher order schema, yet also general enough to have a wide coverage of

inductive problems.

e Proposed simple induction rules as a class of induction rules suitable for the

automation of inductive proof, due to their compatibility with rippling heuristics.

e Presented creational rippling [Bundy et al., 1993] via a novel formulation that
uses term embeddings [Smaill and Green, 1996] instead of the original wave-
annotation. This enables the term embeddings formulation of rippling to be used

with simple induction rules.

e Argued that restricting a system to constructor or destructor style induction rules
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has significant disadvantages compared to using simple induction rules. Prob-

lems arise even if the system only works with the corresponding function style.



Chapter 4

Step Case Creation

4.1 Introduction

Having outlined our induction proof strategy in Chapter 1, we now describe in detail
the techniques used to try to create a successful step case for the inductive proof of a
given goal. The central idea is that certain choices about the form of the case are left
undecided until the middle of its proof — a technique known as middle-out reasoning
[Hesketh, 1991]. The effect of such decisions is not known beforehand, but in the
middle of the proof attempt more information may be available, making a better choice
possible.

We take a ‘least commitment’ approach of delaying these choices as long as possi-
ble — only when the proof attempt cannot progress any further is the strategy forced

to commit. The rippling heuristic is used to control rewriting.

67
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Overview

First, in 84.2 we present the step case schema, which is used to represent an unknown
step case. Considering only constructor style step cases, in 84.3 we describe how the
schema may be refined during proof search to give a successful step case formula.

We then consider non-constructor style step cases in 84.4. Using the new formula-
tion of the creational rippling heuristic given in Chapter 3, an extended proof strategy
for generating non-constructor style step cases is described.

Some of the ideas presented here build on previous research on inductive proof de-
scribed in [Kraan, 1994] and [Protzen, 1995]. We comment on this, where appropriate,

but defer a fuller comparison to Chapter 13.

4.2 The Step Case Schema

At the beginning of the inductive proof, the unknown step case is represented by a
step case schema, which uses meta-level variables to represent parts of the object-level
formulae which are yet to be determined. Instantiation of these meta-variables (e.g.
by unification) will take place during the proof search, yielding an concrete case of an
inductive proof.

In [Kraan, 1994], step case schemas were used in a similar way. Those schemas
could represent step cases of simple constructor style induction rules with single hy-
potheses and no non-inductive hypotheses. Simple induction rules were selected in
Chapter 3 as a suitable class for automatic proof, and here we generalise the schema
approach accordingly.

Because the strategy will generate induction hypotheses dynamically, simple in-

duction rules can be simplified further: induction hypotheses of the form 8(Vy .®) can
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be replaced with several of the form 6/'(®) — one for each set of values 9 needs to
take during the proof. These can be added during the proof as required, rather than the
more general universally quantified version being used each time. We refer to these
simple induction rules without universal quantification as sink-free simple induction
rules, following rippling terminology [Bundy et al., 1993].

Recall from Definition 1 that a simple induction rule with the conclusion V.x . ®.
We can write this as:

VX1:T1. ... VXniTh. @(X)

has premises that are sequents with the following parts:

e A single conclusion a(®), which we can write this as @(t) for terms t. We can

represent it schematically as @(T1(X), ..., Tn(X)).

e One or more induction hypotheses of the form Vo .®, which we can write as
Vo .@(t) for terms t. As argued above, these can each be simplified to @(t), so
represented schematically as the first induction hypothesis @(S1(X),...,Sn(X))
and a (possibly empty) list of additional induction hypotheses IH(X) — each

will have the same schematic form.

e Zero or more non-induction hypotheses, known as case conditions, represented

schematically as CC(X), which may be trivial i.e. CC = AU.true.

Hence the step case can be represented by the following schema:

cc),
S1(%), .., Sn(X).
IH(X)

- M), Ta(X)

(4.1)
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The schema can be instantiated to give any step case from a sink-free simple in-
duction rule.

Note that our step case schema (4.1) appears to assume that the induction constants
in the induction hypothesis and conclusion will be of the same type as the universally
quantified variables in the original conjecture, as we use X = Xi, ..., Xy to denote them
both. This cannot be the case, as induction often requires more induction constants than
there are universal variables. For example, structural induction on type list(t) would
use an induction constants of types t and list(t). Given a conjecture VI:list(t).¢(1), the

‘best approximation’ schema (4.1) can make to the required step case is:

ox) F @T(x) 2 x)
However, we can easily overcome this limitation by ensuring that when the object-level

induction rule is constructed from the proof plan, we replace any remaining meta-

variables, such as T1(x), with induction constants of the appropriate type.

Example 1

The goal Vx,y:nat. x4+y =y + x has the step case schema:
CC(xy),
S1(X,y) +S2(x,y) = S2(x,y) +S1(x,y),
IH(x,y)
F Tay) +Ta(x,y) = Ta(xy) + Ta(x,y)

(4.2)

4.3 Constructor Schema Refinement

Given the initial step case schema for a goal, an attempt is made to generate a proof
of the schema. The schema is refined by instantiating (possibly partially) the meta-

variables during certain proof steps.
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In the following sections, we describe the various proof steps which are employed
by the strategy for creating constructor style step cases. Non-constructor cases are
considered in §4.4.

The constructor style schema is:
CC(x), @Xx), IH(X), Foo@(Ti(X),...,Ta(X)) (4.3)

Note that we may have multiple hypotheses in a constructor style step case and that an
induction variable may be instantiated to a different constant in two different hypothe-

Ses.

4.3.1 Rippling

The step case proof is controlled by the ripple heuristic. Following [Kraan, 1994], rip-
pling may partially instantiate meta-variables as a side-effect of rewriting: the left-hand
side of the rule is unified with the redex via higher-order unification [Huet, 1975]. Flex-
ible redexes are forbidden, i.e. rewrite rules are never applied just to meta-variables.
This condition prevents a situation where every rewrite rule is applicable to every
schematic term.

Rippling-sideways and -in is not useful if we are using a constructor style schema.
If a wave front were rippled in it could not be dealt with, because the induction hypoth-
esis would contain no universal variables or induction terms. To deal with such proofs
that use rippling-in a more general non-constructor schema is required — we describe

such a schema in §4.4.

Wave Annotation via Embeddings

The embeddings representation of rippling’s wave annotations is used, to allow com-

pability with higher-order syntax [Smaill and Green, 1996]. We use the definition of
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embedding given in §2.5, with the minor adaptation that a term embeds into a meta-
variable if and only if their object-level types are compatible. This prevents redundant
embeddings, e.g. a list | embedding into the non-list first argument of the schematic
term cons(A(1),H(l)).

Following Kraan, we denote the wave annotation around meta-variables with a dot-
ted box, called a potential wave-front. Hence the initial annotated version of schema

4.3) is:

------------------

CC(X), @x), IH(X), Foo@(Ti(X) ..., Ta(X) ) (4.4)

__________________

Note, however, that unlike Kraan’s, our potential wave-fronts have no wave-holes —
this is because any term may be embedded into a meta-variable, modulo type, not just
the elements of X.

The embeddings formulation also allows a simple treatment of annotation with
respect to multiple hypotheses, compared to [Yoshida et al., 1994], for example. See

Chapter 3 for details.

Rippling Side Conditions

In addition, the rewrite step may have a side condition. Unless this evaluates to true
under symbolic evaluation, or it already appears in the case conditions, it is added to
the case conditions. This is done by forcing partial instantiation of the meta-variable
representing the unknown case conditions, allowing the creation of step cases with
case conditions.

For example, consider the following schematic goal:

------------------------------------------

CC(x1,X2), ... K len(delete(: T1(x1,X2) i Ta(X1,%2) 1)) < len( Ta(X1,X%2) )

__________________________________________
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We can apply the following wave rule by assuming the side condition:

X#H — deIete(X,T) = |H :delete(X,T)

The resulting schematic goal is:

=

T]_(X]_,Xz) 75 TZI(Xl,Xz) /\CC/(Xl,Xz), ...

****************************

F o len(| Ty(x1,x2) = delete(: T1(X1,X2) 1 T3/ (X1,X2) ) | )

,,,,,,,,,,,,,,,

_____________

--------------

< len(|Tg(x,x2) i T3 (X1,%2) 1| )

______________

T, and T, are the meta-variables remaining after the partial instantiation of T,, where
Ta(X1,%2) = T'(X1,%2) 2 T"(X1,%2)

The new meta-variable CC’ may be instantiated by further side conditions.
In general, if the unknown case conditions are represented by the schematic hy-

pothesis CC(X), adding the condition cond(X) gives the following instantiation:
CC = Ax. cond(x) ACC'(X)

where CC’ is the remaining unknown condition.

Speculative and Definite Ripples

As explained in 82.7.1, Kraan distinguished between speculative ripple steps, which
partially instantiate meta-variables via rewriting, and definite ripple steps, which do
not. Speculative steps may increase the wave-measure that guarantees the termina-
tion of rippling [Basin and Walsh, 1996]. Hence if unbounded speculative steps are
permitted, rippling may not terminate.

Kraan’s solution of placing a bound on the number of such steps ensures termi-
nation, but there may be proofs that require more speculative steps than this bound

permits. This is illustrated by examining Example 1 further.
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Example 1 (revisited)

The step case schema (4.2) may be rewritten using a wave-rule taken from the defini-

tion of +:

W] +v = [sUrv)

------------------------------------------

o
<
=
_|_
o
x
=
I
=,
5
=
_|_
o
x
=

__________________________________________

--------------------------------------------
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____________________________________________

This is a speculative ripple, as C is partially instantiated to Au.Av.C’(u,v) as a by-

product. If unbounded, speculative ripples can be applied ad infinitum:

s(Sy) +By))| = (Bl sty
Y
s5(C7 ) 00 | = D0k st |
U
5667y D0y )| = (B3 + s |
U

This problem is revisited in Chapter 7 — for now we assume some arbitrary bound.

4.3.2 Post-Rippling

Strong and weak fertilisation are identical to the non-schematic case, except that, as

during rippling, meta-variables may be instantiated. A hypothesis may be used in
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weak fertilisation several times, so it is oriented as a rewrite rule after its first use,
to prevent looping. A similar technique was employed in the Clam 2 proof planner
[van Harmelen, 1996].

At the end of a successful rippling proof, tidying-up may be required post-fertilisation,
as some meta-variables may be not fully instantiated. To obtain a non-schematic step
case and proof, each meta-variable representing a term is replaced by a fresh object-

level variable and those representing propositions to AX.true.

4.3.3 Multiple Induction Hypotheses

The initial step case schema has a single induction hypothesis, but some proofs involve
multiple hypotheses. To generate additional induction hypotheses Protzen’s Heuristic
is employed [Protzen, 1995]: if an instance of the original goal can be used to rewrite
the conclusion, add it as an induction hypothesis and apply it. This rewrite step should
not instantiate meta-variables in the conclusion. The hypothesis is added to the step
case by partially instantiating the meta-variable representing the unknown induction
hypotheses.

The main problem with this heuristic is its over-applicability. It can be applied to
most goals in several ways, significantly increasing the search space. To control its
use in the step case proof, it must be applied after rippling is blocked, and whenever

possible, fertilisation is prefered instead.

Example 2

The schematic step case for the goal:

Vt:btree(nat). sum(t) = sum(flip(t))
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may be fully rippled to:

----------------------------

= jsum(L(t) ) +sum(R(t)) | = |sum(flip(R(t)))+sum(flip(L(t)}))

____________________________

using the following wave rules from the definitions of sum and flip:

sum(|node(X,Y)| ) = sum(X)Jrsum(Y)T

flip(node(x.Y)|) = [node(flip(Y), flip(X))|

Weak fertilisation instantiates L to Au. u, giving:

CC(t), sum(t) = sum(flip(t)), IH(t)

--------------

F o sum(t)+sum(R(t))| = |sum(flip(R(t)}))+sum(t)

______________

Repeating weak fertilisation with the same hypothesis completes the proof. The result-
ing step case is:
®d(t) F  d(node(t,t))

Our induction strategy will fail to build a complete induction rule using this step case.

Backtracking over the second fertilisation, Protzen’s Heuristic can be applied: an
instance sum(t’) = sum(flip(t’)) of the original goal is added as an induction hypoth-
esis. Applying it instantiates R to Au. t’ and completes the proof. The resulting step
case is:

o), d(t') +  d(node(t,t))

This can be used to construct a complete proof.

4.3.4 A Constructor Proof Strategy

The proof strategy for creating constructor style step cases, parameterised by a bound

N > 0, can be summarised as follows,
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1. Construct annotated schema for goal.
2. Ripple-out, with no more than N > 0 speculative ripples.
3. Either:

e Fertilise with known hypothesis.

e Create hypothesis and fertilise.

4. If goal is open, goto step 2, else collapse remaining meta-variables.

4.4 Extension to Non-Constructor Cases

This section describes extending the techniques for constructor step cases to the full
step case schema (4.1). The major differences are that meta-variables in the induction
hypotheses can be instantiated by creational rippling or fertilisation, and that rippling-

in is permitted.

4.4.1 Creational Rippling

The extra term structure that may appear in the hypotheses in non-constructor step
cases has to be removed using creational rippling (see 8§3.4).

The initial step case schema is annotated as:

------------------------------------

CCX), @(Sa(¥)}--iSn(®) ), HE) F  @(Ti(X)}....iTa(¥)) (4.5

____________________________________

Rippling takes place in the conclusion as before, with the wave annotation in the
hypotheses being removed by creational rippling. Meta-variables in the hypothesis

may be instantiated during a creational ripple by extending the definition of neutralisa-

--------

tion (see 3.4): awave-front| f(...) i corresponds to a potential wave-front: A(X) iin an

________
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induction hypothesis iff they are in the same position in the skeleton. The latter term
is instantiated by matching against the term f(U), i.e. A is instantiated to Au. f (A’(u))
for fresh A’

A distinction between speculative and definite creational ripples is made in an anal-
ogous way to ripple steps. A speculative creational ripple instantiates a meta-variable,
either by unification with the redex or matching during neutralisation. As such ripples
introduce non-termination, they are included in the bound on the number of speculative

steps.

4.4.2 Rippling-In

With wave-fronts in the induction hypotheses, rippling-in becomes a worthwhile strat-
egy, as a wave-front can be rippled into a position where it neutralises a hypothesis
wave-front. Sinks can be used to distinguish term positions in the conclusion which
correspond to meta-variables in the induction hypotheses [Bundy et al., 1993], where

rippling-in must always move a wave-front towards a sink.

4.4.3 Multiple Induction Hypotheses

As in the constructor case, additional hypotheses are provided by Protzen’s heuristic
(see 84.3.3 above). Because meta-variables are now allowed in the hypotheses, we
can achieve this by simply adding and fertilising with a fresh schematic induction

hypothesis, i.e. one with fresh meta-variables.

4.4.4 The Extended Strategy

The full strategy to create sink-free simple step cases is as follows:
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1. Construct annotated schema for goal.
2. Creational ripple, or ripple-out, or ripple-in and -out.
3. Either:
e Fertilise with known hypothesis.
e Create schematic hypothesis and fertilise.
4. 1f goal is open, goto step 2, else collapse remaining meta-variables.

4.5 Summary

In this chapter a strategy for step case creation have been described in two parts. The
first part deals with constructor style step cases. The second part generalised this strat-
egy to include non-constructor style step cases as well. In Chapter 6 such step cases
are used to construct a valid induction rule.

The main points of this chapter were:

e The step case schema is more general than [Kraan, 1994], and a larger class of

step cases can be generated.

e The step case strategy is more general than the one described in [Protzen, 1995],
although we take a related approach to generating multiple induction hypotheses

using Protzen’s heuristic.

e The induction conclusion and case conditions are created as a by-product of

rippling.

¢ Induction hypotheses are created by creational rippling, and Protzen’s heuristic.
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e The number of speculative steps must be bounded to prevent rippling diverg-
ing. This can eliminate solutions from the search and cause incompleteness, a

problem which is discussed further in Chapter 7.



Chapter 5

Synthesis of Case Structure

‘Enumeration of cases’ ...is one of the duller forms of mathematical ar-
gument.

— G. H. HARDY, A MATHEMATICIAN’S APOLOGY

5.1 Introduction

Having used the techniques of Chapter 4 to generate a suitable step case, we are now
faced with the problem of creating a valid induction rule that contains this step case.
As part of this process, our strategy will need to create the other ‘missing’ cases of the
induction rule. This chapter describes a suitable strategy for generating missing cases
from a partial case analysis. It forms the second component of our induction strategy,
which will be presented in full in Chapter 6.

In 85.2 we formalise the concept of missing cases in terms of case formulae, and
in 85.3, restate the problem of finding such missing cases in terms of correcting faulty
case formulae. 85.4 describes a strategy for patching case formulae based on known

corrective techniques [Protzen, 1995, Monroy, 2000]. We give some examples of this

81
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proof strategy in 85.5, and describe some simple heuristics to improve its performance

in 85.6.

5.2 Case Formulae

This section formalises the problem of generating missing cases of a partial case anal-
ysis. In the context of this thesis, this means generating missing cases of a partial

induction rule. The following (partial) rules illustrate the problem:

®(x) F P(s(s(x)))

- YXnat - P(X) (5.1)

x7#0,y#0,®d(x), ®(y) F P(x+y)

- VXnat - D(X) (52)

Both rules are incomplete because they do not have premises that prove ®(u) for
u=0andu=s(0).
The case structure of an induction rule is complete iff it forms an exhaustive case

analysis. We can characterise this using a case formula.

Definition 5 (Case Formula) Given a simple induction rule 1 of the form

Ci,Hy F (D(t%, ... ,t%)

Ci,Hk F @tk .. t5)

FVX1:T1,. X0t Tne P(X1, .., Xn)

where C; is a set of non-inductive hypotheses and H; a set of inductive hypotheses, the

corresponding case formula ¢ (1) is of the form

FYu:(Tyx- -+ XTp).(D1V--- VD) (5.3)
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where each disjunct D; is of the form

V5 (CiAu= (t,....th) (5.4)
and % is the set of free variables in C; and ti,...,tl. 1f n = 1 then the tuple of terms

ti,...,t} can be written as a single term t}. Also, C; may be optionally omitted.

Informally, the case formula says that any u of the given type is ‘covered’ by at
least one of the cases of the induction rule, where the disjuncts D; correspond to the
cases. Each disjunct says that u is covered by the corresponding case, in that u matches
the pattern (ti,...,t}) under the conditions C;.

For example, the partial induction rule (5.1) has the case formula
Yu :nat.3x : nat.u = s(s(x))
A ‘complete version’ of rule (5.1) has the case formula
Vu:nat.(u=0 VvV u=s(0) v 3x:nat.u=s(s(x)))
The partial induction rule (5.2) has the case formula
Yu:nat.3x,y:nat.x Z0AYy #O0AU=X+Y (5.5)
Whereas a ‘complete version’ of rule (5.2) has the case formula
Vu:inat. (u=0 Vv u=s(0) V 3x,y:nat.x#0Ay#0AU=X+Y) (5.6)

For these examples the truth of the complete case formulae is equivalent a correspond-
ing induction rule having exhaustive case analysis. In general, we define case exhaus-

tiveness for simple induction rules as follows:
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Definition 6 (Case Exhaustive) A simple induction rule is case exhaustive iff for any
n-tuple s of type T there is a case of the rule with case conditions A(X) and conclusion

B such that
1. A(S) holds.
2. 0(B) = ®(3) for some substitution o.

3. The rule has conclusion VX:T.®(X)

It follows that case formulae are equivalent to case exhaustiveness:

Theorem 1 A simple induction rule 1 is case exhaustive iff the case formula ¢ (1) is

true.

Proof Lets be some n-tuple of type T. The case exhaustiveness of 1 is equivalent to
one of the premises of Definition 5 satisfying requirements (1) and (2) from Definition
6, and the conclusion from Definition 5 satisfying (3). Equivalently, for this case the
case conditions C; hold and there is a substitution o such that o((t},...,t})) =s. This
is equivalent to one of the disjuncts in (5.4) being true, and so to the truth of the case

formula ¢ (7).

Q.E.D.

5.3 Case Synthesis via Correcting Case Formulae

Theorem 1 lets us show that the cases of an induction rule are exhaustive, by proving
its case formula. Conversely, we can establish it has missing cases by disproving the

case formula.
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This suggests a method for synthesizing the missing cases of an incomplete induc-

tion rule. Assume that its case formula
Vu:t.(D1V---VDy) (5.7)
is a faulty conjecture, and try to find a correct version of the form
Vu:t.(D1V:--VDyVDyy1V:---VDyyj) (5.8)

Provided the additional disjuncts Dy, ...,Dk are of the form given by (5.4), a set

of additional cases can be extracted to form an exhaustive case analysis.

5.3.1 Corrective Techniques

The correction of faulty conjectures has been investigated in the context of inductive
theorem proving [Protzen, 1995, Monroy, 2000]. Given a non-theorem VX.g(X), these
methods attempt to build a corrective predicate p that specifies conditions under which
the theorem is true, i.e. p such that VX.p(X) — g(X). A relationship between our pro-

posed approach and this work can be seen by rewriting (5.8) as
YU :T.(=(Diga V-V Dy j) — (D1 V-V Dy)) (5.9

Hence a possible approach to synthesizing cases would be to use a known corrective
technique on faulty conjecture (5.7), and to transform the resulting corrective predicate
term p(u) to the form —(Dy, 1V ---V Dy ). However, we will take the alternative route
of adapting the corrective techniques so that they construct the disjuncts D;, as this is
the more direct approach. The process for constructing the D; is the same in both
approaches.

The basic idea behind these corrective techniques is to attempt to prove the faulty
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conjecture, and to extract a definition for a corrective predicate p from the failed proof?.
Each successful and failed proof branch gives rise to a case of the definition of p.
Briefly, if a proof branch resulting from a case analysis succeeds then p is defined as
true under these case conditions, but if it fails then p is defined as false. Success-
ful inductive proof branches which use an induction hypothesis give rise to recursive
cases of p. We will not go into more detail here, but refer the interested reader to

[Protzen, 1995] and [Monroy, 2000].

5.3.2 Problems with Existential Quantifiers

However, these corrective techniques were designed to be applied to conjectures con-
taining only universal quantification, whereas case formulae contain existential quan-
tification. In particular, they use standard induction proving techniques which do not
deal with existential quantification (see Chapter 2) to construct a failed proof.

For example, consider an inductive proof of the faulty conjecture (5.5). Unless the
existential quantifiers can be dealt with, the only option is to induct on u. Both the base
and step cases are immediately blocked.

Clearly, if we are to successfully apply corrective techniques to case formulae, they
need to be integrated with techniques for dealing with existential quantification. We

deal with this problem in §85.4.2 below.

5.4 A Corrective Strategy for Case Formulae

This section describes a corrective strategy for case formulae that is based the cor-

rective techniques discussed above, combined with the use of dual skolemisation to

1An advantage of this approach is that it can also be applied to theorems, where the proof can
succeed.
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handle existential variables (i.e. replacing them in a goal with first-order free vari-
ables), a standard technique in automated theorem proving. As suggested above, we
will directly extract the missing disjuncts of the case formula from the failed proof,
rather than construct a corrective predicate.

The proof attempt proceeds by a standard induction strategy, with corrective dis-
juncts extracted from failed proof branches. Subgoals of the form ¥x : t.x =Y are

trivially true, and are closed.

5.4.1 Extracting Corrective Disjuncts

For each proof branch, we record the case conditions: a pair (C,T) where C are any
conditions introduced by case splits (including the cases of inductions) and T is the
instantiation of the universally quantified variable of the original case formula (u in
(5)).

For each failed branch of the proof we take its case conditions (C, T ), and extract

a corrective disjunct of the form
d7.CAu=T

where 7 are the free variablesinCand T.
This technique of tagging each proof branch with its case information is used in

both [Protzen, 1995] and [Monroy, 2000].

5.4.2 Instantiating Free Variables

Recall that dual skolemisation transforms the case formula’s existential variables to
free variables. This is permitted whilst proving the case formula, as any value substi-

tuted into a free variable can become a witness in the final proof. How does one treat
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these free variables during the proof? The standard approach is to let them become
instantiated during rewriting. Unfortunately, this is not compatible with correcting the
case formula.

For instance, consider the following correct dual skolemised case formula:
Vu:nat.(u=0V (X #A0Au=X+Y) (5.10)

X and Y are the free variables that have replaced existential variables. We can rewrite
the case formula using the base case of the definition of +, instantiating X to O in the

process:
Vu:nat.(u=0V (0#0AU=Y) (5.11)

The goal, which was previously true, can now be reduced to false. Following the
corrective approach, we should analyse this failure to produce a corrective predicate.
However, the original case formula does not need correcting.

What’s going on here? Recall that the corrective approach attempts to identify
those proof branches which are false. Reducing a goal to false is interpreted as indi-
cating the original goal is false under the current case conditions. This assumes that
the current goal is equivalent to the original goal plus the case conditions. But this
assumption is incorrect if we use non-equivalence preserving steps, where a true goal
like (5.10) may have a false subgoal (5.11). If we combine non-equivalence preserv-
ing steps and corrective techniques then unnecessary corrections can be made, because
true cases are identified as false.

Hence corrective techniques need to ensure that non-equivalence preserving steps
are either excluded, or only permitted in successful branches of failed proofs, i.e. if a
branch containing such steps fails, one should backtrack rather than correct the original

conjecture. Unfortunately, whenever a free variable is instantiated to a term as a side
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effect of rewriting, e.g.
(5.12)

the step is non-equivalence preserving, so our failed proof branches will always contain
such steps.

So we must instantiate free variables via an equivalence preserving step. For in-
stance, an equivalence preserving version of (5.12) is:

®(0) v &(s(X'))

300 (5.13)

We can generalise this to a new proof step, the existential case split. Given an exhaus-

tive case analysis represented by the following skolemised case formula
vu: T ((a(Y) Au=Ba(Y)) V-V (ag(Y) Au=Bq(Y)) (5.14)
Then an existential case split is represented by the following proof step
c(Bu(Y)) Aax(Y) Ad(U) =t(Bu(Y))

VeV

c(Bq(Y)) Aoig(Y) Ad(U) =t(Bq(Y))

c(X) Ad (W) =t(X) .19

where X has type T.

The proof step (5.15) is applied backwards to a particular disjunct in a goal, with
the case analysis (5.14) suggested by rewriting. For instance, if we can rewrite with
a defining equation of function f, then we use the case analysis associated with the
definition of f.

As an example of an existential case split, consider again the correct case formula

(5.10):

Vu:nat.(u=0V (X#A0Au=X+Y) (5.16)
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The definition of + has the following dual skolemised case formula
Yu:nat.(u=0V u=s(V)) (5.17)

This suggests an existential case split according to (5.15) with case analysis (5.17),

which gives the subgoal
Vu:nat.(u=0V (0£0AU=0+Y) V (s(X')Z0Au=s(X)+Y)) (5.18)

Further rewriting gives
Vu:nat.(u=0 Vv u=s(X'+Y)) (5.19)

A case split on u completes the proof, confirming that the case formula (5.16) is true.

5.5 Examples

This section gives some examples of our corrective strategy for case formulae being
used to synthesize missing cases of induction rules. The case conditions of each goal
are shown (i.e. the pair next to each goal).

For each of the proofs, only the correct derivation is shown, and any alternative
steps at each point are ignored. These decisions are justified by a set of heuristics for

the corrective strategy described in §5.6.

Example 1
Consider again the rule (5.1)

®(x) F B(s(s(x)))
F YXnat - P(X)
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This has the faulty skolemised case formula

F Yu:nat.u=s(s(X)) (true,u)
Attempting a proof, we try a structural case split on u

F 0=s(s(X)) (true,0)

F Wvinat.s(v) =s(s(X'))  (true,s(v))
This simpiflies to

+ false (true,0)

F Vv:inat.v=s(X’) (true,s(v))

As the first case fails, we extract the corrective disjunct u = 0. Continuing with the

second case, we apply another structural case split to v

F 0=s(X) (true,s(0))

- Vw:nat.s(w) =s(X") (true,s(s(w))
Simplifying again gives

F false (true,s(0))

F Vw:nat.w= X" (true,s(s(w)))

The first case fails, and we extract the corrective disjunct u = s(0). The second case is
trivially true.

Adding the corrective disjuncts to the case formula, we obtain

F Yu:nat.(u=0 Vv u=s(0) Vv u=s(s(X)))
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From this the missing cases of the induction rule can be constructed

F ®(0)
F ®(s(0))

®(x) F B(s(s(x)))
F YXnat - P(X)

Example 2

Consider again the partial induction rule (5.2)

x#0,y#0, ®(x), P(y) F P(X+y)
F VXnat - P(X)

It has the skolemised case formula
F o vu:nat. X #0AY #0Au=X+Y (true,u)

We attempt to prove this faulty case formula. We proceed by a structural case analysis

on u:

F X#OAY Z0A0=X+Y (true,0)

Fowinat. X' #O0AY #£0As(v) =X"+Y"  (true,s(v))
The definition of + motivates a existential case split in both cases:

F 0#0AY #0A0=0+Y
VS(Z)#AOAY A#0AN0=5s(Z)+Y (true,0)
F w:nat.0£AO0AY £A0As(v) =04Y

VS(Z') #£OAY #£0As(V) =s(Z') +Y (true,s(v))
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Some simplification gives us the subgoals:

+ false v false (true,0)

F Vv:nat.false VY #0Av=2Z"+Y (true,s(v))

Hence the first case is false, and we extract the corrective disjunct u = 0 from it. Con-

tinuing with the second case we now perform a structural case split on v:
FY#0A0=2Z+Y (true,s(0))
F vw:inat.Y' #£0As(w)=Z"+Y"  (true,s(s(w)))
We could apply another existential case split in both cases, motivated by the definition
of 4, as we did above. This would lead to a non-terminating proof. To avoid this, we
prefer a split motivated by any definition or lemma provided the split variable appears
in the “conditions’ (i.e. C; in (5.4)) and not just the ‘main literal’ (i.e. u = (ti,...,t\)).
The definition-motivated split variable Z’ only appears in the ‘main literals’ in both

cases. But there is an alternative existential split, motivated by the following lemma:
U+s(V) & s(U+V) (5.20)

In both cases the variable in the split motivated by (5.20) appear in the ‘conditions’ as

well as the ‘main literal’, so we prefer this existential split:
F 0£0A0=Z"+0
Vs(Q)#A0A0=2Z"+5(Q)  (true,s(0))
~ Vw:nat.0£0As(w)=2Z"+0
Vs(Q) #£O0As(w)=Z"+s(Q")  (true,s(s(w)))
Simplification gives:
F false v false (true,s(0))

F Vw:nat. false Vw=2"+Q  (true,s(s(w)))
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Again, the first case is false, and we extract the corrective disjunct u = s(0). The proof

of the second case succeeds via a structural induction on w and existential case split in

both base and step case, motivated by the definition of +. We omit the details here.

Correcting the original case formula gives

Vu:nat.(u=0V u=s(0) V X#0AY #0Au=X+Y)

Using this to construct the missing cases of the original induction rule, we obtain the

following complete rule

- ®(0)
= @(s(0)

X#0,y #0, ®(x), dy) F D(X+Y)
F YXnat - P(X)

Example 3
Consider the following rule

&) F Pd(app(l,x::nil))
vl :list(a). ®(1)

It has the case formula
F Vu:list(t).u=app(X,Y ::nil) (true,u)
To attempt a proof, a structural induction on u is applied

F nil =app(X,Y :nil) (true, nil)

w=app(A,B:nil) T =app(X’,Y'::nil) (true,v::w)

(5.21)
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In both goals, the definition of app suggests an existential case-split

F nil =app(nil,Y ::nil)

vnil =app(H : T,Y :nil) (true,nil)

w=app(A,B:nil) + [[viw] =app(nil,Y’::nil)

v [viw] =app((H’ Ty nil) (true,v :: w)

Rewriting in the base case, and rippling in the step case, gives

Fonil=Y nil v nil =H :app(T,Y :nil) (true,nil)

w=app(A,B:nil) - |w=Y"unil vw=app(T’,Y'::nil) ! (true,v::w)

Further rewriting and fertilisation gives

- false (true,nil)

w=app(A,B:nil) - w=nil Vv true (true,v::w)

Hence the base case fails and the step case succeeds. The corrective disjunct u = nil is

extracted from the base case’s conditions (true, nil). The corrected case formula is
F o vu:list(t).(u=nil v u=app(X,Y ::nil))

Using this to construct the missing cases of the original induction rule gives the com-
plete rule
= ®(nil)
&) F d(app(l,x::nil))
VI list(a). ®(1)
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5.6 Heuristics for the Corrective Strategy

In 85.5 we saw that the corrective strategy for case formulae proceeded by an inductive

proof strategy made up of the following proof steps:

e Structural induction

Case analyses on universal variables, over the constructors for the datatype

Case analyses on existential variables, over case structure of a function

Simplification and rippling (forms of rewriting)

Fertilisation

Examining the examples in 85.5, it is clear that a simple ‘waterfall’ of these proof steps
is not being used. In fact, applying the steps in a fixed order can easily lead to non-
termination. This section describes a set of simple heuristics that can help avoid this.
It is important to note that these heuristics do not guarantee termination, although we
have not encountered any problems with non-termination during the work described
here.

Simplification, rippling and fertilisation should be applied eagerly, so that every
goal is kept in the simplest form possible. This avoids unnecessary case-splits/inductions.

Structural induction and universal case-splits are effectively performing the same
task — producing proof branches with different case conditions. If a universal case-
split works, then an induction with the same case structure will always work, as the
inductive hypotheses need not be used. Hence universal case splits are subsumed by
induction, so we always use induction.

Induction (including case splits) is applied to a universal variable u in a disjunct

u =t so that rewriting can be applied. We have observed two situations in example
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proofs. Firstly, the root functor int is a constructor function and rewriting immediately
follows. Secondly, the roof functor int is a defined function, and an existential casesplit
follows, then rewriting. We can restrict induction on case formulae to these situations.

The réle of existential case splits in these proofs is to instantiate a free variable X
so that rewriting can take place. Again, we have identified two situations where this
happens. Firstly, X appears in the t of a disjunct u =t, where u is a compound term
containing no free variables, and t has a defined root functor. Secondly, X can appear in
a disjunct not of the form u =t. Again, we can restrict the application of an existential
casesplit to these situations.

Deciding between alternative existential case splits is done by looking where the

variable to be split, say X, appears. Each disjunct will be of the form given by (5.4):
V. (CAu=T)

for universal u. We prefer a split where X appears in C and possibly T over one where
it only appears in T. The advantage of this was illustrated in 85.5. In general, splitting
a variable in C will promote rewriting in C and hence its possible removal. This is
desirable, as we would like to end up with a single disjunct u = T, because if we can
make T variable the proof branch can be closed.

Another helpful addition to the strategy would be the use of valid case formulae as

lemmas. Work could be saved by either recognising that:
e agoal matched a valid case formula, and was hence true.

e a goal partially matched a valid case formula, and so could be corrected by

adding the disjuncts that were not matched against.
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5.7 Summary

In this chapter the problem of automatically finding the missing cases of an induction
rule has been addressed. It was shown that the concept of case formula characterises
the case exhaustiveness of an induction rule. Hence the problem of finding missing
cases can be restated as one of correcting the associated case formulae.

Applying known techniques on correcting faulty conjectures required some ex-
tensions to deal with existential variables. We used the standard technique of dual
skolemisation, but found that instantiating the resulting free variables is a non-equivalence
preserving step that interferes with the corrective methods. Instead, we proposed in-
stantiating the free variables using an existential case analysis, an equivalence preserv-
ing step.

A strategy for correcting case formulae was given, based on standard inductive
methods extended with existential case analyses and some simple heuristics. Following
[Protzen, 1995] the case conditions of a failed proof branch are used to correct the
faulty conjecture — in this context, to add extra disjuncts of the case formula, which

correspond to the missing cases of the original induction rule.



Chapter 6

Induction Rule Creation

6.1 Introduction

So far this thesis has identified two major subtasks required for the dynamic construc-
tion of induction rules, and proposed a detailed solution for each. In Chapter 4 a
middle-out strategy that generates candidate base and step cases was described. Chap-
ter 5 provided a strategy for generating a full case analysis based on a given case, along
with a proof that the cases are exhaustive. This chapter brings these parts together in a
novel strategy for inductive proof. The strategy creates an induction rule dynamically
during the proof, and provides a companion proof that this rule is valid.

86.2 proposes that the validity of the rule is established by proving it is well-
founded and case exhaustive. This allows us to give an induction strategy in 86.3 in
terms of three component strategies: REFINE-CASE, EXHAUST-CASESand WELLFOUND-
HypPs. The strategy is modular with respect to these components and 86.4 gives spec-
ifications which must be met by candidate components.

Candidates for the REFINE-CASE and EXHAUST-CASES components have been

99
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proposed in previous chapters. We end the chapter by describing a suitable WELLFOUND-

HY Ps strategy in §6.5.

6.2 Validating Induction Rules

This section looks at how our strategy can establish that the generated induction rule is
valid, regardless of how it is generated. Recall that we only consider simple induction
rules — it was argued in Chapter 3 that this is suitable class of induction rules for au-
tomated proof. This places some syntactic restrictions on the induction rule, although
such rules are general enough to cover most, if not all, previous work on automated
induction. So we may assume that the generated rule is of the form given in Definition
1 (see Chapter 3, p57).

It follows from the definition of simple induction rule that the generated rule will

be of the following form:

C1, -.,Ch, O1(VI1.P), ... Bh(V9n.®) F O(®)

FVXx.® (6.1)

where all the premises are of the given form, h,k > 0, x and 9; are sets of variables,
and 8; and o are substitutions.

Showing that the induction rule (6.1) is valid can be approached in a number of
ways, e.g. by demonstrating that it is derivable from the Noetherian induction rule (see
82.2.1), or by directly proving that the consequent follows from the premises.

However, a more straightforward method of proof is to show that the rule is well-
founded and case exhaustive. For the rule to be well-founded there must exist a well-

founded relation < under which the tuple of induction terms in every induction hy-



Chapter 6. Induction Rule Creation 101

pothesis is smaller than the tuple of induction terms in that case’s conclusion. The rule
is case exhaustive if its conclusion is proved for all values that the universal quantifiers
could take. Equivalently, for all such values, there is a case that proves the conclusion
for the values.

Following this proof method, our induction strategy explicitly constructs a validity

proof, by stating and proving three types of goal:

Exhaustive Cases This goal is the case formula described in Chapter 5. (Details of
how to construct and prove this goal are given there.) Proving it establishes that

the rule’s case analysis is exhaustive.

Well-Founded Hypothesis For each induction hypothesis, we must show that it is
less than its conclusion under the relation <. Following the notation rule (6.1),

we have free variables {xi,...,Xn} in formula @, and a step case of the form:
C,....,0(vVy.®),... - o(P) (6.2)
For this induction hypothesis the well-founded goal is:
v (C—  (8(B(x1)).....8(B(m)) < (6(x1).....0(xn)  (6.3)

where [3 substitutes fresh variables for any x; € 9, and 4’ are the free variables

in the goal.

Well-Founded Relation States that the relation < is well-founded:

well found (<)

The approach adopted here of explicitly stating and proving validity requirements
can be contrasted with [Protzen, 1995], which implicitly enforces these through re-
strictions on the generation of the induction rule. This is discussed further in Chapter

13.
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Example

Consider the induction rule

F ®(0,0)
= ®(0,s(z))

y #0,Yw:nat.d(x,w) = P(x+y,z)
Yu,v:nat.®(u,v)

(6.4)
The validity goals for this rule are as follows:

Exhaustive cases Constructed using the case formula method from Chapter 5, the

exhaustive cases goal:

vu,vinat. (- (u,v) =(0,0) Vv
Jz:nat. (u,v) = (0,8(z)) V
3X,y,zinat. y #0A (u,v) = (X+Y,2) )
Well-Founded Hypotheses The step case matches (6.2) with the following values:

X1=u, x2=V, v ={w}, 8 ={u/x}, o ={u/(x+Y),v/z}. Hence the well-

founded hypothesis goal is:

VX,y,z,n:nat.y #0 — (x,n) < (X+VY,2) (6.5)

6.3 The Induction Strategy

We can now describe the components of our induction strategy, shown in Table 6.1.
REFINE-CASE generates a case of the inductive proof by proving a schematic case,
refining the schema as a side effect, as described in Chapter 4. The other two compo-

nents — EXHAUST-CASES and WELLFOUND-HY PS — construct the validity proof of
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Strategy Proves Goal Side Effect Described In
REFINE-CASE Schematic case Instantiates schema | Chapter 4
EXHAUST-CASES Exhaustive cases | New cases Chapter 5
WELLFOUND-HYPs | Well-Found Hyp. | Constraints on < 86.5

Table 6.1: Components of the induction strategy.

the induction rule. EXHAUST-CASES proves the ‘exhaustive cases’ goal, and generates
any missing cases, as described in Chapter 5.

The WELLFOUND-HY PS component, which has not been described yet, proves the
well-foundedness of the hypotheses and of the relation < respectively. For each induc-
tion hypothesis WELLFOUND-HY PS generates a set of constraints on the relation <,
such that the hypothesis is well-founded if these constraints are satisfied. The compo-
nent also provides a constraint solver, which at the end of the inductive proof is used
to pick a < which satisfies these constraints.

Our induction strategy is given in Figure 6.1, described in terms of the component
strategies. This strategy constructs a complete inductive proof of a conjecture, along
with a validity proof for the induction rulel. Note that this thesis will only describe the
implementation of a restricted version of this strategy, in Chapter 10.

The strategy searches for a step case first, rather than a base case. The justification
for this is that step cases are nearly always harder to prove than the base cases. Tackling
the “hard part’ first can avoid wasted effort on finding base cases, only to be unable to
prove the step cases. The Clam system [van Harmelen, 1996] uses the same heuristic,
attempting to prove step cases first.

Establishing the well-foundedness of the rule takes into account two competing

requirements:

LWhether this is expressible in the object logic is another matter, discussed in §13.
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ﬁND-STRAT(GOAL): \

1. Construct an initial schematic step case S for GOAL, with case structure C.
2. Construct aglobal constraint store STORE
3. Apply CASE-STRAT t0 S.
4. Apply NEw-CASESto C.
5. Instantiate < with the result of solving STORE.
NEWwW-CASES(CASES)
1. Prove CASES exhautive via EXHAUST-CASES, possibly generating new cases NC.
2. Foreach X inNC

(@ Apply CASE-STRAT to X.
(b) If X has been further refi ned then apply NEw-CASES to this sub-case.

CASE-STRAT(CASE):
1. Construct aproof of CASE using REFINE-CASE.

2. If CASE now contains any induction hypotheses then use WELLFOUND-HYPS to
produce a proof CAsE iswell-founded given constraints T on < are satisfi ed.

K 3. Add T to STORE. /

Figure 6.1: The dynamic induction strategy

e We want to eagerly apply WELLFOUND-HYPS in order to have some guarantee
that every hypothesis is well-founded before we proceed with the proof. This

means WELLFOUND-HY Ps occurs early on in the proof.

e \We want to delay choosing < until after all the induction hypotheses have been
generated, so that our choice is not incompatible with any hypotheses that help

us to complete the proof. Hence < is chosen at the end of the proof.

These requirements are reconciled by representing < with a meta-variable and having
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WELLFOUND-HY Ps produce a proof of well-foundedness for each induction hypothe-
sis that depends on a generated set of constraints on < being satisfied, i.e. WELLFOUND-
HY Ps proves that a certain set of constraints implies the well-foundedness of each hy-
pothesis. At the end of the entire proof the constraint solver provide by WELLFOUND-

HY Ps instantiates < with a well-founded relation that satisfies these constraints.

6.4 Component Specifications

As mentioned above, an advantage of our strategy is its modularity with respect to its
component strategies (see Table 6.1). This allows individual components to be replaced
with alternatives, to yield a variety of inductive strategies — although in this thesis we
only suggest a single candidate for each component. For example, this could be done
in order to tailor the strategy to a particular domain. In this section we provide detailed
specifications for the three components that must be met if the strategy is to work.

The strategy begins with an initial goal:

VX111, ., XniTh. - P(X1,. .., Xn) (6.6)

From this we can generate case schemas, described in Chapter 4, where meta-variables

represent unknown parts of the goal.

6.4.1 REFINE-CASE Specification

The REFINE-CASE component must provide a proof of a case schema goal, refining

the schema as a side-effect. Its specification is as follows:
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Input Case Schema

CX), HX) F ®P(A1(X),...,An(X) (6.7)

Output A partial instantiation of

e C with a conjunction of case conditions (non-inductive hypotheses)
e H with a list of simple induction hypotheses (see Definition 1)

e Aj,...,Aywith induction terms

and a proof of the instantiated case.

6.4.2 EXHAUST-CASES Specification

The EXHAUST-CASES component must take a set of known proof cases and generate
a set of additional cases, such that the union of the two sets forms an exhaustive case

analysis. Its specification is as follows:

Input Known proof cases

C1(X), Hi(X) F ®(A1(X),...,AR(X))

Cm(X), Hm(X) = ®(AT(X),...,AR(X))

Output Additional proof cases

Cmi1(X), Hmea(X) F AT (x),... AT (x))

Ck(x), Hk(X) = ®(A{(X).....AR(X))
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and a proof that these form an exhaustive case structure with the input cases,
with partial instantiation of all C; and Aij (with the same restrictions as given in

REFINE-CASE). Hna1,. .., Hk are uninstantiated meta-variables.

6.4.3 WELLFOUND-HYPS Specification

The WELLFOUND-HY Ps component must take a single induction hypothesis and prove
that it is less with respect to < than the corresponding step case conclusion, under given

conditions. Its specification is as follows:

Input A step case conclusion

an inductive hypothesis

H(B1(X),...,Bn(X))

and a conjunction of case conditions C(X).

Output A set S of constraints on <, and a proof that
SAC(x) =  (Bi(X),....Ba(X)) < (Mi(X),....An(X))  (638)

Also, a constraint solver which generates a wellfounded relation from a set of

constraints, along with a proof that such a relation will be wellfounded.

6.5 Validating Hypotheses

The WELLFOUND-HY Ps strategy is required to prove well-founded hypothesis goals

(see (6.3) or (6.8)) of the form:

c— (bg,...,bn) < (a1,...,an) (6.9)
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where < is the unknown well-founded relation. We have decided to use a strategy that
chooses < by finding a single tuple argument position k and a measure function M

such that for every goal (6.9):
c—  M(bx) <M(ax)

There do exist induction rules which cannot be proved well-founded by considering
only a single tuple argument i. Whether there is a need for a stronger well-foundedness
strategy, and what that strategy would be, is an interesting question, which we leave
for further research.

In 86.5.1 we explain how each application of the WELLFOUND-HYPS strategy
generates constraints on <. The basis of the strategy is a simple adaptation of esti-
mation [Walther, 1994b] to unary measure functions, described in §86.5.2 and §6.5.3.
A further extension to estimation, required for non-destructor induction rules, is given
in 86.5.4. We enhance the basic WELLFOUND-HYPS with an optional side condi-
tion critic (86.5.5) that responds to the failure of estimation by adding extra step case

conditions.

6.5.1 Constraints on <

Recall that after each step case proof, the WELLFOUND-HYPS strategy must prove
that given some constraints on < the resulting well-founded hypothesis goals (6.9)
are satisfied (see 86.3), hence avoiding an early commitment to <. Our strategy does
this by delaying commitment to the particular tuple argument position that will justify
well-foundedness, although for each tuple argument it commits to a particular measure
function from the very first induction hypothesis.

As the induction proof progresses, some tuple positions will become unusable, as

for some induction hypothesis they did not reduce under the chosen measure. The
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ith tuple position is identified as unusable by the constraint ignore(i) posted to the <
constraint store.

For each well-founded hypothesis goal (6.9) the WELLFOUND-HY PS strategy pro-
duces a set of subgoals, such that for each tuple position i such that the constraint store

does not contain ignore(i), we have a subgoal:
c—  Mi(bi) < Mia) (6.10)

for some measure function M; (see below).

The behaviour of the strategy depends on whether this is the first well-founded
hypothesis goal or not. As each successful application of WELLFOUND-HYPS adds
constraints to the store, the strategy detects whether this is the first application by

testing whether the constraint store is empty or not.

First Induction Hypothesis

For the first hypothesis, the measure function M; in the goal (6.10) is represented by a
fresh meta-variable. The goal is passed to the estimation strategy (see §6.5.2) below),
which instantiates it to a measure function during the proof.

If the proof succeeds for the subgoals (6.10) corresponding to the tuple argument

positions py,..., pq then the following constraint is posted:
measure(pa, Mp,) V- - - vV measure(pq, Mp, ) (6.11)

For any tuple argument position p for which the corresponding subgoal (6.10) fails,
the constraint ignore(p) is posted. The proof fails if all the tuple positions are given

ignore constraints.
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Subsequent Induction Hypotheses

For subsequent induction hypotheses, the measure function M; in the ith goal (6.10) is
instantiated with the measure M from the disjunct measure(i,M) from the constraint
(6.11). The goal is passed to the estimation strategy (see 86.5.2 below). Again, for
failed position p the constraint ignore(p) is posted, and some positions must always

remain ignore-free (or the proof fails).

Example (contd)

Consider again the well-founded hypothesis goal (6.5) from the first (and only) induc-

tion hypothesis in rule (6.4):
y#0— (x,n) < (x+V,2)
Given this the WELLFOUND-HY Ps strategy will produce two subgoals:
y#0—  Mi(x) < Ma(x+y) (6.12)
y#0—  Ma(n) < Mz(2) (6.13)
These are passed to the estimation strategy. As we will see below, subgoal (6.12)
succeeds with M1 instantiated to the size measure #n4. The subgoal (6.13) fails.

Hence the WELLFOUND-HY Ps strategy succeeds with the following constraints

posted:
measure(1,#nat )

ignore(2)
6.5.2 The Estimation Strategy

Our WELLFOUND-HY Psstrategy is based on Walther’s estimation calculus [Walther, 1994b]

(see 82.9.1). It was chosen because it provides an automated method for well-foundedness
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proofs, and yet is simple enough to be recast into our framework, i.e. as a strategy to
guide the construction of an explicit proof, and as part of our ‘constraint based’ well-
foundedness strategy.

Walther’s original calculus proves well-foundedness goals using a well-founded
relation based on the size measure function — so there is effectively only one possible
choice of < per datatype [Walther, 1994b]. In [Giesl, 1995a] the calculus is adapted
to work with polynomial norm measure functions, provided the measure is chosen
beforehand. It may be possible to develop a WELLFOUND-HY PS strategy based on
polynomial norms. However, we have chosen instead to use a strategy based on a
different extension of the estimation method to arbitary unary measure functions M,
which is given in §6.5.2 below.

The estimation calculus manipulates formulae of the form (a <y b, A), which are

interpreted as follows:
(@a<mb,A) = a<ubA (A—a<ub) (6.14)

The calculus is used to prove such goals, which establish that some a is less than or
equal to some b under a given measure M, and that there is some formula A that is
equivalent to this bound being strict. Demonstrating welfoundedness is now a matter
of showing A holds under the current conditions.

The difference equivalent A is unknown at the beginning of the proof. To prove a
strict inequality c — a < b we apply the calculus to the goal (a <m b, A), where A is
the unknown difference equivalent that will ensure the inequality is strict. We can use
a meta-variable for A, which becomes instantiated to a formula during the estimation

proof. If the proof succeeds, the strict inequality is established by proving ¢ — A.



Chapter 6. Induction Rule Creation 112

6.5.3 Upper Estimation

The basic operation of our estimation strategy is the application of the following rule:

Upper Estimation Rule For variables x

(@ <mb, A) (f(%) <mxi, Ay f(X)
(f(a) <m b, AV A}, (@)

(6.15)

The rule is applied backwards — the first premise becoming the new subgoal, whilst
the second premise matches a known argument bound lemma? for f. Argument bounded
properties of functions are automatically generated from their definitions before the
proof, using the procedure from [Walther, 1994b]. The original calculus includes other
rules to perform various trivial reasoning tasks — we simply pass these to a simple
rewriting strategy.

This approach is much the same as Walther’s original calculus, except an arbitary
unary M is used, rather than the size measure. Our generalised rule is easily shown to

be sound:
Theorem 2 (Soundness of Upper Estimation) Rule is (6.15) is sound.

Proof From the premises we know that
1. as<ub
2. A—=aj<mb
3. f(@)<ma

4. A, (@) f(@) <m &

>These are Boyer & Moore’s induction lemmata [Boyer and Moore, 1979], the inspiration for
Walther’s calculus.
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It follows that f(a) <m b, by (1) and (3). Also:
AVALf(@) < a<mbVf(@<wa By(2)and(4)
« f(@)<mb By (1) and (3)

Hence (f(a) <m b, AV A}, f(a@)).

QE.D.

6.5.4 Lower Estimation

A problem with using upper estimation is that it only works for inequalities of the form
F(x) <m X, i.e. the ‘lesser’ term is broken up until a copy of the ‘greater’ term is found.
This is useful for showing destructor style induction rules are well-founded, as term
structure only appears in the ‘lesser’ term. However, non-destructor inductions will

generate well-foundedness goals with term structure in the *greater’ term, such as
X#£#0— X <m X+Y

The solution is to add a complementary form of estimation for the right-hand side of

the equality [Gow et al., 1999]. We call this the lower estimation rule:

Lower Estimation Rule For all variable X

(@a<mbi, 8)  (xi<m f(%), Ay f(X))
(a<wm f(b), AVAL,f(b))

The soundness proof is similar to Theorem 2. Similarly, lower argument bound
lemmas (which match the second premise of our rule) can be generated automatically

before the proof. See [Gow et al., 1999] for further details of lower estimation.
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Example (contd)

Consider the goal (6.12) from above:
y#0—  Mi(x) < Mi(x+y)
This is passed to the estimation strategy as:
(X <my X+Y, B)

where A is a fresh meta-variable. The proof depends on the following lemma, auto-

matically generated from the definition of + beforehand:
<u S#nat u+v, v 7£ 0>

The lemma allows us to apply lower estimation, which instantiates M to #n5 and A to

(y #£0) V4, giving:

<X Stha X, Al)

The goal is trivially discharged with A’ = false.
The estimation proof is completed by showing that the instantiated difference equiv-

alent A follows from the side condition in (6.12):

y#A0 — y#0V false

6.5.5 The Side Condition Critic

One way in which the estimation strategy can fail is when the non-strict inequality
proof succeeds, but the strict inequality proof fails. This failure occurs because we
cannot show that the difference equivalent (A in (6.14)) follows from the step case’s

side conditions.
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To try and recover from this kind of failed proof, we use a critic to the estimation
strategy which responds to the failure of the difference equivalent proof. It patches the
proof by adopting the difference equivalent A as a side condition of the corresponding
step case. Some simplification of A may be possible before we adopt it as a side

condition.

Example
Consider the following step case, generated by our induction strategy:
d(x) F D(x+y) (6.16)

Applying the WELLFOUND-HY Ps strategy we soon end up with the estimation sub-

goal:
<X SM]_ X+y7 A>

As in the previous example, this is discharged with My = #,4 and A= (y # 0V false).

To complete the proof we need to show:
true —y #0V false

The proof fails, and the side condition critic responds by simplifying A to y £ 0 and
adding this as a side condition to the step case (6.16). The new well-founded step case

is:

y#0, d(x) F P(x+y) (6.17)

6.5.6 Choosing <

After the proof of an exhaustive set of base and step cases has been completed, a

constraint solver supplied by WELLFOUND-HY Psis invoked. For the wellfoundedness
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strategy described above, the solver has a simple task: for the proof to have got this

far, there must be at least one tuple argument position i such that:
e measure(i, M;) appears as a disjunct in the constraint (6.11).
e The constraint ignore(i) does not appear.

The solver need only pick one such i, and instantiate < to AX.Ay.(M;(x) < M;(y)). It
follows from the WELLFOUND-HYPS strategy that every induction hypothesis must
be less than its conclusion under this relation.

The instantiated < is also guaranteed to be well-founded, as any relation defined
in terms of a measure function in this way is well-founded. (The proof of this is

straightforward, and we omit it here.)

6.6 Summary

This chapter has described the induction rule creation strategy in terms of a number of
distinct components. The strategy delays the choice of well-founded relation until the
end of the proof, reducing the need for unnecessary search.

The strategy is modular with respect to the components, in that any strategy that
satisfies the component’s specification could be used — providing they are consistent

in the constraints on <. We have suggested candidate strategies for all the components:

e The middle-out strategy of Chapter 4 can be used for REFINE-CASE.
e The case synthesis strategy of Chapter 5 can be used for EXHAUST-CASES.

e The estimation strategy of 86.5 can be used for WELLFOUND-HYPS.



Chapter 7

Controlling Speculation

7.1 Introduction

Speculative ripple steps, discussed in §84.3.1, are those which instantiate a meta-variable
in the goal as a side-effect. Kraan noted in her work on middle-out induction selec-
tion that speculation caused rippling to be non-terminating (see [Kraan, 1994], also
example in 82.7.1). Worse still, non-termination occurs in many simple examples, for
both theorems and non-theorems. This chapter proposes a proof critic for controlling
speculative ripple steps.

To ensure termination, Kraan’s Periwinkle system places a fixed bound on the num-
ber of speculative steps. Unfortunately, a given theorem may require an arbitrary num-
ber of such steps for a middle-out strategy to find a proof, as we cannot put an a priori
bound on the amount of “induction term structure’ required to prove a theorem, i.e. if
we set a bound at 4 steps, there may be a solution only for 5 or more. Hence the bound
excludes solutions from the search space.

In this section we propose a speculation critic that employs speculative rippling

117
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as a patch to overcome the failure of definite (i.e. non-speculative) rippling. This
allows speculative rippling to be applied in a controlled way, and significantly re-
duces the risk of non-termination. The critic is based on the induction revision critic

[Ireland and Bundy, 1996].

7.2 Divergent Speculation

The key to controlling speculation is identifying which speculative steps will progress
the rippling proof. After the (compulsory) initial speculative step, which introduces a
set of initial wave fronts, further speculative steps can only be useful if they help move

the existing wave fronts.

Divergent Example

An example of useless speculation causing non-termination is given in Figure 7.1, from
the example introduced in Chapter 1. (We abbreviate foldleft_tr to fld here.) Wave
rule (7.4) is used repeatedly to speculate new wave fronts, which cannot be removed by
further rippling. Each speculation contributes another blocked wave front to either side
of the conclusion. However, the process will not stop because speculation is always
possible, no matter how many blocked wave fronts accumulate. This speculation is
useless, as it does not help unblock these wave fronts, and so cannot help the proof.
Such non-termination will occur in any schematic step case proof where blocked
wave fronts arise that cannot be removed. This often happens during proof attempts of

theorems because of a missing lemma, or during the proof of non-theorems.
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fld(o,| (

fld(o, | (

o

/

Figure 7.1: Divergent speculation in the schematic step case proof for theorem VX, y:

T.VElist(t). fld (o, x,1) =yo fld(o,id, 1), using the wave rules from Figure 7.2. Only the

induction conclusion is shown. The speculative ripples steps (marked with asterisks)

are motivated by wave rule (7.4).

Convergent Example

Now consider Figure 7.3, an example where further speculation is actually useful.

The initial goal undergoes one speculative ripple with wave rule (7.1), followed by a

definite ripple with (7.2). Both wave fronts are now blocked, but a further speculative

ripple with (7.1) provides the extra wave front required to remove the wave fronts with

(7.3) and fertilise, finishing the proof. This second speculative step unblocks the wave
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4 N

sx)] +v = [sx+v)| (7.0)
x+[s)] = [sxiv]| (7.2)
even(ssX) ) = even(x) (7.3)

K fldFA[HZT[) = fldE[FAH)].T) (7.4)/

Figure 7.2: Wave rules used in the speculation examples.

fronts created by the first.

7.3 Ireland & Bundy’s Induction Critic

To summarise the last section, after an initial speculative step, the resulting wave fronts
may become blocked. Further speculative steps are only useful if they help ripple the
existing wave fronts. We can view this in terms of fixing a proof failure (see §2.4.4):
when definite rippling fails we can patch it with speculative rippling, which provides
the missing wave fronts that allow rippling to continue.

This analysis shows that the problem of speculation is very similar to the situation
described in [Ireland and Bundy, 1996], where rippling fails with a wave rule partially
matching a goal — the wave rule requires some extra wave fronts that do not appear in
the goal (see 82.5.5). Ireland and Bundy propose a proof critic which overcomes this
failure by revising the induction rule. This is done by creating the necessary missing
wave fronts and ‘rewinding the proof’ to see what induction rule could introduce them.

We can rationally reconstruct the patch from [Ireland and Bundy, 1996] as a four

step process:
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****************************************

____________________

<=

—
*

S—

------------------------------------

even(|s(C'(x,y) i+ D(x,y)) | ) « even(D(xy)i+|s(C'(xY))|)

____________________

even(|s(C'(xy) +D(xY)) | ) — even((s(D(xy)i+ C(xy))| )

____________________

777777777777777777777777777777777777777777

even(|s(s(C"(x,Y) I+D(xy) )| ) < even(|s(D(xy):+[s(C"(xY))|)|)

____________________

----------------------

--------------------

even(|s(s(C"(x,Y) 1+D(x,y) )| ) < even(|s(s(D(xy) i+ C"(xY)))| )

,,,,,,,,,,,,,,,,,,,,

----------------------

--------------------

Figure 7.3: Convergent speculation leads to a successful step case proof for the theo-
rem VX, y:nat. even(x+y) < even(y+Xx), using the wave rules from Figure 7.2. Only the
induction conclusion is shown. The speculative ripples steps (marked with asterisks)

are motivated by wave rule (7.1).
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Insert New Wave Fronts Insert the missing wave fronts and term structure into a
copy of the failed goal — where each meta-variable is copied to itself — so
that the partially matching wave rule could be applied. Erase the old wave fronts

from the copy.

Reverse Ripple Reverse the direction of new wave fronts, so that outwards wave
fronts are inwards and vice versa. Ripple the new wave fronts completely in-
wards using the rewrite relation < instead of =. This takes us ‘backwards’
through the proof?. Sinks are used to indicate meta-variables, so that wave fronts

may be rippled in towards them (see §2.5.1).

Change Induction Revise the original selection of induction rule so that these rippled-
in wave fronts are actually introduced as induction terms by the induction rule.
The proof critic selects a suitable rule from a prestored set. Update the partial

proof to take account of the new induction.

Continue Proof Continue the proof from the patched goal, and discard the copy made

in the first step.

Note that the goal produced by Insert New Wave Fronts may be a non-theorem. This
is acceptable, because it is a purely meta-level goal that is used to determine a suitable

instantiation, and will not appear in the final proof plan.

Convergent Example (contd)

As an example of Ireland and Bundy’s induction critic, consider the example theorem

from Figure 7.3. If we try ripple analysis on this goal, it suggests structural induction

LAlthough we are already doing backwards proof — trying to find a path from goal to axioms — so
this ‘backwards’ step is actually forwards proof!
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for nat (the dual induction for +). Using the wave rules from Figure 7.2, this proof

fails as follows:

even(|s(x) ' +y) < even(y+|s(x)

even(|s(x+Yy)| ) <« even(y+|s(x)| )

even(|s(x+y)| ) < even(|s(y+x)|)

Both wave fronts are now blocked.
However, the induction critic spots that wave rule (7.3) partially matches the left-

hand wave front. Inserting the missing wave front into the goal we get:

even(|s(s(x+Y)) T) < even(|s(y+x) T)

Notice that this goal is a non-theorem. This is acceptable, as we are only going to use
this goal to determine a suitable instantiation — it will not appear in the final proof
plan. The critic now erases the old wave-fronts, turns the new wave front inwards and

reverse ripples:

even(s(|s(x+y) l)) — even(s(y+x))
Y

even(|s(x) ' +y) <« even(s(y+x))

This suggests that the step case requires an additional |s(x) ! in the original induction

term. Searching our set of known induction rules, we find that two-step induction on
nat fufills this requirement, and we choose this induction rule instead.
The proof needs to be updated: an extra base case is required, and additional in-

duction terms are introduced apart from the one we found via reverse rippling. The
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patched step case goal is:

even([s(s(x+y)) | ) < even(/s(y+[s(x)] )| )

7.4 A Speculation Critic

The analogy between the Ireland-Bundy critic and our approach is as follows: the new
induction terms introduced in the Change Induction step are the equivalent of a use-
ful speculative step which instantiates meta-variables, and so create/modify induction
terms. This suggests that we can control speculation by adapting the induction revision
critic.

We propose the following replacement for the change induction step: every wave
front in the fully rippled in goal should surround a meta-variable. Providing no meta-

variable has two occurrences surrounded by different wave fronts, then record each

meta-variable/wave front pair A(X1,...,Xn)/|F(...) i . Allow a speculative ripple only

if it instantiates each A to Auj....Aup.F(A/(u1,...,uy)) for some fresh A’.

We will refer to the new critic as the speculation critic and the old critic as the
induction critic. The essential difference between them is that in the induction critic
the missing wave fronts suggest a particular choice of induction rule from a given set,
whilst in the speculation critic they suggest a speculative ripple which will contribute
towards creating a suitable induction rule.

Figure 7.4 shows a succient description of the critic in terms of preconditions and
effects. The application of the speculation critic is illustrated in Figure 7.5.

Note that the speculation critic as defined here only works with constructor style
induction, just as original induction critic did. It is compatible with non-constructor

style schematic proofs, but will only suggest patches that correspond to constructor
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éritic: Speculation Critic \

Preconditions:
e Thefailed rippling goa G is not fertilisable.
e Thereisawaverule R that partially matches G.
e Construct G/, acopy of G —the goals now share meta-variables. In G ’:

Insert wave frontsWi, . .. ,\W;, into G’ so that R could be applied.

Erase any other wave fronts.

Turn Wi, ..., W, inwards.

Fully ripple-in Wi, ... ,\W, with backwardsripple steps Sy, ... ., Sn.

Check no meta-variable in G’ surrounded by different wave fronts.
Effects:

e Instantiate each meta-variable in G’ surrounded by wave front —this will also in-
stantiate meta-variablesin G.

e Discard G’ and its subgoals.

e Rippleoutin G by applying normal ripple steps Sy, ..., Si.

K e Apply Rto G and continue rippling. /

Figure 7.4: Definition of the speculation critic

style step cases. We do not extend it to the destructor style in this thesis, although we

hypothesise that this could be done (see §13.7).

Divergent Example (contd)

To get a clearer idea of how the new critic works, consider again the divergent example

from Figure 7.1. After an initial speculative ripple, definite rippling becomes blocked
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Figure 7.5: An application of the speculation critic: 1) the blocked goal is copied, with

new inwards wave fronts 2) which are rippled in; 3) the fully rippled in wave fronts

suggest an instantiation A = d(A’); 4) meta-variables are shared between both goals,

producing new wave fronts in the blocked goal 5) which are rippled out; 6) the new wave

fronts allow the goal to be unblocked.
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with the following subgoal:

fld(o, ! X(X)ioL'(X) | ,,L"(X)) = yofld(o,|idoLl/(X)| ,;/L"(X))

__________________________

There is no partially matching wave rule for this goal, and the critic is not applied. It
cannot fix the ripple proof with further speculation. Hence the divergence illustrated

in Figure 7.1 has been avoided.

Convergent Example (contd)

Now let us look at how the new critic handles the example of convergent speculation
from Figure 7.3. After the initial speculative ripple, definite rippling becomes blocked

with the following subgoal:

_____________________ 1 I
even(|s(C'(x,y) i+1D(x,y) )| ) < even([s(D(x,y) i+ C'(x,y))|) (75)

[ | - S S S|

----------------------

The wave rule (7.3) partially matches this goal — it would match if we were to insert

additional wave fronts into 8§7.5 as follows:

______________________ !
even(|s(s((C'(x,y) i+:D(x,y))) | ) < even(|s(D(x,y) i+ C'(x,y))|)

[ S — — v L____-_____J

----------------------

Because definite rippling has failed with a partial wave rule match, we can invoke
the speculation critic. It inserts the ‘missing wave front’ into the goal (7.5), then re-

verses its directions to give:

...................... |
even(s(s(C'(x,y) i+:D(x,y) )| )) < even(s(D(x,y)i+C'(x,y)))

[ | - vy =t

These wave fronts are now ‘reverse’ rippled-in. We have the following ‘reverse’ ver-

sion of the wave rule (7.1) available:

SX+Y)[ = [s(X)| +Y (7.6)
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Rippling-in with (7.6) on the LHS gives:

-----------

even(s(|s(iC'(x,y)) | +:D(xy))) < even(|s(D(x,y) i+ C'(x,y))|)

___________

The new wave fronts have been fully rippled in. At this stage, the change induction
step of the old induction critic would look for induction rules which introduced these

wave fronts as induction terms. Instead, our new critic spots that one instances of C’

is surrounded by |s(...) l. Hence the patch to (7.5) is any speculative ripple that will

instantiate C’ to Au.Av.s(C”(u,v)).
This patch allows the second speculative ripple in Figure 7.3 to go ahead, and the

proof to be completed.

7.5 Summary
This chapter looked at the problem of divergent speculation, and:
e Provided an analysis of why speculation may not terminate.

e Adapted Ireland and Bundy’s induction critic in order to control speculation.
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Controlling Rewrite Search

8.1 Introduction

Our induction strategy relies heavily on rewriting to obtain a proof. This has the po-
tential to introduce a large amount of search into our approach, and in this chapter
we propose position ordered rewriting as a technique for reducing redundant search
caused by backtracking during rewriting.

A great deal of research into theorem proving by rewriting has concentrated on
eliminating the need for search by demonstrating that a set of rewrite rules is, or can be
made, confluent [Baader and Nipkow, 1998]. Confluence is the property that alternate
rewritings of a given term are always joinable — they can be rewritten to the same
term. There is no need to backtrack over alternative rewritings when using a confluent
system, as they all lead to the same result.

However, there are good reasons not to restrict a theorem prover to confluent rule
sets. A non-confluent ruleset may be the most natural, or only, way to represent a

particular problem. Alternative normal forms for a term may represent alternative
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approaches to solving a problem, and so could be useful to a theorem prover. In other
words, there can be genuine choice points during rewriting. This is illustrated by the
fact that rewrite rules may be based on non-equivalence preserving lemmas, where a
true goal may give rise to a false subgoal. Confluence is not desirable here, as true and
false should not be joinable!

Neither the Clam or AClam induction strategies, nor our induction strategy, assume

confluent rewrite rule sets.

Overview

In this chapter we identify the problem of redundant search during non-confluent
rewriting, and propose a technique for reducing it. 88.2 shows how redundancy arises
when normal forms are rederived. It introduces the concept of confluent branches,
along with sufficient conditions for identifying them.

In §8.3 we describe how position order rewriting can be used to block alternative
paths to a term. The approach is formalised as 1= and o-rewriting. The question
of completeness is addressed in §8.4, which gives a proof of the completeness of 1=
rewriting. Finally, in 88.5 we show the compatibility of the technique with meta-

variables, and hence our induction strategy.

8.2 Redundancy in Rewriting

The redundant search caused by rederiving normal forms may be illustrated by the
following simple example: consider the rule set {a — b} and the initial term f(a,a).

The term is normalised in two steps:

f(a,a) — f(b,a) — f(b,b)
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If this normal form turns out to be unsatisfactory, we may backtrack over the first step,

and find an alternative normalisation:
f(a,a) — f(a,b) — f(b,b)

The first normal form has been rederived, so this second derivation is redundant.

Similar examples have the potential to cause a combinatorial explosion, as parts
of the term can be ‘independently’ rewritten, and may be in any order. This could
produce a significant amount of redundant rewriting search. Another source of redun-
dancy comes from the réle rewriting plays within the theorem prover. A given normal
form may be the input to another, potentially expensive, strategy. Such work will be
duplicated if normal forms are rederived. Both these sources of redundancy may be
arbitrarily large.

One solution would be to construct an explicit representation of the search space
as an acyclic directed graph — assuming rewriting is terminating — and to extract
the distinct normal forms from this. This completely avoids the problem of redundant
search, but the graph may be infeasibly large, even for simple rewrite systems. Fur-
thermore, constructing an explicit search space does not fit well into many reasoning
frameworks, including the AClam proof planner. The technique we propose below

does not have either of these drawbacks.

8.2.1 Confluent Branches

The problem of rederiving normal forms can be restated as follows: non-confluent
rule sets may still exhibit *locally confluent” behavior, in that some term may have
alternative rewritings that are joinable. In general, there may be a term s which has a

confluent branch:
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NS
t
As there are at least two paths to the ‘joining’ term t, it may be visited more than once.
If there are more than two alternative reductions of s, then there may be more than two
ways to get from s to t, or there may be multiple ‘joining’ terms t. However, we define
a confluent branch as involving exactly two alternative reductions, so in these cases s
is considered to have more than one confluent branch.
By considering confluent branches, we can formulate a principle for reducing search.

At each term try to:
1. Identify confluent branches and
2. For each confluent branch block one of the paths to the joining term.

Below we show how this can be done in certain cases.

8.2.2 Identifying Confluent Branches

Consider a term s with two possible redexes: a at position p and b at position g.
Subterm a may be reduced to a’. Subterm b may be reduced to b’ by rewrite rule | — r
with substitution a. Without loss of generality, we may assume exactly one of three
cases, shown in Figure 8.1. The case analysis is taken from the proof of the Critical
Pair Lemma in [Baader and Nipkow, 1998]. For each case we will consider whether

there is a confluent branch.
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Figure 8.1: A term containing two redexes a and b = o(l). The redexes are either
non-overlapping (left) and so form parallel subterms, or are non-critically overlapping

(middle) where a is within the substitution g, or critically overlapping (right) where a

Qverlaps with the left-hand side |. ([Baader and Nipkow, 1998], pp136.) /

Case 1: No overlap

In this case the two redexes a and b are parallel subterms of s, shown in the left term in
Figure 8.1. The two reductions trivially form a confluent branch, illustrated in Figure

8.2. There are two paths: left (subterm a) then right (subterm b), or right then left.

Case 2: Non-critical overlap

Here one redex is the subterm of the other, but the inner redex a is entirely contained
within the substitution o of the outer reduction, i.e. it is within a subterm c[a] that
matches a variable X in I, the lefthand side the outer rewrite rule. This case is illustrated
by the middle term of Figure 8.1.

A confluent branch is formed in this case. The first derivation begins with rewriting
the outer term b — b’. The righthand side of the outer rewrite rule, r, will contain zero
or more copies of X. Hence b’ will contain subterm c|a] at a set of positions P. Let us

rewrite each of these to c[a’] with the inner rule, to give a final term equal to b” with
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K Figure 8.2: Non-overlapping redexes form a confluent branch. /

the subterms at positions P replaced with c[a'].

The second derivation begins by rewriting each subterm that matched X in the
first derivation from c[a] to c[a’]. Now outer rule I — r will still apply, but with an
amended o which replaces X with c[a’]. Applying the rule, we have the term b’ with
the subterms at positions P replaced with c[a’] — the same term as before. Hence there

are two alternate routes to the same term, and there is a confluent branch.

Case 3: Critical overlap

This case has one redex as a subterm of the other, shown in the right term of Figure
8.1. However, the inner term is not contained in a variable during the outer redex’s
reduction. In this case the branch may or may not be confluent — examples of both
kinds are easily constructed. Because we cannot definitely identify whether a conflu-

ent branch exists, and if so what form it takes, we cannot apply the search reduction
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principle described above. Hence we ignore this case below.

8.3 Position Ordered Rewriting

To summarise the last section, if there is no overlap or a non-critical overlap between
the two redexes — when the reductions are ‘independent’ of each other — then a
confluent branch can be identified. Hence we have sufficient conditions for identifying
a confluent branch. We ignore the case of a critical overlap between redexes, because
a confluent branch may or not be present.

Given a confluent branch, the next step is to block one of the two paths to the
joining term, as discussed in 88.2.1. Recall the possible reduction paths in the two

‘independent’ cases:

No overlap Left term then right, OR right then left.

Non-critical overlap Outer term then any copies of inner term created, OR all occur-

rences of inner term needed for outer rule to apply, then outer term.

The number of paths in each case can be cut down by imposing constraints on the
reductions, based on the position of the redexes, which only allow a specific ordering

of the independent steps. We will consider the following orders?:

Parallel Constraint Left cannot follow right.

Subterm Constraint Outer cannot follow inner.

We call this approach position ordered rewriting. More formally, we use the rewrit-

ing strategy given in Figure 8.3. The strategy prevents the alternate paths being taken

L1t may be possible to develop techniques based on other orders.
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/ 1. Thefi rst redex may be chosen freely. \
2. Subsequently, for last reduced subtermt and redex t’:

Parallel ift andt’ are parallel thent must be to the left of t’.

Subterm ift isbelowt’ and rewriterulea — b reducest’ then for any unique (single
occurrence) variable X in a, t must not be wholly contained within the subterm
that matches X.

K Figure 8.3: The position ordered rewriting strategy. j

when we have confluent branches with independent redexes. Only the left-first/outer-
first path should “get through’ to the joining term.

The subterm constraint in Figure 8.3 requires some explanation: it says that if we
follow a reduction with another higher up the term, the result of the inner one cannot
entirely be contained within a unique variable in the lefthand side of the outer rewrite
rule, i.e. a variable that occurs only once. The next section works through some simple
examples, and illustrates why this variable has to be unique.

Restricting rewriting in this way is obviously sound, but it is not obvious whether or
not it is complete with respect to the original rewrite relation. 88.3.2 lays the ground-
work for a proof of completeness, by giving a formal presentation of position ordered
rewriting. In 88.4 we prove that using the parallel constraint alone gives a complete

restriction.

8.3.1 Examples

This section illustrates position ordered rewriting with several examples.
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The Parallel Constraint

Recall the motivating example mentioned at the beginning of 88.2: the single rewrite
rule a — b is applied to the term f(a,a). Two derivations of the normal form f(b,b)
are possible. However, the parallel constraint blocks one of these paths, as follows (in

each term the redex is underlined):
f(a,a) — f(b,a) — f(b,b)
flaa) — f@@b) ~ f(bb)

This step is blocked as the redex is to the left of the last reduced subterm.

The Subterm Constraint

Now consider the two rule rewrite set {a — b, g(X) — h(X)} applied to the term g(a).
The normal form h(b) can be derived via two separate paths, one of which is blocked

by the subterm constraint, as follows:

This step is blocked as the last reduced subterm entirely within the subterm that matches

the unique variable X when we match the lefthand side g(X) to g(b).

Why A Unique Variable?

This example shows why the subterm constraint specifies a unique variable, i.e. one
with a single occurrence in the term. Allowing the constraint to work with an arbitrary
variable would prevent redundant search in a greater number of cases. Unfortunately,
this form of the subterm constraint is incomplete with respect to the original rewrite

relation.
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To see why, consider the two rule rewrite set {a — b, f(X,X) — g(X)} applied to

the term f(a,b). If we use the non-unique version of the subterm constraint, then:

fa,b) — f(b,b

~—

— g(b)

The step is blocked because the last reduced subterm is entirely within the subterm
that matches the variable X when we match the lefthand side f(X,X) to f(b,b). There
are no other derivations of g(b), so the term has been pruned from the search space —
hence the non-unique subterm constraint is incomplete.

It may be possible to design a complete position ordered rewriting strategy that
blocks a step when the last reduced subterm is entirely within a subterm that matches
any variable. We speculate that this would involve taking into account the positions of

several previous rewrite steps, rather than just the last reduced subterm.

8.3.2 T and O-Rewriting

In order to formalise position ordered rewriting, we introduce notation for some for-
mal rewriting concepts. Where possible, we have followed the standard notation of

[Baader and Nipkow, 1998].

Positions A position p of a subterm s of a term t is the list of positive integers that
determines a path from the root of t to the root of s. pq is the list p appended to
the list g. € is the empty (root) position. posn(s,t) returns the set of positions of

subterm s within t.

Above/Below The order < is defined on positions as p < q iff there exists p’ # € such
that q = pp/, i.e. when p is above q in the term tree. >, < and > are defined in

the obvious manner.
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Parallel If p#0q, p £ qand p # q then p is parallel to g, written p || g. Note that

p=0q,p<4q, p>qand p||qare mutually exclusive and exhaustive cases.

Before/After The order < is defined as the lexicographic ordering on positions. This
means p < q iff p comes before q in a depth-first traversal of the term tree. >, <

and > are defined in the obvious manner.

Rewrite Step For position p and rewrite rule r, the rewrite step y= [p, r] is the trans-

formation t —{ t’. We use the functional notation y: t — t’ and y(t) =t’.

Sequence A sequence of rewrite steps @ = [p1,r1],...,[Pn, 'n] is applied to a term by
iteratively applying the steps to the term in the given order. As with rewrite steps,

we use the functional notation @:t —t" and @(t) =t’. € is the empty sequence.

Definition 7 (Tio-sequence) A sequence of rewrite steps is a To-sequence iff for any

two consecutive rewrite steps [p,r] and [qg,s], where s = (a — b)

(M ifpl[qthenp=q
(o) if p> g and variable a|, occurs only once in a then p * qu

Enforcing these constraints on rewriting is called To-rewriting. If only the (1)
constraint is enforced a rewrite sequence is called a Tesequence, and restricting rewrit-

ing in this way is called Terewriting. o-sequence and o-rewriting are defined analo-

gously.

8.4 Completeness

Having formalised position ordered rewriting we can now consider its completeness.

By completeness we mean that using To-rewriting does not prevent any terms being
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derived. More formally, if t —* t’ then there exists a To-sequence @such that ¢(t) =t’.
In other words, any term that has a particular path to it blocked by the 1o restrictions
can be reached by some other acceptable path.

This is not the only form of completeness that could be considered. For example,
the completeness with respect to normal forms [Baader and Nipkow, 1998], i.e. that
exhaustively applying To-rewriting is equivalent to normal rewriting. However, we
have not found such results any simpler to prove than our stronger notion of complete-
ness given above.

In this section we prove that Terewriting is complete, and discuss the possible com-
pleteness of o- and To-rewriting. First we provide some additional concepts that will

simplify our proofs:
Composition We write @@, to denote the sequence obtained by applying ¢, then ;.

Equivalence Two sequences @1, @, are equivalent (written @1 = @) iff @1(t) = @(t)

for any term t.
Length |q| is the number of steps in @.

Segment A sequence ¢ is called a segment of a sequence @ if @ = @a@ g for some

@a, PB.

8.4.1 TrRewriting is Complete

In this section we prove the completeness of Te-rewriting: for any sequence there ex-
ists an equivalent Tesequence. Our proof treats the given sequence as a ‘broken’ Tt
sequence which can be “fixed’.

The proof requires three lemmas, the first of which is trivial.
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Lemma 1 (Segment Lemma) Any segment of a Tesequence, o-sequence or Tio-sequence

is also a sequence of this type.

The following simple lemma shows that swapping the order of the steps “fixes’ a

‘broken’ tesequence of length 2.

Lemma 2 (TeSwap Lemma) For rewrite steps y1 and vo, if y1y2 is not a T=sequence

then yoy; is, and yoy1 = yiy2

Proof vyiy» = [p,r][q,s] is not a Te-sequence, so p || g and p > g. Hence q || p and

q=p, so [q,s][p, r] is a Tesequence. Also [q,s][p,r] = [p,r][d,s] because p || .
Q.E.D.

We now introduce k-broken Te-sequences where the kth step breaks the T-constraint,
and removing it gives a valid Te-sequence. The definition is followed by a lemma which
shows that we can always fix k-broken Te-sequences. This definition and lemma are
motivated by the step case of the inductive completeness proof which follows, where a

k-broken Te-sequence arises and is fixed.

Definition 8 (k-Broken 1=Sequence) A sequence @is a k-broken tesequence for k > 2
iff there is a rewrite step ysuch that @ = @ay@s and |@ay| = k for some sequences @a, @z,

and that:
1. @a is a TE=Sequence.
2. @a@s is a TESequence.
3. @ayis not a T-sequence.

Lemma 3 (tTeFix Lemma) For any k-broken tesequence there exists an equivalent 1-

sequence.
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Proof Induction on k, the position of the broken rewrite step.

Casen=2. Let@=y1y2@s be a 2-broken T-sequence. Following the definition:
Al. yi is a Tesequence, which is trivially true anyway.
A2. y1@s is a TE-Sequence.
A3. y1y2 IS not a T-sequence.

By (A3) and the Teswap lemma y»y; is a T-sequence and y1y2 = Yoy1. Therefore by
(A2) y2y1@8 Is a TEsequence equivalent to .

Step Case.  Assume that we can fix any k-broken tesequence. Consider a (k+1)-
broken 1esequence @. As @ must have at least three steps, we may write @ = @ay1Y2@s

where |@ay1y2| = k+ 1. It follows from the definition that:
B1l. @ay: is a TeSequence.
B2. @ay1@s is a Tesequence.
B3. @ay1y2 is not a Tesequence.

By (B1) and (B3) y1y2 is not a T-sequence. Hence y2y1 = y1Y2 by the teswap lemma.
Define @ = @ayoy1(s = @. Now if ¢ is a Tesequence then we are done, so let us assume

it is not. Therefore:
Cl. @ais a1esequence, by (B1) and the T-segment lemma.
C2. @ay1s is a T=sequence, which is (B2).

C3. @ay2 is not a Tesequence. If it were, @ay2y1s = ¢ would be by (B2) and the

Tesegment lemma, a contradiction.
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Given that |@ay2y1| = k+ 1 then |@ay2| =k, so @ is a k-broken T-sequence. Hence by

the inductive hypothesis there exists a T-sequence ¢’ = ¢ = .

QE.D.

Theorem 3 (Terewriting is complete) For any sequence there exists an equivalent T

sequence.

Proof By induction on n, the length of the sequence. The casesn=0and n=1 are
trivial. The case n = 2 was shown by the Teswap lemma.

Step Case.  Assume the n = k case, and consider a sequence @ of length k+ 1. Let
@ = @ay. By the inductive hypothesis, there exists a Tesequence @), = @a. Now define
¢ = @,y= @ If ¢ is ar-sequence we are done, so let us assume it is not. Observe that

@ must now be a (|@,| + 1)-broken Tesequence, so by the tefix lemma there exists a
Tesequence ¢ = @ = o.
Q.E.D.

Note that the equivalent Tesequences are constructed by reordering the original
sequences, so we can conclude that they are of the same length as the originals. Hence
Terewriting will not cause inefficiency by eliminating the shortest path to a term — a

Tsequence of equal length will exist.

8.4.2 Towards Tio-Completeness

In this section we provide a swap lemma for o-rewriting, as part of an attempted proof
of the completeness of o-rewriting. In the Tt case lemma 2 put the ‘left’ rewrite step
before the ‘right’ step. In the o case lemma 4 puts the ‘higher’ step before the ‘lower’
step. As a result, the ‘lower’ redex may change position and be duplicated. This makes

the statement of the lemma more complex than in the Ttcase.



Chapter 8. Controlling Rewrite Search 144

However, we have so far been unable to prove the completeness of o-rewriting
by the route of a corresponding o-Fix lemma. We leave its completeness, and the
completeness of To-rewriting, as open conjectures.

Lemma 4 (o-Swap Lemma) If [p,r][q,s] is not a o-sequence then there exists an

m

equivalent o-sequence [q,s]_(Dl[quiv, r] for certain positions us, ..., Um,V.
i=

Proof If the (o) constraint is broken, then by definition p > g and for s = (a — b)
there is some variable x = a|y such that p > qu. Let posn(x,rhs(s)) = {us,...,Um}.
Without loss of generality, assume that i < j = uj < uj. The u; are the positions of a
variable, and so must be mutually parallel. Also, as we know p > g, let v be such that
P =quv.

First, we show that the given sequence is a o-sequence: as the u; are mutually
parallel, so must qu;v for i € [1,m]. Furthermore, i < j = qujv < qu;V, S0 igmnl[quiv, r]is
a o-sequence. Now, as g # quyV, [q,s]icrl_nbl[quiv, r] is also a o-sequence.

Next, we show that the given sequence is equivalent to [p,r][q,s]: Suppose the
original sequence was applied to a term to, such that [p,r] : to — t; and [q,s] : t1 — to.

ty is the result of one step and the input to another, so it follows that there are terms
a, b, cand d for which [e,r]:a— D, [g;s] :c — d and to|p = &, t1|p = b, t1]qg =c and
to|qg=d.

Lett | [t'] denote a term t with a subterm t” at p. We know that p = quv and that

the subterm t;|qu matches the variable x and is copied by [q,s] to positions quy, . .., qum,

SO we may write

to = tolglclulelv[a]]]
t1 = tolglclulelv[b]]]
to = tolqld Ly, ..um [€ v [Dl]]
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where e = to|qu. Now

[a,8](to) = [a,s](to lq[c lule lv[a]l])
= tolgld iy, um [ lv[a]]

and
D (Uit La [0 Luy..an) (€ Lv @) = to lg [® [V FI(d Ly, [e Ly [a])]

= tolg[d Ljuy,..ump (V1] (e Ly [@)]]
= tolq[d l{ul,...,um} e v [b]]]

=t

m
Hence [q,s],d)1 - to — t2 and so is equivalent to [p, r][q,s].
=

Q.E.D.

8.5 Compatibility with Meta-variables

As it stands, position ordered rewriting is incompatible with terms containing meta-
variables, as it can be shown to be incomplete. The following example? illustrates the

problem. Consider the rewrite system:
a — b
g@a — c

Following the use of meta-variables throughout this thesis, we let rewriting instanti-
ate them on the condition that the redex is never meta-flexible, i.e. so we cannot just

endlessly rewrite a meta-variable subterm.

2Alan Smaill, private communication.
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Taking the initial term p(X,g(X)) we can uniquely derive the normal form p(b,c)

via the following derivation (in each term the redex is underlined):

p(X,9(X)) — p(ac) — p(b,c)

However, this is not a T-sequence, and so is blocked by position ordered rewriting.
This is because the second redex is to the left of the first redex (i.e. 2 || 1 and 2 < 1),
which is disallowed by the definition of Terewriting. Because there is no other way to
derive p(b,c) from the initial term, a normal form has been excluded from the search
space.

The general problem is that a rewrite step may instantiate a meta-variable that has
other occurrences in parts of the term in which To-rewriting disallows rewriting. A
solution to this problem is to treat meta-substitutions as unrestricted rewrite steps. That
is, instantiating a meta-variable at position p is considered as a rewriting at p. For the

example above:

p(X,9(X)) — p(ac) — p(b,c)

Note that the first term is now reduced at two positions simultaneously. This is ok, as
we can regard the leftmost/highest position (the smallest by <) as the ‘real’ position.
By this definition the above is now a To-sequence.

This approach overcomes the known problems with using position ordered rewrit-
ing with our induction strategy, and other techniques based on meta-variables. Based

on this we conjecture that the technique is complete in the presence of meta-variables.

8.6 Summary

This chapter examined the problem of redundant search during non-confluent rewrit-

ing, and:
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Provided an analysis of redundant rewriting in non-confluent systems based on

confluent branches.

Introduced position ordered rewriting as an approach to reducing redundancy;,

and formalised it as To-rewriting.

Proved the completeness of Terewriting.

Showed how it can be made compatible with middle-out reasoning.



Chapter 9

A Proof Planner with Critics

9.1 Introduction

Having laid out the various components of our induction strategy in Chapters 4 to 8, we
now consider its implementation. The AClam proof planner was chosen, and extended
with proof critics, for this purpose.

After explaining in §9.2 why an extended AClam was used, the rest of the chap-
ter describes the novel critics-based proof planning architecture implemented in the
system. The main features of the architecture are planning instructions (see §9.4) to
allow more flexible specification of when critics should be applied , and criticals (see
89.5) which can be used to specify critic strategies in a analogous manner to method-
icals [Richardson and Smaill, 2001]. §9.6 briefly describes a planner based on these
techniques. The architecture is general enough to be of use to a wide variety of proof
planning strategies.

The AClam system has undergone development since the implementation of out

new critics architecture, and in §89.7 we briefly describe how the current implementa-

148
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tion relates to the our design presented here.

9.2 Why AClam?

Our induction strategy is essentially a non-uniform collection of heuristics for guiding
proof search, i.e. different parts of the proof require very different guidance. This is
especially true for our use of meta-variables. Proof planners are designed for the imple-
mentation of such non-uniform strategies, and a wide variety of such examples have
already been implemented, e.g. [Kraan, 1994], [Cheikhrouhou and Siekmann, 1998],
[Melis and Meier, 2000]. For the purposes of prototyping our strategy, using a proof
planner is simpler than the adapting another theorem prover or writing a stand-alone
system. Furthermore, some parts of the strategy are even described in terms of proof
planning operators, e.g. the speculation critic (see Chapter 7). For these reasons, it was
decided that a proof planning system would be used.

The choice of which proof planner to use came down to the QMEGA system and
one of the Clam planners (see 82.4). The Clam planners were chosen because, un-
like QMEGA, they have already been successfully used for the implementation of a
number of inductive strategies. It is easier to build upon this work than begin a new
implementation in QMEGA — although this would be an interesting exercise.

Of the Clam family of planners, only the Clam v3 system has provision for proof
critics, and our strategy specifies two proof critics: the speculation critic (see 87.4)
and the side condition critic (see 86.5.5). However, of these systems, only AClam is
being actively maintained and developed. It also has other advantages for our induc-
tion strategy: its higher-order meta-logic provides built-in unification for higher-order

meta-variables, and methodicals greatly facilitate the specification of complex strate-
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gies (see §2.4.2). Hence it was decided to implement a suitable critics mechanism in

the AClam system, in order to implement our induction strategy.

9.3 Defining Proof Critics

In this section we describe how proof critics are defined in Clam v3 [Ireland, 1992]
[Ireland and Bundy, 1996] and in our new architecture. Each proof critic is associated
with a proof planning method (by virtue of sharing its name), and when a method fails

the planner attempts to apply an associated critic. A critic is defined by a 4-tuple:
Method The name of the associated method.

Input The partial proof plan, including the method’s failed preconditions.
Preconditions Conditions under which the critic is applied.

Effects Instructions to modify the partial plan.

Figure 9.1 shows an example of such a critic definition, for a wave critic. Once a critic
Is chosen, its preconditions are tested, and if they are satisfied, its effects are executed.
As well as the partial proof plan, the critic has access to the failed preconditions of its
associated method, allowing it to provide an appropriate patch for a particular kind of
method failure.

To handle methods with multiple associated critics, a preference order is defined for
a set of critics. For example, for wave method’s critics, the critic with the most general
preconditions is chosen [Ireland and Bundy, 1996]. The planner may backtrack over

this choice.
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ﬁriti c(wave, \

Pl an,
[preconds(Plan, [], [P4: sinkable(Pos, G SPos)])],
[ specul ate_| emma(Pos, SPos, G Rn:Lenmma),
add_wave_rul es(Lemm),
insert_method(Plan, [], wave(Pos,[Rn, 1))]).

- /

Figure 9.1: The Clam v3 definition of the lemma speculation wave critic (from

[Ireland, 1992]).

9.3.1 Critic Definition in AClam

In the AClam critics architecture we adopt a variation of the definition of proof critic
outlined above. Firstly, the critic is named independantly of its associated method.
This allows a critic to be associated with several methods, e.g. several variations of the
wave method could be served by the same critic, or to have different occurrences of
the same method associated with different critics. This is discussed further in §89.4.

Secondly, there is a slot in the defining tuple representing the output plan. This
brings the definition of critics in line with methods. Hence critic preconditions and
effects are declarative statements that relate the input and output slots.

Thirdly, the critic definition also relates an input and output planning agenda, i.e.
the list of open nodes in the plan tree. This gives critics the ability to further control
the search for a proof plan by changing the agenda. For example, to change the current
attention of the planning search. Figure 9.2 shows how the wave critic definition from
Figure 9.1 might appear in the new format.

Our definition of critics clarifies their function: they are declarative® planning oper-

ators that work on a global level, i.e. the whole plan and the agenda. This complements

IDeclarative in theory — AProlog can be used to write non-declarative programs.
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ﬁri tic (lemma_specul ation Pos Lenmm) \
Pl an
Agenda

(preconds Plan [] [(sinkable Pos G SPos)])

(specul ate_| enma Pos SPos G Rn: Lenma,

add wave rules Lemm,

insert_method Plan Agenda [] (wave Pos [Rn, ]) NewPl an NewAgenda)
NewPl an

NewAgenda.

\ /

Figure 9.2: How the lemma speculation wave critic from Figure 9.1 would be defined

in our new critics architecture. The output plan and input/output agendas are explicitly

represented, and the critic’s name differs from its associated method.

methods which are planning operators that work on a local level, i.e. the individual
nodes of the plan tree. Hence our definition of critics brings them more into line with

methods.

9.4 Planning Instructions

A feature of clam v3 critics is that a critic is invoked if and only if its associated
method fails. However, critics may be of more general utility than this: a proof strategy
could invoke a critic without a method failure, in order to positively critique a partial
plan. For example, a global change to the proof could be part of a proof strategy’s
design, rather than an exception to it. Furthermore, it would be useful if a critic could
have a contextual association with a method, i.e. it is invoked only in certain strategic

contexts?.

2lan Green and Alan Smaill, personal communication.
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In Clam v3 such features do not make sense, as it does not explicitly represent
proof strategies above the method level. But in AClam, proof strategies are represented
by compound methods. Hence our AClam critics planner provides support for both
positive critiquing and contextual association with a method. Both are achieved by ex-
tending the method expression language with planning instructions which modify the
planner’s behaviour, rather than being applied to the current goal. Planning instruc-
tions are treated as atomic methods by the methodical transformations used to obtain

the ‘next method’ from a method expression [Richardson and Smaill, 2001].

9.4.1 Postive Critiques: crit _i nst

The planning instruction (crit _inst C) may be included in a method expression to
invoke a positive critique of the plan. The planner interrupts normal planning and
applies the critic C to the partial plan. For example, the following method expression
would apply the wave method and then would always apply the | emma_specul ati on

critic (not a sensible strategy...) :

(then_meth (wave Pos [T, D])

(crit_inst (lemma_speculation Pos Lemm)))

9.4.2 Contextual Method/Critic Association: pat ch_i nst

The planning instruction ( pat ch_i nst M C) may be included in a method expression
to invoke an association with failure of the atomic method M The planner attempts
to apply method M If it succeeds then planning continues as normal. If it fails the
critic Cis applied to the partial plan. In AClam, the method’s evaluated preconditions

are stored at the corresponding plan node, so the critic has access to them in order to
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analyse the method failure. To illustrate, the following method expression would apply

the wave method, and if it failed apply the | erma_specul at i on critic:
(patch_inst (wave Pos [T,D]) (lemma_specul ation Pos Lemmma))

Note that using (pat ch_inst M C) in a method expression is the only way a critic
can be associated with a method in the AClam critics planner, and it does not univer-
sally associate a critic with a method. This is not a serious restriction, as e.g. a new
compound method wave2 could be defined with the above method expression, which
would behave like the wave method with a universally associated | emma _specul at i on

critic.

9.5 Criticals

AClam uses methodicals to compose methods into compound methods, in an analogous
way to the composition of tactics via tacticals [Richardson and Smaill, 2001]. The
advantage of this is that complex proof strategies involving multiple methods may be
explicitly defined, allowing a declarative reading of methods, and making them easier
to write.

Another novel aspect of our proof planning architecture is criticals, which allow
critics to be composed in an analogous way to methodicals. Using criticals, critic
strategies can be built from critics. As well as making complex critics easier to write by
breaking them down into small, conceptually simple critics, it allows critic strategies
(such as the “most general preconditions’ strategy mentioned in 89.3) to be explicitly
declared, rather than hard-coded in the planner.

Critic expressions are defined as critics composed via criticals. A critical expres-

sion is either atomic, containing no criticals, else it is compound. Table 9.1 describes
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Critical Type Description

id_crit crit Do nothing

orelse_crit | crit — crit — crit Apply first or second
then_crit crit — crit — crit Apply first then second
repeat_crit | crit — crit Iterate at least once
try_crit crit — crit Apply or do nothing

cond_crit | (plan — bool) — crit | First if condition, else second

— crit — crit

sub_crit ad — crit — crit Apply to subplan at address

some_crit | (A — crit) — crit Apply for some substitution

Table 9.1: Types and descriptions of criticals. The base types are of critics (crit), meth-

ods (meth), proof plans (plan), plan node addresses (ad) and the boolean type (bool).

the various criticals available in the AClam critics planner, and their types.

Following the definition of methodicals [Richardson and Smaill, 2001], we define
a meta-interpreter for criticals by a set of rules, given in Figure 9.3. The notation
C: P~ Q is taken here to mean critic C applied to P may return Q, where P and Q
are critic inputs and outputs. The rules in Figure 9.3 give an inductive definition of —.
The order of the rules in the figure indicates the order in which they should be applied.
The AClam critics planner uses these rules to evaluate critic expressions.

Most of the criticals have analogs in AClam’s methodical set and are quite straight-
forward. The exceptions are sub_crit, which applies a critic to a specified subplan
of the current partial plan, and some_crit which provides existential quantification for
variables in the given critic. This allows variables that are quantified within AClam’s

plan structure to be mentioned in the arguments of critics that are applied to the plan
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idcrit:P—P

Ci:P—Q
orelse_critC1Cr:P—Q

C:P—Q
orelsecritC1C2:P—Q

Ci:P—R C:R—Q
then_critC,;Co:P—Q

C:P—R repeatcritC:R—Q
repeat critC:P— Q

repeat critC:P— P

C:P—Q
try critC:P—Q

trycritC:P—P

Ci:P—Q
cond_crit (AX.A)C1C2:P+—Q

if A[P/x] holds

Co:P— Q
cond_crit (AX.A)C1C2:P—Q

if ~A[P/x] holds

C:Q—(Q
sub_crit a C : P[Q]q — P[Q]«

Clv/x] :P+—Q
some_crit (Ax.C) :P— Q

vnotinC

Figure 9.3: Rules for interpreting criticals
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/pl an_goal CGoal Method Plan :- \
construct _root Goal Method Root,
planner [nil] Root Pl an.

pl anner [] Plan Pl an.

pl anner Agenda Pl an Final Plan :-
Agenda = [Address| ],
expand_node Address Plan ExpandedPlan Critic,
apply critic Critic Agenda ExpandedPl an NewAgenda NewPl an,
pl anner NewAgenda NewPl an Fi nal Pl an.

N /

Figure 9.4: The main loop of a depth-first proof planner with critics

below the variable’s binder, whilst still permitting these critics to appear in compound

critics which are applied above it3.

9.6 A Critics Planner

In this section we provide a more detailed description of a depth-first planner that
uses the techniques outlined above, in order to more precisely specify the intended be-
haviour. Figure 9.4 shows the main planning loop of the planner as a simple AProlog
program. The planner is called via pl an_goal , which constructs the root node of
the proof plan and initiates the planning loop. The loop applies planning steps un-
til the agenda is empty, via pl anner. Each planning step consists of two actions:

expand_node followed by apply critic.

3In fact, we subsequently extended AClam with a similar some_net h methodical as part of building
the Dynamis system (see the next chapter).
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9.6.1 Expand Node

The planner takes the first address on the agenda and finds the corresponding node of
the partial proof plan. The method expression at this node is evaluated to find the next
atomic method, following the rules in [Richardson and Smaill, 2001]. In our planner
this may return a planning instruction instead. If so, the remainder of the method
expression is stored at the current node.

A new plan and critic are computed as follows:

e For a method, the planner attempts to apply the method. If successful, then the
child nodes are added to this node. The critic is taken to be (children A),

where A is a list of the new child node addresses.

e Fora(patch_inst M (), the planner attempts to apply the method Mas above.
But if Mfails, the planner stores the failed preconditions in the plan node, and
the critic is taken to be C. The failure of Mon backtracking causes expand _node

to fail.

e Fora(crit_inst C),the critic is taken to be C.

9.6.2 Apply Critic

The critic from expand_node is a critic expression of the form (chil dren A), indi-
cating a method has already been applied. If the latter is true then normal depth-first
proof planning continues: the address at the top of the agenda is removed and replaced
with the new child addresses A.

Otherwise the critic expression is used to transform the agenda/partial proof plan,
using the rules given in Figure 9.3. Note that in this case the agenda has not necessarily

been changed by the planning step. Unless the critic explicitly alters the top of the
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agenda, the next planning step will return to the same node. However, the method

expression has been changed, so this step will not necessarily be repeated.

9.7 Development in AClam

The critics planner is implemented in AClam version 2.0. Although the actual im-
plementation was complicated by other considerations (e.g. tracing, alternative search
strategies) its behaviour was essentially the same as described in 89.6.

Subsequent development of the AClam system by a number of other authors has
changed the implementation of the planner, but has not affected the critics functional-
ity. In the next chapter we use AClam version 4.0. The most significant change is the
move to a context planner, which replaces an explicit AProlog term representation of
the partial proof plan with an implicit representation using asserted facts.

As a result the critic definitions have no explicit plan input/output slot. Instead of
an input plan slot the preconditions are used to access the plan. The output plan slot

takes the form of an add/delete node list. The critics are described in Chapter 10.

9.8 Summary

This chapter presented a novel proof planning architecture based on proof critics ex-
tended with criticals and planning instructions. The advantages of this architecture

are:

e A critic may be specified as being associated with the failure of multiple meth-
ods or a method in a specific strategic context, using the patch_inst planning

instruction.
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e A critic need not be tied to a method failure, instead being invoked as part of a

strategy’s normal execution, using the crit_meth planning instruction.

e Complex critics and critic strategies can specified in a modular and declarative

manner using criticals.
e By changing the planning agenda a critic can influence the proof search.

Our definition of critics brings them more into line with methods. The AClam proof

planner was extended with this critics architecure in order to implement our strategy.



Chapter 10

The Dynamis System

10.1 Introduction

In order to test the inductive theorem proving strategy described in this thesis, we
implemented it as a set of methods and critics in the AClam proof planner (version 4.0)
[Dennis and Brotherston, 2002]. This chapter describes the implementation, which we
have called Dynamis.

Dynamis’s method/critic architecture is based on the three part modular structure

described in Chapter 6:

REFINE-CASE A middle-out strategy for constructing a suitable step case. This is

implemented in the no_st ep_case method, described in §10.3.

WELLFOUND-HYPS A strategy for proving there exists a wellfounded relation under
which each inductive hypothesis is less than its conclusion. This is implemented

in the wel | f ound_st r at method, described in §10.4.

EXHAUST-CASES A corrective strategy that shows that the induction cases are ex-

haustive. This is implemented in the case strat basi ¢ and case strat rec

161
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methods, described in §10.5.

In addition, a fourth strategy is used to discharge base cases and post-fertilisation goals.
This is implemented in the wat er f al | method, described in §10.6. These strategies
can be employed by a small number of top-level methods that direct the search for a
proof plan of an inductive conjectures, which we describe in §10.2.

This chapter gives the AProlog definitions for all Dynamis’s compound methods,
the speculation critic and some of the key atomic methods. Most of the lower-level
atomic methods are omitted, as they are not essential for understanding the overall
operation of the system. More information about the Dynamis system, including the
omitted methods and explanations of the AProlog predicates used in the method con-

ditions, is given in Appendix C.

10.1.1 What’s Not Implemented

Several aspects of our strategy have not been realised in this implementation:
e Planning step cases with multiple induction hypotheses (see Chapter 4).
e Generating induction rules with multiple step cases (see Chapter 6).
e The side condition critic for the wellfoundedness strategy (see Chapter 6).

Also, the rippling and rewriting methods do not perform case splits. All of these fea-
tures were not implemented due to a lack of time only — we foresee no difficulties in

principle.
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10.2 The Top-Level Strategy

The top-level strategy coordinates the search for a complete plan. It is implemented
via the method dynam s_mai n, which can be configured to use a variety of submeth-
ods for certain parts of the proof. dynam s_mai n is defined in terms of the methods
schemati c_i nduction, construct cases and wel | f ounded. This section describes
all four methods.

The Dynamis Knowledge Base is used to store the following global information

about the planning attempt:

e a list of the types of the leading universal quantified variables in the original

conjecture;
e a list of the inductive proof’s base and step cases;
¢ the wellfounded relation used to justify the induction;
e a list of constraints on this relation and the corresponding constraint solver.

See the predicates dkb_t ypes etc. in Appendix C for details about accessing the knowl-

edge base.

Method: schemati ¢c_i nducti on

The schemat i ¢_i nduct i on method, shown in Figure 10.1, is the key method in Dy-
namis’s strategy. It corresponds to the application of the (as yet unknown) induction
rule. The precondition (1) succeeds if the input goal Goal is a sequent with a uni-
versally quantified conclusion. It constructs a schematic step case St epGoal and the
Dynamis knowledge base KB. The postconditions (2) and (3) construct respectively a

wellfoundedness goal Wl | Goal for this step case, and a goal CaseGoal stating that
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ﬁ/lethod: (schematic_i nduction KB) \
Goal: Goal
Pre: (schematic_stepcase Goal KB StepCoal) (1)

Post:

(wel | found_goal Goal KB Wl Goal, (2)
exhaustive_goal Goal KB CaseCoal ) (3)

SubGoal:
(StepGoal ** (WellGoal ** (CaseCoal
!** ((maybeCases Goal KB) ** (wfGoal KB))))) /

Figure 10.1: schemati c_i nducti on is the first atomic method applied by Dynamis,
parameterised by the knowledge base KB. Compare with dynam s _mai n (Figure 10.3)

to see how each subgoal is planned.

this step case is an exhaustive case analysis!. Note that AClam uses ** to represent
goal conjunction.

The method also produces a subgoal (maybeCases Coal KB) that will be trans-
formed into any additional proof cases that are found later in the planning attempt, and
a subgoal (wf Goal KB) that represents the satisfiability of the constraints on the well-
founded relation used to justify the induction. This last meta-level goal is distinctive in
that it will not be mapped onto an object-level goal in any execution of the proof plan.
It plays a purely meta-level role in the final stage of planning, when a wellfounded
relation that satisfies the constraints is selected (see 810.2).

If the proof plans were used to produce object-level proofs, the wellfoundedness

IThis goal will always fail, with the failed proof used to find the missing cases. See Chapter 5, and
§10.5 below.
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St epCoa

Wl | Goal CaseCoa

¢

maybeCases

e

wf Goa

Figure 10.2: Goal ordering for the schemat i ¢_i nduct i on method (see Figure 10.1).

of < would have to be shown. This could be done by providing a prefabricated proof
that any relation defined using a measure function is wellfounded. However, no proof
search would be required for this either on the object or meta-level, so there is no need
to associate this with wf Goal or the method which plans it. It could be associated e.g.
with the schenat i ¢_i nduct i on method.

The ordering of schemat i c_i nduct i on’s subgoals is important, and assumes the
use of a depth-first planner, or at least one that respects the goal order. This is the
result of dependencies between the subgoals that require certain branches to be com-
pleted before others are planned, else the final plan will not represent a valid inductive
proof. For example, if the caseCGoal is planned before the St epGoal it will be trivially
discharged, as no meta-variables have been instantiated. Any wellfounded step case
found by planning St epGoal will then be considered case exhaustive, and the strategy
will terminate with a only one step case and no base cases. Violations of other goal
dependancies cause similar problems.

The order requirements are shown in Figure 10.2. Dynamis uses AClam’s depth-
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ﬁ/lethod: (dynamis_main StepStrat WellStrat CaseStrat BaseStrat) \

(conplete_neth

(then_meths (schematic_induction KB)

pair_meth (then_meth StepStrat BaseStrat)
pair_meth WellStrat

pair_meth CaseStrat

pair_meth (then_meth construct cases BaseStrat)

K (wel | founded Relation))))))) /

P

Figure 10.3: dynam s_mai n is Dynamis’s main top-level method. It is parameterised by

four methods.

first or iterative-deepening planner to ensure this order in the method definition is re-
spected. A more sophisticated approach could represent this information in a declara-
tive manner, but this cannot be done within AClam’s planning framework.

The goal order necessary for soundness does not specify when Wl | Goal is planned
relative to CaseGoal and maybeCases. As discussed in Chapter 6, it is better to
plan Wl | Goal as soon as possible, in order to avoid wasting time on step cases that
cannot be shown to be wellfounded. Hence, I | Goal is planned immediately after

St epCoal .

Method: dynani s_mai n

The main top-level method for Dynamis is dynami s _mai n, shown in Figure 10.3. It
first applies schemat i c_i nduct i on, followed by an appropriate method for each of
the resulting subgoals — compare Figure 10.3 and Figure 10.1 to see the mapping

between goals and methods.
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Method: dynam s_crit

(dynamis_main (no_step_case spec_critic_ripple)
wel | found_strat

case_strat

(waterfall dynamis_crit))

s

Method: dynam s_crit _once

(dynamis_main (no_step_case spec_critic_ripple)
wel | found_strat

case_strat

(waterfall (ind_strat normal _ind)))

)

Method: (dynamis_|imN)

(dynams_main (no_step _case (n_spec_ripples N))
wel | found_strat

case_strat

(waterfall (dynamis_limN)))

T

Method: (dynani s_|i monce N)

(dynamis_main (no_step _case (n_spec_ripples N))
wel | found_strat

case_strat

(waterfall (ind_strat normal _ind)))

e

N N N N

Figure 10.4: Some configurations of the the top-level method dynam s_nai n.
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In our implementation dynam s _mai n is actually a methodical, parameterised by
four methods. Hence it acts as a template for a range of top-level methods. In order,

these parameters are:

e StepStrat, a method for the initial schematic step case, e.g. mo_st epcase (see

§10.3).

e \|| Strat, a method for the wellfoundedness proof, e.g. wel | f ound st r at

(see 810.4).
e CaseStrat, amethod for the exhaustive cases proof, e.g. case st rat (see §10.5).

e BaseStrat, amethod used to plan base cases and post-fertilisation subgoals e.g.

(waterfall IndStrat) (see 810.6).

Some possible configurations of dynam s_mai n are shown in Figure 10.4. For in-
stance, dynam s_crit uses the speculation critic in the step case, and a rewriting-
generalisation-induction waterfall to discharge base cases, where it may be called re-
cursively to plan nested inductions. Contrast this with dynam s_| i monce which uses
a fixed number of speculation steps in the step case, and uses the standard AClam induc-
tion methods to plan nested inductions. Allowing Dynamis to use a variety of methods

gives us a straightforward way of comparing various combinations of strategies.

Method: const ruct cases

The (maybeCases Goal KB) goal produced by schemati c_i nducti on is passed to
the const ruct _cases method, shown in Figure 10.5. The latter constructs the ad-
ditional proof cases that the exhaustive cases strategy has identified as missing and

already added to the knowledge base.
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ﬁ/lethod: construct _cases \

Goal: (maybeCases CGoal KB)
Pre: true
Post:

(dkb_cases KB [_| Cases],
list to goal Cases (new case Goal) NewGoal s)

Qubgoal: NewGoal s /

Figure 10.5: The construct cases method generates subgoals NewGoal s corre-

sponding to the proof cases Cases that have been added to the knowledge base during

the case synthesis strategy.

The preconditions are trivial, so the method always applies. The postconditions re-
trieve the added cases Cases from the knowledge base KB, ignoring the initial step case
that has already been proven. Each case is mapped onto a new subgoal, constructed by
restricting the original goal Goal to that case. NewGoal s is a conjunction of these new

proof cases.

Method: wel | f ounded

The last step during a successful planning attempt is always the application of the
wel | f ounded method to the final subgoal produced by schemati c_i nduction. The
wel | f ounded method is shown in Figure 10.6. It chooses a wellfounded relation which
satisfies the constraints built up during during the proof. The preconditions retrieve

the relation, constraints and constraint solver from the knowledge base. Applying the
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/“Method: (wel | founded Rel at i on) I
Goal: (W Goal KB)

Pre:

(dkb_sol ver KB Sol ver,

dkb_rel ation KB Rel ati on,
dkb_constraints KB Constraints,
Sol ver Relation Constraints)

Post: true

Qubgoal: t rueGoal /

Figure 10.6: The wel | f ounded method applies a constraint solver to the constraints on

the wellfounded relation and the meta-variable representing this relation, instantiating

the latter.

solver to the other data instantiates the relation.

As mentioned above, this is a purely meta-level step which would not have any
underlying object-level proof if the proof plan were executed?. However, it does in-
stantiate the meta-variable representing the wellfounded relation in the plan, which is

required to give a executable plan.

10.3 The Step Case Strategy

Recall from Figure 10.1 that the schemat i c_i nduct i on method sets up a schematic

step case goal using the precondition

(schematic_stepcase Goal KB StepGoal)

2A general object-level proof of wellfoundedness can be given, and need not be associated with this
method.
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Method: (nmo_step_case Ripple)

(then_meth enbed_hypot hesi s
(then_meth Ripple
(then_neth no_fertilise
(try_meth (repeat_meth redundant)))))

Figure 10.7: The no_st ep_case method.

where Goal is the original universally quantified goal. This instantiates St epCGoal to
a caseSchena subgoal where the universal variables are replaced by meta-variables.
This is best illustrated by example: if Goal has a single universal quantifier, i.e. it is if
the form:

(seqGoal (H >>> (app forall [T, (abs F)])))
then St epGoal is of the form

(all Goal T x\ (caseSchema (C x) H
(preRippleHyps (F x) [(F (Ax))]) (F (Bx))))

The caseSchena contains a meta-variable condition on the step case ( C x), the step
case skeleton (F x), a single induction hypothesis (F (A x)) and an step case con-
clusion (F (B x)). Note that the induction terms in hypothesis and conclusion are
represented by meta-variables A and B respectively. The types of the induction terms
and a representation of this proof case are entered into the knowledge base KB.

The method works in a similar way for goals with more than one universal quanti-

fier.
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Method: np_st ep_case

The strategy for planning a proof of the schematic step case goal is implemented by
the compound no_st ep_case method, shown in Figure 10.7. Like dynam s_mai n, it
is a methodical, taking a rippling method as an argument. The method follows the
standard step case proof plan outline: embed the hypotheses in the conclusion, ripple,
then fertilise. Redundant universal quantifiers are removed post-fertilisation.

Suitable choices for the Ri ppl e method would be n_spec _ri ppl es, which allows a
fixed number of speculative ripple steps, or spec _critic_rippl e, which uses a critic

to control speculation. Both are described in §10.3.2.

10.3.1 Embeddings

Embeddings in Dynamis are implemented in a slightly different way from the standard
AClam methods. In AClam, an embedding is a tree which has the same structure as
the skeleton term syntax tree, and has, at each node, a term address that indicates
where this node is mapped to on the target term. Wave fronts are implicit in this
representation: they correspond to the parts of the target term syntax tree which are
not referenced by address in the embedding.

Because our strategy involves a lot of explicit computation with wave fronts, e.g.
neutralisation, we have modified embeddings to explicitly represent wave fronts with
a constructor. This saves a great deal of effort by avoiding the repeated reconstruction
of this information.

Wave fronts may be of varying thickness in our representation, so for example a
wave front of thickness n 4+ m will be equivalent to two wave fronts of thickness n and
m. Hence, wave fronts may be merged and split. We keep wave fronts in maximally

merged form.
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ﬁ/lethod: (n_spec_ripples N \

(then_meth (cond_neth isSideCond sol ve_si decond
(speculative ripple _ _ ))
(cond_nmeth (¢g\ (N> 1, Mis N- 1))
(n_spec_ripples M

\ definite rippling)) /

Figure 10.8: The n_spec_ri ppl es method.

Explicitly representing wave fronts increases the number of possible embeddings,
as wave fronts may now be individually directed. In order to reduce the number of

possible embeddings, we apply the following constraints:
e Blocks of wave fronts must all have the same direction.
e Outwards wave fronts may not appear below inwards wave fronts.

e Variables may only be embedded in or into by terms of the same type. This
constraint is not enforced in the version of AClam used, leading to the possibility

of spurious embeddings.

Method: enbed_hypot hesi s

The enbed_hypot hesi s method embeds the step case skeleton into the schema’s in-
duction hypothesis and conclusion. The embeddings and their weights are stored in

the step case goal. This method is described in greater detail in §C.2.

10.3.2 Speculative Rippling

Speculative rippling decides the form of the step case by instantiating the step case

meta-variables. We have two alternative methods for doing this: a strategy with a fixed
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ﬁ/lethod: spec_critic_ripple \

(then_meth (speculative ripple _ )
(repeat _neth
(cond_neth isSideCond sol ve_si decond
(some_neth2 rul e\ ad\
(patch_meth (definite ripple rule ad)

K specul ation_critic))))) J

Figure 10.9: The spec critic_ri ppl e method.

number of speculative steps (n_spec _ri ppl es), and a more flexible critic-based strat-
egy (spec_critic.ripple). They are shown in Figures 10.8 and 10.9 respectively.
The n_spec_ri ppl es method, takes an integer argument N and applies the atomic
method specul ative_rippl e N times before applying definiterippling. Side
conditions are passed to sol ve_si decond (see 810.3.4).
In contrast, the spec critic_ri ppl e method applies specul ative_ri ppl e once,

then repeatedly applies definite_ripple. If this fails, the speculation critic is applied.

Method: specul ative_ripple

The specul ative_ri ppl e method, shown in Figure 10.10, performs a speculative
ripple step, i.e. one where meta-variables are instantiated. As it is such a key atomic

method, we now describe the preconditions in greater detail:

1. The goal’s meta-variables Var s are identified.

2. The conclusion Conc is rewritten to NewC with a wave rule Rul e and side condi-
tion Cond. The rewrite relation rewrite_unif is used, which allows the meta-

variables in Conc to be instantiated.




Chapter 10. The Dynamis System

175

method: (specul ative_ripple Rule Ad)
Goal: (caseSchema Case Hs (rippl eHyps [IndHyp]) Conc)

Pre:

(I'ndHyp = (annHyp Hyp Skel EHL ),

meta variables Conc [] ConcVars,

meta_variabl es Hyp ConcVars Vars,

wave rule list Rules,

rewmite_inner (rew _list Rules rew _unif) Rule _ Conc NewC Cond Ad,
enbeddi ng Skel ECL NewC,

reverse Ad At,

specul ative_rule Rule Flag,

cancel context Flag At Skel NewSkel Hyp EHL EH2 NewC ECl EC2,
reembed NewSkel bool Hyp bool EH2 EH3,

not _all meta vars Vars)

Post:
(tidy_hyp_context EH3 EH4 HW
tidy_conc_context EC2 outward EC3 Qut In,
Newl ndHyp = (annHyp Hyp NewSkel EH4 HWEC3 Qut 1n),
Mai n = (caseSchema Case Hs (rippl eHyps [ Newl ndHyp]) NewC),
condition_goal Cond Case Hs
(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

Qubgoal: SubGoal

/

Figure 10.10: The specul ati ve_ri ppl e method.
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@ritic: specul ation_critic \

Agenda: (active_agenda [Pl anAd| Agenda])

Pre:

(get _goal PlanAd Goal,

not (fertilisable Goal),

CGoal = (caseSchema Case Hyps (rippl eHyps I ndHyps) Conc),
partial |Ihs Rule LHS PartLHS Dir,

rewite so PartLHS LHS Dir Conc ReqConc Ter mAd,

once (enbeddi ng Conc E1 ReqConc))

Post:

(tidy_conc_context EL inward E2 _ Newin,

get _continuation PlanAd Conti nue,

InGoal = (caseSchema Case Hyps (bl ockedGoal Conc E2 Newl n) ReqConc),
InMeth = (then_neth (ripple_in_and_specul ate Ripples) CurrentPlan),
PatchMeth = (ripple_patch Ripples Rule TermAd Continue))

Add/Delete:
[ (add_node [1| Pl anAd] (and_node InCoal [1|PlanAd] InMeth _ 1)),
(add_node [2| Pl anAd] (and_node Goal [2|PlanAd] PatchMeth _  ))]
Qew Agenda: (active_agenda [[1] Pl anAd]|[[2| Pl anAd] | Agenda] ]) j

Figure 10.11: The specul ation_criti c critic.
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3. The rewrite step is checked to be skeleton preserving by reembedding the skele-

ton Skel into NewC.

4. If Rul e is classified as non-constructor , then Fl ag is switched on, which indi-

cates neutralisation may instantiate meta-variables in Hyp.

5. Zero or more corresponding wave fronts in hypothesis and conclusion are can-
celled out via neutralisation (cancel _context). New embeddings, EH3 and
EC2, are found for hypothesis and conclusion, along with an expanded skele-

ton, NewSkel .

6. A check that at least one meta-variable in Var s has been instantiated.

The postconditions simply construct the new subgoal, adding an optional subgoal for

the rewrite side condition Cond if it is trivially true or false.

Critic: specul ationcritic

Figure 10.11 shows the critic specul ati on_critic. Its preconditions first check that
the failed goal is not fertilisable. They then find a partially matching wave rule Rul e
that would apply if the conclusion Conc were of the form ReqConc. The postconditions
set up two goals: the first | nGoal which aims to ripple ReqConc inwards to match
Conc, viathe method ri ppl e_i n_and_specul at e (see Figure 10.12); the second Goal

tries to continue the ripple proof with the method ri ppl e_pat ch (see Figure 10.13),

which will apply, in reverse, the ripple steps Ri ppl es used to solve | nGoal .

10.3.3 Definite Rippling

Figure 10.14 shows the def i ni t e_ri ppl i ng method, which implements definite (nor-

mal) rippling, where no meta-variable instantiation takes place. It repeatedly applies
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method: (ripple_in_and_specul ate RipplePl an)

(orelse_neth
(specul ate_wavefronts Ripples Rippl ePl an)
(then_neth
(repeat _neth
(some_nmeth2 rule\ ad\ (forwards ripple rule ad Ripple)))
K (specul ate_wavefronts Ripples RipplePlan)))

/

Figure 10.12: The ri ppl e_i n_and_specul at e method.

Method: (ripple_patch Ripples Rule TermAd Continue)

(then_neth redo_enbeddi ngs

(then_neth Ripples

(then_neth (definite_ripple Rule Ternmid)
Continue)))

Figure 10.13: The ri ppl e_pat ch method.

Method: definite_rippling

(repeat_neth
(cond_neth isSideCond sol ve_si decond
(orelse_neth neta ripple
(some_neth2 definite ripple))))

Figure 10.14: The defi nite_ri ppl i ng method.
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definiterippleandmeta.ripple. Side conditions are passed to sol ve_si decond

(see §10.3.4).

Method: definite.ripple

The definite_ri ppl e method peforms a single definite ripple step. This can be either
a wave measure decreasing ripple, or a creational ripple that remove hypothesis wave
fronts. In both cases, the conclusion is rewritten with the relation r ewr _mat ch, which

does not instantiate metavariables. This method is described in more detail in §C.2,

Method: meta_ri ppl e

The met a_ri ppl e method replaces the conclusion embedding with one that is smaller
under the wave measure, without rewriting the conclusion. See 8C.2 for the method

definition.

10.3.4 Side Conditions

Side conditions are defined as goals of the form
(caseSchema _ _ sideCond )

and are sometimes generated by the atomic ripple methods. The compound method
sol ve_si decond is used to solve these goals, by repeated application of the atomic
method si npl i fy_si decond (see Appendix C for both methods). This simplifies or

discharges a side condition goal in one of a the following ways:

e Discharge a trivially true goal.

e Discharge using the step case condition.
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Method: no_fertilise

(orelse_meth strong_fertilise
(then_meth (orelse_nmeth (weak fertilise )
strong_fertilise_prop)
repl ace_netavari abl es))

Figure 10.15: The no_fertili se method.

Discharge using a hypothesis.

Simplify using propositional rules.

Simplify using symbolic evaluation.

Discharge by assuming it is true. This partially instantiates the meta-variable

part of the step case condition.

No search is allowed over these options to avoid a side condition being repeatedly
solved during backtracking and causing unnecessary search. If a cut methodical had
been available in AClam it would have been possible to have a more modular imple-
mentation that made use of generic rewriting methods and still avoided backtracking,

rather than the extremely special-purpose method used here.

10.3.5 Fertilisation

Thenmo_fertilisemethod, shown in Figure 10.15, applies either a) strong fertilisation
or b) weak fertilisation or strong fertilsation which leaves a residue goal. The latter is
followed by r epl ace _net avari abl es, which transforms the schematic step case goal

into a sequent goal without meta-variables.
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Method: wel | f ound_str at

(then_meth (construct_wf_goal s Consts)
(orelse_meth estimtion_strat
(some_meth ignore_position)))

Figure 10.16: The wel | f ound_st r at method.

These fertilsiation submethods are reimplementations of standard inductive meth-
ods, and are described in full in 8C.2. Briefly, strong fertil i se unifies the hypothe-
sis and conclusion, whereas (strong fertili se_prop) uses the induction hypothesis
to rewrite an arbitary subproposition of the conclusion. Weak fertilisation rewrites one

side of an equality or iff with an induction hypothesis (weak fertilise).

10.4 The Wellfoundedness Strategy

The schemat i c_i nduct i on method sets up a wellfoundedness goal Vel | Goal for the
step case, using the query (wel | f ound_goal Goal KB Wl | Goal ), where Goal isthe
original universally quantified goal and KB is the knowledge base. For a Goal of the

form
(seqGoal (Hyps >>> Conc))
the wellfoundedness goal is of the form
(stepReduces Hyps KB)

This is simply a dummy meta-level goal which acts as a place holder for the wellfound-

edness goals, as we do not know the form they should take until after the step case is
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complete. The case may involve an arbitary number of induction hypotheses.

The actual explicit construction of the reduction goals is delayed until the applica-
tion of the wel | f ound_strat method, shown in Figure 10.16. This first applies the
construct W _goal s method, which builds the wellfoundedness goals from informa-
tion stored in the knowledge base, i.e. the induction cases created so far, the types of
the potential induction positions and the constraints on the wellfounded relation.

The predicate wel | f ound_goal s (see Appendix C) is used to turn each induction
case into a set of wellfoundedness goals. For each case and for each induction position,
a goal is constructed which states that this position is reduced under some measure.
Therefore, taken together, the goals for a given case state that every induction position
reduces under some measure. This is clearly an unnecessarily strong requirement,
so we allow some of these goals to be ignored, provided that the constraints on the
wellfounded relation remain satisfiable. A goal can be ignored if it cannot be planned
using esti mation_strat (see below) — instead the i gnor e _posi ti on method (see
8C.3) is applied to end the plan branch. The method a) adds an i gnor e constraint
to the knowledge base, indicating that the induction position must be ignored and b)
checks that constraints remain satisfiable. This prevents the system ignoring all the

induction positions, and so producing a plan that fails to validate the induction.

10.4.1 Estimation

The estimation strategy discharges wellfoundedness goals, and is implemented via
the estimation_strat method, shown in Figure 10.17. It uses four submethods:
begi n_esti mation,| ower _estinmate, upper estimateandtrivial estimate (see
8C.3). These implement Walther’s estimation technique, extended with upper estima-

tion, in a straightforward manner (see §6.5).
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ﬁ/lethod: estimation_strat \

(then_meths (begin_estimation N)
(pair_neth
(then_neth (repeat _meth (orelse_meth | ower _estinmate
upper _estinate))
trivial _estimte)
(then_neth abstract netavars

K rewite))) /

Figure 10.17: The esti mati on_strat method.

Submethod begi n_est i mat i on converts the initial meta-level r edGoal to two sub-
goals: an est Goal , representating the estimation goal, and a sequent, which states that
the difference equivalent Di ff generated by the estimation proof plan is true. Note
that begi n_esti mati on also adds to the knowledge base constraints on the measure
for the corresponding induction position.

Submethod | ower _est i mat e and upper _est i mat e implement the lower and up-
per estimation rules respectively. Finally, trivial _estimate terminates trivial esti-
mation plan branches.

These definitions of these submethods are given in 8C.3.

10.5 The Case Synthesis Strategy

The case synthesis strategy described in Chapter 5 is implemented by the compound

methodical case _strat (see Figure 10.18). It relies on the following submethods:

e set _condi tions instantiates to t r ueP any remaining meta-variable part of the

side-conditions of the known step case, i.e. no more conditions can be imposed
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ﬁ/lethod: case_strat \

(then_meth set_conditions

(then_meth (case_equiv )

(then_meth (case_induction (tuple_split ))
(repeat _neth

(then_neth (some_neth case_equiv)

(orelse neth trivial case

(orelse_neth (some_neth nissing case)

(

orel se_meth (sonme_neth exists casesplit)

& case_indstrat)))))))) /

Figure 10.18: The case_st rat method.

on the step case.

e the case_equi v method simplifies the case synthesis goal.

e thetrivial _case method, which identifies trivial plan branches.

e the m ssi ng_case method, which identifies failed plan branches, to be patched

by adding the missing case(s).
e an existential casesplit (see 5.4.2) method exi st s_casesplit.

e thecase.i ndstrat tries to solve the case synthesis goal with induction or a case

split.

All these methods are given in §C.4.
Figure 10.19 shows the case_i ndstrat method, which performs induction and
case splits in the case synthesis strategy. After applying an induction or case split

with the case_i nduct i on method, the method tries rippling and fertilisation, either of



Chapter 10. The Dynamis System 185

ﬁ/lethod: case_i ndstrat \

(then_meth (some_neth case_induction)

(then_meth (try_nmeth (some_meth exists_casesplit))

(then_nmeth (try meth (then_meth (repeat _neth (some_neth case ripple))
(repeat _neth case fertilisation)))

K remove_case_hyps))) /

Figure 10.19: The case_i ndst r at method.

which may fail without causing the method to fail. These submethods are defined in
8C.4.

The submethods case_ri ppl e and case_fertilisation are reimplementations
of standard inductive methods in the context of the case synthesis proof. It should be

possible to use these here instead of special-purpose methods.

10.6 The Base Case Strategy

For base case and post-fertilisation subgoals, a rewriting/generalisation/induction wa-
terfall is used [Boyer and Moore, 1979]. It is implemented in the wat er f al | method,
presented in Figure 10.20. The submethods used in this definition can be found in
8C.5.

Rewriting and generalisation are performed by therewr i t e and gener al i se meth-
ods, whereas the induction method is passed to wat er f al | as a parameter, allowing
a variety of inductive strategies to be used. Note that al | _e_nf is used to reintroduce

stripped universal quantifiers for generalisation and induction.
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ﬁ/lethod: (waterfall IndStrat) \

(then_meth (try_neth rewite)

(then_meth (normalise all_e_nf)

(then_meth (try_nmeth (repeat_meth generalise))
(
(

(then_meth (cond_neth univ_quantified Induction fail_meth)

& waterfall IndStrat))))) j

Figure 10.20: The wat er f al | method.

10.7 Summary

In this chapter we detailed the implementation of our inductive proof strategy as a set
of AClam methods and critics. This makes concrete the theoretical ideas outlined in
previous chapters, and allows us to test these theories, as described in the next two

chapters.




Chapter 11

Experimental Evaluation

11.1 Introduction

In this chapter we report on the evaluation of our induction strategy by experimental
testing of the Dynamis system. The test set was made up of problems that could not be
solved using recursion analysis, either gathered from or inspired by the literature. The
experiments were intended both to test the strategy and compare it with lazy induction
[Protzen, 1995], the previous state-of-the-art in induction selection.

The current implementation of the strategy in Dynamis can construct only induction
rules with single step cases containing single induction hypotheses. This limited the
scope of the evaluation to theorems that can be solved with such induction rules.

The hypotheses under consideration were:

1. The induction strategy works as described, automatically generating induction
rules to plan proofs for a range of theorems which recursion/ripple analysis can-

not solve, or for which it selects a sub-optimal rule.

187
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2. There are theorems the strategy proves using non-destructor? style induction that

cannot be proved by destructor-only lazy induction.

3. All theorems proved by Protzen’s lazy induction can also be proved by the strat-

egy.

Unfortunately, direct comparison with a lazy induction system was not possible be-
cause the original implementation of the technique in INKA was not available, and
the published description [Protzen, 1995] was not detailed enough for a faithful re-
construction. Consequently, evaluation of hypothesis (3) was limited to a comparison
based on the results of four theorems published in [Protzen, 1995].

The rest of the chapter is structured as follows: §11.2 describes the methodology
adopted for these experiments. In §11.3 we report on the results, and in 811.4 discuss

to what extent they support the hypotheses presented above.

11.2 Methodology

A collection of 24 theorems was compiled, selected on the basis that they are not
solvable using recursion/ripple analysis given the lemmas provided. The set included
eight theorems taken from the literature. These were used as inspiration in designing
the rest of the set. Their unsolvability by using recursion/ripple analysis was checked
by hand. Although this could have been checked automatically — for example, using
AClam — we have found that, in general, simulation of a technique by hand is more
likely to produce a proof than an actual implementation, because it is not subject to

the particular idiosyncrasies of the system. It is more relevant to this experiment that a

Lj.e. induction rules which are destructor style, or neither constructor nor destructor, i.e. they have
term structure in both induction hypothesis and conclusion (see §3.2).
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Theorem Statement Source

D1 hal f (s(x) +y) <x+y [Protzen, 1995

D2 odd(x+y) < —odd(s(y+Xx)) | [Protzen, 1995]

D3 odd(x+Yy) < odd(y+ X) Variant D2

D4 sum(l,x) = sum(l,0) 4 x Variant T15

D5 last(gsort(smaller(n,l))) < n | [Protzen, 1995]

Table 11.1: The development theorem set.

recursion/ripple analysis cannot prove a theorem in principle, rather than in the context
of a single system.

The theorems fall into four main groups:
Arithmetic (D1 to D3, T1 to T8) — Theorems about Peano arithmetic.
Lists (D4, D5, T9 to T14) — Theorems about list length and order.
Folding (T15 to T17) — Higher order theorems about list folding functions.

Gilbreath Card Trick (T18, T19) — Two theorems about lists over the red /black
datatype [Huet, 1991].

We use the following naming system: D or T indicates a development or test theorem
(see below). Each of these sets of theorems are numbered (e.g. D1). Finally, each the
theorem identifier is followed by a C or a D to indicate whether constructor style or
destructor style function definitions were used (e.g. D1C).

Three of the theorems — T14, T18 and T19 — required proofs with multiple step
cases. However, we included them in our evaluation to see if Dynamis could construct

the initial step case.
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Theorem Statement Source
T1 XXY=YXX Origind
without U x s(V) = (U xV)+U
T2 hal f(s(x)) < x Original
T3 hal f(n+s(m)) <n+m Variant D1
T4 hal f(n+m) <m+n Variant D1
T5 hal f (quot(n,m)) = quot(hal f (n), m) [Protzen, 1995]
T6 even(x+Yy) Aeven(y+z) — even(x+2z) Original
T7 X# 0 — (odd(x+y) < —odd(y+ p(x))) Variant D2
T8 y# 0 — (odd(x+Y) < —~odd(p(y) +Xx)) Variant D2
T9 rotate(len(l),l <> k) = (k<>1) [Ireland and Bundy, 1996]
T10 hal f(len(l)) < hal f(len(l <> m)) Origina
T11 len(oddelems(l <>m) <len(m<>1) Original
T12 len(evenelems(l <> m)) <len(m<>1) Original
T13 len(evenelems(l <> x::m)) <len(l <>m) Original
T14 perm(x,y) = perm(y, x) [Protzen, 1995]
T15 Xoid =X A Xo(yoz) = (Xoy)oz
— foldleft_tr(o,x,1) = (xofoldleft tr(o,id, 1)) [Paulson, 1991]
T16 foldleft_tr (o, x,1) = foldleft(o, x,rev(l)) Origina
T17 foldright_tr (o, x,I) = foldright(o,x, rev(l)) Original
T18 shuf fle(x,y,z) Aalter(x <>y) Aeven(len(x <>y)) [Huet, 1991]
Ahead(x) # head(y) — paired(z)
T19 shuf fle(x,y,z) Aalter(x <>y) Aeven(len(x <>y)) [Huet, 1991]
Ahead(x) = head(y) — paired(tail (z) <> head(z) :: nil)

Table 11.2: The test theorem set.
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We divided the collection into a small development set and a larger test set. The
first set was used to improve the performance of Dynamis during its development,
and is shown in Table 11.1. The development set also included a number of theorems
which could be solved by recursion analysis, e.g. the associativity and commmutativity
of plus, which we omit here. The system was developed in order to improve the per-
formance on all these problems. For the main test phase, the development of Dynamis
was halted. The system was then run for the first time on the test theorems, shown
in Table 11.2. This two-phase approach was chosen to avoid the development process
‘tuning’ the system to these particular examples.

The Dynamis system was compiled and run using the Teyjus AProlog version 1.0
(beta 33-MRG)2. All the timings are from representative runs on a Dell Optiplex

GX240 PC with a 1.8GHz Pentium 4 processor running RedHat Linux 8.0.

11.2.1 Configuring Dynamis

In this section we describe how Dynamis was configured for the experiments.

Both development and test theorems were tried with both constructor and destruc-
tor style function definitions, each in separate test runs. For each theorem, the system
was run with a variety of lemma configurations, and, if successful, a minimal con-
figuration was determined. If unsuccessful, we tried to determine the lemmas which
enabled the system to make the most progress. For constructor (destructor) style defi-
nitions we used lemmas that gave a constructor (destructor) style induction.

Some argument bounded lemmas (see §6.5.2) and rewrites rules related to datatypes

were made available to the system. The latter group fell into four categories:

2Available  from the Mathematical Reasoning Group, University of Edinburgh,
http://dream dai. ed. ac. uk/
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Destructor definitions e.g. p(s(X)) =X

Equality axioms e.g.s(X) =s(Y) < X =Y

Inequality axioms e.g.s(X) #0

Exhaustive casesplits e.g. Vn:nat.((n=0) v Ix:nat.(n =5(x)))

Definitions and lemmas may be loaded into AClam as rewriting and/or wave rules.
Each rule was classified by hand as being suitable for general rewriting and/or rip-
pling. A rule was classified for use with general rewriting if it maintained the termi-
nation of the rule set. For example, recursive cases of destructor style definitions were
not accepted. A rule was classified as a wave-rule if it could be annotated as such,
with the additional constraint that definitional rules for a function f had the skele-
ton f(Xy,...,Xn). The order of the rewrite and wave rules was not specified exactly,
although definitions were placed before lemmas and ‘simpler’ rules came first.

For constructor style problems the default strategy was dynam s crit (see §10.2),
which uses the speculation critic. If this failed, we attempted to plan the theorem with

this strategy modified in one of the following ways:

e Use a fixed number of speculative steps instead of the speculation critic. Top-
level methods (dynam s_Iim 1) and (dynam s_|im 2) use one and two steps

respectively (see Chapter 10).

e Use the standard AClam induction methods for nested inductions. This is achieved
using the top-level methods dynam s_crit _once, (dynam s_imonce 1) and

(dynam s_Ii monce 2) (see Chapter 10).

Using these alternative strategies allowed us to diagnose problems with the default

strategy — for example, we can test whether the speculation critic was the cause of
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particular failure by rerunning the test with a fixed speculation strategy.

For destructor style problems, the strategy dynam s_| i mlL was used by default, as
the speculation critic was designed for constructor style induction only. If the single
step strategy failed, the double step dynam s_| i n2 was tried — this was also consid-
ered as a default approach, simulating the iterative increase of the bound on the number
of speculation steps.

Overall, there were three ways the configuration could be modified during the ex-

periment, if the initial default settings failed:
e Adding and removing lemmas.

e Forcing a lemma to be tried before the definitions, using the Dynamis clause

needs priority/5.
e Modifying the default strategy in one of the predetermined ways outlined above.

In the results below we describe the configurations used for each theorem.

11.3 Results

The results of the evaluation are summarised in Table 11.3. Each theorem has results
obtained with constructor and destructor style definitions, and we indicate this with a
C or D after the theorem name, e.g. theorem T9 is considered to be two theorems T9C
and T9D.

The full results are shown in Tables 11.4 to 11.6. Table 11.4 gives the results for the
development theorems. Table 11.5 and Table 11.6 show the results for the constructor
and destructor style test theorems respectively. The lemmas used in the evaluation are

given in Table 11.7 and Table 11.8.
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Set Style | # Theorems | # Planned | # With Default
Development | Both 10 8 4

Cons. 5 4 3

Dest. 5 4 1
Test Both 38 27 19

Cons. 19 14 9

Dest. 19 13 10
Overall Both 48 35 23

Cons. 24 18 12

Dest. 24 17 11

Table 11.3: Results summary.

Tables 11.4 to 11.6 show whether a plan was found for each theorem, and if so
the time taken, the number of speculative steps and the minimal set of lemmas used.
The constructor style default strategy used the speculation critic, while the destructor
style default was the fixed speculation limit strategy. Each table also indicates if an
alternative to the default strategy was needed. Alternative strategies involved one or

more of the following variations:

Lemma One lemma (marked *) is considered before definitions during rewriting.
Nest Nested inductions are handled by the standard AClam induction strategy.

Limit For constructor style examples, a fixed speculation strategy was used instead of

the critic.

For destructor style (DS) theorems, additional lemmas were required to the ones

shown in the results tables, in the form of constructor style (CS) definitions. For exam-
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Theorem | Plan | Time (sec) | Alt. Strategy | Spec. | Lemmas

DiC Yes 4 — 2 L2, L3, L10

D1D Yes 15 — 2 L2, L3, L4, L8, L9, L10
D2C Yes 23 — 2 L2, L3

D2D Yes 22 Nest 2 L2, L3, L4

D3C Yes 4 — 2 L2, L3

D3D Yes 14 Nest 2 L2, L3, L4

D4C Yes 35 Lemma 1 L15a*, L18

D4D Yes 58 Lemma 1 L2, L4, L15b*, L18
D5C No — — — | L21,L22

D5D No — — — | L21,L22

Table 11.4: Development results. 8 of 10 theorems were planned, 4 with the default

strategy. * = lemma considered first by rewriting.

ple, if we define the functions in theorem T4 as DS, the CS version of the definitions

of hal f and < are still required to ripple out wavefronts ‘generated’ by the definition

of +. We do not include these particular kind of CS lemmas in the reported results,

because, in theory, all the ones used here could be automatically generated from the

DS definitions by replacing type destructors with type constructors.

11.4 Analysis

In this section we assess to what extent the test set results support or refute our hy-

potheses. Recall that these were:

1. The induction strategy works as described, automatically generating induction
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Theorem | Plan | Time (sec) | Alt. Strategy | Spec. | Lemmas
T1C No — | — — | L5, L6a*, L7a
T2C Yes 1| — 2 L8
T3C Yes 10 | — 2 L2, L3, L4
T4C Yes 10 | — 2 L2, L3, L4
T5C No — | — — | L2,L3, 111, L13,L14
T6C Yes 55 | — 2
T7C Yes 26 | Lemma/Nest | 2 L1, L2, L3
T8C Yes 26 | Lemma/Nest 2 L2, L3
T9C Yes 7] — 1 L17
T10C Yes 7| — 2
T11C Yes 21 | — 2 L16, L19, L23
T12C Yes 23 | — 2 L8, L16, L19, L24
T13C Yes 30 | — 2 L16, L24
T14C No — | — —
T15C Yes 6 | Lemma 1 L28*
T16C Yes 4 | Limit 1 L25, L28, L31
T17C Yes 4 | Limit 1 L25, L27, L31
T18C No — | — —
T19C No — | — —

Table 11.5: Constructor style test results. 14 of 19 theorems were planned, 9 with the

default strategy. * = lemma considered first by rewriting.
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Theorem | Plan | Time (sec) | Alt. Strategy | Spec. | Lemmas
T1D No — | — — | L5, L6b*, L7b
T2D No — | — —
T3D Yes 15| — 2 L2, L3, L4, L9, L10
T4D Yes 16 | — 2 L2, L3, L4,L9, L10
T5D No — | — — | L2,L3,L12,1L13,L14
T6D Yes 159 | — 2
T7D Yes 41 | Nest 2 L2, L3, L4
T8D Yes 40 | Nest 2 L2, L3, L4
T9D Yes 10 | — 1 L17, L32
T10D Yes 15 | — 2
T11D Yes 114 | — 2 L16, L20, L23
T12D Yes 113 | — 2 L8, L16, L20, L24
T13D Yes 143 | — 2 L16, L24
T14D No — | — —
T15D | Yes 4 | Lemma 1 L30*
T16D Yes 5| — 1 L26, L30, L31
T17D Yes 5| — 1 L26, L29, L31
T18D No — | — —
T19D No — | — —

Table 11.6: Destructor style test results. 13 of 19 theorems were planned, 10 with the

default strategy. * = lemma considered first by rewriting.
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Lemma Statement

L1 X #0 — p(s(x)) = s(p(x))

L2 X+0=0

L3 X+5s(y) =s(x+Y)

L4 y #0—=Xx+y=s(x+p(y))
L5 U=XAV=Y—=U+V=X+Y
L6a X (Y+2)=(XxYy)+ (xx2)
L6b Xxy=((x—2)xy)+(yx2)
L7a (X+2)xy=(xxYy)+(yx2)
L7b XXy=(Xx(y—2z))+(xx2)
L8 X<y—x<s(y)

L9 hal f (x) <x

L10 hal f (s(x)) < x

L11 hal f((n+m)+m) =half(n)+m
L12 | (m+m) <n—half(n)=half((n—m)—m)+m
L13 quot(0,y) =y

L14 hal f (quot(s(0))) =0

Table 11.7: Arithmetic lemmas.



Chapter 11. Experimental Evaluation 199

Lemma Statement
L15a sum(h ::t,x) = sum(t,x) +h
L15b | = nil — sum(l,x) = sum(tail(1),x) + head(l)
L16 (I <>nil) =1
L17 (I<>m)<>n=I<>(m<>n)
L18 nil # 1 <> x::nil
L19 len(I <>x::m)=s(len(l <>m))
L20 m # nil — len(l <> m) = s(len(l <> tail(m)))
L21 y # 0 — last(oapp(x,y)) = last(y)
L22 bigger(x,smaller(y,l)) = smaller(bigger(x,1))
L23 len(evenelems(x :: 1)) <len(l)
L24 len(oddelems(x :: 1)) < s(len(l))
L25 rev(l <> x:nil) =x::rev(l)
L26 | # nil — rev(l) = last(l) :: rev(chop(l))
L27 foldright_tr(f,x,I <>y ::nil) = f(y,foldright_tr(f,x,1I))
L28 foldleft_tr(f,x,1 <>y ::nil) = f(foldleft_tr(f,x,1),y)
L29 | | #nil — foldright_tr(f,x,I) = f(last(l),foldleft_tr(f,x,chop(l)))
L30 | # nil — foldleft_tr(f,x,1) = f(foldleft_tr(f,x,chop(l)),last(l))
L31 X=UAY=V—Xoy=UoV
L32 head(l) :: tail(l) =1

Table 11.8: List and folding lemmas.
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rules to plan proofs for a range of theorems not solved by recursion analysis.

2. There are theorems the strategy proves using non-destructor induction that can-

not be proved by destructor-only lazy induction.
3. Theorems proved by lazy induction can also be proved by the strategy.

Overall the system planned 27 of the 38 test theorems, but only 19 of these were
with the default strategy, i.e. fully automatically. Recall that the default is different for
constructor and destructor style problems: constructor problems use the critic-based
strategy.

Evaluating the hypotheses involves assessing the strategy based on the performance
of its implementation in Dynamis. Hence we need to examine why the system failed
completely on 11 theorems, and required human intervention on a further 8.

We can classify these failures of the default strategies into six categories:

e Failure of the wellfoundedness proof (T1C/D).

Failure to generate missing cases (T5C).

Divergent applications of the speculation critic (T7C, T8C).

Lack of case splitting during rewriting (T7D, T8D).

Failure due to runtime errors (T15C/D, T16C, T17C).

The need for multiple step case/hypotheses (T14C/D, T18C/D, T19C/D).

Theorems T2D and T5D also failed, for which there is no clear explanation other

than the inadequacy of our strategy. We discuss the various categories of failure below.
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11.4.1 Non-wellfounded step cases

The default strategies successfully constructs the step case for theorems T1C and T1D.

If we give the system lemmas L6a and L7a this step case is the constructor style:
D(x) F  D(x+y)

If instead we use lemmas L6b and L7b we get the destructor style:
P(x—y) F DX

In both cases the step case is not wellfounded, as y may be zero. Consequently, the

estimation strategy produces the following unsolvable difference equivalent:

F y#0

Dynamis tries to apply rewriting, and the planning attempt fails.

This problem could be overcome by implementing the side condition critic pro-
posed in §6.5.5, which is not currently part of Dynamis’s wellfoundedness strategy.
The critic would respond to such unsolved difference equivalents by adding them to
the conditions on the step case. In the case of T1, the critic would have made the step

case wellfounded, and the theorem would have been planned successfully.

11.4.2 Failure to generate missing cases

For one theorem (T5C) planning failed at the exhaustive cases proof, after the follow-

ing a wellfounded step case had been generated:

y#0, d(x,y) = P((X+Yy)+Y,y)

The case strategy fails to find missing cases to complete the induction rule.
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11.4.3 Divergent speculation critiques

Theorems T7C and T8C are the only two examples to expose a weakness of the spec-
ulation critic: repeated applications can sometimes diverge. The theorems are very
similar, and essentially the same problem arises in both. We illustrate this with theo-
rem T7C.

The step case is blocked immediately after the the first speculative ripple, with the

following conclusion (meta-variables are shown as x, y etc. for simplicity):

s)| £0—  odd([s(x+y) ) < —odd(y+p([s()] )) (11.1)

The speculation critic is applied to unblock the ripple proof, and it succeeds following
the definition of odd. A wavefront is inserted above x’ +y and rippled inwards to
suggest an instantiation. As a result either x” or y is instantiated — the x’ branch fails,

S0y is chosen. The post-critic conclusion ripples to:

o) £0—  odd(x +y') — ~odd(|s(y + p([s(x)[ )| )

Rippling is blocked once again, and the speculation critic succeeds again with the
definition of odd, this time on the right-hand side. The critic instantiates the meta-

variable y’ and the post-critic conclusion ripples to:

so)| £0—  odd([s(¢+y")| ) < —odd(y”" + p([s(x)] ))

This goal is of the same form as the original blocked goal (11.1), and so the ripple
proof continues indefinitely, cycling through these two applications of the speculation
critic.

This problem was avoided by prioritising the lemma L3, which is then used for the
initial speculation instead of the definition of +. However, the proof still fails, because

of the case split problem described in the next section.
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11.4.4 No case splitting

Dynamis successfully constructs wellfounded step cases, and generates base cases for
theorems T7D and T8D, and theorems T7C and T8C with prioritised lemma L3 (dis-
cussed in the previous section). However, in all these examples it fails to plan the base

cases. The problematic base case goals are all of the form:
X#0— odd(x) < —odd(p(x)) (11.2)

Dynamis tries schematic induction. After the initial speculative ripple, the conclusion

is as follows:

s(s(x))| £0— odd(x) < -odd(p(s(s(x))] ))

This is blocked, as the wavefronts cannot be rippled past the term p(...), and weak

fertilisation is blocked because of the implication. No further progress can be made.
Interestingly, the standard AClam induction methods can solve this base case. The

key difference is that when a ripple proof fails without fertilisation, the goal is passed

directly to rewriting. This simplifies our blocked goal to:
odd(x") «» —odd(s(x')) (11.3)

This is easily proved by induction.

By allowing induction without fertilisation, AClam is essentially performing a case
split on (11.2), suggested by the definition of odd. Whether this is a sensible strategy
in general is questionable — if the abandoned induction cannot be simplified by rewrit-
ing, but if induction is applicable again, the strategy could diverge — but the ability to
apply case splits is clearly useful.

A safer approach in general would be to apply a case split during rewriting, pro-
vided each case can be reduced. For the goal (11.2) we could split over the definition

of p, and we would end up with the solvable subgoal (11.3).
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Dynamis can plan the theorems T7 and T8 with a strategy that uses AClam to per-
form nested inductions, taking advantage of the ability to case split that our implemen-

tation lacks.

11.4.5 AProlog errors

Theorems T16C and T17C both fail because of runtime errors. The following error

message is given in both cases:

Attenpting atomc critic speculation critic

Access to unmapped menory!

[ hore/ j ereny/ dynani s//bin/dynam s: line 90 1095 Aborted
$TEYJUS HOVE/ tjsim--solve "lclam” ${1:-dynani s}

This is clearly a memory problem with the underlying AProlog implementation, and
needs to be investigated further. The theorems are planned successfully without the
critic, using dynam s_| i n2.

The plan search for theorem T15 begins with a single speculative step using the
definition of foldleft_tr. In order to find a proof, the planner needs to backtrack over
this choice, and speculate with the lemma L28/L30 for a constructor/destructor style
induction. However, the initial search branch is never completed — a runtime memory
error occurs after about 15 minutes of search — and this backtrack never occurs. It is
not clear whether this search branch was divergent, or whether it would have bottomed-
out and allowed the backtrack. A plan is found if the lemma L28 or L30 is given
priority over the definitions.

Clues to what might happen without the runtime error can be found by looking at

the post-fertilisation goals produced during the search. The first such goal is:

(xoy)ofoldleft_tr(o,id,l) = xofoldleft_tr(o,idoy,l) (11.4)
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Dynamis performs a nested induction, again speculating with the definition of foldleft tr.

The post-fertilisation goal is:

(xoy) ofoldleftir (o, (id 0 z),I)

— xofoldleft tr(o, ((id oy) 02),1) (11.5)

The proof of this subgoal fails, but identical goals are produced repeatedly on back-
tracking — a process which accounts for the majority of the runtime. Eventually, the

system produces a different post-fertilsation goal for the nested induction:

((xoy) ofoldleftir(o, (idoz),l)) ow

= (xofoldleft_tr(o, ((idoy)oz),l)) ow (11.6)

We conjecture that as the subgoal (11.5) failed, the subgoal (11.6) will also fail, forcing
the system to backtrack over (11.4), and hence apply the successful speculation step.
However, we will need to address the memory error before we can establish if this is

actually what will happen.

11.4.6 Multiple step cases/hypotheses required

Recall that we did not expect a plan to be found for theorems T14, T18 and T19,
as they require multiple induction hypotheses and step cases. They were included to
see whether Dynamis made as much progress as could be expected under its current
restriction of a single step case/induction hypothesis.

The closest Dynamis gets to a proof plan for T14 with constructor style definitions
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is the following goal (with metavariables written as constants for simplicity):

Yy#EX  XFY,

perm(|delete(a,u) |,v) < perm(v,delete(a,u))
i

Fly e (x::m)Aperm(l,|x:: delete(y,m) l)

— |xe(y:l)Aperm(m,|y:: delete(x,) T)

Here Dynamis has failed to neutralise the context around delete on the left side. This
is most likely a deficiency in the design or implementation of the neutralisation algo-
rithm, and needs to be investigated further. If this had been done, the next stage of
the proof from [Protzen, 1995] involves generating and weak fertilising with two new
inductive hypotheses — one on each side of the iff — and continuing to ripple towards
the initial inductive hypothesis. Hence Dynamis has clearly made as much progress as

we can expect with its current single induction hypothesis restriction.

11.5 Conclusions of the Evaluation

Having looked at the reasons for the failure of the unassisted default strategy on 19 of
the 38 test theorems (with complete failure for 11), we can assess how many of these
failures can be attributed to our induction strategy, and how many to problems with its
implementation.

To summarise, the following the shortcomings were found with the implementa-

tion:
1. The proposed side condition critic is not implemented.

2. Case splits are not performed during rewriting.
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3. It can only generate a single step case with a single induction hypothesis.
4. Runtime memory errors occur.
5. Not all wavefronts that could be neutralised are removed.

The first three problems were known about before the evaluation, whereas (4) is an
unanticipated problem with Teyjus AProlog, and (5) is a deficiency in the implementa-
tion of neutralisation. These shortcomings account for 19 of the 18 failures.

The remaining 5 failures — T2D, T5C/D, T7C and T8C — can be attributed to
shortcomings of our induction strategy. Two of these examples have uncovered the
potential for divergent applications of the speculation critic.

The purpose of the evaluation was to provide evidence for or against our three
hypotheses. The first was that our induction strategy performed the task it was designed
to, i.e. prove theorems not solvable with recursion analysis. The evidence of the test
theorems supports this.

The second hypothesis was that our strategy proves theorems by non-destructor in-
duction that destructor-only lazy induction cannot prove. Considering the constructor
style examples, we have provided a collection of such theorems. It should be noted
that many of these could be proved by lazy induction, given that translating the defini-
tions to destructor style could be done automatically. However, this would not account
for the theorems T1C, T15C, T16C and T17C, where a lemma (e.g. L27) was used to
generate the constructor style induction. Lazy induction could not find these induc-
tions with the given lemma, but would require a different lemma, e.g. L29, involving
different functions, e.g. chop and last instead of <>. This was discussed in Chapter
3.

Furthermore, theorem T2 seems to have no satisfactory destructor style induction,
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and we cannot see how lazy induction could solve it, whereas the constructor style
proof was successful. Hence, the evidence of the test theorems supports the second
hypothesis, with the proviso that the lemmas supplied are a significant factor in the
success of our approach.

Considering the third hypothesis, T5D, T14D, T18D, T19D are the only theorems
cited as successes for lazy induction over recursion analysis in [Protzen, 1995]. None
were planned by Dynamis. We have accounted for the failure of all but T5D, but further
evaluation is required to verify whether our suggestions for overcoming these failures
actually work. Even so, it would be a very small set of examples on which to base a
comparison. The third hypothesis — that our strategy is strictly more successful than
lazy induction — is not supported by the evaluation. Ideally, a reimplementaion of lazy
induction in AClam would be used for a direct comparison over a larger problem set. It
should be noted that for T5D and T14D we could not reconstruct from [Protzen, 1995]
how the proofs were automatically found, and so we cannot account for why lazy

induction performs better than our system on these examples.



Chapter 12

Case Studies

In this chapter we provide a collection of examples of the Dynamis system in action,
constructing proof plans for theorems from Chapter 11. For clarity, the system traces
are abridged and interspersed with explanatory comments. The abridgement omits a
large amount of system output, but gives an accurate and readable presentation of the
system’s search for a proof plan.

We consider three examples which illustrate the techniques outlined in this thesis,

and the range of the Dynamis system:

1. T6C (see 812.2), a constructor style problem which requires multiple specula-

tions. Dynamis uses the speculation critic to justify the second speculative step.

2. T9D (see 812.3), a destructor style problem, for which recursion analysis chooses
the wrong induction variable, but Dynamis creates the correct one. This also il-
lustrates the use of creational rippling, where the conclusion is rewritten to match

wave fronts in the induction hypothesis.

3. T16C (see 8§12.4), a constructor style problem which requires an induction with

a non-trivial case structure.

209
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12.1 Presenting Dynamis Output

As mentioned above, a number of changes have been made to the system output to
make it shorter and more readable. This involved removing a large amount of AClam
trace messages (e.g. “Attempting... dynamis_crit”), plan information (e.g. the address
of the current node in plan tree) and some heuristic information (e.g. the wave mea-
sure of annotated goals). The layout of goals and formulae has also been tidied up.
Dynamis displays embeddings as wave annotation, forexample [[...\\...//]] ().

For clarity, this has been changed below to the standard rippling box-and-hole notation.

Renaming Variables

Another presentational change is the renaming of variables and meta-variables. AClam
displays variables as AProlog constants: <| c- 0- 1>, <l c- 0- 2> etc. We have renamed
these to more recognisable lowercase letters e.g. x, y etc.

More importantly, AClam displays meta-variables without consistent names — a
shortcoming of Teyjus AProlog. In other words, two occurrences the same meta-
variable may be displayed differently. Dynamis improves slightly on this by naming
consistently within formulae. It displays them as constants surrounded by curly brack-
ets e.g. {<l c-0-1>}. We have renamed meta-variables by hand with a unique name
for each meta-variable. Uppercase letters are used, e.g. A, B etc. If a meta-variable Ais
partially instantiated then the meta-variables in its instantiater will be named A", A"’
etc. As a consequence of this, it is not clear below what variables a meta-variable is

dependant on — but this is not essential to understanding the traces.
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Pretty Printing

There are also differences which should be noted between pretty printing in AClam
and Dynamis. Standard sequent goals (e.g. the root goal) are displayed by the original
AClam code. Other meta-level goals introduced in this thesis, such as the schematic
step case, are displayed using new Dynamis code. Dynamis tends to do more pretty
printing, in order to reduce the size of goals. For instance, it displays functions like

plus and oapp as + and <> in the examples below.

12.2 Case Study T6C: Speculation

Theorem T6 is stated as follows:
Vx,y,z:nat.even(x+y) Aeven(y+z) — even(x+z)

In test T6C, both even and + (sometimes displayed as plus) have constructor style
definitions, and no lemmas were provided to the system.

This problem needs multiple speculation steps, as two such steps with the definition
of plus are required, in order to create the two wave fronts that can be rippled by
the definition of even. Running Dynamis on this example illustrates the use of the
speculation critic, where the second speculation is applied as a patch to the definite

ripple method.

T6C: Initial Planning

We begin planning T6C with dynam s_crit, the default constructor style method.

Dynamis loads the necessary function and datatype definitions:

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, University of Edinburgh
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NOTE: this program uses the MRG patched version of Teyjus 1.0-b33.

Iclam:
dynamis_plan dynamis_crit evenptrans 1 constructor.

Functions: zero :: s :: plus :: even :: nil

Eval Lemmas: nil
Wave Lemmas: nil

Loading Eval Rules: idty :: s_functional :: neq_s_zero :: neq_zero_s ::
plusl :: plus2 :: evenl :: even2 :: even3 :: nil
Loading Wave Rules: s_functional :: plus2 :: even3 :: nil

Planning:
evenptrans

>>> forall x:nat forall y:nat forall z:nat
((even plus (x, y) /\ even plus (y, z)) -> even plus (X, z))

Expanding dynam s_crit to dynam s_mai n, schemati c_i nduction is then applied

to the top-level goal.
Method application: dynamis_crit
Method application: dynamis_main (mo_step_case spec_critic_ripple) wellfound_strat

case_strat (waterfall dynamis_crit)
Method application: schematic_induction ...

A conjunction of five subgoals is produced: 1) the schematic step case:
allGoal nat (x\ allGoal nat (y\ allGoal nat (z\

caseSchema

A

(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E + F)) /\ (even (F + G))) -> (even (E + 6))))))

2) the wellfounded step case goal:

** stepReduces

3) the exhaustive cases goal:

** allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal

Case: (trueP, u)

>>> (A /\ (U= E F 6))))))

4) the unknown cases:

** maybeCases

5) the wellfounded rule goal:

** wfGoal
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T6C: Step Case Plan

After splitting the conjunction and moving the goal quantification into the proof plan,

the step case goal is considered:

caseSchema

A

(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E + F)) /\ (even (F + G))) -> (even (E + G)))

A single speculative ripple is tried to start the proof off, succeeding with the definition
of plus. This creates two wave fronts in the conclusion, with the leftmost rippled out

by this step:

Method application: mo_step case spec_critic_ripple

Method application: embed_hypothesis

Method application: spec_critic_ripple

Method application: speculative_ripple plus2 (2 :: 1 :: 2 ::1::2 ::nil)

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s(E’+F))T ) /\ (even (F + G))) -> (even (| (s gﬁ)T + G)))

The rightmost wave front is now rippled out with the definition of plus (+):

Method application: patch_meth (definite_ripple plus2 (2 :: 2 :: 2 :: nil)) speculation_critic

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s(E’4fF))T ) /\ (even (F + G))) -> (even (s(E’+G))T )
Rippling is blocked, but the failure of defi nite_ri ppl e suggests the application of
specul ation_critic. The critic identifies missing wave fronts below the leftmost
wave front — if inserted into the goal they would allow the definition of even to be
applied. It inserts them, then attempts to ripple them inwards to find a suitable instan-

tiation. This is successful:
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Method application: patch_meth (definite_ripple _273629 _273643) speculation_critic
speculation_critic succeeded

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s (s(E’+F))l )) /\ (even (F + G))) -> (even (s (E” + G))))

Method application: ripple_in_and_speculate _
Method application: forwards_ripple plus2 (2 :: 2 :: 1 :: 2 ::1::2 ::nil)
(definite_ripple plus2 (2 :: 2 :: 1 :: 2 ::1::2::nil) 22 )

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s (| (s E) i F))) /\ (even (F + G))) -> (even (s (E* + G))))

Method application: speculate_wavefronts (definite_ripple plus2 (2 :: 2 :: 1 :: 2 ::1::2 ::nil) ::

(definite_ripple plus2 (2 :: 2 :: 1 :: 2 ::1::2 ::nil))

trueGoal!
Branch closed!

The speculation critic has found an instantiation and ripple patch that allows the defi-

nition of even to apply. It now applies this patch and the even ripple:

Method application: ripple_patch (definite_ripple plus2 (2 :: 2 :: 1 :: 2 :: 1 ::2 :: nil))
even3 (1 :: 2 ::1::2 ::nil) _

Method application: redo_embeddings

Method application: definite_ripple plus2 (2 :: 2 :: 1 ::2 ::1::2 ::nil)

Method application: definite_ripple evend (1 :: 2 :: 1 :: 2 :: nil)

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E*” + F)) /\ (even (F + G))) -> (even | (s (| (s EZ)T +G) [ )

A side effect of the speculation critic’s patch was to create another wave front on the

right-hand side, which is now rippled out in two steps:

Method application: patch_meth (definite_ripple plus2 (2 :: 2 :: 2 :: 2 :: nil)) speculation_critic

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E’” + F)) /\ (even (F + G))) -> (even | (s (s(E”—H}))T D))

)
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Method application: patch_meth (definite_ripple even3 (2 :: 2 :: nil)) speculation_critic

caseSchema

A

(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E*” + F)) /\ (even (F + G))) -> (even (E”” + G)))

Strong fertilisation completes the step case plan:

Method application: mo_fertilise
Method application: strong_fertilise

trueGoal!
Branch closed!

T6C: Wellfounded Step Case Plan

The planner returns to the four remaining goals:

stepReduces

*k

allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal

Case: (trueP, u)

>>>

(AN =(s(sE)) FBENN

maybeCases

wfGoal

The next to be planned is the wellfounded step case goal. Having determined the form
of the step case above, the const ruct W _goal s method is now applied to explicitly

construct its wellfoundedness goal, using the unknown wellfounded relation H:

stepReduces
Method application: wellfound_strat
Method application: construct_wf goals (const_disj (measure 3 _ :: measure 2 _ :: measure 1 _ :: nil) :: )

allGoal nat (x\ allGoal nat (y\ allGoal nat (z\
redGoal 1
>>> A ->H (E”7, (s (s E™)))

**k

redGoal 2
>>> A ->H (F, F)

redGoal 3
>>> A => H (6, G))))
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This three-part conjunction actually represents a disjunction, in that only one of the
three induction positions needs to be proved to show the step case is wellfounded.
However, in order to build up constraints on all the induction positions a proof of each
subgoal is attempted, with failed subgoals being ‘proved’ by the i gnore_position
method.

Considering the first goal, the estimation strategy is applied. This produces two
subgoals: the first states that some unknown difference equivalent | holds iff this in-
duction position reduces under an unknown measure J; the second states that difference

equivalent holds:

redGoal 1
>>> A ->H (E”", (s (s E™)))

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
I <> J(E”") < I((s (s E*7)))

>>> (trueP -> 1)

The plan of both subgoals is straightforward, instantiating the measure function to the

identity:

estGoal

I <->J(E"") < I((s (s E*7)))
Method application: lower_estimate

estGoal
1”7 <> id(E”*”) < id((s E*?))

Method application: lower_estimate

estGoal
1”7 <-> 1d(E””) < 1d(E*”)

Method application: trivial_estimate

trueGoal!
Branch closed!

>>> (trueP -> (trueP \/ (trueP \/ falseP)))
Method application: rewrite_equiv nil

trueGoal!
Branch closed!
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The other two wellfoundedness goals are unsolvable, but the system can ignore them

both as the first goal has been planned:

redGoal 2
>> A ->H (F, F)
*%x

redGoal 3
>>> A -> H (G, G)

Method application: ignore_position 2

trueGoal!
Branch closed!

Method application: ignore_position 3

trueGoal!
Branch closed!

This completes the step case wellfoundedness plan.

T6C: Exhaustive Cases Plan

Returning to the three remaining subgoals, the next goal to be planned is the exhaustive

cases goal:

allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal

Case: (trueP, u)

>>>*£A N\ (U= (s (sE7))F BN

maybeCases
**

wfGoal

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (trueP /\ (u = (s (s E’”)) F G))

First the redundant t r ueP is removed and the universal variable is split, in order to

separate the three elements of the tuple:

Method application: case_equiv (and3 :: nil)
Method application: case_induction (tuple_split 3)
Method application: case_equiv (tuple_eq_rec :: tuple_eq_rec :: tuple_eq_base :: nil)

caseGoal
Case: (trueP, pqgr)
>>((p=((GE)) N W=F/N(r=6))
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The case strategy goes through a waterfall of methods, eventually trying structural

induction:

Method application: case_induction nat_struct

caseGoal
Case: (trueP, zero g r)
>>> ((zero = (s (SE?))) /A ((@ =F) /\ (r =6)))

allGoal nat (V\

caseGoal

Case: (trueP, (sv) qr)
(v=(GE)D) N Wa=F) /N (r=06))

>>> ((| (s !)T =G GED) N =R /N\(r=6))

The base case (trueP, zero g r)}isreduced tofal seP, and included as a missing

case:

caseGoal
Case: (trueP, zero q r)

>>> ((zero = (s (S E'"))) /A ((@ = F) N\ (r =6)))

Method application: remove_case_hyps
Method application: case_equiv (neq_zero_s :: andl :: nil)

caseGoal
Case: (trueP, zero q r)
>>> falseP

Method application: missing_case (case_abs nat (x\ case_abs nat (y\
case trueP (_ x y) (tuple (zero :: y :: x :: nil)))))

trueGoal!
Branch closed!

The step case is simplified so that one of the two constructors is removed. Induction is

applied again to remove the remaining constructor:

Method application: remove_case_hyps
Method application: case_equiv (s_functional :: nil)

caseGoal
Case: (trueP, (s V) qr)
>> ((v=GED))NW=F/\ (r=06)))

Method application: case_induction nat_struct

caseGoal
Case: (trueP, (s zero) qr)
>>> ((zero = (s E*7)) /A ((@ = F) /\ (r = 6)))

allGoal nat (w\
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caseGoal
Case: (trueP, (s (sw)) gr)
((Ww=(E")NDNW=F/N(=06)))

>>> ((| (s w) | - GENN@=F/N(=06))

Again the base case is false, and this time the case (trueP, (s zero) q r) isadded

as a missing case:

caseGoal
Case: (trueP, (s zero) qr)

>>> ((zero = (s E*?)) /\ ((g = F) /\ (r = G)))

Method application: remove_case_hyps
Method application: case_equiv (neg_zero_s :: andl :: nil)

caseGoal
Case: (trueP, (s zero) q r)
>>> falseP

Method application:
missing_case (case_abs nat (x\ case_abs nat (y\ case trueP (_ x y) (tuple (app s zero :: y :: x :: nil)))))

trueGoal!
Branch closed!

The step case is trivial:

caseGoal

Case: (trueP, (s (sw)) pr)

(= (s E”%) N\ ((p=F) /N (r=6))

>>> (( =G E”N N W =F) /N (r=0)))

trueGoal!
Branch closed!

T6C: Base Case Plans

Dynamis now explicitly constructs the missing cases identified above:

maybeCases ** wfGoal
maybeCases
Method application: construct_cases

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (0, x) /\ even plus (X, y)) -> even plus (0, ¥))))
**k

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (s 0, x) /\ even plus (x, y)) -> even plus (s 0, ¥))))
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The first base case is simplified by rewriting, then solved by a nested induction, which
we omit here:

Method application: waterfall dynamis_crit

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (plusl :: plusl :: nil)

>>> ((even x /\ even plus (x, y)) -> even y)

Method application: normalise all_e_nf

Method application: dynamis_crit

Method application: dynamis_main (mo_step_case spec_critic_ripple) wellfound_strat
case_strat (waterfall dynamis_crit)

[---]

Branch closed!

The second base case is planned in a similar way:

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (s 0, x) /\ even plus (x, y)) -> even plus (s 0, ¥))))

Method application: waterfall dynamis_crit

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (plus2 :: plusl :: plus2 :: plusl :: nil)

>>> ((even s x /\ even plus (x, y)) -> even s y)

Method application: normalise all_e_nf

Method application: dynamis_crit

Method application: dynamis_main (mo_step_case spec_critic_ripple) wellfound_strat
case_strat (waterfall dynamis_crit)

[---]

Branch closed!

T6C: Final Plan

As a final step, the system plans the meta-level goal wf Goal that represents the well-
foundedness of the rule. The wel | f ounded method solves the constraints on the rule’s

relation, and instantiates it accordingly:

wfGoal
Method application: wellfounded (app select_induce (tuple (app s zero :: id :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded
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case.i nduction | |
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all _e.nf al | _e_nf

renpve. case _hyps* renove. case hyps* é é
(2) @)

case- eqm v case equi v
m ssi n‘g,case case.i nlducti on
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(case trueP (s 0, y, z))

Figure 12.1: Proof plan for T6C. (2) and (3) indicate the nested inductions for the sub-
goals even(x) Aeven(x+Yy) — even(y) and even(s(x)) Aeven(x+Yy) — even(s(y)). We

omit these subplans. * indicates a purely meta-level plan step.
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The proof plan for T6C is shown in Figure 12.1, with the subplans for the two nested
inductions omitted. The plan has 129 nodes, including those subplans. Dynamis cre-

ated and validated the following induction rule:
= @(0,y,2)
= @(s(0),y,2)

®(x,y,2) = D(s(s(x)),Y,2)
Vx:nat.Vy:nat.vz:nat.®(x,y, z)

12.3 Case Study T9D: Destructor Style

In this section we give an example of Dynamis planning a destructor style problem.

Theorem T9 is stated as follows:
VI, m:olist(nat). rotate(olength(l),l <>m)=m <> |

For test T9D the functions rotate, olength and <> (sometimes display oapp) have

destructor style definitions. The following lemmas were provided:

(xX<>y)<>z = x<>(y<>2) (L17)
head(l) :: tail(l) = | (L32)
rotate(s(n),h::t) = rotate(n,t <> (h::nil))
(ht)y<>1 = huz(t<>l)
The last two lemmas are constructor style definitions required for the destructor style

proof.

T9D: Inital Planning

When planning is initiated, Dynamis first identifies the defining functions and lem-

mas pertaining to the theorem, then loads the appropriate symbolic evaluation and
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wave rules into the AClam database. It then begins planning with the top-level method

dynami s_| i n, the default method for destructor style problems.

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, University of Edinburgh
NOTE: this program uses the MRG patched version of Teyjus 1.0-b33.

Iclam:
dynamis_plan dynamis_liml gen_rotlen 1 destructor.

Functions: onil :: ocons :: tail :: zero :: head :: oapp :: s :: olength :: p :: rotate :: nil

Eval Lemmas: def rotate 3 :: oapp2 :: ass_app :: consl :: nil
Wave Lemmas: def rotate 3 :: oapp2 :: ass_app :: consl :: nil

Loading Eval Rules: idty :: cons_functional :: neq_nil_cons :: neq_cons_nil :: taill :: tail2 ::
headl :: head2 :: oappl :: s_functional :: neq_s_zero :: neg_zero_s :: olengthl :: pl :: p2 ::
def rotate 1 :: def rotate 2 :: def rotate 3 :: oapp2 :: ass_app :: consl :: nil

Loading Wave Rules: cons_functional :: tail2 :: head2 :: oapp3 :: s_functional :: olength3 ::
p2 :: def rotate 4 :: def rotate 3 :: oapp2 :: ass_app :: consl :: nil

Planning:
gen_rotlen
>>> forall l:olist nat forall m:olist nat (rotate (olength 1, oapp (I, m)) = oapp (m, 1))

Dynamis expands the definition of dynam s_| i mL, which gives dynami s _nai n param-
eterised by four methods. This in turn is expanded, and schemati ¢_i nduction is

applied to give a conjunction of five goals.

Method application: dynamis_liml

Method application: dynamis_main (mo_step_case (n_spec_ripples 1)) wellfound_strat
case_strat (waterfall (dynamis_lim 1))

Method application: schematic_induction ...

allGoal olist nat (I\ allGoal olist nat (m\
caseSchema

A

((rotate (olength B) (B <> C)) = (C <> B))
>>>

((rotate (olength D) (D <> E)) = (E <> D))))

stepReduces
**
allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (I\ existsGoal (m\
caseGoal
Case: (trueP, u)

>>> (AN (u= DB

**k

maybeCases
*x

wfGoal
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T9D: Step Case Plan

After splitting the goal conjunction and moving the goal quantification into the plan,

the first goal is the schematic step case:

caseSchema

A

((rotate (olength B) (B <> C)) = (C <> B))

>>> ((rotate (olength D) (D <> E)) = (E <> D))

Planning the step case proceeds by embedding the induction hypothesis into the con-
clusion, and applying a single speculative ripple step with the definition of olength —
only one such step is allowed by the step case method used here. This step instantiates
the induction hypothesis, creating three wavefronts in this hypothesis, one of which is
neutralised immediately. The step produces two subgoals, the first of which is a side

condition.

Method application: mo_step case (n_spec_ripples 1)

Method application: embed_hypothesis

Method application: n_spec_ripples 1

Method application: speculative_ripple olength3 (1 :: 2 :: 1 :: 2 :: nil)

sideCond

A

>>> (neg (D = onil))
**k

caseSchema
A

((rotate (olength (tail B*)) (| (tail B')| <> C)) = (C <> |(tail B')|))

>>> ((rotate | (s (olength (tail D)) ‘T (© <> E)) = (E <> D))

Dynamis first plans the side condition by applying the si npl i fy _si decond method.
To discharge it the method assumes it as a condition on the step case, by instantiating

Ato((neg (D=onil)) /\ A):
sideCond

A

>>> (neg (D = onil))

Method application: simplify_sidecond assume_cond

trueGoal!
Branch closed!



Chapter 12. Case Studies 225

Returning to the main step case goal, three ripple steps are applied. First, a creational
ripple with the definition of oapp (<>) which neutralises one of the two remaining

hypothesis wavefronts:

Method application: definite_rippling
Method application: definite_ripple oapp3 (2 :: 2 :: 1 :: 2 :: nil)

caseSchema
((neg (D = onil)) /\ A%)

((rotate (olength (tail B”)) ((tail B*) <> C)) = (C <> |(tail B')|))

>>> ((rotate | (s (olength (tail D))) ‘T (ocons (head D) ((tail D) <>E)) ‘T ) = (E<>D))

Next a ripple with the definition of rotate:
Method application: definite_ripple (def rotate 3) (1 :: 2 :: nil)

caseSchema
((neg (D = onil)) /\ A?)

((rotate (olength (tail B”)) ((tail B*) <> C)) = (C <> |(tailB')|))

>>> ((rotate (olength (tail D)) |( ((tail D) <>E) <> (ocons (head D)onil))r ) = (E<>D))

And finally an inwards ripple with the associativity of oapp (<>):
Method application: definite_ripple ass_app (2 :: 2 :: 1 :: 2 :: nil)

caseSchema
((neg (D = onil)) /A A%)

((rotate (olength (tail B)) ((tail B*) <> C)) = (C <> |(tail B) | ))

>>> ((rotate (olength (tail D)) ((tail D) <> ‘(E‘<:>(ocons(head.D)onil))F )) = (E <> D))

Rippling is now blocked, and weak fertilisation is applied:
Method application: mo_fertilise

Method application: weak fertilise 0

caseSchema

((neg (D = onil)) /\ A?)

>>> (((E <> (ocons (head D) onil)) <> (tail D)) = (E <> D))

Method application: replace_metavariables

>>> forall a:olist nat forall b:olist nat
(oapp (oapp (a, ocons (head b, onil)), tail b) = oapp (a, b))
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Rewriting with the associativity of oapp and function and datatype definitions com-

pletes the step case plan:

Method application: waterfall (dynamis_lim 1)

Method application: rewrite

Method application: normalise all_i_nf

>>> (oapp (oapp (a, ocons (head b, onil)), tail b) = oapp (a, b))

Method application: rewrite_equiv (ass_app :: oapp2 :: oappl :: consl :: idty :: nil)

trueGoal!
Branch closed!

T9D: Wellfounded Step Case Plan

Dynamis now returns to the four remaining induction subgoals. Notice that the exhaus-
tive cases subgoal has become instantiated with the condition ((neg (D = onil))

I\ A") by the step case planning.

stepReduces
*%*

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\

caseGoal

Case: (trueP, u)

>>> (((neg (D = onil)) /A A”) /\ (u= D E)))))
maybeCases

wfGoal

After splitting the goal conjunction, the system tries to plan the wellfoundedness goal.
The construct wf _goal s transforms the dummy meta-level goal st epReduces into
the wellfoundedness goals for the step case that has just been found. There are two

such subgoals — one for each universal variable in the original conjecture:

stepReduces

Method application: wellfound_strat
Method application: construct_wf goals (const_disj (measure 2 _ :: measure 1 _ :: nil) :: )

allGoal olist nat (x\ allGoal olist nat (y\

redGoal 1

>>> ((neg (D = onil)) /\ A”) -> F ((tail D), D)
**k

redGoal 2
>>> ((neg (D = onil)) /\ A”) -> F ((E <> (ocons (head D) onil)), E)))
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Selecting the first wellfoundedness goal, Dynamis applies the estimation strategy. Ini-
tially, this gives a conjunction of subgoals: an estimation goal which states that some
unknown difference equivalent G holds iff the induction terms reduce under some un-
known measure H; and a goal that states the step case conditions imply this difference

equivalent.
redGoal 1
>>>

((neg (D = onil)) /\ A”) -> F ((tail D), D)

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
G <-> H((tail D)) < H(D)
*x

>>> ((C (D = onil) /\ trueP) -> G)

This goal is planned by estimating the list destructor t ai | , which instantiates the mea-

sure to ol engt h:

estGoal
G <-> H((tail D)) < H(D)

Method application: upper_estimate

estGoal
G” <-> olength(D) < olength(D)

Method application: trivial_estimate

trueGoal!
Branch closed!

Moving on to the next subgoal, we see the difference equivalent has been instantiated
by the estimation planning. Replacing the meta-variables with universal constants, the

goal is passed to r ewr i t e, which discharges it with a tautology checker:
>>> ((C (O = onil) /\ trueP) -> (T (D = onil) \/ falseP))

Method application: abstract metavars

>>> ((C (z = onil) /\ trueP) -> (T (z = onil) \/ falseP))

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv nil

trueGoal!
Branch closed!
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The step case’s second wellfoundedness goal arises from an induction position that

was used to sink a wavefront. As before, Dynamis applies the estimation strategy:

redGoal 2
>>> ((neg (D = onil)) /\ A”) -> F (E <> (ocons (head D) onil), E)

Method application: estimation_strat
Method application: begin_estimation 2

estGoal
I <-> J((E <> (ocons (head D) onil))) < J(E)

>>> ((C (D = onil) /\ trueP) > 1)

The estimation plan fails, as ocons cannot be upper estimated using any measure func-
tion. On backtracking the i gnor e _posi ti on method is applied instead, completing the

step case wellfoundedness plan:

estGoal
I <-> J((E <> (ocons (head D) onil))) < J(E)

Method application: ignore_position 2

trueGoal!
Branch closed!

T9D: Exhaustive Cases Plan

The system now considers the two remaining subgoals from the original five goal con-
junction:

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\

caseGoal

Case: (trueP, u)

>>> (((neg (D = onil)) N\ A”) /\ (u= D E)))))

maybeCases

*k

wfGoal

Splitting the conjunction, the first goal is the exhaustive cases goal. The case strategy
is applied. The set _condi ti ons method instantiates A’ , the remaining meta-variable

part of the step case condition, to t r ueP:
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allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\

caseGoal

Case: (trueP, u)

>>> (((neg (D = onil)) /A A’) /A (u = D E)))))

Method application: case_strat
Method application: set_conditions

caseGoal

Case: (trueP, u)
>>> (((neg (D = onil)) /\ trueP) /\ (u = D E))

After removing the redundant trueP,(case_i nduction (tuplesplit 2)) is ap-
plied to the universal variable u. This “induction’ is actually a case split which allows

the tuple to be broken up into individual terms:

Method application: case_equiv (and4 :: nil)
Method application: case_induction (tuple_split 2)
Method application: case_equiv (tuple_eq_rec :: tuple_eq_base :: nil)

caseGoal
Case: (trueP, p q)
>>> ((neg (D = onil)) /\ ((p = D) /\ (q = E)))

The system goes through the case strat waterfall of methods, eventually succeed-
ing with exi sts_casesplit. This constructs a disjunct for each of the two possible

instantiations of the meta-variable D. Simplification then removes the first disjunct:

Method application: exists_casesplit list_struct

caseGoal
Case: (trueP, p q)

>>> (((neg (onil = onil)) /\ ((p = onil) /\ (q = E)))
\/

((neg ((ocons K L) = onil)) /\ ((p = (ocons K L)) /\ (q = E))))
Method application: case_equiv (idty :: negl :: andl :: or3 :: neqg_cons_nil :: neg2 :: and3 :: nil)
caseGoal

Case: (trueP, p q)
>>> ((p = (ocons K L)) /\ (g = E))

The system goes through the method waterfall again, this time succeeding with struc-

tural induction on p:

Method application: case_induction list_struct

caseGoal
Case: (trueP, onil q)
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>>> ((onil = (ocons K L)) /\ (q = E))

allGoal nat (v\ allGoal olist nat (w\
caseGoal

Case: (trueP, (ocons v w) Q)

((w = (ocons K L)) /\ (g = E))

>>> ((| (ocons v w)| = (ocons K L)) /\ (q = E))))

In the base case, rewriting reduces the conclusion to fal seP. The mi ssi ng_case
method adds the (case trueP _ (tuple [onil, _])) to the list of missing cases,
completing the plan branch:

caseGoal
Case: (trueP, onil q)
>>> ((onil = (ocons K L)) /\ (q = E))

Method application: remove_case_hyps
Method application: case_equiv (neg_nil_cons :: andl :: nil)

caseGoal
Case: (trueP, onil q)
>>> falseP

Method application: missing_case (case_abs (olist nat) (wl\ case trueP (_ wl) (tuple (onil :: wl :: nil))))

trueGoal!
Branch closed!

Rippling fails in the step case, but simplification completes the plan branch:

allGoal nat (v\ allGoal olist nat (w\

caseGoal

Case: (trueP, (ocons v w) Q)

((w = (ocons K L)) /\ (q = E))

>>> ((| (ocons v w) | = (ocons K L)) /\ (q = E)))

Method application: remove_case_hyps
Method application: case_equiv (cons_functional :: solve_eq :: nil)

caseGoal
Case: (trueP, (ocons v w) q)
>>> trueP

Method application: trivial_case

trueGoal!
Branch closed!
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T9D: Base Case Plan

There are now only two subgoals remaining: the first representing the missing cases of
the induction, and the second that the rule is wellfounded. For the first goal, the missing

base case determined by the exhaustive cases plan above is explicitly constructed:
maybeCases ** wfGoal

maybeCases

Method application: construct_cases

allGoal olist nat (I\
>>> (rotate (olength onil, oapp (onil, 1)) = oapp (I, onil)))

The goal is passed to the rewriting/generalisation/induction waterfall, where it is sim-

plified by rewriting:

Method application: waterfall (dynamis_lim 1)

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (olengthl :: def rotate 1 :: oappl :: nil)

>>> (I = oapp (I, onil))

The waterfall now applies a nested induction using the dynam s _| i mmethod. We omit

the induction here, but it succeeds in completing the base case plan:
Method application: normalise all_e_nf
>>> forall l:olist nat (1 = oapp (I, onil))

Method application: dynamis_lim 1

Method application: dynamis_main (mo_step_case (n_spec_ripples 1)) wellfound_strat
case_strat (waterfall (dynamis_lim 1))

[---1

Branch closed!

T9D: Final Plan

The last remaining goal represents the wellfoundedness of the entire induction rule.
The wel | f ounded method discharges this by solving the wellfoundedness constraints
built up during planning. This instantiates the wellfounded relation to one induced by

measuring the first induction term by olength. The proof plan for T9D is complete:
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schematic_induction

embed_hypothesis*
|

speculative_ripple olength3

simplify_sidecond
assume_cond

definite_ripple
oapp3

|
definite_ripple
(def rotate 3)

|
definite_ripple
ass_app

[
weak_fertilise 0
|
replace_metavariables*

normalise
all_i.nf

rewrite_equiv

set_conditions™
case_equiv

case_induction
(tuple_split 2)
|

case_equiv

|
exists_casesplit
list_struct

case_equiv

case_induction
list_struct

remove_case_hyps*

case_equiv

missing_case
(case trueP (onil, m))

case_equiv

and
construct_wf_goals ( )

begin_estimation 1

upper_estimate

ignore_position 2*

|
trivial _estimate

|
abstract_metavars*

normalise
all_i_nf

rewrite_equiv

( 1) and

and

construct_cases*  wellfounded*

normalise
all_inf

rewrite_equiv

normalise
all_e.nf

(2)

remove_case_hyps*

trivial case

Figure 12.2: Proof plan for T9D. (2) indicates the nested induction for the subgoal onil =

| <> onil. We omit this subplan. * indicates a purely meta-level plan step.
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wfGoal
Method application: wellfounded (app select_induce (tuple (app s zero :: olength :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

The proof plan for T9D is shown in Figure 12.2, with the subplan for the nested induc-
tion in the base case omitted. Altogether, the plan has 67 nodes. Dynamis created and

validated the following induction rule:

= ®(nil,m)

| # nil, ®(tail(l), (m <> (head(l) :: nil))) F &d(I,m)
VI: list(nat).vm: list(nat).®(l, m)

12.4 Case Study T16C: Case Structure

We now look at a theorem which illustrates the creation of a non-trivial case structure

for an induction rule. Theorem T16 is as follows:
Vl:olist(nat). foldleft_tr(o,el,l) = foldleft(o,el,orev(l))

The system was provided with the following lemmas:

rev(l <>x:nil) = x:rev(l) (L25)
foldright_tr(f,x,I <>y:nil) = f(yfoldright_tr(f,x,l)) (L27)
X=UAYy=V — Xoy=uUoV (L31)
The induction is motivated by the either of the first two lemmas.
We use the top-level method dynami s _| i i, as the default constructor style method
dynam s_crit causes a memory error with this example because of an error in the

underlying implementation of AProlog (see 811.4.5).
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T16C: Inital Planning

Dynamis begins by loading the appropriate functions and lemmas:

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, University of Edinburgh
NOTE: this program uses the MRG patched version of Teyjus 1.0-b33.

Iclam:
dynamis_plan dynamis_liml foldleft_rev 1 constructor.

Functions: onil :: ocons :: oapp :: orev :: foldleft :: ell :: opl :: foldleft_tr :: nil

Eval Lemmas: foldltr_last :: rev_last :: oappl :: oapp2 :: nil
Wave Lemmas: foldltr_last :: rev_last :: oapp2 :: opl_functional :: nil

Loading Eval Rules: idty :: cons_functional :: neq_nil_cons :: neg_cons_nil :: oappl :: oapp2 ::
orevl :: orev2 :: foldleftl :: foldleft2 :: foldleft_trl :: foldleft_tr2 :: foldltr_last ::
rev_last :: oappl :: oapp2 :: nil

Loading Wave Rules: cons_functional :: oapp2 :: orev2 :: foldleft2 :: foldleft_tr2 ::
foldltr_last :: rev_last :: oapp2 :: opl_functional :: nil

Planning:
foldleft_rev
>>> forall I:olist nat (foldleft_tr (opl, ell, I) = foldleft (opl, ell, orev I))

The top-level method is expanded to dynam s_mai n, and schemati c_i nducti on is

applied, giving the usual five goal conjunction:

Method application: dynamis_liml

Method application: dynamis_main (mo_step_case (n_spec_ripples 1)) wellfound_strat
case_strat (waterfall (dynamis_lim 1))

Method application: schematic_induction ...

allGoal olist nat (I\

caseSchema

A

((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

>>> ((foldleft_tr opl ell C) = (foldleft opl ell (orev C))))

stepReduces

*k

allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\
caseGoal
Case: (trueP, <lc-0-2>)
>>> (A/\ (u=0))))
*%

maybeCases
**

wfGoal

T16C: Step Case Plan

The step case begins with a speculative ripple with the definition of foldright _tr:
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allGoal olist nat (I\

caseSchema

A

((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

>>> ((foldleft_tr opl ell C) = (foldleft opl ell (orev C))))

Method application: mo_step case (n_spec_ripples 1)

Method application: embed_hypothesis

Method application: n_spec_ripples 1

Method application: speculative_ripple foldleft_tr2 (1 :: 2 :: nil)

caseSchema

A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

i U
>>> ((foldright_tr opl | (opl €’ el1)| C*”) = (foldleft opl ell (orev |(ocons C' C”)| )))

The speculative step on the left creates a wave front on the right which is now rippled

out with the definition of orev:

Method application: definite_rippling
Method application: definite_ripple orev2 (3 :: 2 :: 2 :: 2 :: nil)

caseSchema
A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

1 i
>>> ((foldright_tr opl | (opl C' el1)| C*”) = (foldleft opl ell | ((orev C”) <> (ocons C’ onil))| ))

However, rippling is now completely blocked. The speculation critic is not being used
in this example because of AProlog problems (see above), so rippling just fails. Fer-
tilisation also fails, and Dynamis must backtrack over the initial speculative ripple. It

tries again, this time with lemma (L27) instead of a function definition:

Method application: mo_fertilise

Attempting. ..

strong_fertilise

Attempting. ..

weak_fertilise _

Attempting...

strong_fertilise_prop

backtracking over

mo_fertilise

backtracking over

definite_ripple orev2 (3 :: 2 :: 2 :: 2 :: nil)
backtracking over

definite_rippling

backtracking over

speculative_ripple foldleft_tr2 (1 :: 2 :: nil)
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Method application: speculative_ripple foldltr_last (1 :: 2 :: nil)

caseSchema
A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

1 1
>>> (| (op1 ¢ (foldright_tr opl el1 ¢'))| = (foldleft opl ell (orev ‘(c_’ <> (ocons ¢” onil))‘ »)

Again, the speculative ripple on the left creates a wave front on the right. This time the

wave front is rippled out with the lemma (L25), and then with the definition of foldleft:

Method application: definite_rippling
Method application: definite_ripple rev_last (3 :: 2 :: 2 :: 2 :: nil)

caseSchema
A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

i i
>>> (| (op1 C” (foldright_tr opl ell C'))| = (foldleft opl ell | (ocons C” (orev C'))| ))

Method application: definite_ripple foldleft2 (2 :: 2 :: nil)

caseSchema
A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

1 1
>>> (| (op1 C” (foldright_tr opl ell c@)‘ = | (op1 C" (foldleft opl ell (orev C')))| )

The wave fronts on both sides are rippled out over the equality, allowing strong fertili-

sation to be applied. Rewriting completes the step case plan:
Method application: definite_ripple opl_functional nil
caseSchema

A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

I
>>> | ((¢"=¢") /\ ((foldright_tr opl ell C') = (foldleft opl ell (orev C'))))

Method application: mo_fertilise
Method application: strong_fertilise_prop

caseSchema
A
>>> ((C*? = C””) /\ trueP)

Method application: replace_metavariables

Method application: waterfall (dynamis_lim 1)

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (and4 :: idty :: nil)

trueGoal!
Branch closed!
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T16C: Wellfounded Step Case Plan

Dynamis now considers the four remaining induction subgoals, starting with the step

case wellfoundedness goal. First, the goal is constructed explicitly:

stepReduces

*k

allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\

caseGoal

Case: (trueP, u)

>>> (A /\ (u = (C” <> (ocons C*” onil))))))

**
maybeCases

**k
wfGoal
stepReduces

Method application: wellfound_strat
Method application: construct_wf goals (const_disj (measure 1 _ :: nil) :: )

allGoal olist nat (x\

redGoal 1
>>> A -> D (C*, (C* <> (ocons C*” onil))))

The estimation strategy is applied, producing two subgoals: the first stating that un-
known difference equivalent E holds iff the induction terms reduce under some un-

known measure function F; the second that E is true:

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
E <-> F(C”) < F((C” <> (ocons C*” onil)))
*x

>>> (trueP -> E)

Considering the first goal, the lower estimation method is applied — it estimates the
first argument of the oapp (<>) function from the step case conclusion, instantiating

the measure function to olength:

estGoal
E <-> F(C*) < F((C* <> (ocons C** onil)))

Method application: lower_estimate

estGoal
E” <-> olength(C”) < olength(C*)



Chapter 12. Case Studies 238

Method application: trivial_estimate

trueGoal!
Branch closed!

The estimation of the first argument of oapp above had the side effect of instantiating
the difference equivalent. The system now plans its rewriting proof, completing the

wellfoundedness proof for the step case:

>>> (trueP -> (T (ocons (C*”, onil) = onil) \/ falseP))

Method application: abstract metavars

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (imp3 :: ord :: neg_cons_nil :: nil)

trueGoal!
Branch closed!

T16C: Exhaustive Cases Plan

The exhaustive cases goal comes next. The goal is non-trivial, as it contains the defined

function oapp (<>), not just datatype constructors:
allGoal tuple_type (olist nat :: nil) (u\

existsGoal (x\

caseGoal

Case: (trueP, u)

>>> (A /\ (u = (C” <> (ocons C”” onil))))))

maybeCases

wfGoal

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (trueP /\ (u = (C* <> (ocons C*” onil))))

Even though there is only a single term being considered here, and not a tuple of terms,
there is still a tuple ‘wrapper’ around (C <> (ocons C ' onil)) inthe underlying
syntax. This is removed by the case_i nduct i on method (rather confusingly, the gen-
erality of the method means we label the step as an induction without any inductive

hypotheses and with only one case!):
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Method application: case_equiv (and3 :: nil)
Method application: case_induction (tuple_split 1)
Method application: case_equiv (tuple_eq_base :: nil)

caseGoal
Case: (trueP, p)
>>> (p = (C* <> (ocons C*” onil)))

Moving on, the case strategy goes through a waterfall of methods, eventually applying

structural list induction to v:

Method application: case_induction list_struct

caseGoal

Case: (trueP, onil)

>>> (onil = (C” <> (ocons C*” onil)))
*%

allGoal nat (v\ allGoal olist nat (wW\

caseGoal

Case: (trueP, (ocons v w))

(w = (C* <> (ocons C*” onil)))

>>> (| (ocons v w) ' = (C* <> (ocons C*” onil)))))

In the base case, an existential case split is applied to the first argument of oapp (<>),

to allow its definition to be applied:

caseGoal
Case: (trueP, onil)
>>>

(onil = (C” <> (ocons C*” onil)))
Method application: exists_casesplit list_struct
caseGoal

Case: (trueP, onil)
>>> ((onil = (onil <> (ocons C*” onil))) \/ (onil = ((ocons G H) <> (ocons C”” onil))))

Rewriting reduces both disjuncts to f al seP, and the base case is added to the list of

missing cases:

Method application: remove_case_hyps
Method application: case_equiv (oappl :: neqg_nil_cons :: or3 :: oapp2 :: neq_nil_cons :: nil)

caseGoal
Case: (trueP, onil)
>>> falseP

Method application: missing_case (case trueP _ (tuple (onil :: nil)))

trueGoal!
Branch closed!
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The step case also begins with an existential case split motivated by the definition of

oapp (<>). The method reembeds the inductive hypothesis in the conclusion:

allGoal nat (v\ allGoal olist nat (w\
caseGoal

Case: (trueP, (ocons v w))

(w = (C* <> (ocons C*” onil)))

1
>>> (| (ocons vw)| = (C* <> (ocons C*” onil)))))
Method application: exists_casesplit list_struct
caseGoal

Case: (trueP, (ocons v w))
(w = (C* <> (ocons C”” onil)))

>>> | (((ocons v w) = (onil <> (ocons C” onil))) \/ (| (ocons v w) ’T

= (‘ (ocons I J)

1

<> (ocons C” onil))))

Rippling is tried before simplification, and succeeds in fully rippling out the wave

fronts:

Method application: case_ripple oapp2

caseGoal
Case: (trueP, (ocons v w))
(w = (C* <> (ocons C’” onil)))

>>> | (((ocons v w) = (onil <> (ocons C” onil))) \/ (| (ocons v w)

(ocons I (J <> (ocons C” onil)))

;
)

Method application: case_ripple cons_functional

caseGoal
Case: (trueP, (ocons v w))
(w = (C* <> (ocons C*” onil)))

>>> | (((ocons v w) = (onil <> (ocons C” onil))) \/ |((v=1I) /\ (w=(J<> (ocons C” onil)))) ‘T )

Fertilisation is now applied, which removes the defined function oapp (<>) from the

goal. Simplification can now complete the plan:

Method application: case_fertilisation
Method application: remove_case_hyps

caseGoal
Case: (trueP, (ocons v w))
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>>> (((ocons v w) = (onil <> (ocons C*” onil))) \V ((v = 1) /\ trueP))
Method application: case equiv (and4 :: solve_eq :: or2 :: nil)
caseGoal

Case: (trueP, (ocons v w))

>>> trueP

Method application: trivial_case

trueGoal!
Branch closed!

T16C: Base Case Plan

Having found the missing base case above, Dynamis constructs the base case and dis-

charges it with rewriting:

maybeCases ** wfGoal

maybeCases

Method application: construct_cases

>>> (foldleft_tr (opl, ell, onil) = foldleft (opl, ell, orev onil))
Method application: waterfall (dynamis_lim 1)

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (foldleft_trl :: orevl :: foldleftl :: idty :: nil)

trueGoal!
Branch closed!

T16C: Final Plan

The last step is to solve the constraints on the rule’s wellfounded relation:

wfGoal
Method application: wellfounded (app select_induce (tuple (app s zero :: olength :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

The proof plan for T16C is shown in Figure 12.3. The plan has 37 nodes. Dynamis
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schematic_induction

embed_hypothesis* and

|
speculative_ripple
foldltr_last

| construct_wf_goals ( )
definite_ripple |
rev_last begin_estimation
|
definite_ripple
foldleft2 lower_estimate  abstractmetavars*
L. | \
definite ripple trivial estimate normalise
opl_functional all_inf
|
strong_fertilise_prop rewrit(‘a,equiv
|
replace_metavariables*
|
normalise
all.inf
|
rewrite_equiv
(1)
and
set_conditions* and
case_equiv
: } construct_cases* wellfounded*
case_induction |
(tuple_split 1) normalise
a all_inf
case_equiv |
} } rewrite_equiv
case_induction
list_struct
exists_casesplit exists_casesplit
list_struct list_struct
remove_case_hyps case_ripple
oapp2
case_equiv

o case_ripple
missing_case cons_functional
(case trueP (onil)) |
case_fertilisation
remove_case_hyps*
case_equiv

trivial _case

Figure 12.3: Proof plan for T16C. * indicates a purely meta-level plan step.
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created and validated the following induction rule:

= d(nil)

() F (<> (x:nil))
V1: list(nat).®(1)

As part of creating the rule, Dynamis also invented and validated the following case
split:

vu:list(nat).(u = nil) v 3k:list(nat).3x:nat.(u = (I <> (x :: nil)))

12.5 Summary

This chapter has provided in-depth details of three case studies where the Dynamis
system has been used to automatically generate a proof plan. All these examples could
not be automatically solved using recursion/ripple analysis. Furthermore, the case

studies have demonstrated Dynamis’s ability to:
e Control problematic speculative steps using a critic.
e Handle both constructor and destructor style examples.

e Generate novel case structure for an induction rule.



Chapter 13

Related & Further Work

13.1 Introduction

In this chapter we compare in detail our strategy and some previous work on induction

rule selection. Specifically:
e Recursion analysis and related approaches.
e Kraan’s Periwinkle system [Kraan, 1994].
e Hutter’s labelled fragments [Hutter, 1994].
e Protzen’s lazy induction [Protzen, 1995].

These techniques were surveyed in §2.

13.2 Recursion Analysis

Recursion analysis can be considered to be a group of techniques, descended from the

induction selection methods of [Boyer and Moore, 1979], which all select an induction

244
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rule derived from the relevant recursive functions. The techniques use various methods
to combine and select induction rules, i.e. subsumption [Stevens, 1990], containment
[Walther, 1993] and ripple analysis [Bundy et al., 1989]. They are surveyed in detail in
82.6. Most inductive theorem provers which automate induction selection use a form
of recursion analysis.

As discussed in 82.7, these techniques have two significant disadvantages: that they
must select a rule from a “space’ of induction rules which is predefined by the function
definitions, and that they do not take the effect of the choice into account beyond the
first rewriting of each induction term.

Previous work (e.g. [Protzen, 1995] has already addressed these problems to a lim-
ited extent. Our work also has clear theoretical advantages over recursion analysis in
that it overcomes both these problems, and can prove a wider range of problems. The
evaluation of Chapter 11 has also demonstrated pratical advantages of our strategy, as
the Dynamis system planned proofs for a collection of theorems that cannot be solved

by recursion analysis.

13.3 The Periwinkle System

Like our strategy, Periwinkle uses middle-out reasoning to determine a suitable step
case for an inductive rule, i.e. a schematic step case goal becomes instantiated during
its proof [Kraan, 1994] (see also 82.7.1). The goal schemas are similar in that they use
second order meta-variables to represent unknown induction terms, and use rippling to
guide the step case proof.

However, our work goes beyond Kraan’s in three important respects: the dynamic

construction of induction rules, the generality of the schema and speculation control.
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Periwinkle used the step case obtained by middle-out reasoning to select an induc-
tion rule from a prestored set. In contrast, we use the step case as the basis for an
induction rule which is constructed ‘from scratch’. Our approach lifts the restriction
that all induction rules must be provided to the system beforehand from some outside
source, e.g. generated from function definitions provided by the user.

Our step case schema is more general, as it can be instantiated to destructor style
step cases. We have also suggested using Protzen’s heuristic (see Chapter 4.3.3) to
allow multiple induction hypotheses, although this has not yet been implemented in
Dynamis. Kraan’s step case schema did not allow any of these features, severely re-
stricting the kind of inductive proofs it could perform.

The third key difference is the control of speculative rippling steps — the steps
which instantiate meta-variables — and so determine the form of the induction rule.
Kraan recognised that such steps made rippling potentially non-terminating, even when
definite (non-speculative) steps were preferred. In other words, there is no limit on the
complexity of the step case. Periwinkle overcame this problem by placing a finite
limit on the number of such steps, typically a limit of one. This in turn limits step
case proofs, and hence the induction proofs, that the system can find. Our strategy
overcame this problem by allowing an initial speculative step, and requiring subsequent
speculations to be licensed by a critic which analysed the failure of rippling. This was
discussed in greater depth in Chapter 7.

Another difference between our work and Kraan’s is that she uses higher-order pat-
tern unification, a decidable restricted form of high-order unification (HOU), whereas
we use full HOU. Although decidability might be useful in some contexts, we have
not experienced problems with termination in our work. Other authors on middle-out

reasoning have also used full HOU [Hesketh, 1991, Ireland and Bundy, 1996].



Chapter 13. Related & Further Work 247
13.4 Labelled Fragments

The first technique which dealt with constructing an induction rule entirely using in-
formation gleaned from proof was the use of labelled fragments in [Hutter, 1994] (see
82.8.1). The key difference between our approaches is that Hutter’s work was aimed
at proving existential theorems, whilst we have concentrated on universal theorems.
However, it is worth comparing the methods, as there is the potential to extend each
technique into the other’s domain.

Hutter uses labelled fragments — basically an abstract representation of wave rules
— to predict the induction terms which will lead to a successful ripple proof. This is
done by performing a kind of “abstract step case’ using the rule fragments. However,
the prediction can be incorrect, i.e. when the actual step case proof is performed it
may fail. In contrast, our strategy determines the same information whilst actually
performing the proof, and so avoids this risk. The technique was also restricted to

generating destructor style induction rules, whilst our strategy is not.

13.5 Lazy Induction

Lazy induction [Protzen, 1995] is similar to our strategy in that it constructs an entire
valid induction rule during a proof attempt, avoiding the need to rely on user provided
rules or those generated from terminating function definitions. It takes the original
conjecture as the step case conclusion, using rippling to guide the proof, definitional
case splits to construct separate proof cases and lazily generating induction hypotheses
whenever they can be used to rewrite the goal (see §2.8.2 for more details).

The technique uses steps which increase the ripple measure, and play the same réle

as the meta-variable instantiating speculative ripples of the schema-based approach.
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We name these speculative steps by analogy, although one of our speculative steps
may be equivalent to many lazy speculative steps.

There are three fundamental differences between our work and lazy induction: the
restriction to destructor-style, the problem of mixed speculation and speculation con-
trol. As far as we know there are no relative disadvantages to our approach.

One key difference is that this method can only generate destructor style inductive
proofs — Protzen’s work is entirely based in a destructor style formalism. We argued
in Chapter 3 why this is overly restrictive for inductive theorem proving: even if one
only ever uses destructor style functions (which authors, in general, do not) then some

useful induction rules are still suggested by “constructor style lemmas’, e.g.
foldleft_tr(F,X,L <> [Y]) = F(foldleft_tr(F,X,L),Y)

Unless an equivalent destructor style lemma is also present the proof will not be found,

e.g.
L # nil — foldleft_tr(F, X,L) = F(foldleft_tr(F, X, chop(L)),last(L))

(chop removes the last element of a list.) Converting between the two requires syn-
thesing inverse functions, which is not a practical alternative to allowing constructor
style inductions.

The other fundamental difference between our strategy and lazy induction is that
the latter has no explicit representation of the as-yet-unknown step case throughout the
proof. It does not construct an induction hypothesis until fertilisation, i.e. the point
the hypothesis is applied. The drawback here is that in the middle of the proof, when
some decisions have been made which correspond to a particular form of induction
hypothesis, subsequent proof steps have no way of accessing this information, and

may make inconsistent decisions. We call this problem mixed speculation, and it can
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significantly increase the size of the search space, as all the search paths where the
speculative steps are not consistent must be explored. The problem arises because
speculation is a local phenomenon, not accessible to the rest of the proof.

In contrast, speculation in our strategy is global. When a decision is made about
the form of the step case, a meta-variable is instantiated, and so this decision is prop-
agated throughout the proof. Future proof steps must be consistent with this choice
of instantiation, and are prevented from making inconsistent choices. This prevents
mixed speculation, and so cuts down the search space compared to lazy induction.

Mixed speculation occurs, for example, if we apply lazy induction to theorems
T15, T16 or T17 from Chapter 11. However, in order to more clearly illustrate the

phenomenon, we use a more concise, abstract example theorem:

fx) = a(x) (13.1)

fx) = f(p(x) (13.2)

g(x) = r(g(p(x))) (13.3)

f(x) = f(ax)) (13.4)
g(x) = g(a(x) (13.5)

Applying lazy induction to the goal (13.1), both (13.2) and (13.4) can be used to specu-
late on the LHS. The same is true for (13.3) and (13.5) on the RHS. Lazy induction will
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try all four possible combinations of these speculative steps, in the following order:

f(px)]) = r(M)T (13.6)
fF(px)|) = 9(aX®)|) (13.7)
fla®)|) = r(M)T (13.8)
fla)|) = 9(la®)|) (13.9)

Of these, only the last (13.9) is successful, with the induction hypothesis f(q(x)) =
g(q(x)). The first goal (13.6) almost matches the hypothesis f(p(x)) = g(p(x)), but
the wavefront r(...) is blocked and the proof fails. Goals (13.7) and (13.8) can be weak
fertilised, but both proofs fail because of mixed speculation — each has induction term
p(...) on one side and q(...) on the other.

If instead we applying our induction strategy to the goal (13.1), we find that only
two of the four combinations are generated (meta-variables are written as A, B, ... for

simplicity). The first is:
f(A)=g(A) F f(B)=9g(B)
f(p(A)=9(p(A)|) + f(p(B))=g(B)
f(p(A)) =g(p(A) = f(p(B))=|r(g(r(B)))

This branch corresponds to (13.6), and is blocked. Backtracking over the first step we

get the successful branch:

f(A)=g(A) F f(B)=g(B) (13.10)
f(a(A)) =ga(lqA))|) + f(q(B))=g(B) (13.11)
f(q(A)) =g(a(A")) F f(p(B))=g(q(B)) (13.12)

Our strategy has avoided searching the two inconsistent branches. Although the addi-

tional search is not that great in this abstract example, it will increase with the number
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of alternative wave rules and reducible terms. In addition, the search required to estab-
lish that an inconsistent branch will fail could be arbitrarily large.

The third fundamental difference between our strategy and lazy induction, is that
Protzen did not address the problem of non-terminating speculation in his thesis. In
fact, he does not even recognise it, leaving his strategy as described highly prone to
non-termination. Hence our work on speculation control (see §13.3) represents an

advance over lazy induction.

13.6 Further Evaluation

We now discuss various ways in which the work described in this thesis could be
continued. The most immediate area is to extend the implementation of Dynamis to

reflect the full induction strategy set out in Chapter 4 to Chapter 8. This would require:
1. Case splits during rewriting;

2. Creation of multiple induction hypotheses, via Protzen’s Heuristic, i.e. adding
applicable instances of the inductive conjecture as hypotheses during the proof

(see §4.3.3);
3. Creation of multiple step cases (see §6.3);
4. Side condition critic for failed estimation proofs (see §6.5.5);
5. To-rewriting (see §8.3.2).

Implementation of features (1) to (4) was suggested by the experimental evaluation in
Chapter 11: they would allow a larger number of theorems to be planned by Dynamis

using the default strategies. Feature (5) would reduce the rewriting search — although,
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as discussed below, its completeness has not yet been established. Features (3) to (5)
are novel, and implementation would allow their effectiveness to be evaluated.

In addition, the description of (2) in [Protzen, 1995] does not provide much de-
tail of its implementation or evaluation, and no implementation is currently available.
Including it in Dynamis would allow Protzen’s Heuristic to be assessed. Given our ex-
perience with speculative ripple steps, we anticipate that additional search heurisitics
will have to be developed to make this effective.

Another possible direction for research is the implementation of lazy induction
[Protzen, 1995] to allow experimental comparison with our schema-based approach.
The evaluation in Chapter 11 failed to support or refute the hypothesis that our strat-
egy is more powerful than lazy induction, because of shortcomings of the implemen-
tation. However, it did highlight the lack of data on lazy induction, and a working
implementation is required to overcome this problem. It would also allow us to test
the theoretical claim that using a schema reduces search compared to a lazy generation

approach, by avoiding mixed speculation (see §13.5 above).

13.7 Developing the Strategy

As well as fully implementing and evaluating our induction strategy, there are a number
of areas where we can see the strategy could be improved. We discuss these in turn

below.

Extending the Speculation Critic

The speculation critic currently has two obvious shortcomings. Firstly, it can only

create constructor style step cases. However, it may be possible to extend the critic



Chapter 13. Related & Further Work 253

patch to destructor style by instantiating a hypothesis meta-variable to match the fully
rippled-in wave fronts in the conclusion. As an example, consider the following, where
a required wave front has been rippled in to find an instantiation that would generate it

(A etc. are meta-variables):

A+B... - ...|s(C+D)

To find a destructor style step case, a destructor style critic needs to identify that the
wave front can be generated from C 4 D using the destructor style definition of +,
providing A is instantiated to p(A’).

Secondly, the current speculation critic can suffer from non-termination, e.g. the-
orem T7C in §11.4.3. This could be prevented by imposing some kind of measure
reduction on the critiqued goals to ensure that the proof has progressed since the last
application of the critic. Further experimental work is required to obtain more exam-

ples of desirable and undesirable speculation, in order to formulate a suitable measure.

Formalising Neutralisation

Although the neutralisation procedure used by the step case strategy has been imple-
mented in Dynamis, we have not formulated a clear, formal description. Doing this
would allow a cleaner implementation, and probably help us to understand the bugs in
Dynamis that allowed certain corresponding wave-fronts in hypothesis and conclusion
to remain unneutralised (see Chapter 11). We have already provided a specification
that any neutralisation procedure must meet (see Definition 3). The procedure as im-
plemented is suitable for formulation as a set of rules, similar to those that defined

embeddings [Smaill and Green, 1996].
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Instantiation Selection

We can see two shortcomings with the way in which the strategy searches the possible
instantiations of the meta-variables in a given goal. Firstly, it is prone to searching
the same instantiation multiple times if it is generated by different speculative ripples.
A more efficient strategy would be to identify all possible speculative steps and the

instantiations they generate, and only try each instantiation once.

Interleaving Rule Validation

The induction strategy currently constructs a step case, and then constructs a well-
foundedness plan for it. In contrast, [Protzen, 1995] interleaves the two processes, by
only allowing wave fronts that contain lower argument bounded functions to be moved
towards induction positions, where they may be incorporated into induction hypothe-
ses. Hence the wellfoundedness checks are integrated into rewriting. This is more
efficient, as non-wellfounded step cases are pruned at an early stage, rather than after
they have been completed.

A similar approach could be taken with our strategy, using a planner that is capa-
ble of prioritising open subgoals. By giving a partially instantiated estimation goal a
higher priority than its step case, the strategy could ensure that any instantiation of the

induction terms is immediately validated before the step case continues.

Existential Problems

All the example theorems considered in this thesis have been purely universally quanti-
fied. The application to existential theorems — and hence program synthesis — would
be a fruitful research direction, given that one significant problem in this work is the

need to generate novel inductions rules that cannot be generated from the function



Chapter 13. Related & Further Work 255

definitions provided, i.e. the existential witness is a program with a novel recursive

structure [Hutter, 1994].

Object Level Proofs

The AClam system, and hence the Dynamis system built on top of it, does not have any
facility for constructing object level proofs from the proof plans it produces. Indeed,
AClam has been deliberately designed to avoid commitment to a particular logic —
this is entirely the decision of the method designer, who may be as specific about the
logic as she chooses.

Previous work on proof planning has established that inductive proof plans can be
used by a variety of tactic-based systems to generate proofs in a variety of logics, e.g.
[Bundy et al., 1991, Boulton et al., 1998]. However, our proof plans are substantially
different from those in previous work, in that they also include a proof that the induc-
tion rule is valid. Further work is required to validate these plans by execution to object

level proofs.

13.8 Exploring Tio-Rewriting

Chapter 8 set out a novel technique for controlling our induction strategy’s search
during rewriting/rippling. However, the technique is more widely applicable to any
non-confluent rewriting system. Several areas of future research suggest themselves.
Firstly, identifying other applications which use such rewriting. Secondly, implemen-
tation and evaluation of the technique, to assess how effective it is in reducing search
for various applications.

Another direction is the proof of completeness for o-rewriting, which we presume
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could be used with the existing T-completeness result to prove completeness for full

TIO-rewriting.

13.9 Research on Proof Planning

Another area closely related to our thesis is proof planning, and the AClam proof plan-
ner in particular. On a prosaic level, our evaluation uncovered bugs in the AProlog
implementation underlying the AClam proof planner. These need to be addressed in
some way.

More interestingly, in Chapter 10 we found the lack of a cut methodical in AClam
to be a very significant factor in the design of our methods. Search during proof plan
construction can be made impractical when key choices are preceded by a large num-
ber of unimportant ones — unless the previous choices points have been cut. Without
this ability, we were sometimes forced to use a less clear method formulation than
we would have chosen, in order to avoid constant backtracking over such unimpor-
tant choices, e.g. equivalence preserving rewriting. The design could have been much
cleaner if a cut methodical was available. A design for a proof planner which handles
cut using explicit OR branches has been proposed?, but not yet implemented.

In Chapter 9 we gave a design for a critics planner which integrates critics with the
methodical-based approach of AClam. Further research could assess whether this is,
in general, a suitable proof planning architecture, by perhaps investigating whether it
allows superior reimplementations of previous critic work, e.g. with more declarative
formulations.

Our induction strategy is a case study in delaying search choices using meta-

variables: they are used for induction terms, hypotheses, measure functions etc. Fur-

Lulian Richardson, personal communication.
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ther work is needed to establish how is this related to previous proof planning research
that uses similar techniques e.g. [Cheikhrouhou and Siekmann, 1998], and whether

such work can be included in a common reasoning framework.

13.10 Summary

In this chapter we have compared our induction strategy to four pieces of closely re-
lated research in automated induction rule selection. It had clear advantages over all of
them.

Compared to Kraan’s Periwinkle system our strategy has three significant advan-

tages:
e It constructs induction rules dynamically, rather than relying on a prestored set.

e Induction rules may be destructor style and, in theory, have multiple induction

hypotheses.

e The speculation critic allows speculative rippling to be flexibly controlled, rather

than setting a fixed limit on the search.
Compared to Protzen’s lazy induction our strategy has three advantages:

¢ Induction rules need not be destructor style. Recall that constructor style rules

are required even if all function definitions are destructor style.

e Our strategy does not suffer from mixed speculation, because meta-variables are

used to explicitly represent the developing induction rule.

e The speculation critic controls speculative rippling — a problem not addressed

at all by Protzen.
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We have also outlined a number of future search directions based on our work, which

include:

e Further implementation and evaluation of our strategy with the Dynamis system.

e Designing a destructor style speculation critic, and finding a measure that forces

the critic to terminate.

e Ensuring that each meta-variable instantiation is considered only once.

e Interleaving the step case proof with the wellfoundedness proof.

e Synthesising programs with novel recursive structures.

e Executing Dynamis’s plans to object level proofs.

e Implementing and proving completeness of Tio-rewriting.

e Evaluating our proof planner design.



Chapter 14

Conclusions

14.1 Introduction

In this chapter we review the contributions made by the thesis, and assess whether our

work has met the aims laid out at the beginning.

14.1.1 Contributions of the Thesis

Our thesis contributes specifically to the understanding of inductive theorem proving

in four key ways:

1. It identifies the significance of restricting induction rules to constructor style or

destructor style.

2. It describes improved search control and coverage for induction rule creation

using a schema-based approach.
3. Itincludes a novel procedure for generating missing proof cases.

4. It gives a modular induction strategy for creating induction rules during proof.
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We expand on each of these below.

Rule Structure Firstly, in Chapter 3 we have explained the relationship between
constructor and destructor style induction rules and function definition, and explained
why neither style of rule is totally sufficient for inductive proof. This prompted the
definition of simple induction rules as a suitable class for automated proof, and a novel
formulation of creational rippling in order to provide search control for this class.

Search Control and Coverage Secondly, we have shown in Chapter 4 how a step
case schema can be used to delay key choices until the middle of the step case proof,
giving better choice of induction rule than recursion/ripple analysis, and which unlike
previous work [Kraan, 1994, Protzen, 1995] is not just restricted to either constructor
or destructor style step cases. Search control is also improved: non-terminating spec-
ulative steps are controlled using a critic on the ripple method (Chapter 7), and using a
meta-variable schema avoids the problem of mixed speculation that arises with a lazy
generation approach [Protzen, 1995] (Chapter 13).

Case Synthesis Thirdly, a procedure for generating the missing cases of an in-
duction rule was given in Chapter 5, based on trying to prove that the existing cases are
exhaustive. The failed proof is patched by adding missing cases to the conjecture, fol-
lowing previous work on correcting faulty conjectures [Protzen, 1995, Monroy, 2000].
We identified that non-equivalence preserving steps — in particular instantiating free
variables — are incompatible with such corrective techniques. The equivalence pre-
serving existential case splits was proposed instead.

Modular Strategy Lastly, in Chapter 6 an induction strategy for generating in-
duction rules during the inductive proof was described. It is modular with respect to
three sub-strategies: one for step case generation, another for ensuring step case well-

foundedness, and a third for generating missing proof cases. A restricted version of
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this strategy has been implemented in the Dynamis system, using our schematic step
case strategy, Walther’s estimation method and our case generation procedure as the
three sub-strategies ‘modules’.

The thesis also makes more general contributions to automated theorem proving.
Some of the techniques mentioned above have potential applications outside induc-
tion rule creation. Our strategy for generating missing cases of a case analysis, which
connects the problem to research in correcting faulty conjectures. We proposed TtO-
rewriting in Chapter 8 as a way to further reduce the proof search in inductive proof,
and we have proved the completeness of Terewriting, a useful restriction of this tech-
nigue. It is a technique that could be applied to other non-confluent rewriting systems.
Furthermore, our arguments for the superiority of a schema approach over lazy gener-
ation has implications for any delayed commitment strategy.

Finally, we have described a novel proof planning architecture for specifying critics

and combining them with method expressions.

14.1.2 Have We Achieved Our Aims?

The aims set out at the beginning of this thesis were to design a practical, delayed
choice induction rule creation strategy, which improved on previous research with bet-
ter search control for speculation steps and a wider range of coverage of induction
rules, and hence theorems.

We have demonstrated that our strategy is a practical approach to induction rule
creation by implementing it in the Dynamis system and evaluating it on a range of
test problems. Three of the contributions above improve the search control for the
crucial step case proof, and of these two have been implemented and evaluated. The

evaluation also supported the hypotheses that the strategy can construct a wider range
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of induction rules than previous work, which has been restricted to constructor style
[Kraan, 1994] or destructor style [Protzen, 1995] induction rules.

However, a few of our aims have not been met. The claim that our induction
strategy is strictly better than lazy induction — i.e. it can prove any theorem lazy
induction can — has not been backed up with experimental evidence. This is partly
because of the lack of available data for lazy induction. We have shown in Chapter
13 that our strategy is theoretically superior to lazy induction, although experimental
evidence could not be gathered because no working implementation exists. We hope
further work will be able to gather this evidence. Furthermore, some parts of the
strategy still have to be implemented and evaluated experimentally: notably creating
induction rules with multiple induction hypotheses and multiple step cases, and Tio-
rewriting.

In conclusion, further implementation and evaluation work is required to provide
conclusive experimental evidence that our full induction strategy meets all our aims,
but the majority of our original aims have been met. We have demonstrated experi-
mentally that even a partial version already exceeds the state of the art in automated
inductive theorem proving in several important respects.

Our work also has implications beyond inductive theorem proving. The induction
strategy presented in this thesis is perhaps one of the most complex yet implemented
using proof planning, both because it brings several complex proof strategies together
in order to construct an inductive proof, and because of its extensive use of delayed
commitment with meta-variables. This demonstrates that proof planning is a viable
framework for developing such complex automated proof strategies. We anticipate
that the techniques employed here can be used to improve automated theorem proving

in a variety of domains, and that a better understanding of proof planner design —
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such as improved support for critics and meta-variables — would be of great benefit to

automated reasoning.



Appendix A

Glossary

[n]  Thefinite set {1,2,...,n}.
[n,m]  Thefinite set {n,n+1,...,m}.
Base Case An induction case with no induction hypothesis.

Case Complete Covering all possible cases. For example, an complete set of in-

duction cases, or complete recursive definition.

Case Conditions A hypothesis of an induction case which is not a variant of the

rule’s conclusion.
Case Formula A formula which expresses the case completeness of a set of cases.

Constructor Style Of an induction rule: having induction terms which are com-
pound in conclusions of each step case, and non-compound in the hypotheses.
Of a recursive definition: having a head with compound arguments and recursive

calls with non-compound arguments.
Context In rippling: parts of term which do not belong to the term’s skeleton.
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Creational Rippling An extension of rippling which can handle wave fronts in
the induction hypothesis by having a common skeleton for two different terms.

See §83.4.

Destructor Style Induction Of an induction rule: having induction terms which
are non-compound in conclusions of each step case, and compound in the hy-
potheses. Of a recursive definition: having a head with non-compound argu-

ments and recursive calls with compound arguments.

Domain Of a substitution o: the set of variables {x : x/t € o} replaced by the

substitution, written as Dom(0).

Dual Induction Of a recursive function: an induction rule with the same recursive
structure as the function: cases of the definition map to induction cases; the
head of a defining equation maps to a case’s conclusion; recursive calls map to
induction hypotheses; function arguments map to induction terms; conditions on

an equation map to case conditions.

Embedding A mapping of a term tree into another term tree where function sym-
bols and constants are mapped to copies of themselves and which preserves or-
dered ancestor-descendant relationships. Can be used in rippling to map a skele-

ton into another term.
Estimation A proof technique used to prove inductions and definitions wellfounded.

Existential Case Split An equivalence preserving proof step which proves an ex-
istential statement by proving a disjunct of instantiations of the existential vari-

able. The set of instantiations must be case complete.
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Induction A proof which establishes a statement by using some variants of a state-

ment to prove another variant. See induction rule and §2.2.
Induction Case The premise of an induction rule.

Induction Hypothesis A hypothesis in an induction case which is a variant of the

rule’s conclusion.

Induction Term A term substituted into an induction position in the premises of

an induction rule.

Induction Position A universally quantified variable in the conclusion of an in-
duction rule. Also the corresponding subterm in the variants of the conclusion

in the rule’s premises.

Induction Rule A rule of inference which represents an induction argument. This

thesis deals with simple induction rules.

Lazy Induction A technique for automating destructor style induction by rewrit-
ing a conjecture to create and remove context, using Protzen’s heuristic to gen-

erate induction hypotheses. See §2.8.2.

Multiset An unordered collection of objects, in which each object may appear

more than once.

Neutralisation In creational rippling: the process of finding corresponding wave

fronts in two terms and making this syntax part of their common skeleton.

Noetherian Induction The most general form of induction. All induction rules

are instances of the Noetherian induction rule. See §2.2.1.
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Protzen’s Heuristic In automated induction, generating an induction hypothesis when

the goal can be rewritten with an instance of the original conjecture.

Recursive Function A function defined in terms of itself. The definition must be

wellfounded to be valid.

Rippling A heuristic rewriting technique which removes the differences between a
term and its skeleton. Used to automate step case proofs by removing the differ-
ences between the induction conclusion and one or more induction hypotheses.

See §2.5.

Simple Induction Rule A syntactic restriction on induction rules where the rule’s
conclusion is of the form ¥xj....Vx,.®. The rule’s premises are all sequents that
have a conclusion which is an instance of ® and a list of hypotheses which are

either:

¢ induction hypotheses which are instances of ® with optional universal quan-

tification, or

e case conditions.

See 83.3 for a formal definition. For a simple induction rule to be valid it is

sufficient that it is wellfounded and case complete.
Skeleton A term formed by removing some of the structure from another term.
Step Case An induction case with at least one induction hypothesis.

Substitution A function from terms to terms, defined by a set of variable/term
pairs x/t. A substitution o replaces all occurences of x with t for all x/t € 0. See

domain.
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Var The free variables of a term.

Wave Front A syntactic difference between a term and its skeleton in rippling.

Wellfounded Definition A recursive definition where each recursive call is smaller

than the head of the definition, by some wellfounded relation.

Wellfounded Induction An induction where the each induction hypothesis is smaller

than its corresponding conclusion by some wellfounded relation.

Wellfounded Relation A relation > with no infinite descending chains x1 > X2 >

X3 ....
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Datatype & Function Definitions

This appendix collects together all of the definitions for the datatypes and functions
mentioned in this thesis. For simplicity all functions, including datatype destructors,

are total. If a function is defined under a alternative name in Dynamis this is given.

Datatype: bool

The boolean datatype simply has two base constructors:

true : bool

false : bool

We define the usual propositional functions —, A, VV, —, < of type bool — bool — bool.
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Datatype: nat

The Peano natural numbers nat has two constructors 0 (zero) and s (successor) and the

destructor p (predecessor):

0 : nat

S : nat — nat

p : nat— nat
p(0) = 0
p(s(X)) = X

Datatype: list(T)
The list(t) (ol i st in Dynamis) datatype has two constructors nil (the empty list, oni | )
and :: (ocons) and one destructor tail:

nil @ list(1)

T — list(t) — list(1)

tail @ list(t) — list(1)
tail(nil) = nil

talH:T) = T
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For each type t we define a second destructor heady:

head;

head;(H :: T)
headpool (Nil)
headng (nil)
head,jg (q) (Nil)

headcarg (nil)

list(t) — 1
= H

= true

= nil

= red
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We write omit the subscript T when this is obvious from the context. An alternative

would be to use partial functions and define a single generic head.

Datatype: card

The card datatype is defined for the Gilbreath Card Trick (see Chapter 11), and is

isomorphic to bool.

black

Function: <> (append)

oapp in Dynamis.
<>
nil <>M
H:T<>M

L + nil — L<>M

card

card

list(t) — list(t) — list(T)
M

H: (T <>M)

head(L) :: (tail(L) <> M)

(©)
(D)
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Function: even

even : nat — bool
even(0) = true
even(s(0)) = false
even(s(s(X))) = even(X) ©)
X#O0AX #5(0) — even(X) = even(p(p(X))) (D)

Function: evenelems

evenelems : list(t) — list(1)
evenelems(nil) = nil
evenelems(X ::nil) = nil
evenelems(X ::Y ::L) = Y ::evenelems(L) (C)
L # nil Atail(L) # nil — evenelems(L) = head(tail(L)) :: evenelems(tail(tail(L))) (D)

Function: foldleft

foldleft : (a—B—a)—a—list(f) —a
foldleft(F,Anil) = A
foldleft(F,A/H::T) = F(foldleft(F,A,T),H) ©
L # nil — foldleft(F,A,L) = F(foldleft(F A tail(L)),head(L)) (D)

Function: foldleft tr

foldlefttr : (a—pB—a)—a—list(B) —a
foldleft_tr(F,A;nil) = A
foldleft tr(F,A/H ::T) = foldlefttr(F,F(A,H),T) ©
L # nil — foldleft tr(F,A,L) = foldlefttr(F,F(A,head(L)),tail(L)) (D)
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Function: foldright

foldright : (B—a—a)—a—list(f) —a
foldright(F,A,nil) = A
foldright(F,A,H ::T) = F(H, foldright(F,A,T)) ©
L #nil — foldright(F,A,L) = F(head(L), foldright(F,Atail(L))) (D)

Function: foldright_tr

foldrighttr : (B—a—a)—a—list(B) —a
foldright_tr(F,Anil) = A
foldright tr(F,A)H :: T) = foldright_tr(F,F(H,A),T) ©
L # nil — foldright_tr(F,A,L) = foldright_tr(F,F(head(L),A),tail(L)) (D)

Function: hal f

half : nat— nat

half(0) = 0

hal f(s(s(X))) = s(half(X)) ©

)
half(s(0)) = 0
)

) = s(half(p(p(X)))) (D)

X £0AX #5(0) — hal f (X
Function: len

ol engt h in Dynamis.

len : list(t) — nat
len(nil) = 0
len(H::T) = s(len(T)) ©

L # nil — len(L) = s(len(tail(L))) (D)
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Function: <

274

| eq in Dynamis.
< nat — nat — bool
0<Y = true
s(X) <0 = false
s(X) <s(Y) = X<Y ©)
X #OAY #0 X<Y = pX)<p(Y) (D)
Function: + (plus)
+ nat — nat — nat
0+Y =Y
s(X)+Y = s(X+Y) ©)
X#£0— X+Y = s(p(X)+Y) (D)
Function: odd
odd nat — bool
odd(0) = false
odd(s(0)) = true
odd(s(s(X))) = odd(X) ©
X#0AX #5(0) — odd(X) = odd(p(p(X))) (D)
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Function: oddel ems

oddelems : list(t) — list(1)
oddelems(nil) = nil
oddelems(X ::nil) = X il
oddelems(X ::Y :L) = X :oddelems(L) ©
L # nil Atail(L) # nil — oddelems(L) = head(L) :: oddelems(tail(tail(L))) (D)

Function: quot
guot : nat— nat — nat

quot(X,0) = 0

Y £0— quot(X +Y,Y

)

Y #AO0A=(Y <X)— quot(X,Y) = 0
) = s(quot(X,Y)) ©)
)

Y #0Aleq(Y,X) — quot(X,Y) = s(quot(X —Y,Y)) (D)

Function: rev

or ev in Dynamis.

rev. : list(t) — list(1)
rev(nil) = nil
rev(H:T) = rev(T) <> (H:nil) (C)

L # nil — rev(L) = rev(tail(L)) <> (head(L) ::nil) (D)
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Function: rotate
rotate : nat — list(t) — list(1)

rotate(0O,L) = L

rotate(X,nil) = nil
rotate(s(X),H ::T) = rotate(X,T <> (H ::nil)) ©)
X #0AL#nil — rotate(X,L) = rotate(p(X),tail(L) <> (head(L) ::nil)) (D)
Function: sum
sum : list(nat) — nat — nat

sum(nil,X) = X
sum(H = T,X) = sum(T,X+H) ©)
L # nil — sum(L,X) = sum(tail(L),X +head(L)) (D)

Function: x (times)

X . nat — nat — nat
OxY =0
s(X)xY = (XxY)+Y ©)

X£0— XxY = (p(X)xY)+Y (D)
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Dynamis Documentation

This appendix documents several aspects of the Dynamis system: how to run it, the
lower level methods that were not fully covered in Chapter 10 and the AProlog pred-
icates used in method pre- and postconditions. We also detail the minor changes that

were made to the main AClam source code in order to integrate Dynamis’s code.

C.1 Running Dynamis

There are two predicates that can be used at the Dynamis command line to plan theo-

rems. Both are built on top of AClam’s ¢l audi o_pl an (version 4.0).

pl an_and_di splay: meth -> query -> o

Initiates planning of the given query with the given method, and displays the plan if

one is found.

dynam s_plan: nmeth -> query ->int -> style -> 0

Loads a predetermined configuration of rewrite and wave rules, then initiates planning
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of the given query with the given method. If successful it displays the plan.

The configuration is determined by the styl e, which is the function definition
style to be used (construct or or destructor), and an integer indicating the lemma
set to be loaded. This information must be hard-coded beforehand. For example, the

command:
dynam s_plan dynams_crit conp 1 constructor.
relies on the following two hard-coded facts:

defn_rules plus constructor [plusl, plus2] [plus2].

needs conp 1 constructor [plus_rightl, plus_right2] [plus_right2].

C.2 Step Case Methods

Method: enbed_hypot hesi s

The enbed_hypot hesi s method, shown in Figure C.1, takes an unannotated step case
goal with a single hypothesis and adds embeddings for hypothesis and conclusion.
The preconditions embed the skeleton Skel into both the hypothesis | ndHyp and
conclusion Conc, with embeddings EH1 and ECL respectively. The postconditions
merge and orient wave-fronts to give embeddings EH2 and EC2, and then weigh them
using the number of wave-fronts (HW and the wave measure (Qut, | n) respectively.

The method’s subgoal has a single annotated induction hypothesis NewAnnHyp.

Method: r edo_enbeddi ngs

Shown in Figure C.1 is the r edo_enbeddi ngs, which recomputes the conclusion em-

bedding during the middle of the step case. It is required after the speculation critic
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ﬁ/lethod: enbed_hypot hesi s \
Goal: (caseSchenma Cond Hyps (preRippl eHyps Skel [IndHyp]) Conc)

Pre:

(once (enbedding Skel EHL | ndHyp,
enbeddi ng Skel EC1 Conc))

Post:

(tidy_hyp_context EHL EH2 HW

tidy_conc_context ECL outward EC2 Qut In,
AnnHyp = (annHyp IndHyp Skel EH2 HWEC2 Qut In))

KSubGoal: (caseSchema Cond Hyps (rippl eHyps [AnnHyp]) Conc)

N\

method: redo_enbeddi ngs
Goal: (caseSchema Case Hyps (rippl eHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH HW ),
enbeddi ng Skel EC1 Conc)

Post:

(tidy_conc_context ECL outward EC2 Qut In,
NewAnnHyp = (annHyp Hyp Skel EH HWEC3 Qut In))

QubGoal: (caseSchema Case Hyps (rippl eHyps [ NewAnnHyp]) Conc) /

Figure C.1: The embedding methods: enbed _hypot hesi s and r edo_enbeddi ngs.
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/“Method: (def i nite_ripple Rule Ad) I
Goal: (caseSchema Case Hs (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH HWECL Qut In),

wave_rule_ list Rules,

rewite_inner (rew _list Rules rew_match) Rule _ Conc NewC Cond Ad,
not (rulestyle Rule destructor),

reverse Ad At,

subtermenbed undir Rule At [] ECL EC2 Skel NewC bool,
tidy_conc_context EC2 anydir EC3 NewQut Newl n,

measure_| ess Qut In NewQut Newl n)

Post:
(NewAnnHyp = (annHyp Hyp Skel EH HWEC3 NewQut Newin),
Main = (caseSchema Case Hs (rippl eHyps [ NewAnnHyp]) NewC),
condi tion_goal Cond Case Hs
(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

Qubgoal: SubGoal /

Figure C.2: Clause 1 of the defi nite_ri ppl e method.

has instantiated a meta-variable, and the embedding in the main step case plan branch
needs updating to reflec this.
The method works in a similar way to enbed_hypot hesi s, but leaves the hypoth-

esis embedding untouched.

Method: definite_ripple

The method has two clauses, shown in Figure C.2 and Figure C.3: the first for wave-
measure decreasing ripples, the second for creational ripples that remove hypothesis
wave-fronts. In both clauses, the conclusion is rewritten with the relation r ewr _mat ch,

which does not instantiate metavariables. The rewritten subterm is reembedded with
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/“Method: (def i nite_ripple Rule Ad) I
Goal: (caseSchema Case Hs (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EHL HWECL _ ),

wave rule_ list Rules,

rewite_inner (rew _list Rules rew_match) Rule _ Conc NewC Cond Ad,
not (rulestyle Rule constructor),

reverse Ad At,

subtermenbed undir Rule At [] ECL EC2 Skel NewC bool,
cancel _context 0 At Skel NewSkel Hyp EHL EH2 NewC EC2 EC3,
reembed NewSkel bool Hyp bool EH2 EH3,

tidy_hyp_context EH3 EH4 NewHW

NewHW < HW

Post:
(tidy_conc_context EC3 outward EC4 Qut In,
NewAnnHyp = (annHyp Hyp NewSkel EH4 NewHW EC4 Qut In),
Main = (caseSchema Case Hs (rippl eHyps [ NewAnnHyp]) NewC),
condition_goal Cond Case Hs
(c\ (caseSchema Case Hs sideCond c)) Main SubCoal)

QubGoal: SubGoal /

Figure C.3: Clause 2 of the defi nite_ri ppl e method.

the corresponding subterm of the skeleton Skel.

In the first clause, the preconditions check the wave-measure is reduced. In the
second, neutralisation is performed to give an expanded skeleton NewSkel , and new
embeddings for the hypothesis (EH2) and the conclusion (EC3). The weight of the
hypothesis NewHW(the number of wave-fronts) is measured — it must be less than the
old weight HW

Both clauses disallow certain rewrite rule styles in order to prevent unwanted ripple

steps. Destructor style rules are typically used in creational steps, and so the first
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ﬁ/lethod: meta_ripple \

Goal: (caseSchema Cond Hyps (rippl eHyps [AnnHypl]) Conc)

Pre:

(AnnHypl = (annHyp Hyp Skel EH HWECL Qut In),
enmbeddi ng Skel EC2 Conc,

tidy_conc_context EC2 anydir EC3 Newout In,
measure_less Qut In NewQut In)

Post: (AnnHyp2 = (annHyp Hyp Skel EH HWEC3 NewQut In)

KGoal: (caseSchema Cond Hyps (rippl eHyps [AnnHyp2]) Conc) /

Figure C.4: The met a_ri ppl e method.

clause excludes these rules. Constructor style rules are typically used in wave measure
reducing steps, and so the second clause excludes them. These restrictions only affect

definitional rewrites — lemmas are always allowed.

Method: met a_ri ppl e

The met a_ri ppl e method is shown in Figure C.3. A meta-ripple step reduces the wave
measure of the embedding without rewriting the underlying term. The preconditions
simply reembed the step case skeleton in the conclusion. The new embedding EC3

must be less than the original embedding ECL.

Method: f orwar ds_ri ppl e

The f orwar ds_ri ppl e method is used after the speculation critic has been applied. It
ripples inwards the *missing’ wave fronts inserted by the critic, so that a suitable instan-

tiation that unblocks the main ripple proof can be found with the specul at e wavefronts
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ﬁ/lethod: (forwards_ripple Rule Ad Ripples) \
Goal: (caseSchema Case Hyps (bl ockedGoal Skel E1 In) Conc)

Pre:
(wave_rule_list Rules,
rewite_inner (rew _|ist Rules rev_rew _natch)
Rule _ Conc NewC trueP Ad,
reverse Ad At,
subt erm enbed undir (backwards Rule) At [] E1 E2 Skel NewC bool,
tidy _conc_context E2 inward E3 nil New n,
measure_less nil In nil New n)

Post: (varadd (definite ripple Rule Ad) R pples)

KSubGoal: (caseSchema Case Hyps (bl ockedGoal Skel E3 Newin) NewC) /

Figure C.5: The f orwar ds _ri ppl e method.

method (see below). This strategy is implemented in the ri ppl e_i n_and_specul at e
method (see Figure 10.12).

The f orwar ds_ri ppl e method is shown in Figure C.5. Its preconditions are simi-
lar to the first clause of the def i ni t e ri ppl e method (see Figure C.2). The conclusion
Conc is rewritten to NewC, and the embedding is updated from E1 to E3. The key dif-
ference from standard rippling is that we are constructing the proof in reverse, as we
are looking for an instantiation earlier in the proof which would have unblocked the
current ripple goal. Confusingly, proof search in AClam is normally backwards (from
theorem to axioms) so by reversing the proof direction we are now going forwards
(from axioms to theorems). Hence the name of the method.

Because its a reverse ripple method:

e the method ripples wave fronts inwards.
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ﬁ/lethod: (specul ate_wavefronts Ripples Ri ppl ePl an) \
Goal: (caseSchema _ _ (bl ockedGoal Goal E ) Conc)

Pre:

(ful'ly_rippled_subs Conc E [] Subs,
specul at e_subs Subs)

Post: (conmpose_pl an_steps Ri ppl es Rippl ePl an)

Qubeoal: trueCoal /

Figure C.6: The specul at e_wavef r ont s method.

o the rewrite relation is used backwards: r ev_r ewr _mat ch instead of r ewr _mat ch.

e The wave measure must increase.

Method: specul at e wavefronts

The specul at e_wavef ront s method is applied when the ri ppl e_i n_and_specul at e
method (see Figure 10.12) has exhaustively rippled in the *‘missing’ wave fronts so that
they surround meta-variables. It is shown in Figure C.6. The method tries to find an
instantiation of the goal’s meta-variables which would produce the fully rippled-in
wave fronts.

Its preconditions find the pairings of wave front/meta-variable Subs, and then com-
putes a set of instantiations if one exists. The postconditions instantiate Ri ppl ePl an
with the ripple steps that lead to the instantiation, so that they can be applied in reverse

in the main step case plan branch.
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ﬁ/lethod: strong_fertilise \

Goal: (caseSchema _ _ (rippl eHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp _ _ 0 _ _ ),
rewite_match wth_hyp equiv Hyp trueP Conc trueP [],

Conc = Hyp)

Post: true

Qubgoal: t rueGoal /

Figure C.7: The strong_fertilise method.

Method: strong fertilise

Strong fertilisation comes in two forms. Firstly, where the hypothesis and conclusion
are unified, via the strong_fertilise method. Secondly, where the hypothesis ap-
pears as a subterm of the conclusion (see the strong_fertilise_prop method in the
next section). The strong_fertilise method is shown in Figure C.7.

The preconditions first check that the induction hypothesis Hyp contains no wave
fronts, i.e. the hypothesis measure equals zero. The conclusion is then rewritten to
t rueP using the rewrite rule Hyp = trueP, without instantiating the conclusion’s
meta-variables. The method does this before it unifies the two propositions as a check
that they are unifiable. The check is made because higher order unification often di-
verges if hypothesis and conclusion are non-unifiable. If the rewrite succeeds then they

are unified.
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ﬁ/lethod: strong_fertilise_prop \

Goal: (caseSchema Case Hyps (rippl eHyps AnnHyp) Conc)

Pre:

(not (Conc = (app F ), (F=-eq; F=iff)),

AnnHyp = (annHyp Hyp _ _ 0 (econtext _ _ EQ _ ),
fully rippled_in EC

rewite _match with_hyp equiv Hyp trueP Conc NewConc )

Post: true

Qubgoal: (caseSchema Case Hyps postRi ppl eHyps NewConc) /

Figure C.8: The strong fertilise_prop method.

Method: strong_fertilise_prop

The strong_fertilise_prop method is shown in Figure C.8. It performs the second
form of strong fertilisation, namely where the induction hypothesis matches a subterm
of the conclusion. The preconditions are similar to strong fertilise, except that a
check is made that all wave fronts are fully rippled out or in. A residual conclusion

remains as a subgoal.

Method: weak fertilise

Theweak fertilisemethod, shown inFigure C.9, performs weak fertilisation, where
the induction hypothesis is used to rewrite one side of a binary predicate conclusion —
either eq or iff. The method is parameterised by a flag indicating whether the induc-
tion hypothesis has been “flipped” before being applied. A residual subgoal is left after

fertilisation.



Appendix C. Dynamis Documentation 287

method: (weak_fertilise Swap) \
Goal: (caseSchenma Case Hyps (rippl eHyps [AnnHyp]) (app F (tuple [A B])))

Pre:

((F=-eq F=iff),

swap A B Swap A2 B2,

AnnHyp = (annHyp Hyp _ EH _ EC _ ),

Hyp = (app F (tuple [X V])),

EH = (eapp [] (ebase [1]) (etuple [2] [XH, YH])),
EC = (eapp [] (ebase [1]) (etuple [2] [XC Y(])),
swap XY Swap X2 Y2,

swap XH YH Swap XH2 _,

swap XC YC Swap XC2 _,

hyp_weight XH2 0 0,

fully rippled XC2,

rewite_match with_hyp equiv X2 Y2 A2 NewA2 )

Post: (swap NewA2 B2 Swap A3 B3)

Qubgoal: (caseSchema Case Hyps postRippl eHyps (app F (tuple [A3, B3])))

/
method: repl ace_netavari abl es \

Goal: (caseSchema _ Hyps _ Conc)

Pre:

(metavars Conc [] Ms bool,
abstract _nmeta vars Conc Ws [] NewConc)

Post: true

Subgoal: (seqGoal (Hyps >>> NewConc))

\ /

Figure C.9: The weak fertilise andrepl ace_nmetavari abl es methods.
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ﬁ/lethod: (construct _wf_goal s Consts) \
Goal: (stepReduces Hyps KB)

Pre:

(dkb_cases KB Cases,

dkb_constraints KB Consts,

dkb_types KB Types,

 ength Types N,

setup_constraints N Consts,

list to goal Cases (wellfound goals Hyps Consts) RedCoal s)

Post: true

Qubgoal: RedGoal s /

Figure C.10: The construct wf _goal s method.

Method: r epl ace_net avari abl es

The repl ace_net avari abl es method is shown in Figure C.9. It finds the meta-
variables in a schematic goal and replaces them with universally quantifed variables.

The quantifiers appear at the top of the conclusion.

C.3 Wellfoundedness Methods

The theory and implementation of the wellfoundedness strategy was discussed in §6.5
and 810.4. This section briefly describes the low-level methods that did not appear in

§10.4.
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ﬁ/lethod: (ignore_position N) \

Goal: (redGoal N Consts )

Pre:

(varadd (ignore N Consts,
check_satisfiable Consts)

Post: true

kSubgoaI: t rueGoal /

Figure C.11: The i gnor e_posi ti on method.

Method: construct wf _goal s

The const ruct wf _goal s method is shown in Figure C.10. It transforms the dummy
meta-level st epReduces goal to a conjunction of wellfoundedness goals for a step
case. If this is the first step case then the method also posts measur e constraints on
the step case, indicating the measure function used for each induction position. At this

point the unknown measures are represented by meta-variables.

Method: i gnor e_posi tion

The i gnore_posi ti on method is shown in Figure C.11. It can be applied to any
wellfoundedness goal, irrespective of its validity, providing this leaves at least one
wellfoundedness goal that has not been ignored. The method’s preconditions post an
i gnor e constraint for the corresponding induction position, and checks the current

constraints are still satisfiable, indicating a valid position remains.
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ﬁ/lethod: (begin_estimtion N) \
Goal: (redGoal N Consts Hyps Cond A (induce M B)

Pre:

(varmenb (const _disj Mconsts) Consts,
varnmenb (measure N M Monsts,

not (varnenb (ignore N) Consts))

Post: (extract _condition Cond Cond2)

Subgoal:

((estGoal MA B Diff)
\** (seqGoal (Hyps >>> (app inmp (tuple [Cond2, Diff]))))) /

Figure C.12: The begi n_esti mati on method.

C.3.1 Estimation Methods

This section describes the low-level methods used to implement Walther’s estimation
method, employed by our strategy to discharge wellfoundedness goals. These methods

are organised into a strategy by the esti nati on_strat method (see Figure 10.17).

Method: begi n_esti mation

The begi n_est i mati on method is shown in Figure C.12. It takes a wellfoundedness
goal and sets up an estimation proof, consisting of two subgoals. Firstly, an estimation
goal, which claims i) that one term is equal to or smaller than another under a measure
and ii) that it being strictly smaller is equivalent to Di f f . Secondly, a goal stating that

the difference equivalent Di f f is implied by the corresponding case conditions.
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ﬁ/lethod: | ower _estinmate \

Goal: (estGoal ML R (app or (tuple [DiffLit, DiffEquiv])))

Pre:

(not (headvar_osyn R),

R = (app F Args),

| ower _arg bound F N MDiffPred)

Post:
(nth_arg Args N Arg,
DiffPred Args DiffLit)

\\fybgoak (estGoal ML Arg DiffEquiv) ,//

method: upper _estimate \

Goal: (estGoal ML R (app or (tuple [DiffLit, DiffEquiv])))

Pre:

(not (headvar _osyn L),

L = (app F Args),

upper _arg bound F N M Di ffPred)

Post:
(nth_arg Args N Arg,
DiffPred Args DiffLit)

Qubgoal: (estGoal MArg R DiffEquiv) /

Figure C.13: The | ower _est i mat e and upper _est i mat e methods.
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ﬁ/lethod: trivial _estimte \

Goal: (estGoal M X Y fal seP)

Pre:

(not (headvar_osyn M,

(headvar _osyn X; (not (headvar_osyn X), obj _atom X)),
(headvar _osyn Y; (not (headvar_osyn Y), obj _atomY)),

X =V

Post: true

Qubgoal: t rueGoal /

Figure C.14: Thetrivi al _esti mat e method.

Method: | ower _esti mat e

The | ower _est i mat e method is shown in Figure C.13. It applies the lower estimation
rule (see §6.5.4), i.e. it takes an estimation goal where the ‘smaller’ term has a top
functor f that is lower argument bounded, and removes this functor to form the sub-
goal. The difference equivalent is instantiated to a disjunction of the difference literal

for f and a fresh meta-variable.

Method: upper _esti mate

The upper _est i mat e method, shown in Figure C.13, implements Walther’s original
form of estimation. It is analogous to the | ower _est i mat e method, except an upper

argument bounded function is stripped off the ‘larger’ term of the inequality.
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ﬁ/lethod: abstract _metavars \

Goal: Goal

Pre:

(Goal = (seqGoal (Hyps >>> Conc)),

fold left (vl\ t\ v2\ (metavars t vl v2 bool)) [] [Conc|Hyps] Vars,
abstract _goal Goal Vars [] AbsGoal)

Post: true

ijgoalz AbsCoal J

Figure C.15: The abst ract _net avar s method.

Method: trivial _.estimate

The trivial _estimate method is shown in Figure C.14. The method discharges
trivial estimation goals. The preconditions check that each side of the inequality is
either a meta-variable or an atom, and unifies the two sides. The difference equivalent

Is instantiated to f al seP, indicating that this inequality is not strict.

Method: abstract _net avar s

The abstract _met avar s method is shown in Figure C.15. The method collects to-
gether the meta-variables in a sequent goal and replaces them with variables. These
variables are univerally quantified in the subgoal.

The purpose of this method is two remove any meta-variables from the difference

equivalent goal before rewriting is applied.
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ﬁ/lethod: set_conditions \

Goal: (caseGal C MHs F)
Pre: (inst_var_literal F)
Post: true

Subgoal: (caseGal C MHs F)

\ /

Figure C.16: The set _condi ti ons method.

C.4 Case Synthesis Methods

The implementation of the wellfoundedness strategy was discussed in 810.4. This

section briefly describes the low-level methods that did not appear there.

Method: set _condi ti ons

The set _condi ti ons method is shown in Figure C.16. It instantiates the meta-variable
representing any unknown case conditions, so that the subsequent case strategy does

not accidently instantiate it.

Method: case_equi v

Figure C.17 shows the case_equi v method. This method simplifies the case formulae
during the case exhaustiveness proof using equivalence preserving steps, i.e. rewriting
with certain rules or removing ‘solved’ disjuncts. These steps do not need to be back-
tracked over, so several are applied together within the equi v_case predicate, which

prevents this happening.
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ﬁ/lethod: (case_equiv Rul es) \

Goal: Goal
Pre: (equi v_case CGoal NewGoal Rul es)

Post: true

Qubgoal: NewGoal /

Figure C.17: The case_equi v method.

This is an unelegant way to represent these proof steps — individual method ap-
plications would have been better. However, without a cut methodical available in
AClam this is the only way to prevent needless backtracking through such sequences

of simplification (see also §10.3.4).

Method: exi st s_casesplit

The exi st s_casespl it method, shown in Figure C.18, applies the existential case
split method described in 85.4.2. Although its preconditions seem quite complex, they

implement the heuristics described in full in §5.6.

Method: case_i nducti on

The case_i nduct i on method is shown in Figure C.19. It applies induction to the case
formula during the case exhaustiveness proof, following the heuristics described in
85.6. The method consists of two clauses, corresponding to the two different contexts
in which it was determined induction could be applied.

After induction, rippling and fertilisation are applied to the case formula, using the

case_rippl eandcase_fertilisation methods shown in Figure C.20.
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ﬁ/lethod: (exists_casesplit Scheme) \
Goal: (aseGoal CasePair M ssing Hyps Conc)

Pre:

(not (rewitable Conc),

metavars Conc [] Vars bool,

menb (otype_of Var Type) Vars,

not (headvar_osyn Type),

once (junctive or Disjunct Conc,
junctive and Conjunct Conc,

((Conjunct = (app eq (tuple [UTerm (app F Args)])),
defined function F (ATypes arrow ),
contains_netavar Args ATypes Var Type,
not (is_univ_var UTerm _));

(not (Conjunct = (app eq _)),
contai ns_netavar Conjunct bool Var Type))),
exhaustive Scheme Type ExCases,
for_each ExCases (some_case (c\
(sigma t\
(sigma r\ (not (not (case_termc Var, rewitable Conc))))))))

Post:
(map_junction or (split_exist Var ExCases) Conc NewConc,
mappred Hyps (reenbed_casehyp NewConc) NewHyps)

Qubgoal: (caseCoal CasePair M ssing NewHyps NewConc) /

Figure C.18: The exi st s_casespl i t method.



Appendix C. Dynamis Documentation

297

ﬁ/lethod: (case_i nduction Schene)

Goal: Goal
Pre:
(Goal = (caseGoal _ _ _ Conc),

not (rewitable Conc),

junctive or Disjunct Conc,

uni versal vars Disjunct [] Wars,
subset [] IndSet Wvars,

case_schene Schene Types IndVars Goal SubGoal s,

Post: (map_goal SubGoal s renanme_and_enbed NewSubGoal s)

KSubgoaI: NewSubGoal s

mappred2 IndSet (x\ y\ z\ (x = (otype_of y z))) IndvVars Types,

for_each_goal SubGoals (g\ (sigma c\ (get_conc g ¢, rewitable c))))

method: (case_i nduction Schene)
Goal: Goal

Pre:

(Goal = (caseGal _ _ _ Conc),

not (rewritable Conc),

junctive or Disjunct Conc,
universal vars Disjunct [] Wvars,
subset [] IndSet Wars,

mappred2 IndSet (x\ y\ z\ (x = (otype_of y z))) IndVars Types,

case_schene Schene Types |ndVars Coal SubGoals,
not (for_each _goal SubGoals (g\ (sigma c\

(get_conc g ¢, rewitable c)))),

once (menmb (otype_of War Type) |ndSet,

junctive and (app eq (tuple [War, (app F )])) Disjunct,

not (headvar_osyn F),
defined_function F (_ arrow Type)))

Post: (map_goal SubGoal s renanme_and_enbed NewSubGoal s)

Qubgoal: NewSubGoal s

/
N

Figure C.19: The two clauses of the case_i nduct i on method.
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method: (case_ripple Rule) \

Goal: (caseCoal Case M ssing Hyps Conc)

Pre:

(wave _rule list Rules,

remrite outer (rew _list Rules rew _match) Rule _ Conc NewConc trueP Ad,
nth Hyps N (caseHyp Hyp E1l Qut1l) Rest,

reverse Ad At,

subterm enbed undir Rule At [] El E2 Hyp NewConc bool,

tidy_conc_context E2 outward E3 Qut3 nil,

measure_less Qutl nil Qut3 nil)

Post: (nth NewHyps N (caseHyp Hyp E3 Qut3) Rest)

QubGoal: (caseCoal Case M ssing NewHyps NewConc)

N\

ﬁ/lethod: case_fertilisation
Goal: (caseCGoal Case M ssing Hyps Conc)

Pre:

(menb (caseHyp Hyp _ _) Hyps,
junctive or Disj Hyp,
junctive and Conj Disj,
case_fert Conj Conc NewConc)

Post: true

SubGoal: (caseGoal Case M ssing Hyps NewConc)

\ /

Figure C.20: The case_ri ppl e and case fertilisation methods.




Appendix C. Dynamis Documentation 299

ﬁ/lethod: renove_case_hyps \

Goal: (caseGal C MHs F)
Pre: true

Post: (remove_casehyps Hs NewHs)

Qubeoal: (caseCGoal C M NewHs F) /

Figure C.21: The r enove_case_hyps method.

Method: r enove_case_hyps

The remove_case_hyps method is shown in Figure C.21. It strips the case formula
of any inductive hypotheses, if rippling and/or fertilisation fail. This happens when
induction was used to achieve a case split, rather than a genuine inductive argument

(see 85.6).

Method: trivi al _case

The trivial _case method is shown in Figure C.22. It discharges trivially case for-

mulae during the case exhaustiveness proof.

Method: m ssi ng_case

The m ssi ng_case method is shown in Figure C.22. The method discharges trivially
false case formulae during the case exhaustiveness proof, and identifies the missing
proof case that corresponds to this failed subgoal. The case is added to the list of

missing cases M ssi ng.
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ﬁ/lethod: trivial _case \

Goal: (caseGoal _ _ _ trueP)

Pre: true

Post: true
Qubgoal: t rueGoal j
ﬁ/lethod: (mi ssing_case AbsCase) \

Goal: (caseGoal (case Cond _ Term) Mssing _ falseP)
Pre: true

Post:

(univ_vars Cond [] Vars,

univ_vars Term Vars Vars2,

abstract _case Vars2 [] (case Cond _ Term AbsCase,
varadd AbsCase M ssing)

Qubgoal: t rueGoal /

Figure C.22: Thetrivi al _case and m ssi ng_case methods.

C.5 Base Case Methods

The base case strategy was described in §10.6, and this section provides definitions for
the low-level methods which were not given there. Theseare: rewite,rewite_equiv,

rewite_nonequiv and normal i se (see Figure C.23 and Figure C.24).
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method: rewite

(then_neth (nornalise all i _nf)
(then_neth (some_neth rewite_equiv)
(try_meth

(repeat _neth
(then_meth (some_neth rewite_nonequiv)

\ (some_meth rewite_equiv))))))

method: (rewite_equiv Rules)
Goal: Goal

Pre:
(equiv_sinmplification Goal SubGoal Rules)

Post: true

QubGoal: SubGoall

AN

ﬁ/lethod: (rewite_nonequiv Rule)
Goal: (seqGoal (H >>> Q)

Pre:

(symeval _rewites list Rules,

rewite outer (rew _list Rules rew _unif) Rule Dir C NewC trueP _,
not (Dir = equiv))

Post:
(condition_goal Cond trueP H (c\ (seqGoal (H >>> ¢)))
(seqGoal (H >>> NewC)) SubGoal)

QubGoal: SubGoal

AN

/

Figure C.23: Therewrite,rewite_equiv andrewite_nonequi v methods.
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method: (normal i se NF) \

Goal: G
Pre: (NF G @)

Post: true

QubGoal: & /

Figure C.24: The nor nal i se method.
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