MISLEADING BEHAVIOUR IN INTERACTIVE SYSTEMS

Jeremy Gow
UCL Interaction Centre
University College London
31-32 Alfred Place
London, UK
j.gow@ucl.ac.uk

Harold Thimbleby
UCL Interaction Centre
University College London
31-32 Alfred Place
London, UK
h.thimblebyQ@ucl.ac.uk

Paul Cairns
UCL Interaction Centre
University College London
31-32 Alfred Place
London, UK
p.cairns@ucl.ac.uk

ABSTRACT

We introduce the idea of partial behaviours in user
interfaces. A partial behaviour can beguile users, and
may be a cause of interaction problems — however,
it is possible to identify and remove them early in
the design process, making them a useful concept
for interaction design. A characterisation of partial
behaviours is presented, in terms of a matrix algebra
model of interactive systems. We use the model to show
some real interfaces have undesirable and apparently
unnecessary partial behaviours, and we discuss how
choices made when modelling affect our notion of
partiality. We also briefly describe a design tool
that provides automatic support for partial behaviour
analysis.

Keywords

User interface design, modes, formal methods, matrix
algebra.

1. INTRODUCTION

Partial behaviours can mislead users, whether they
arise from bad design or from legitimate user interface
modes. A simple example of a partial behaviour appears
in how the delete key in Microsoft Word deletes the
previous keystroke: almost always, key[DEL] results in
nothing (i.e., the delete removes the effects of typing
the last key), but there are a few contexts where
this useful and obvious behavioural rule fails. For
example, if automatic capitalisation of the word starting

a sentence is enabled, typing “._word.[DEL]” (i.e., dot,
space, word, dot, delete) will result in “. _Word” rather
than “._ word” — the difference is the word is still
capitalised, so only deleted some of what the
previous keystroke did. Thus the rule “[DEL] deletes
the last character” is only partially correct, because
sometimes does things differently.

The HCI interest in partial behaviour is that a user
might learn a partial behaviour but think it is a general
behaviour (particularly if they have never encountered
a counter-example of their inferred rule). In general,
it could lead to user frustration and error. In a safety
critical context, this may be disastrous. Elsewhere, we
have called some aspects of this problem an interaction
trap [1], but the specific contributions of this paper are
to show that:

e Partial behaviour is a useful and usable concept
for user interface design which lends itself to early
design questions, before empirical methodologies
are applicable.

e We can formalise partial behaviour constructively
and very generally, and in a way which allows
automatic support for the user interface analyst.

e We can characterise the ways in which changing
the underlying model affects analysis of partial
behaviours.

2. PARTIALITY

We can informally define partial behaviour of a user
interface as one where a given user action has a
consistent outcome most, but not all, of the time. In
other words, there is some minor inconsistency in the
outcome.

This definition is closely related to the familiar HCI
concept of modes, where an action has a consistent
outcome in some contexts, with other outcomes possible



in different modes. In our introductory example, we
can say that Microsoft Word has (at least) two modes
for [DELL: one simply deletes characters (and all effects
of those characters), the other deletes characters but
not all their side-effects. We claim that because the
second mode is relatively small compared to the first,
it is more constructive to view the situation as a single
mode defined by a partial behaviour (“key[DEL] usually
deletes key”) with an occasional deviation from the
norm. It makes sense, therefore, to define a partial
behaviour with respect to a particular interface mode.

Partial behaviours are relevant to HCI because a user
is more likely to overlook these relatively uncommon
deviations from ‘normal’ behaviour. It is common for
users to mistakenly generalise the behaviour of one
interface mode to another, but in the case of partial
behaviours they are unlikely to gain the experience
needed to correct the mistake.

The idea suggests a simple methodology for critiquing
interface designs: identify the main modes of the
interface, along with their respective partial behaviours:
can and should the interface be redesigned to remove
any of these partial behaviours? As we show below, this
methodology can lead to analyses that provide useful
design feedback, and that are simple enough to allow
automatic support.

Note that identifying a partial behaviour does not mean
it should be made a general behaviour — there could be
any number of reasons why some minor inconsistency
is needed in order to satisfy other design constraints.
The interface designer will need to make choices. For
instance, in our introductory example perhaps empirical
evidence of user behaviour suggested a huge advantage
for undoing capitalisation by hitting [DEL], even though
this design decision made the rule for a partial
claim. The important point is that the issue is raised
and identified specifically, so it can be considered by the
designer.

Our approach goes beyond the well-known design
heuristic of attempting to minimise the number of
interface modes, as it identifies and, as we shall see,
quantifies specific aspects of the interface design that
may need to be redesigned. It is also general, amenable
to automation (see below) and can be applied in the
very early stages of the design process.

So far we have discussed partial behaviour in general
terms. In the following sections we propose a concrete
formalisation of partiality and use it to analyse some
real-world interfaces.

3. QUANTIFYING PARTIALITY

Having defined partial behaviours as those that have
minor inconsistencies and argued for their relevance to

HCI, we now focus on quantifying the term ‘minor.’
Measuring how partial a behaviour is allows us to make
judgements about those which might be misleading to
the user. Here we present a simple measure based on
the proportion of the interface’s state space for which a
particular behaviour holds.

We start with a very simple but general concrete model
of user interfaces, based on labelled transition systems
(LTS). The transition matrix of a LTS is the union
of the transition matrices of the LTS associated with
each label. We therefore have a set of matrices (that we
call button matrices), that correspond with user actions
— gestures, button presses, mouse clicks, whatever —
and which represent an algebra defining the behavioural
properties of the user interface [6].

For each user action A, we define a button matrix M as
follows (m;; is the element in the ith row and the jth
column of matrix M):

1 if action A takes the interface
from state ¢ to state j;
0 otherwise

mij =

Similarly, interface states are modelled as row vectors.
These models are easy to calculate with, are well
supported by tools (e.g., Mathematica) and can handle
non-determinism and guarding (when an action cannot
be performed in a state).

By way of example, suppose we have matrices U and
D, corresponding to the two user actions of pressing a
button [A] and a button [V]. Tt is likely that UD = I (the
product of U and D is the identity matrix). A simple
analysis of a system specification can automatically find
many useful theorems like this — for more details see
[2, 6]. Now on some mobile phone menus, pressing
when at the beginning of a menu does not move the
selection point upwards, but a following does move
down. For such a system, UD # I.

As argued above, it is productive to treat this as a
partial behaviour, which we can denote as UD ~ 1.
Furthermore, now that there is a concrete model, we
can quantify this partiality by counting the proportion
of the states that conform to this behaviour. The
partiality = of a button matrix formula A ~ 5 B over
N states is defined as follows:

0 if row ¢ of A and B are equal;
o0 = .
1 otherwise

1-> 6;/N
In other words, 7 is the fraction of corresponding rows

in A and B that are equal. We write this as A ~ 1 B;
obviously A~ B< A=B.

In our [Al/ example above, we could have these actions
navigating a menu with, say, 20 states. There will be 18

mw =



states for which the actions work as inverses, and hence
18 rows of UD that are equal to I, so

UD 20.9 I

We call such equations partial theorems. It is easy to
find such theorems automatically. Indeed, we have built
a design and analysis tool that can search for exact and
partial theorems such as the one above [2].

We next give some more complete examples than this
introductory sketch, and then address the problem that
we have defined partiality (i.e., the 90%) as partiality
over the system states, which may be arbitrarily related
to the user’s view of the interface, depending on how it is
programmed, rather than related to issues of relevance
to the user.

4. EXAMPLE 1: AN SMS EDITOR

The Nokia 3330 is a popular mobile phone, which has
a typical SMS editor interface [5]. We use it here to
illustrate a partial behaviour analysis, because the kind
of problems it has are not unusual.

The editor state has five components: (i) The text
typed so far; (i7) The capitalisation mode, which can be
all lower (abc), initial-upper (Abc), or all upper (ABC);
(44) The text input mode, either T9 predictive text
[3] or multi-press; (iv) The alphanumeric mode, either
letter input or number input; (v) The rest of the text
(to the right of the cursor).

In this short paper we ignore (v) and model (i) as
three modes: the cursor is at the start of the message
or after a terminating punctuation mark and a single
space (sentence mode); after any other kind of space
(word mode); it is after a non-space character (character
mode). This creates 3 x 3 x 2 x 2 = 36 states in our
model. The interface can only be in 24 of these states,
so we may represent the state with 24 bit vector.

The user must employ the key to change modes
(ii)—(iv), with different outcomes depending on whether
the key depression is long or short and, if short,
whether it was preceded by a pause of at least one
second. Therefore we model the physical |#] key as three
conceptual actions: |Long#] [Short#| and [Pause#|

The model allows us to automatically explore the
properties of the user actions, as described in [2],
including finding partial theorems. One such property
involves the action, which is used to change the
alphanumeric mode, and in our model is represented
by a 24 x 24 matrix L. If we check the properties of
this matrix (say, in Mathematica) we find no interesting
exact theorems, but the following partial theorem is
found (to 2DP):

LL ~ggo I (1)

By looking at the non-equal rows of the matrix, we can
diagnose why the partial identity is not exact. In letter
input/predictive texting mode, there are two states for
which changes the capitalisation as well as the
alphanumeric mode: in sentence mode it changes abc
to Abc, and secondly, in character mode it changes ABC
to abc. In the 22 other states does not change
the capitalisation mode.

The behaviour that makes (1) a partial theorem does
not, as far as we can see, serve any purpose. Although
text input alters the capitalisation mode in certain
contexts (e.g., when a new sentence is started it changes
to Abc) in order to automatically normalise sentence
capitalisation, no text is entered by . We
assume that this partial behaviour is a by-product of the
interface’s implementation, just making it unnecessarily
complex to use — though now we know from the
analysis, a focused empirical investigation is suggested.

5. EXAMPLE 2: A CD PLAYER

As a brief second example, the Sanyo CDP-195 portable
CD player is designed to play CDs in a number of
different ways (e.g., random track play). The play mode
is retained when the CD is stopped or paused, and can
be altered by pressing the button. Using a
22 state model of the interface, the following partial
theorem was generated automatically:

PT ~gg5 I

where P is the button matrix corresponding to [P-Model.
This behaviour corresponds to the fact that the button
cycles through 7 different play modes. Examining
the P matrix revealed that a single state violates this
behaviour. A redesign could easily avoid this problem
by merging two states, which previously played the
same role, but which appeared very different to the user.

6. THE EFFECTS OF MODELLING

Modelling a user interface using matrices requires a
commitment to an identification of the system’s states
and a numbering of those states. Clearly, renumbering
the states will not affect our analysis of the system’s
partial theorems. However, identifying the system’s
states commits us to a particular equivalence classes of
its behaviour, which may very well affect the analysis.

Representing user actions as matrices means that each
action is in fact a linear transformation over a vector
space which represents the interface states [4] (where
the vector space is over the field Z, ie., 0 and 1).
Given that changing the choice of states may change the
analysis, we can distinguish between four distinct kinds
of change from a state space A to a state space B:



Refactoring There is a linear map from A to B, which
have the same dimension (a change of basis).

Abstraction There is a linear projection from A to B,
with B having a lower dimension.

Refinement There is a linear projection from B to A,
with A having a lower dimension.

Correction There is no linear map that transforms
either A to B or B to A.

Importantly, the user will have a mental model of the
interface that could be related to a formal interface
model by one of these operations. (This does not
necessarily mean a cognitive model in the technical
sense, but a formal model that the user behaves as if
they were following.) Next, we give an example result
concerning partiality in one of these situations.

If a user’s model is a refactored version of the interface,
then the partiality of a button identity is bounded above
by the term given in Theorem 1. This involves the
nullity of a transformation, defined as the dimension
of its kernel (i.e., the part of the vector space that it
maps to 0) [4]. The significance of this result is that
in this context our measure of partiality may differ
from the user’s perception, but there is a calculable
bound on how partial they can perceive it to be. This
bound corresponds to a ‘representation free’ partiality
for models that are related by refactoring.

Theorem 1 (Nullity bound on partiality)
Given a button identity A ~x B over N states, with
m=p/N <1, then

1
m < N nullity(A — B)

Proof The rows of A and B can be reordered so that
fori=1.p

ei.A = ei.B

where the e; are linearly independent. So for the same 7,
e;.(A — B) = 0. From the definition of kernel space
{e;} € Ker(A — B) and so Span {e;} C Ker(4 — B).
Considering the dimensions of these spaces

p < nullity(A— B)
The result follows. B

7. CONCLUSIONS

We have introduced the concept of partial behaviour,
along with a formalisation based on matrix algebra, and
shown it is a useful, usable and automatable concept
for critiquing user interface designs. Our simple,

general and formal model of interaction, based on linear
algebra, allows us to define partiality in a clear way
— indeed, partiality makes no sense for many more
complex domains, and we may not have thought of the
formalisation as a viable research question but for its
elegance in the domain.

However, using matrices requires a commitment to a
state numbering, and clearly state numbers are of no
relevance to users (and often not to programmers)! We
can easily prove the choice of state numbers affects
nothing, but any hidden choice is a bias we would
like to avoid. Users do not know what states are;
implementors (or user’s mental models) may split some
states the formal model treats as identical, and so
on. We therefore wanted to find out whether our
notion of partiality could survive a transformation in
representation, and if so, what use it would be for
design.

This paper shows that we have made progress
towards exploring representation-independent notions
of partiality. We intend to continue this work by using
linear algebra to understand how partiality and other
interesting properties of interface models behave under
changes of representation. Another fruitful direction
would be to use more sophisticated notions of partiality,
such as weighting that accounts for how often the user
is in each state, based on data or predicted usage
statistics.

Acknowledgements

Harold Thimbleby is a Royal Society Wolfson Research
Merit Award Holder, and acknowledges this support;
Jeremy Gow is funded by EPSRC grant GR/S73723/01.

REFERENCES

[1] Blandford A., Thimbleby H. and Bryan-Kinns N.
(2003). “Understanding interaction traps.” In
Proc. HCT 2003: Design for Society, 2, pp57-60.

[2] Gow J. and Thimbleby H. (2004). “MAUIL An
interface design tool based on matrix algebra.” In
Jacob R., Limbourg Q. and Vanderdonckt J. (eds),
Proc. 5th. Int. Conf. on Computer-Aided Design of
User Interfaces (CADUI 2004), pp81-94. Kluwer.

[3] Grover D. L., King M. T., and Kuschler C. A.
(1998). Patent No. US5818437, Reduced keyboard
disambiguating computer.

[4] Morris A. O. (1978). Linear algebra: An
introduction, 2nd edn., Van Nostrand Reinhold.

[5] Nokia UK website (2004). 3330 manual available
from support section, http://www.nokia.co.uk/

[6] Thimbleby H. (2004). User interface design with
matrix algebra, ACM TOCHI, forthcoming.





