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Abstract

Global illumination in VR applications remains an elusive goal.
While it potentially has a positive impact on presence, the signif-
icant real-time computation and integration complexities involved
have been stumbling blocks. In this paper we present recent and
ongoing work in the Virtual Light Field paradigm for global illu-
mination as a solution to this problem. We discuss its suitability
for real-time VR applications and detail recent work in integrating
it with the XVR system for real-time GPU-based rendering in a
CAVETM. This rendering method achieves real-time rendering of
L(S|D)∗E solutions in time independent of illumination complex-
ity and largely independent of geometric complexity.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual reality; Color, shading, shadowing, and texture
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1 Introduction

Presence in virtual environments has many influencing factors.
Global illumination of the environments plays a key role in the de-
gree of visual realism that can be achieved, and this realism has
been considered to be an important contributing factor for presence
(though see Section 2). While a static globally illuminated scene
is well within the grasp of current methods, it places limits on the
range of environments and tasks that can be effectively represented.
Globally illuminated scenes with dynamic shadows, reflections and
objects that can represent a wide range of surface materials, could
greatly enhance realism and allow new applications of VR. The
problems faced however are twofold: Firstly, overcoming the com-
putational complexity of such a real-time rendering system while
achieving an acceptable frame-rate is daunting. Secondly, we are
faced with a choice of how this is to be achieved – one option is to
construct a full system with support for related tasks such as track-
ing, display management and synchronisation. While this can be
achieved on an ad-hoc basis, a general solution requires integration
of the global illumination method within a more general rendering
system (such as PerformerTM–CAVELibTM, DIVE or XVR) which
can again be a complex task.

In this paper, we present the Virtual Light Field (VLF) paradigm as
a solution to this problem. We discuss its potential and advantages

in such an application. Finally, we present details of our integra-
tion of the VLF rendering method within XVR [Carrozzino et al.
2005] to provide a real-time global illumination solution, including
specular surfaces.

2 Background

Several studies have looked at the impact of visual realism on pres-
ence. While [Hendrix and Barfield 1996] reported an increase in
presence due to visual realism, [Zimmons and Panter 2003] found
no impact. Other groups have also not found any relationship be-
tween visual realism and presence e.g. [Cho et al. 2003]. However,
with regards to dynamics in visually realistic environments, such as
changing shadows and reflections, the effect on presence has been
found to be positive and significant [Slater et al. 1995; Khanna et al.
2006].

Apart from several other factors, the key elements for visual realism
are a high-polygon count, realistic models and their global illumina-
tion. Ray-tracing [Whitted 1980] and radiosity [Goral et al. 1984]
provide a partial global-illumination solution, and have both been
considered for VR rendering. While ray-tracing extends easily to
real-time dynamics including shadows and reflections, performance
is limited by the complexity of the scene and its elements. Global
illumination techniques such as path-tracing and photon-mapping
amongst others offer a more complete illumination solution, sup-
porting a larger range of materials and light interactions, but do not
easily extend to real-time rendering. In VR applications the frame-
rate must be real-time and constant, even temporary drops in frame-
rate can cause the subject to lose orientation, and even cause motion
sickness. Lack of stable frame-rates is a weakness of many caching
algorithms where a sudden change in viewpoint can produce a view
that is not fully represented in the cache, causing a temporary drop
in fidelity or frame-rate. Similarly, dynamic techniques such as ray
tracing for global illumination can also exhibit variable frame-rates
when the viewpoint changes from a complex region to a less com-
plex region in terms of illumination.

Pre-computed Radiance Transfer [Sloan et al. 2002] offers an ap-
proximation to global illumination for static scenes and has been
applied to VR rendering in a CAVE in [Dmitriev et al. 2004]. The
pre-processed static scene is illuminated by dynamic environment
maps for realistic rendering. The Light field [Gortler et al. 1996;
Levoy and Hanrahan 1996] presents an image-based approach for
representing and rendering radiance information from real or vir-
tual scenes. The advantage of such a representation is that render-
ing is independent of scene complexity – both in number of poly-
gons and surface materials. Khanna et. al. [Khanna et al. 2004]
utilises a DPP light field data structure [Camahort et al. 1998] stor-
ing visibility for accelerating ray tracing and subsequently Huang
et. al. [Huang et al. 2006] employed a surface light field for that
purpose supporting rigid dynamics. Similarly, Ren et. al. [Ren
et al. 2005] pre-compute and store visibility for fast global illumi-
nation computation of low-frequency lighting at interactive frame
rates. The Virtual Light Field [Slater et al. 2004] uses a 5D DPP
light field to propagate and represent global illumination in a scene
for real-time rendering. Unlike many current techniques in VR and
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augumented/mixed-reality applications that approximate physically
based rendering, the VLF provides a true solution, representing all
L(S|D)∗E light paths. After propagation, this radiance informa-
tion is available for rendering and re-lighting. We believe such a
representation has significant potential for allowing realistically il-
luminated virtual environments, though the rendering method can
equally be used to represent a ‘real-world’ light field for VR appli-
cations at high, stable frame-rates.

3 A brief overview of the Virtual Light Field

3.1 Data-structures

Before presenting our GPU based rendering approach we briefly re-
cap the data structure with some essential notation of the original
VLF method [Slater et al. 2004]. Given a scene in world coordi-
nates (WC) we first apply a transformation that translates and uni-
formly scales the scene such that it is enclosed by the unit sphere
centred at the origin; we refer to this as the VLF coordinate sys-
tem. If l points with spherical coordinates ωi = (θi, φi) are chosen
on the unit sphere, each serve as a normal for a bounded plane or-
thogonal to ωi large enough to enclose the projection of the unit
sphere. Each such unique plane i is discretised into a regular grid
of N × N cells, each of which is the origin of a ray parallel to
ωi, we refer to such a set of N × N parallel rays as a parallel
subfield (PSF). Each PSFi has an associated rotation that aligns
the PSF coordinate frame with (X,Y, Z) such that ωi coincides
with Y ; this is the canonical PSF representation. In this repre-
sentation the ray origin is given by the tuple (x, z) describing a
unique ray parallel to the Y-axis and y gives a point along this ray.
For efficiency we pre-compute and store a number of transforma-
tion matrices. One such matrix pair is MWC→PSFi and its inverse
MWC←PSFi which transform points between WC and PSFi.

Now consider any ray in the canonical PSF. This will intersect a
number of surfaces in the scene. If we parameterise the ray in the
form r(t) = r0 + kt, t ≥ 0, and r0 is the ray origin, then the inter-
section points can be characterised as an array of monotonically in-
creasing parametric values [t1, t2, . . . , tn]. With each one of these
intersection points additional information could be stored: the iden-
tifier of the surface at that intersection, and eventually the outgoing
radiance from the surface at that intersection point. Although this
approach is possible, no use would have been made of the great co-
herence between neighbouring rays, and the memory costs would
be substantial. Instead, the grid of cells in a PSF is subdivided into
tiles, each at a resolutionm×m cells, where 1 ≤ m ≤ N and N

m
is

integral. Each tile maintains a sequence of surface identifiers with
associated radiance maps for faces intersected by any ray which has
its origin within the tile. This is illustrated in Figure 1.

(0,0)

(0,0)

(s,t)=(1,2)

(s,t)=(1,1)

(s,t)=(1,0)

(2,2)

(2,2)

s

t

v

u

Figure 1: Examples of tile lists for four polygons projected to a
PSF where n = N

m
= 3 and m = 3. Bold lines mark the tile

boundaries.

Thus a radiance value can be retrieved from this parametrisation
using the notation: Ls(ω, s, t, u, v, p), where ω indicates PSFω ,
(s, t) is a tile for face p, and (u, v) is a cell within this tile. Our
approach uses texture atlases for both radiance and irradiance maps
for improved efficiency and compact representation.

3.2 Propagation

Once the VLF data structure is built, propagation is in principle a
straightforward Neumann expansion of the rendering equation. Ra-
diance is emitted from light sources following the paths provided
by fixed bundles of parallel rays in the PSFs, which are used as ap-
proximations for true ray directions. Coherence is exploited by fol-
lowing parallel bundles of rays rather than dealing with individual
rays. This method maps well to the GPU providing a very efficient
light transport step. The method can provide solutions with tens
of thousands of polygons with millions of ir/radiance elements in
minutes.

4 Rendering the VLF in the CAVE

When the VLF propagation step has converged, the GPU can render
novel views from the data structure by interpolating between sam-
ples stored in the diffuse textures and non-diffuse view-dependent
radiance tiles. Diffuse surfaces can be rendered directly using tex-
turing with the diffuse textures available in the irradiance texture
atlases. The GPU performs interpolation efficiently in this case.

Flat specular faces can be rendered with ray-tracing by recursively
following a view ray reflected in the specular face until it strikes a
diffuse face where the visible radiance can be collected. A similar
idea, often used in real-time VR applications, is to use the sten-
cil buffer to render a reflected view of the scene as seen through
the specular face and then paste this onto the face with texturing
[Kilgard 2002]. These methods are only efficient if few specular
surfaces are present in the scene and do not apply to, for example,
glossy BRDFs.

(a) Non-diffuse stencil (b) Pass 1: PSF ids (c) Pass 2: PSF weights

(d) Pass 3: Face ids (e) Pass 4: Hit pos (f) Pass 5: Non-diffuse
shading

Figure 2: Rendering passes.

A more general method is to resample images from the direction-
ally dependent radiance stored in the non-diffuse radiance tiles. As
described in Section 3.1, the data structure can be formalised as
Ls(ω, s, t, u, v, p). This effectively references a radiance value in
direction ω, from a point on p described by the intersection of the
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canonical ray (s, t, u, v) with p. Due to the discrete representa-
tion a PSF matching exactly the direction ω is rarely available. The
three PSFs (ωi, ωj , ωk) at the vertices of the spherical triangle in
which ω falls are used with barycentric weights (αi, αj , αk) for an
interpolated value:

Ls(ω, s, t, u, v, p) = αi ∗ Ls(ωi, s, t, u, v, p)

+ αj ∗ Ls(ωj , s, t, u, v, p)

+ αk ∗ Ls(ωk, s, t, u, v, p) (1)

In order to compute the values necessary to index into Equation 1,
four off-screen passes are rendered (see Figure 2). A fifth and final
pass performs the final shading producing the globally lit image. In
order to identify non-diffuse pixels in the image plane an optional
stencil image can be produced by rendering the non-diffuse poly-
gons to an off-screen target (see Figure 2(a)). This can serve to
limit the computation performed in each subsequent pass to only
non-diffuse pixels.

In pass 1 the camera is placed at the centre of the unit sphere and
the spherical triangles are rendered in false colour to a texture. This
produces the indices of the three nearest PSFs (ωi, ωj , ωk) for each
pixel (see Figure 2(b)). This is repeated in pass 2 this time setting
vertex colours for each spherical triangle to (1, 0, 0), (0, 1, 0) and
(0, 0, 1). The GPU interpolates this over each triangle, resulting
in a texture with three barycentric weights for each pixel (see Fig-
ure 2(c)). Pass 3 serves to determine p, this time rendering the scene
geometry in false colour, yielding a texture with a face identifier for
each visible non-diffuse pixel (see Figure 2(d)). Pass 4 renders the
scene geometry again where each vertex is coloured with its world
coordinate position, interpolation across the geometry produces a
texture with the world coordinate position of the intersection of the
viewing ray for that pixel with the face p (see Figure 2(e)). Note that
ray casting could easily replace these last two passes. A fifth and fi-
nal pass renders the final radiances to the image. For each pixel this
is achieved by mapping the hit position to each of the three PSFs
by applying the respective MWC→PSF matrix (see Section 3.1) to
the hit position, producing an (x, y, z) value in canonical PSF co-
ordinates where (x, z) trivially maps to a tile/cell pair (s, t, u, v).
The tiled data structure is then looked up and a radiance value for
each PSF is weighted by its corresponding barycentric weight and
written to the image. This is illustrated in Figure 2(f).

Performance is dependent on the time taken to resolve visibility
(pass 3), the remaining passes and radiance retrieval is small con-
stant time per pixel. Either ray tracing or rasterisation can be used
to resolve the visibility, here we use the latter. One of the main
points of the VLF approach is that global illumination values can
be retrieved directly from the data structure, no further shadow rays
or sampling is necessary. This results in stable, predictable frame-
rates, which is of great utility in VR applications.

4.1 Implementation details and setup

The rendering method has been integrated into XVR, which is a
clustered rendering system capable of driving immersive VR sys-
tems such as HMDs, CAVETMsystems and multi-screen projection
walls (see Figure 3). In our CAVE setup four rendering clients drive
the front, left, right and floor projections respectively. OpenGL
commands are distributed by a dedicated master node to the render-
ing clients on a dedicate gigabit LAN. XVR is flexible and allows
unconventional rendering to be performed from a plug-in written in
C++ and OpenGL.

In order to avoid severe penalties for texture state changes a tex-
ture atlas was employed for diffuse textures; packing many textures

Figure 3: User in a VLF rendered virtual bar-room in a CAVE.
Note the mirror on the wall.

in a few high resolution texture maps. Similarly, directional radi-
ance tiles were also densely packed into large textures. Further,
the MWC→PSFi matrices were stored for the global set of direc-
tions on the GPU in a texture for easy access in pass 5. Due to the
distributed nature of XVR care was taken to minimise the amount
OpenGL commands and data to be sent across the network by ex-
ploiting display lists and storing indexing structures and matrices in
textures on each client GPU.

5 Results

Timings were obtained on an Intel Core 2 Quad (QX6700) 2.66GHz
processor with a GeForce 8800 GTX with 768MB graphics mem-
ory and 4GB of host memory. Resolution was fixed at 1024×768,
with a 2K bi-directional directional discretisation and 2562 radi-
ance maps. Both scenes have a relatively large non-diffuse area,
and we are using a perfectly specular BRDF, which is the worst
case scenario for a light field with discrete directions. Other less
directionally dependent BRDFs would require fewer directions and
would render with much less visible artifacts. No stencil buffer was
used such that the interpolation computation is always performed
for all pixels in the view yielding a worst-case but stable frame-
rate.

(a) Atenea scene, 120fps mono
(60fps stereo)

(b) Grotto scene, 121fps mono
(60.5fps stereo)

Figure 4: Rendering performance.

The Atenea scene in Figure 4(a) is composed of 9410 polygons with
a single emitter. The wall opposite the statuette is specular with a
slight bluish diffuse component. The scene contains ∼30.6M non-
diffuse elements and ∼2.4M diffuse elements and propagated in
∼16.3 minutes with six iterations. The data-structures consume
22.3MB compressed on disk or 142MB texture memory on the
GPU. The Grotto scene in Figure 4(b) is composed of 318 poly-
gons with three emitters of which two are textured. The scene con-
tains ∼9.2M non-diffuse elements and ∼1M diffuse elements and
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propagated in∼2.5 minutes with six iterations. The data-structures
consume 8.1MB on disk or 31MB texture memory on the GPU.

The frame-rates quoted in Figure 4 were sustained from all view-
points, even when the non-diffuse polygons filled the entire image.

6 Conclusion

We have presented a GPU light field rendering method capable of
rendering full global illumination for VR applications at real-time
frame-rates. Rendering performance is independent of illumination
complexity and geometric complexity assuming that visibility can
be resolved in real-time. The global illumination shading adds only
a small constant time operation per pixel accessing the DPP light
field stored on the GPU.

This opens up numerous possibilities for realistically lit VR ap-
plications. So far these have been limited to using either tradi-
tional light maps (computed with radiosity) or environment map-
ping with pre-computed radiance transfer (PRT). The former only
solves global illumination partly neglecting many important trans-
fer paths and does not apply to dynamic objects, and the latter re-
quires incoming globally lit radiance values typically provided by
environment maps and are limited to rigid objects. Environment
maps work on the assumption that the object being illuminated is
far from the illuminating environment. For many interior VR sce-
narios with for example avatars this cannot be assumed. The VLF
method described in this paper can easily provide correct incom-
ing radiances from a static environment that can then be used with
PRT for rigid dynamic objects, integrating dynamic objects into the
global illumination solution.

Work almost completed at the time of writing includes adding sup-
port for dynamic objects by integrating PRT with the VLF method.
Also, support for soft shadows caused by dynamic objects is being
added, allowing the integration of dynamic objects into the initial
global illumination solution provided by the VLF method. The aim
is to enable researchers to create photorealistic VR scenarios with
dynamic content such as avatars.
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