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Abstract. Walther’s estimation calculus was designed to prove the ter-
mination of functional programs, and can also be used to solve the simi-
lar problem of proving the well-foundedness of induction rules. However,
there are certain features of the goal formulae which are more common
to the problem of induction rule well-foundedness than the problem of
termination, and which the calculus cannot handle. We present a sound
extension of the calculus that is capable of dealing with these features.
The extension develops Walther’s concept of an argument bounded func-
tion in two ways: firstly, so that the function may be bounded below by
its argument, and secondly, so that a bound may exist between two ar-
guments of a predicate. Our calculus enables automatic proofs of the
well-foundedness of a large class of induction rules not captured by the
original calculus.

1 Introduction

An induction rule is well-founded iff there is a well-founded order such that for
each step case of the rule the inductive hypotheses are less in that order than the
inductive conclusion. A standard technique for showing validity of an induction
rule involves showing the rule to be well-founded, and so automatic techniques
for establishing well-foundedness are of interest to the inductive theorem proving
community.

The problem of proving an induction rule well-founded is similar to that of
proving the termination of a recursive functional program. The current state
of the art techniques in automated termination analysis of functional programs
are based upon Walther’s estimation calculus [10]. Likewise, these techniques
currently represent the most powerful approach to automatically proving the
well-foundedness of induction rules.

Both termination and well-foundedness proofs involve finding a well-founded
relation ≺ that satisfies formulae of the form

ϕ→ s ≺ t (1)

In a termination proof of a function1 f , there is a goal (1), known as a termination
formula, for each recursive call in a defining equation of f of the form

1 We do not consider functions defined by mutual or nested recursion. [5] describes
extending existing termination analysis techniques to such functions.



ϕ→ f(t) = · · · f(s) · · · (2)

In a well-foundedness proof, there is goal (1), known as a well-foundedness for-
mulae, for each induction hypothesis in a step case of the induction rule of the
form

ϕ, . . . , ψ(s), . . . ` ψ(t) (3)

However, there are two common features of the induction step case (3) which
appear less often in (2). Firstly, the term t in (3) can contain defined function
symbols (i.e. non-constructor symbols), whereas the t in (2) is often a pattern
(i.e., a linear constructor term) – some languages (e.g. ML) demand this is the
case. Secondly, the terms s and t in (3) may be related by a predicate in the step
case conditions ϕ. Although this can occur in (2), it is not a common style of
programming. Hence well-foundedness formulae have features whose analogues
appear less frequently in termination formulae:

(i) the appearance of defined function symbols on the right of the inequality,
and,

(ii) the two sides of the inequality are related by a predicate that appears in the
preconditions.

As the original estimation calculus was designed to prove termination formulae, it
does not take account of either of these features, and so fails on well-foundedness
formulae when these features are relevant to the solution (several examples are
given below).

In this paper we present a sound extension of the estimation calculus which
can handle both of these features of well-foundedness formulae. Furthermore,
this extended calculus is readily automated in just the same way as Walther’s
original calculus. Thus the extended calculus enables automatic proofs of the
well-foundedness of a strictly larger class of induction rules not captured by
Walther’s approach. (We discuss below other extensions of the original calculus.)
Likewise, it can prove the termination of a larger class of functions, given some
formalisms may allow functions with features analogous to (i) and (ii).

The extension is achieved by developing the concept of argument bounds.
In the original calculus, an argument bounded function is one whose result is
bounded above by one of its arguments under the size order. The size order <#

orders free data types by their value under the size measure #, e.g., natural
numbers are ordered by magnitude, and lists by length.

We extend the concept of argument bounds to functions which are bounded
below by their arguments, and to predicates in which one argument bounds
another. Using these concepts, the calculus is extended in order to deal with
features (i) and (ii) described above. For simplicity in this paper, we concentrate
on extending Walther’s original calculus [10], although our techniques could be
combined with some of the other extensions described in §2.3.



The features particular to well-foundedness formulae and our extensions to
estimation calculus are illustrated by the following two examples. Firstly, con-
sider (4) below as an example of an induction rule whose well-foundedness for-
mulae have feature (i):

` ψ(0)
` ψ(s(0))

x 6= 0 ∧ y 6= 0, ψ(x), ψ(y) ` ψ(plus(x, y))

` ∀x:nat. ψ(x)
(4)

where plus sums two natural numbers. If we attempt to use the size order # to
prove this well-founded, we must show that

x 6= 0 ∧ y 6= 0→ #(x) < #(plus(x, y)) (5)

x 6= 0 ∧ y 6= 0→ #(y) < #(plus(x, y)) (6)

These well-foundedness formulae both display feature (i): defined function sym-
bols appear on the right of the inequality. If we know that plus is bounded below
by its first argument, relative to #, and that this bound is strict when the second
argument is non-zero, i.e.,

v 6= 0→ #(u) < #(plus(u, v)) (7)

then we can easily discharge (5). This is the basic approach taken by the estima-
tion calculus: find an argument bound, synthesise lemmas giving conditions on
the strictness of this bound (like (7)) and then show that these conditions hold.
Formula (6) can be discharged with a similar insight about the second argument
of plus.

However, this example cannot be solved by the estimation calculus. Because
the termination formulae it was designed to solve rarely display feature (i), it
only reasons with functions which are bounded above by one of their arguments.
The crucial part of this proof is to recognise the lower argument bound on plus.
Our extended calculus can solve such well-foundedness conditions by reasoning
about lower argument bounds.

Our second example (8) has well-foundedness formulae which illustrate fea-
ture (ii) described above. Here shorter is a predicate that holds only when its
first argument is a shorter list than its second argument.

` ψ(nil) shorter(x, y), ψ(x) ` ψ(y)

` ∀x:list(τ). ψ(x)
(8)

To establish well-foundedness using the size order, we need to discharge

shorter(x, y)→ #(x) < #(y) (9)

This well-foundedness formula displays feature (ii): the two sides of the inequality
are related by a predicate that appears in the preconditions. If we know that
when shorter holds, its first argument is bounded above by the second argument,



relative to #, and that this bound is always strict, then we can discharge (9).
Notice we have taken the estimation calculus approach again: find an argument
bound, synthesise a lemma giving conditions on the strictness of this bound and
show these conditions hold – in this example the conditions are trivially true.

The original estimation calculus cannot solve this example, as the crucial
part of the proof is recognising the relevant argument bound holds between
the first and second arguments of shorter. The calculus can only reason about
argument bounded functions, and not argument bounded predicates that appear
in the conditions on the inequality. This is because these rarely appear in the
termination formulae the calculus was designed to prove. Our extended calculus
can solve such well-foundedness conditions by reasoning about bounds between
arguments of predicates.

Although there exist more powerful techniques which can reason about fea-
tures (i) and (ii), i.e. [4] and [1], our calculus has advantages over these. The main
contribution of this paper is that such reasoning can be ‘built in’ to Walther’s
calculus in a way analogous to the original, and which retains its simplicity. The
method is simpler and easier to implement than comparable techniques, and
although less powerful, is capable of coping with many common examples.

The remainder of this paper is organised as follows: we provide some back-
ground on the estimation calculus in §2. The extension for handling the occur-
rence of defined function symbols in the conclusion of a step case is presented
in §3, and the extension for formulae where the two sides of the inequality are
related by a predicate that appears in the conditions is described in §4. Refine-
ments and possible developments of our approach are discussed in §5, and in §6
we draw our conclusions.

Conventions We use i ∈ [n] to denote 1 ≤ i ≤ n, and sn
−→ to denote s1, . . . , sn.

Each n-ary constructor c has n associated destructor functions d1
c , . . . , d

n
c which

return the arguments of c, defined as di
c(c(tn

−→

)) = ti, a everywhere else, where a
is an arbitrary nullary constructor of the appropriate type. It is assumed that
such a constructor exists for each type.

2 Background

Proving induction rules well-founded, and functional programs terminating (ex-
cluding nested and mutually recursive programs), requires us to find a well-
founded relation2 ≺ which satisfies a set of formulae of the form

ϕ→ (sn
−→) ≺ (tn

−→

) (10)

There is a well-foundedness formula of this form for each inductive hypothesis,
where the si are values of the induction variables in the hypothesis, the ti are the
values in the conclusion of this step case and ϕ are the conditions on this case.
In the case of termination proofs, there is a termination formula (10) for each

2 A relation is well-founded if it does not contain any infinite descending chains.



recursive call – the si are the arguments of this call, the ti are the arguments of
the head of this defining case and ϕ are the case conditions.

If a relation ≺ is well-founded on β, a measure functions m : α → β can be
used to induce a well-founded relation ≺m, defined by

∀x, y:α.
(

x ≺m y ↔ m(x) ≺ m(y)
)

The estimation calculus [10] attempts to prove sets of well-foundedness formulae
using the well-founded size order <#. The size measure # : τ → nat counts
the number of reflexive3 type τ constructors in a type τ data-structure, where
substructures of other types are ignored. The rest of this section gives a brief
summary of the estimation calculus – for more details see [10].

2.1 Argument Bounds and Difference Predicates

Walther defines an argument bounded function as one whose result is smaller
under ≤# than one of its arguments. In order to avoid confusion later, we refer to
these as upper argument bounded functions, because the argument is an upper
bound on the function. Formally:

Definition 1 (Upper Argument Bounded Function). A function f : τ1 ×
· · · × τn → τ is upper p-bounded iff p ∈ [n] and

∀t1:τ1 . . . tn:τn. f(tn
−→

) ≤# tp

A function is upper argument bounded iff it is upper p-bounded for some p.

For each upper argument bounded position p of a function f , there is a
difference predicate which is true only when the upper bound is strict. Formally:

Definition 2 (Difference Predicate). If f is upper p-bounded, the difference
predicate ∆p

f is defined by

∆
p
f (tn
−→

) =
(

f(tn
−→

) <# tp
)

Note that predicates are treated as functions with the range {true, false}.
For an n-ary predicate P we write P (xn

−−→) = true as P (xn
−−→) (see [10] for further

details).

2.2 The Estimation Calculus

Walther’s calculus is given in Fig. 1, which we have recast as a sequent-style
system. The measured data type has k reflexive constructors rk

−→, and l irreflexive
constructors irl

−−→

. Each ri is reflexive on the set of argument positions Ri.
The calculus is used to derive sequents of the form 〈s ≤# t,∆〉, and is sound

in that `E 〈s ≤# t,∆〉 implies both s ≤# t and ∆↔ s <# t. Well-foundedness

3 A function is reflexive if its range type is one of its domain types.



Assumption

Γ `E A
if A ∈ Γ

Identity

Γ `E 〈t ≤# t, false〉

Equivalence

Γ `E 〈iri(sn
−→) ≤# irj(tm

−−→

), false〉
if i, j ∈ [l]

Strong Estimation

Γ `E 〈iri(sn
−→) ≤# rj(tm

−−→

), true〉
if i ∈ [l], j ∈ [k]

Minimum

Γ `E 〈iri(sn
−→) ≤# t , t = r1(d

1
r1
(t), . . . , dn1

r1
(t)) ∨ · · ·

· · · ∨ t = rk(d
1
rk
(t), . . . , d

nk
rk
(t))〉

if i ∈ [l]

Upper Bound Estimation

Γ `E 〈sp ≤# t, ∆〉

Γ `E 〈f(sn
−→) ≤# t, ∆ ∨∆

p

f (sn
−→)〉

if f is upper p-bounded

Strong Embedding

Γ `E 〈s ≤# tj , ∆〉

Γ `E 〈s ≤# ri(tm
−−→

), true〉
if i ∈ [k], j ∈ Ri

Weak Embedding

Γ `E 〈sj1 ≤# tj1 , ∆1〉, . . . , Γ `E 〈sjm
≤# tjm

, ∆n〉

Γ `E 〈ri(sn
−→) ≤# ri(tn

−→

), ∆1 ∨ · · · ∨∆n〉

if i ∈ [k],

Ri = {jm
−−→

}

Fig. 1. The estimation calculus

conditions of the form (10) are proved by showing `E 〈si ≤# ti,∆〉 for some
i ∈ [n] and then using a theorem prover to establish ϕ→ ∆.

The calculus rules can be used in reverse to decompose the goal formula
〈s ≤# t,∆〉, where the identity of ∆ is initially unknown. If we represent this
unknown as a meta-variable which can be instantiated by rule applications, then
the difference formula ∆ can be constructed during the analysis4.

4 Walther’s original approach to using the calculus was to recast it as a production
rule system whose rules constructed ∆ as they decomposed the inequality. The ap-
proaches are trivially equivalent.



Recognising argument bounded functions and synthesising difference predi-
cates is done automatically using the estimation calculus. An upper p-bounded
function f is recognised by performing a meta-induction proof that demonstrates
that each defining case of f returns a value no larger under <# than the pth
argument (see [10] for details). If it exists, the corresponding difference predicate
is synthesised as a by-product of this analysis.

2.3 Related Techniques

Based on the estimation calculus, Giesl developed a similar calculus that works
with arbitrary measure functions based on polynomial norms [3]. As it is not
restricted to using the size measure, it is a much more powerful approach. The
method still has the drawback that the user must supply the appropriate mea-
sure function. To overcome this Giesl adapted the approach to automatically
synthesise these measure functions, using techniques from termination analy-
sis of term rewriting systems [4]. This latter technique is quite different from
the estimation calculus, and does not use argument bounded functions. A good
overview of this research can be found in [6].

The estimation calculus has also been extended to work with certain non-free
data types [9], and has been used as the basis for Walther recursive programs [7],
a class of functional programs for which termination is decidable.

3 Lower Argument Bounded Functions

In this section we describe our extension for feature (i): the occurrence of defined
function symbols on the right of the inequality. If a well-foundedness formula has
this feature, then proving it requires us to show `E 〈s ≤# t, ∆〉, where t contains
defined function. The calculus fails in these situations because it has no rules
which can derive theorems of this form.

We can extend the estimation calculus to allow defined functions f to be
added to t, providing that they do not decrease the value of this term under
the size measure. In other words, the value of f(. . . , t, . . .) is bounded below by
the value of t. We call these functions lower argument bounded functions, and
define them as follows:

Definition 3 (Lower Argument Bounded Function). A function f : τ1 ×
· · · × τn → τ is lower p-bounded iff p ∈ [n] and

∀t1:τ1 · · · tn:τn. tp ≤# f(tn
−→

)

A function is lower argument bounded iff it is lower p-bounded for some p.

Before we can extend the calculus to use lower argument bounded functions,
we need to be able to synthesise a difference predicate that is true iff the lower
argument bound is strict. The process is exactly analogous to the upper bound
case – the difference predicate ∆p

f is synthesised while verifying that f is lower



p-bounded – and is described in §3.1. We can now extend the estimation calculus
by adding the following inference rule (11) to handle lower argument bounded
functions.

Lower Bound Estimation

Γ `E 〈s ≤# tp, ∆〉

Γ `E 〈s ≤# f(tn
−→

),∆ ∨∆p
f (tn
−→

)〉
if f is lower p-bounded (11)

Because all constructor functions are argument bounded on their reflexive
argument positions, the strong embedding rule (see Fig. 1) is now redundant,
being subsumed by rule (11). Below we use `E to denote the estimation calculus
extended with our new rule (11).

Theorem 1. Rule (11) is sound.

Proof. Assume f is lower p-bounded and 〈s ≤# tp,∆〉. By definition s ≤# tp
and ∆↔ s <# tp, and tp ≤# f(tn

−→

) and ∆p
f (tn
−→

)↔ tp <# f(tn
−→

). Now:

(a) s ≤# f(tn
−→

), by s ≤# tp and tp ≤# f(tn
−→

).
(b) ∆ ∨∆p

f (tn
−→

) → s <# f(tn
−→

), as ∆ → s <# f(tn
−→

) and ∆p
f (tn
−→

) → s <# f(tn
−→

)
by (a).

(c) s <# f(tn
−→

)→ ∆∨∆p
f (tn
−→

), because s ≤# tp ≤# f(tn
−→

), so s <# f(tn
−→

)→ tp 6=

s ∨ tp 6= f(tn
−→

). Hence s <# f(tn
−→

)→ s <# tp ∨ tp <# f(tn
−→

).

Therefore 〈s ≤# f(tn
−→

),∆ ∨∆p
f (tn
−→

)〉 as required. 2

Given the original estimation calculus and the new rule (11) are both sound,
our extended calculus `E is also sound.

As an example of rule (11) in operation, consider the following induction
rule, taken from [8]:

` ψ(nil) ψ(l) ` ψ(app(l, cons(x, nil)))

` ∀l:list(τ). ψ(l)
(12)

Here nil and cons are the list constructors and app is a defined function that
appends two lists, defined as

app(nil, l) = l (13)

app(cons(h, t), l) = cons(h, app(t, l)) (14)

We can verify that app is lower 1-bounded, with the associated difference pred-
icate ∆1

app (see §3.1 for details), defined as

∆1
app(nil, l) = (l = cons(hd(l), tl(l))) (15)

∆1
app(cons(h, t), l) = ∆1

app(t, l) (16)



We can use the size measure to prove (12) well-founded: `E 〈l ≤# l, false〉 by
the identity rule, and then by lower bound estimation

`E 〈l ≤# app(l, cons(x, nil)), false ∨∆1
app(l, cons(x, nil))〉

It is within the power of current automatic inductive theorem provers (e.g.,
Clam [2]) to show that the difference formulae false ∨ ∆1

app(l, cons(x, nil)) is
true, and so the inequality is strict. Hence the induction rule (12) is well-founded.
Note this cannot be established using the original calculus, because of the defined
function symbols app appearing on the right hand side of the inequality.

In [4] termination/well-foundedness formulae are converted into a set of con-
straints on a polynomial measure, and a suitable measure is generated. This
relieves the user of having to provide suitable measures for the proof. It is also
general enough to handle goal formulae with feature (i), and so could be used as
an alternative to the estimation calculus extended with our rule (11). However,
our approach is considerably simpler and easier to implement. Of course, it can
only be used in situations where the size measure is sufficient, but this includes
many common induction rules/functions.

3.1 Recognising Lower Argument Bounded Functions

When an n-ary function is defined, we attempt to prove it is lower p-bounded
for each p ∈ [n]. We assume it has been shown terminating, and has a set of
mutually exclusive and exhaustive defining equations. To verify that f is lower
p-bounded for some p we must show

`E 〈tp ≤# f(tn
−→

), ∆p
f (tn
−→

)〉 (17)

for some difference predicate ∆p
f . As in the upper argument bounded case (for

details see [10]), we prove this property by a meta-induction over the estimation
calculus which corresponds to the recursive structure of f . The difference pred-
icate ∆p

f is synthesised during this process – each case of the meta-induction
adds an equation to its definition.

So for each defining equation of f

ϕ→ f(tn
−→

) = b (18)

where b contains k recursive calls f(s1,1, . . . , s1,n), . . . , f(sk,1, . . . , sk,n), we must
verify a case of our meta-induction corresponding to (18)

〈s1,p ≤# f(s1,1, . . . , s1,n), ∆
p
f (s1,1, . . . , s1,n)〉,

...
〈sk,p ≤# f(sk,1, . . . , sk,n), ∆

p
f (sk,1, . . . , sk,n)〉 `E 〈tp ≤# b, ∆〉

(19)

for some ∆. Note there may be no recursive calls in b, and so they will be no
inductive hypotheses.



The corresponding difference predicate ∆p
f is synthesised as a by-product: for

each case of our meta-induction (19), we obtain the following defining equation

ϕ→ ∆
p
f (tn
−→

) = ∆ (20)

The above meta-induction is guaranteed valid, because we demand f is ter-
minating and has a set of mutually exclusive and exhaustive defining equations.
If we use this scheme to prove (17), then for each case (18) there is a meta-
induction case

ϕ, h1, . . . , hk ` 〈tp ≤# f(tn
−→

), ∆p
f (tn
−→

)〉

where h1, . . . , hk are the inductive hypotheses of (19). By the definitions of f (18)
and ∆p

f (20) it is sufficient to prove (19). Hence the meta-induction proves (17).

Furthermore, as `E is sound, (17) implies tp ≤# f(tn
−→

) and ∆p
f (tn
−→

)↔ tp ≤#

f(tn
−→

). So by definition 3, the meta-induction verifies that f is lower p-bounded
and has difference predicate ∆p

f .
The process of recognising lower argument bounded functions is illustrated

by the verification app (see §3) is a lower 1-bounded function. For defining equa-
tion (13) we use the minimum rule to show

`E 〈nil ≤# l, (l = cons(hd(l), tl(l)))〉

(15) is extracted from this. For the recursive equation (14) we can use the weak
embedding rule to show

〈t ≤# app(t, l),∆1
app(t, l)〉 `E 〈cons(h, t) ≤# cons(h, app(t, l)),∆1

app(t, l)〉

from which (16) is extracted. Hence app is lower 1-bounded, with the difference
predicate defined by (15) and (16).

4 Argument Bounded Predicates

We now describe our extension for feature (ii): the two sides of the inequality
are related by a predicate that appears in the preconditions. A well-foundedness
formula with this feature requires us to show `E 〈s ≤# t, ∆〉, where s is less
than t because of the preconditions. This is not possible in the original calculus,
which ignores these conditions.

Although the conditions ϕ may entail s ≤# t, it may require arbitrarily hard
theorem proving to establish this – and we would still be left with the problem of
synthesising the appropriate difference predicate. We adopt a restricted but more
practical approach in which ϕ → w(tn

−→

) is tested using a decision procedure5,
such that s = tp and t = tq, where w is a predicate that is mentioned in ϕ

and whose pth argument is never greater under the size measure than its qth
argument. In other words, w ensures t is bounded below by s. We call w an
argument bounded predicate, defined as follows:

5 For example, that the formula is a tautology.



Definition 4 (Argument Bounded Predicate). A predicate w : τ1 × · · · ×
τn → bool is (p, q)-bounded iff 1 ≤ p, q ≤ n, p 6= q and

∀t1:τ1 · · · tn:τn. w(tn
−→

)→ tp ≤# tq

A predicate is argument bounded iff it is (p, q)-bounded for some p, q.

As with argument bounded functions, there is a difference predicate ∆
(p,q)
w that

is equivalent to this bound being strict, i.e. w(tn
−→

) → (∆
(p,q)
w (tn

−→

) ↔ tp ≤# tq),
and which is synthesised while verifying w is (p, q)-bounded. This is described
in §4.1. We can now extend the estimation calculus by adding an inference rule
(21) to handle argument bounded predicates in the conditions.

Condition Bound

Γ `E 〈tp ≤# tq, ∆
(p,q)
w (tn

−→

)〉
(21)

Providing (p, q)-bounded w in ϕ and ϕ→ w(tn
−→

) is a tautology.

Theorem 2. Rule (21) is sound.

Proof. Assume w is (p, q)-bounded and ϕ → w(tn
−→

) is a tautology. As ϕ is the
current condition, w(tn

−→

) holds. By definition 4, w(tn
−→

) → tp ≤# tq, so tp ≤# tq.

Also, w(tn
−→

) → (∆
(p,q)
w (tn

−→

) ↔ tp <# tq), so ∆
(p,q)
w (tn

−→

) ↔ tp <# tq. Hence

〈tp ≤# tq, ∆
(p,q)
w (tn

−→

)〉 as required. 2

Extending `E with (21) preserves soundness; henceforth we shall refer to this
system (i.e., `E with the addition of rule (21)) as `E .

As an example of the use of rule (21), consider the following induction rule:

` ψ(nil) leqlen(l,m), ψ(l) ` ψ(cons(x,m))

` ∀l:list(τ). ψ(l)
(22)

Here leqlen is a predicate that holds when its first argument is a list not longer
than its second argument, and is defined as

leqlen(nil,m) = true (23)

leqlen(cons(g, s), nil) = false (24)

leqlen(cons(g, s), cons(h, t)) = leqlen(s, t) (25)

We can show that leqlen is (1, 2)-bounded, and has the difference predicate

∆
(1,2)
leqlen (see §4.1 for details), defined as

∆
(1,2)
leqlen(nil,m) = (m = cons(hd(m), tl(m))) (26)

∆
(1,2)
leqlen(cons(g, s), nil) = false (27)

∆
(1,2)
leqlen(cons(g, s), cons(h, t)) = ∆

(1,2)
leqlen(s, t) (28)



To establish the well-foundedness of (22) using the size order, we can use the

condition bound rule (21) to derive `E 〈l ≤# m, ∆
(1,2)
leqlen(l,m)〉, followed by

lower bound estimation, given that cons is lower 2-bounded.

`E 〈l ≤# cons(x,m), ∆
(1,2)
leqlen(l,m) ∨∆2

cons(x,m)〉

The difference formula is true, as ∆2
cons(x,m) is defined as true. Hence induc-

tion rule (22) is well-founded. Note that this example cannot be solved using
the original estimation calculus, as it does not consider the conditions on the
well-foundedness formulae.

Brauburger and Giesl use inductive evaluation to exploit the conditions on
the inequality in termination formulae [1], and so their method could also be
used as an alternative to the condition bound rule (21). However, this requires
an inductive theorem prover to solve subgoals that correspond to proving the
predicate is strictly argument bounded. Our approach performs this analysis
when the predicate is first defined, and so requires less theorem proving support
during execution. It is simpler to identify argument bounded predicates when
they are defined, and to use the condition bound rule when possible. Of course,
there are many situations where rule (21) is not relevant and inductive evaluation
is required.

4.1 Recognising Argument Bounded Predicates

When an n-ary predicate is defined, we attempt to prove it is (p, q)-bounded for
each p 6= q, 1 ≤ p, q ≤ n. We assume it has been shown terminating (recall our
predicates are functions onto {true, false}) and has a set of mutually exclusive
and exhaustive defining equations. To verify that w is (p, q)-bounded for some p
and q we must show that

`E 〈tp ≤# tq, ∆
(p,q)
w (tn

−→

)〉 (29)

when w(tn
−→

) holds, for some difference predicate ∆
(p,q)
w . We proceed as in the

argument bounded function case (see §3.1 and [10]), by a meta-induction over
the estimation calculus according to the recursive structure of w. Again each
case of the meta-induction adds an equation to the definition of the difference

predicate ∆
(p,q)
f .

However, because we have the extra assumption w(tn
−→

), the details of the
meta-induction are somewhat different from the functional case. For each defin-
ing equation of w

ϕ→ w(tn
−→

) = b (30)

we require that b is a quantifier-free formula over the free variables of w(tn
−→

). This
formula is converted into disjunctive normal form b′ = d1 ∨ · · · ∨ dm. Recall that
we only want to establish (29) when w(tn

−→

) holds, so if b = false we can ignore



the case (30) and do not care what value ∆
(p,q)
w (tn

−→

) takes – a case assigning it
false under the condition ϕ is added.

Otherwise, we must prove a case of the meta-induction corresponding to (30)
when w(tn

−→

) = true. The latter implies at least one of the disjuncts di must hold.
If di holds and contains the set of positive literals pi, we can make the following
assumptions

1. For each w(sn
−→) in pi we can assume 〈sp ≤# sq, ∆

(p,q)
w (sn

−→)〉.
2. For each z(sm

−−→) is in pi, such that z is a (u, v)-bounded predicate, we can

assume 〈sp ≤# sq, ∆
(u,v)
z (sn

−→)〉.

For each di we collect such a set of assumptions h1, . . . , ha and verify the following
meta-induction case

h1, . . . , ha `E 〈tp ≤# tq, ∆〉 (31)

If this proof is successful we create the following defining equation for ∆
(p,q)
w :

ϕ→ ∆(p,q)
w (tn

−→

) = ∆

Compare our meta-induction with the induction based upon the recursive
structure of w. Ours has the same case structure, with extra cases splits on
the disjuncts d1 ∨ · · · ∨dm, and only uses inductive hypotheses which would also
appear in the latter induction. The meta-induction is valid since w is terminating
and has a set of mutually exclusive and exhaustive defining equations. So if the
meta-induction succeeds, then (29) is established under the assumption w(tn

−→

).
Given w(tn

−→

) implies (29), the soundness of `E yields w(tn
−→

) → tp ≤# tq

and w(tn
−→

) → (∆
(p,q)
w (tn

−→

) ↔ tp ≤# tq). So by definition 4, the meta-induction

correctly verifies that w is (p, q)-bounded and has difference predicate ∆
(p,q)
w .

Our approach to recognising argument bounded predicates is illustrated by
the verification of leqlen (see §4) as a (1, 2)-bounded predicate. Consider defining
equation (23) of leqlen: we use the minimum rule to show

`E 〈nil ≤# m, (m = cons(hd(m), tl(m)))〉

which gives us (26). The defining equation (24) has false on the right, so this

case is ignored, and ∆
(1,2)
leqlen(cons(g, s), nil) set to false. For the third defin-

ing equation (28) there is a single disjunct containing a single positive literal
leqlen(s, t). Hence we use the weak embedding rule to show

〈s ≤# t,∆
(1,2)
leqlen(s, t)〉

`E 〈cons(g, s) ≤# cons(h, t),∆
(1,2)
leqlen(cons(g, s), cons(h, t))〉

from which (28) is extracted. Hence leqlen is (1, 2)-bounded, with the difference
predicate defined by (26), (27) and (28).



5 Further Work

Our extended calculus consists of the lower bound estimation rule and the con-
dition bound rule added to the original estimation calculus, minus the strong
embedding rule – which is subsumed by lower bound estimation. There are a
number of refinements that could be made to improve its performance. Many
of those suggested by Walther for his original calculus [10] would be similarly
applicable to our work, e.g., the optimisation of difference algorithms.

The use of lower argument bounded functions and argument bounded pred-
icates could be incorporated into Giesl’s calculus for polynomial norm measure
functions [3], given that it works on similar principles to the estimation calculus.
This would give our benefits for well-foundedness proofs, without the restriction
of using only the size measure.

Argument bounded predicates can give us useful information even when their
bound arguments are not simply the terms of the inequality we want to derive.
For instance, consider the following induction rule:

` ψ(nil)
less(len(l), len(m)), ψ(l) ` ψ(m)

` ∀l:list(τ). ψ(l)
(32)

Here less is less than on natural numbers, and len returns the length of a list.
less is also (1, 2)-bounded, so we can use the condition bound rule to derive

〈len(l) ≤# len(m), ∆
(1,2)
less (len(l), len(m))〉

This can be used to prove induction rule (32) well-founded, providing we know
the following properties of len:

∀x, y:list(τ). len(x) ≤# len(y)→ x ≤# y (33)

∀x, y:list(τ). len(x) <# len(y)→ x <# y (34)

Such reasoning could be included in the extended calculus, where properties
like (33) and (34) are established when the functions are initially defined.

We also intend to implement the extended calculus as part of the Clam
inductive theorem prover [2], in order to support automatic well-foundedness
proofs for induction rules, e.g. the examples given in this paper. This forms part
of a project to automatically construct such induction rules when required.

6 Conclusions

We have presented a fully automatic technique for proving that induction rules
are well-founded. It is a sound extension of the estimation calculus designed to
handle two common features of well-foundedness formulae for induction rules.
These features are i) defined function symbols on the right of the inequality



and ii) a predicate in the preconditions which relates the two sides of the in-
equality. The original estimation calculus did not take account of either of these
features, as they rarely appear in the termination formulae it was designed to
solve. Consequently, our calculus is more powerful.

Although both features could be tackled using alternative techniques our ap-
proach is simpler and easier to implement than comparable methods, as well as
requiring less theorem proving support during execution than inductive evalua-
tion.
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