
1

A Virtual Light Field for Propagation and Walkthrough of Globally
Illuminated Scenes

Pankaj Khanna Mel Slater Jesper Mortensen Insu Yu

Department of Computer Science
University College London

Gower Street
London WC1E 6BT

UK
www.cs.ucl.ac.uk/vlf

p.khanna | m.slater | j.mortensen | i.yu @ cs.ucl.ac.uk

Abstract

This paper describes an algorithm that provides
real-time walkthrough for globally illuminated scenes
comprising of ideal diffuse and specular polygonal
surfaces. A type of light field data structure is used for
propagating radiance outward from light emitters
through the scene and accounts for all L(S|D)* light
paths. The light field employed is constructed by
choosing a regular point subdivision over a
hemisphere, to give a set of directions, and then
corresponding to each direction creating a rectangular
grid of parallel rays. Each rectangular grid of rays,
called a ‘parallel subfield’ is further subdivided into
rectangular tiles, such that each tile references a
sequence of 2D “images” containing colour values
corresponding to the outgoing radiances of surfaces
intersected by the rays belonging to that tile.
Following propagation, this structure is used for final
image rendering. Propagation times are currently very
long and the memory requirements high. This
algorithm, however, offers a global illumination
solution for real-time walkthrough even on a single
processor.

1. Introduction

The main contribution of this paper is a (partial)

solution to the global illumination problem that
supports real-time walkthrough. The solution is partial
in the sense that only ideal specular and diffuse
surfaces are supported. Nevertheless any kind of
L(S|D)* light path [1] can be simulated (including
caustics). The method exploits the idea of light fields
[2] (or lumigraphs [3]), though the particular type of

light field representation used is similar to that in [4]
and also similar to a data structure used for visibility
culling in [5]. It exploits the idea of Layered Depth
Images [6] where each ray in the light field maintains
radiance information about each of the surfaces that it
intersects rather than just the first surface. In this way a
projected image can be reconstructed from any
viewpoint and direction in the scene.

For illumination propagation an approach is used
that is similar to the ‘ray bundle’ method for stochastic
global illumination as introduced in [12]. Light is
propagated through bundles of parallel rays in
successive iterations. However, here the approach is
deterministic, and the ray bundles are fixed sets of rays
with their origins in 2D square tile grids. Standard
polygon rasterisation is used to compute ray-polygon
intersections rather than a Painters’ Algorithm.

The ideas presented in this paper may also be
thought of as a combination of light field and
illumination network [7]. Both employ a fixed ray
based data structure that is a discretisation of the
distribution of radiance. The illumination network
maintains ‘links’ from object to object, where two
objects are linked if there is an unoccluded ray that
joins them, and the link is a pointer from one object
connecting to the other along such a ray. Objects are
subdivided into patches, and the illumination network
determines the radiance of the patches. It is finally the
objects which are rendered. The virtual light field
(VLF) approach described here does not need to render
objects at all (though it can do so with some
advantages). Rather the objects illuminate the rays, and
the rendering is based on the rays. The present paper
embodies the first practical realization of the ideas first
presented in [8].

2

In the next Section we discuss further background
information locating the new approach relative to other
approaches to global illumination that attempt to
achieve real-time walkthrough. In Section 3 the main
data structure is presented, and the propagation of light
through the data structure is discussed in Section 4.
Implementation details are discussed in Section 5, with
results including images, timing, and memory
requirements in Section 6. Further work and
conclusions are given in Section 7.

2. Background

Radiosity was the first algorithm that made possible

real-time walkthrough with realistic illumination but for
scenes with only diffusely reflecting surfaces [13][14].
This requires a relatively extensive view independent
iterative propagation phase that eventually produces
radiosity values at the vertices of surface patches. Then
standard hardware rasterisation including smooth
shading interpolation can be used for a real-time
walkthrough rendering [15]. Real-time rendering is
problematic once glossy and specular surfaces are
included, owing to the view dependent nature of the
required global illumination solution in this case.
Radiosity was extended to non-diffuse environments,
for example as in [16][17], though not all light paths
could be simulated and walkthrough was unattainable.
Combining progressive refinement radiosity with a
Monte Carlo and light tracing phase was an early
attempt at a relatively fast, but not interactive time,
global illumination solution including diffuse and
glossy surfaces [19]. Hierarchical radiosity [18]
greatly speeded up the radiosity propagation phase, and
was extended to include glossy reflection [20].
Hierarchical radiosity is a fundamental approach that
has been extended to include a line-space hierarchy to
support rapid computation of a new solution when the
scene changes [26], including glossy illumination
[27][28].

There are several different classes of algorithm that
attempt to provide interactive time rendering for
globally illuminated scenes. Caching schemes rely on
reusing elements of a global illumination solution
across several views [21][22][23][24][25]. Precompute
algorithms compute a global illumination solution and
then approximate this in some way for rapid rendering.
For example [29][30] compute virtual point light
sources that produce direct illumination approximating
the global solution. As another example, in [31] photon
tracing [32] is used to compute a global illumination
solution, and then splatting is used at rendering time
together with viewing direction and surface properties

to rapidly display an approximate global illumination
solution. In [33] hierarchical clustering is extended by
partitioning the models into areas where global
illumination is well approximated based on a set of
basis functions for the irradiance over the patches, and
then interactive time rendering is achieved for
moderately glossy surfaces.

The exponential growth in processor speed, and
advances in graphics hardware have supported a
massive speed up in ray tracing [34] and path tracing
[35], to the point where interactive speed for millions
of polygons on clusters of consumer PCs has become
possible [36]. This work has exploited space
subdivision schemes for fast ray-intersection solutions,
careful organization of the overall algorithm to fit the
needs of the hardware, together with exploitation of
graphics card processing, and parallel implementation
across PC clusters [37][38]. An excellent summary and
overview can be found in [39].

The ‘virtual light field’ approach has similarities to
many other approaches: it is like photon mapping [32]
since it propagates light from the emitters, but it is a
deterministic rather than Monte Carlo solution,
employing a fixed set of rays instead of a randomly
generated set. In photon mapping a final density
estimation phase is needed to compute the radiance
from the irradiance stored at the surfaces, and also a
final ray trace for accurate specular reflection.
Although a final rendering time ray trace can be
employed for the virtual light field, it is not inherently
necessary, and no final density estimation is needed. It
relies on a pre-computed global illumination solution
stored in a massive data structure, and then uses
lookups into the data structure for determining radiance
to be assigned to primary rays in the rendering phase.
Although in the current implementation the propagation
phase is very long, and the memory requirement is
huge, the payoff is that final rendering is very fast.
There is no ray-object intersection searching in any
phase of the propagation, everything is carried out by
rasterisation or by direct lookup. The lookup is
typically into a very small list of surface identifiers, and
the only ‘search’ required is to find a matching element
in the list.

This approach therefore sacrifices propagation time
and memory to the goal of very fast final rendering.

3. Virtual Light Field Data Structure

The ray space discretisation followed in this
research is similar to that in [4] where a uniformly
chosen vector at the center of a sphere defines a
direction, that direction is treated as the normal to a

3

plane through the center of the sphere, and then a
uniform set of points chosen on the plane intersected by
the sphere determines a set of parallel directions. In our
case the scene is enclosed by a regular cuboid bound
from (-1,-1,-1) to (1,1,1). For example, consider the
lower face of this bounding cuboid with corner vertices
at (-1,-1,-1) and (1,1,-1). This face is discretised
into N N× pixels. The pixel position (i,j) corresponds
to the point:

(, 0, ..., 1)
(2 1) (2 1)

1, 1, 1 i j N
i j
N N

= −
+ +

− − −  
 

 (1)

Consider this as the origin of a ray that is parallel to

the z-axis, i.e., parallel to the vector (0,0,1). This set of
N N× rays is called the canonical parallel subfield
(PSF), with (0,0,1) as its direction. If l points with
spherical coordinates (,)i i iω θ φ= are chosen on the
positive hemisphere then l PSFs are defined as
rotations of the canonical PSF by rotating the direction
into the corresponding point.

Once again, consider a ray (i,j) in the canonical
PSF. This will intersect a number of surfaces in the
scene. If we parameterise the ray in the form

0() (0)r t r vt t= + ≥ where v is the direction vector of
the ray (0,0,1), and 0r is the ray origin, then the
intersection points can be characterized as an array of
monotonically increasing parametric values

1, 2,[...,]kt t t . At each of these intersection points
additional information can be stored: the surface
identifier at that intersection, and eventually the
outgoing radiance from the surface at that point. This is
possible, and the first implementation [8] followed this
approach. However, no use would be made of the very
great coherence between neighbouring rays, and the
memory costs would be substantial. Instead, the pixel
space of the PSF is subdivided into tiles, each of
resolution m×m, where 1 m N≤ ≤ and N is a multiple
of m. Each tile maintains a sequence of surface
identifiers that are intersected by any ray within the tile.
Corresponding to each surface identifier there is a
visibility map for the surface and a 2D image that will
eventually hold the outgoing radiances corresponding
to each point that has a non-zero visibility entry. In
principle the visibility map is an m×m bitmap, with
entries 1 corresponding to where the surface is within
the tile, and 0 elsewhere. In practice this is
implemented as an Edge Table, such that for each row
(j=0,1,…,m-1) within the tile the boundaries

[,],[,],...1 2 3 4i a a a a= are stored, where the a’s are
successive pairs of coordinates such that the surface
exists within these bounds. These ideas are illustrated

in . The left hand rectangle shows the canonical PSF
partitioned into ray origin pixels, and into tiles, with
the tile blown up in the middle showing a polygon
intersecting it. The Edge Table that is used to
efficiently code the visibility map is shown on the right.

Figure 1. A PSF, Tile, Polygon and associated
Visibility Map represented as an Edge Table

The process of finding all the intersections of
surfaces with the rays and tiles of the canonical PSF is
straightforward. If we consider the special case that all
surfaces are planar polygons, then this is equivalent to
polygon rasterisation, except that a layered depth image
is computed. It is trivial to compute the set of polygon
fragments belonging to each tile, and also trivial to
construct the Edge Tables – with minor modifications
to the standard polygon rasterisation algorithm (e.g.,
[9]). If the polygons are also convex then an Edge
Table entry has either 0 or 2 entries per row.

So far we have only discussed the canonical PSF.
Given any other PSF corresponding to direction iω , the
scene can be rotated such that iω is mapped to
direction (0,0,1) and then the rasterisation carried out
in the canonical space.

The 2D image map that belongs to each surface
intersected in a tile is called a radiance map. This
(after light propagation) will contain the radiance
values corresponding to each non-zero entry in the
visibility map for the surface. (Note that the t-
intersection values are not stored, since these can be
rapidly recomputed as needed). Now suppose that all
the radiances for all tiles in all PSFs have somehow
been computed and the outgoing radiance in direction
ω at a particular point (, ,)x y z on surface P is
required. We first find the direction amongst iω
(i=0,1,…,l-1) that is closest to ω - suppose that this is

jω . There will be a rotation matrix jM that rotates

jω into the canonical direction (0,0,1). Then

(, ,) (, ,)j q q qx y z x y z=M will be the point in the

canonical PSF space that corresponds to (, ,)x y z in

4

scene space. In particular the projection (, , 1)q qx y −

will be closest to some pixel (),i j which belongs to a
particular tile. If we traverse the identifiers in that tile
until we find P, then we can look up the required
radiance value in the radiance map belonging to P in
that tile. Of course, this will only be an approximation
to the true value given the discretisation employed. For
acceptable accuracy either both n and l must be quite
large, or interpolation methods must be employed to
improve the approximation.

It is critical to choose a parameterisation over the
hemisphere that requires no searching to find closest
rays – since such ray lookup is a critical operation
during both propagation and eventual rendering. The
method used is a triangle based subdivision of the
hemisphere, with constant time lookup for any arbitrary
point on the hemisphere in order to find the closest
stored point. This is described in [10].

In the next section we discuss how this data
structure is employed in the energy propagation.

4. Propagation

4.1 Overview

Notation

The (finite) set of given PSF directions is denoted
lΩ and lω ∈Ω refers to a particular direction. The

tiling coordinate system is referenced by (,)s t
, 0,1,..., 1s t n= − where /n N m= . Hence a tile is

referenced as (, ,)s tω . The coordinate system within a
tile is referenced by (,)u v , , 0,1,..., 1u v m= − . Hence
(, , , ,)s t u vω refers to the ray that is in direction ω and
with origin at coordinates given by equation (1) where
(,) (,)i j sm u tm v= + + . We sometimes use the
abbreviation (, , , ,)s t u vω≡r .

Data Structures
For each PSF, each tile contains a set of surface

identifiers, corresponding to the surfaces that are
intersected by any ray within the tile. Associated with
each surface fragment in the tile there are in fact two
radiance maps: called the Total Radiance Map and
Unshot Radiance Map. In general L is a radiance
function – its domain depends on context. UL refers to
unshot radiance, TL refers to total or accumulated
radiance. (, , , , ,)L s t u v Pω is the radiance for ray
(, , , ,)s t u vω from surface P in the direction that is on
the same side of P as its outward normal. Obviously

this is radiance for P in tile (, ,)s tω in position (,)u v
within the tile. (, , ,)L s t Pω is a radiance map for P in
the tile (, ,)s tω . The individual elements of this
radiance map are (, , , , ,)L s t u v Pω as (,)u v vary over
the appropriate domain.

In addition each surface P in the scene has two
associated texture maps CP (Current) and NP (Next)
to store radiance values due to diffuse reflection. Any
ray (, , , ,)s t u vω that passes through a texel of such a
texture map picks up a radiance value

(, , , , ,)CL s t u v Pω , which corresponds to the amount of
accumulated radiance that is to be distributed diffusely
from the area corresponding to the texel. New radiance
due to diffuse reflection that is generated within the
current propagation cycle (from diffuse or specular
senders) is stored in the Next Texture Map NP and
will be distributed in the next cycle. For one kind of
rendering technique it is also useful to compute a Total
Texture Map TP which stores the radiance
accumulated on diffuse surface P over all propagation
iterations.

Exchange Buffer

Any two surfaces belonging to a tile may exchange
energy along a ray, depending on whether or not they
can ‘see’ each other (i.e., whether or not there is an
occluder between them). When treating surface P
within a tile as a receiver of energy, the visibility map,

(, , ,)V s t Pω , for P provides information about where
P is located within the tile. (, , , , ,) 1V s t u v Pω = if and
only if when polygon P is rasterised on PSFω , the
pixel (,)u v within tile (, ,)s tω is set, otherwise the
value is 0. We will use the notation
(,) (, , ,)u v V P s tω∈ to mean that (, , , , ,) 1V s t u v Pω = .

For each set position (,)u v within the visibility map
for P there will be at most one other surface in the tile
that is visible along the ray corresponding to the PSF.
The exchange buffer is a 2D array of identifiers of the
surfaces that are visible to P within the visibility map
of P . It is constructed on the fly as surface P is
processed for incoming energy, and deleted after use.

(, , ,)X s t Pω is the exchange buffer for polygon P in
the tile (, ,)s tω . (, , , , ,)X s t u v Pω Q= if and only if the
ray (, , , ,)s t u vω intersects both P and Q , their outward
normals point towards each other, and there is no
intervening polygon in the ray segment joining P and
Q . It is obvious that (, , , , ,)X s t u v P Qω = if and only
if (, , , , ,)X s t u v Q Pω = .

5

In this discussion directions are always interpreted
to correspond to the front-facing normals of the
surfaces involved. So ray r is considered in one
direction from Q to P and in the opposite direction
from P to Q.

The Propagation Cycles
The propagation cycles run through each PSF, each

tile within each PSF, and each surface within each tile.
In propagation cycle 0 the Current Texture Maps of the
light sources are loaded up with their given energy
(their Next Texture Maps are never needed - assuming
that lights do not additionally reflect energy, but only
emit it). For now we assume that light sources are
isotropic and diffuse, and so the light source Current
Texture Maps are always 1 1× arrays. The following
pseudo code illustrates how each propagation cycle
unfolds.

for each lω∈Ω /*1*/

for each , 0,..., 1s t n= − /*2*/
for each surface (, ,)P s tω∈ /*3*/

' lω ∈Ω approx specular reflection direction;
 X = exchange buffer for P ;

for each (,) (, , ,)u v V P s tω∈ /*4*/
(, , , ,)s t u vω=r ;

(,)Q X P= r ; /*5*/

(,)C
dL L Q∝ r ; /*6*/

(,);s UL L Q= r /*7*/

d sL L L= + ; /*8*/

(,) ;TL Q L+ =r /*9*/

(,) ;NL P L+ =r /*10*/
' (', ', ', ', ')s t u vω=r spec. reflected ray;

 (',)UL P Lρ+ =r ; /*11*/
end

 end
 end
end
current texture maps = next texture maps;
next texture maps = 0;
unshot radiances = 0;

The pseudo code is explained as follows, referring
to the comment numbers at the end of the lines:

(1) The iteration cycle is over each PSF.
(2) Within each PSF each non-empty tile is visited.
(3) Within each tile each surface (P) is visited and
treated as a potential receiver of energy. Note that with
respect to the surface and the ray direction, if the
surface is a polygon then all specular reflection
directions are the same for this PSF and tile.

(4) For the current surface (P) all rays in the visibility
map are considered, and
(5) The surface (Q, if any) that sends energy to P along
this ray is extracted from the exchange buffer.
(6) An appropriate fraction of the energy is extracted
from the texels on the Current Texture Map of Q that
are intersected by the current ray. The fraction of
energy extracted and sent to P ensures a balance of
energy in the scene. This represents the diffuse
interreflection from Q to P.
(7) The Unshot Radiance Map for Q along the current
PSF is looked up at the ray position and the radiance
there is determined.
(8) These two are summed to give the total radiance
from Q along this ray that will strike P.
(9) This total radiance is accumulated into the Total
Radiance Map for Q at the position corresponding to
the ray.
(10) The texel corresponding to the ray for the next
diffuse radiance map for P is also updated with this
radiance as irradiance that must be distributed in the
next propagation cycle.
(11) The ray corresponding to the specific specular
direction of reflection from P is computed, and the
nearest PSF direction and ray to this is found. This is
used to identify the cell in the next unshot radiance
map for P along this reflection direction, and the
radiance value in that cell is updated by the appropriate
fraction of incoming radiance.

At the end of each iteration cycle, the current texture
maps are set to the next texture maps, and the latter are
reset to zero. In addition the directional unshot
radiance maps are reset to zero.

4.2 Diffuse Surface as Sender

The above outlines the overall propagation process,
we now consider some of its elements in more detail.
As discussed earlier, the flow of radiance to a receiving
face (P) is performed by identifying all surfaces (Q)
that send radiance to it along a single PSF tile at a time.
If the sender is diffuse, the transfer to the receiver takes
place in either one of two methods depending on the
material properties of the receiver.

Diffuse to Diffuse transfer

When the receiver and sender are both diffuse,
energy transfer takes place through a temporary
radiance tile (a 2D array of radiances) aligned with the
current PSF tile being propagated (Figure 2). This
temporary radiance tile is used as an accumulator for
radiance propagating towards the diffuse receiver
within that PSF tile. The mapping of the texture maps

6

on the sender (QC) and receiver (PN) to the temporary
radiance tile is a many-to-one mapping. The transfer of
energy is transformed from a discrete representation
(on the sender in QC) into a continuous one from which
it is then correctly re-sampled to another discrete
representation (on the receiver in PN).

This transfer of radiance to a diffuse receiver is
performed in two parts: the temporary radiance tile first
accumulates radiance from all senders (both diffuse and
specular) and the loaded radiance tile is then mapped
onto the Next Texture Map of the receiver P.

P
S

F

V
is

ib
ili

ty
ex

ch
an

ge
bu

ffe
r

Figure 2. Diffuse to diffuse transfer along a
single PSF tile via the temporary radiance tile.

Discrete cells on a sender Q are mapped onto a

receiver using polygon clipping so that contributions
from a single shooting cell can be correctly distributed
amongst the receiver cells. The ratio of intersected
(visible) to total area of the sender cell determines the
amount of radiance attributed to the receiver cell. For
all senders in the tile, radiance is accumulated onto the
temporary radiance tile by projecting the cell of the
sender’s current diffuse map (QC) in the PSF direction
and clipping the boundary of that cell against those of
the cells on the temporary radiance tile. Once this
accumulation of radiance from all senders onto the
temporary radiance tile is complete, the temporary
radiance tile is mapped onto the next diffuse map on
the receiver (PN) using a similar projection and
clipping process. Clipping is the most expensive
process during propagation; accounting for up to 80-
85% of overall compute time. However, this
‘continuous’ clipping algorithm is a required step for
proper mapping of energy without aliasing. Less
compute-intensive (discrete sampling) methods were
attempted but caused significant aliasing and proved to
be too inaccurate. The temporary radiance tile, apart
from being mapped to the next diffuse map on the
receiver (PN), is also added to the total radiance map of
the sender for the PSF tile being propagated

(, , ,)TL s t Qω .

P
SF

k

PSF
l

PSF
m

PSF
j

PSF
i

Shooting Cell

Polygon A

Polygon B

Figure 3. Angular spread of PSF surface hits
with distance r.

The mapping of radiance between a diffuse sender
and a diffuse receiver using the above two-step project
and clip process correctly accounts for the terms on the
numerator in the integral of the standard form-factor
equation in Equation Error! Reference source not
found.:

2

cos cos1

i j

i j i j
ij ij

i A A

dA dA
F H

A r
φ φ

π
= ∫ ∫ (2)

The inverse scaling of irradiance by π during the
propagation process is explained in Section 4.4,
Equation (3). Also, the integral is performed explicitly
by iteratively propagating along all PSF directions. The
presence of the 2r term in the denominator is however
not explicitly present, but is accounted for by the very
nature of discretisation of the VLF and the propagation
process (see Figure 3). This 2r term accounts for the
angular spread of diffuse energy over a distance r. In
the VLF, the spread of energy deposited over a surface
is inherently coupled with the distance of the sender to
the receiver – the VLF method being equivalent to

21 r in the limit.

Diffuse to Specular transfer

The fundamental principle in diffuse to specular
transfer along a PSF direction ω is that energy from a
diffuse sender Q towards a specular receiver P is
reflected towards a PSF direction 'ω by P . If this
transfer is performed by a forward mapping from the
diffuse sender into the reflected direction, under-
sampling artefacts are created on the Unshot Radiance
Map (', ', ',)UL s t Pω . This is due to the many to one

mapping from the sender’s unshot diffuse map CQ into
the cells of (', ', ',)UL s t Pω . We thus employ a
backwards mapping from the reflected direction onto

7

P to ensure that every cell ' (', ', ', ', ')s t u vω=r on the
Unshot Radiance Map (',)UL Pr receives energy from
the sender Q . Energy from the sender is thus added to
the unshot radiance map in the reflected direction as
illustrated in Figure 4.

Reflected PSF direction ’

QC

(Diffuse Sender)
P (Specular Receiver)

Figure 4. Diffuse to specular transfer along a
PSF using backward mapping.

This transfer is performed in two stages. The four
corners of tile (,)s t in PSF direction ω are projected
onto the reflected PSF direction 'ω to find the
bounding box of the tile (,)s t on (', ', ',)UL s t Pω .
Cells outside regions of (', ', ',)UL s t Pω can then be
disregarded. The cells inside the boundary potentially
receive energy from the sender Q . In the next stage,
each candidate cell is projected back onto the PSF ω .
If the projected cell is visible from (', ', ',)UL s t Pω as
indicated by the visibility exchange buffer then energy
is extracted from the current texture map of the sender

CQ .
Due to discretisation of directions in the VLF, the

specularly reflected ray will probably not correspond in
direction to any of the actual PSF directions. Instead
the three nearest rays, corresponding to three PSFs are
found, and barycentric weights computed to interpolate
the actual direction from these three. Energy from the
diffuse sender is then transferred along each of these
directions appropriately weighted by these barycentric
coefficients.

4.3 Specular Surface as Sender

Specular to Specular transfer

Specular to specular energy transfer is very similar
to the case of diffuse to specular transfer, following the
same principle. When a ray (', ', ', ', ')s t u vω from the
reflected direction is mapped backwards through P

onto the specular sender Q , energy from the unshot
radiance map (, , ,)UL s t Qω is obtained (rather than

from CQ as in the case of diffuse-specular transfer).

Specular to Diffuse transfer

In specular to diffuse transfer, energy in the specular
sender’s Unshot Radiance Map (, , , , ,)UL s t u v Qω
(which was gathered in the previous propagation cycle)
is pushed into the next diffuse map on receiver NP .
This has the effect of creating caustics on the diffuse
surface.

When cells on the specular sender Q are visible
from the diffuse receiver P the unshot radiance from
the sender (, , ,)UL s t Qω is accumulated into the
temporary radiance tile. This transfer is a simple one-
to-one mapping since (, , ,)UL s t Qω and the temporary
radiance tile are at the same resolution along the PSF
direction. As mentioned earlier, the temporary
radiance tile is used to gather energy sent by all senders
(specular and diffuse) to the receiver P . The transfer
of energy from the temporary radiance tile onto the
receiver’s next diffuse map NP and the total radiance
map of the sender (), ,TQ s tω is by the same
mechanism described earlier for diffuse to diffuse
transfer (Section 4.1).

4.4 Energy balance

In this section we show that light transport in the
VLF is carried out correctly as a radiative transfer –
that it obeys the requirement that light energy is
conserved in a closed system (the 1st law of
thermodynamics). During propagation irradiance is
stored on diffuse surfaces in texture maps. Also,
radiance leaving a face in a particular direction is
stored in the light field tiles in directional radiance
maps aligned to the tiles of the corresponding PSF
direction. Thus (during propagation) energy in this
system consists of a manifold of directional and non-
directional elements. In its current state, the VLF
supports only specular and diffuse surfaces and the
modes of transport that can occur under this constraint
are[2]: D→D, D→S, S→D and S→S. However, since
the propagation in the VLF is based on radiance flow
between radiance maps this can be broken down to the
following steps, sequences of which map to the modes
of transport above: texture map → radiance map,
radiance map → texture map and radiance map →
radiance map.

8

Diffuse texture map to radiance map transport
The radiant exitance M stored at texel (,)q qu v of a

diffuse texture map CQ needs to be uniformly
distributed over the hemisphere above the texel.
Normally in radiant transfer the hemisphere is divided
into a disjoint set of solid angles corresponding to a set
of chosen directions, each of which receive a fraction
of M. In the discretised light field this is (implicitly)
achieved by projecting the texel into each PSF.

For any PSF ω the texel (,)q qu v projects to a cell
(, , , ,)s t u vω . This cell corresponds to a ray leaving Q.
Due to the underlying discretisation, a ray represents a
beam of constant radiance, and given the many-one
mapping from texel to PSF space, the texel will
normally fall within the beam of a single ray. However,
as shown in Figure 5 in the worst case the texel might
overlap the beams of several rays (such as texel X in
the figure). In such cases clipping will ensure that the
correct radiance fraction will be distributed to each ray.
Therefore, without loss of generality we can assume for
this discussion that a diffuse texel maps to a single ray.

Figure 5. Projection of a radiance map onto a
texture map.

The ray leaving Q will be carrying radiance
(, , , , ,)UL s t u v Qω , and will additionally receive a

fraction of M contained in the texel. This fraction is
determined by the area of the projection of the texel
divided by the sum of the areas formed by projecting
the texel onto all PSFs. Therefore, the radiance carried
along the ray is

() () ()
()

1

0

, , ,
, , , , , , ,

, , ,

q q
q q l

i q q
i

U
A Q u v

L s t u v Q M Q u v

A Q u v

ω
ω

ω
−

=

+ ×

∑
(3)

where (, , ,)q qA Q u vω is the area of the projection of

texel (,)q qu v on face Q into PSFω , and

(, ,)q qM Q u v is the radiant exitance of face Q at texel

(,)q qu v . The ratio on the right hand side of the

equation essentially estimates the solid angle needed to
compute the radiance traveling in that particular
direction.

Due to the uniform nature of the light field the area
computation can be implemented efficiently by
precomputing a single value for the given light field
discretisation that is the sum of the projected area of a
unit diffuse texel into all PSFs. This ‘total projected
unit area’ multiplied by the area of a given texel yields
the denominator of the division in (3).

This transport essentially ‘loads up’ the radiance
maps for a (diffuse) face with the radiant exitance of
that face, whether it is emission for an emitter or
reflected irradiance for a non-emitter.

Radiance map to diffuse texture map transport

When energy is sent from a radiance map
(, , ,)UL s t Qω to a texture map NP it is stored at some

texel (,)p pu v . This texel will by the end of each

propagation cycle have summed the irradiance due to
incident radiances (, , ,)UL s t Qω over the hemisphere
at the texel.

 In a closed scene take the set of rays (in fact,
beams) induced by the VLF discretisation emanating
from a face Q then each of those beams will intersect
another face P (and thus a set of texels on P). Clearly
the overall area of the intersected texels projected into
the PSF corresponding to the beam that intersected it
will equal the denominator in the division in (3), which
means that the ‘outgoing’ projected area equals the
‘incoming’ projected area overall (see Figure 6).

Figure 6. "Outgoing" projected area (dashed
grey) equals "incoming" projected area for 3
enclosing polygons (grey, black and dashed
black) in a simple VLF with only two PSFs

9

The texture map → radiance map step followed by a
radiance map → texture map step for all PSFs fully
describes for a given face the diffuse to diffuse
transport mode.

Radiance map to radiance map transport

This mode of transport represents specular
reflection and does not involve diffuse texture maps.
Given a PSF iω sending radiance towards a specular
reflector, iω is reflected about the surface normal of
the specular surface to yield the reflected direction 'iω
- this direction is looked up among the PSFs in the light
field yielding a PSF jω . Because the direction is

mirrored the projection of the surface into PSFs iω and

jω will induce a 1-1 mapping over which the radiance
stored at the rays is transferred. Only ideal specular
materials are supported. Let the specular reflection
coefficient be Sρ then the reflected radiance will be

(, , , , ,)L s t u v Qsρ ω (where [0,1]sρ ∈) and the absorbed
radiance ()1 s Lρ− , so there is no loss or gain of
radiance due to such a reflection. In practise however

'i jω ω≠ and further steps are taken in transferring of
specular radiance as explained earlier – energy balance
is still maintained by using appropriate weighting in
that transfer.

This step completes the modes of transport by
including specular reflections. A reflection step
followed by a radiance map to texture map transfer
describes the specular→diffuse transport mode, and a
texture map to radiance map step followed by specular
reflection describes the diffuse→specular transport
mode. Finally and obviously, the specular→specular
transport mode is represented by two specular
reflection steps.

4.5 Deferred Propagation

As mentioned earlier, the project and clip stage
required in transferring radiance is the most compute-
intensive stage. A progressive propagation stage can be
introduced that prevents a surface from being an
emitter of radiance for a particular iteration if it does
not meet certain requirements. At the start of a
propagation iteration, the total unshot radiance in the
system is known. We also know the average reflectance
per unit area of the scene expressed below:

()i i
i

S
i

i

A

A

ρ
ρ =

∑
∑

(4)

where the summation is over all surfaces in the scene
and iA and iρ are the area and reflectance of surface
i respectively. The product of the unshot radiance in
the current iteration with this constant provides an
estimate of the unshot radiance at the start of the next
iteration. Based on this estimate, a per-surface unshot
radiance threshold is determined and Next and Current
diffuse texture maps are swapped only if the unshot
radiance at the surface is above this threshold. If the
radiance maps are not swapped, the surface is marked
as deferred and is not selected as an emitter till it
exceeds the unshot radiance threshold in a later
iteration. The surface will however continue to act as
an accumulator of radiance. The scaling used in
determining the radiance cut-off threshold for a surface
is chosen conservatively. Deferred propagation can
also be disabled for the last few iterations to ensure that
all surfaces emit their unshot radiance a certain
minimum number of times.

5. Implementation Issues

Though the Virtual Light Field allows for correct
propagation of illumination in the scene in the limit
(with a large N and l), the discrete representation
necessitates several forms of filtering to reduce aliasing
and better model the propagation. The problem arises
from the fact that the low sampling density (both in the
number of directions used, and radiance maps on
surfaces) leads to considerable aliasing both in the
propagation and walkthrough stages. A simple solution
would be to increase the sampling rates – this however
is not practical due to memory and computational
limitations. An alternative approach is to
extract/estimate additional information (using spatial
and directional data) at suitable stages and use the
results in the given low-sampled representation.

The selection of PSF directions in the VLF is based
on the recursive subdivision of a regular tetrahedron
[10]. The subdivision so obtained is not ideally uniform
for the VLF – for the VLF, an ideal subdivision of the
hemisphere for directions requires each direction’s
solid-angle to be the same; also, the ‘shape’ of each
solid angle should be similar. Neither of these
requirements is met by the current subdivision scheme,
with as much as a 60% variance in solid-angle. The
resulting partition also has unequal ray density (due to
varying solid-angle shape) in different parts of the
hemisphere. There appears to be no solution in the

10

literature that provides an alternative subdivision
scheme that solves these problems while allowing a
constant-time lookup. The problem of varying solid-
angles leads to unequal radiance being propagated in
different directions over a diffuse surface. To
counteract this, the radiance sent along a direction is
normalised by a weight based on its corresponding
solid-angle.

Another consequence of discretising the directions
is the creation of ‘holes’ during propagation (see Figure
3). Due to discretisation each direction actually
represents a beam (containing the set of rays that lie
closest to that discretised ray). The problem occurs
because individual beams rather than being conical
(and widening with distance r) are taken to be
cylindrical1. This problem cannot be solved when
energy is propagated towards a specular surface, as
these are represented by directional radiance maps
which only exist for the given set of PSF directions.
However, in the case of energy propagated towards
diffuse surfaces we can use the surface’s diffuse texture
map to fill in the holes. For diffuse surfaces texture
maps are used to propagate radiance whereas
directional radiance maps only keep track of total
energy propagated in a particular direction. For diffuse
receivers, additional directions (beyond those used for
‘actual’ PSFs) are simulated by perturbing the VLF
using a stratified sampling of solid angles. Dimensions
of the average solid angle (for the discretised set of
PSF directions) are computed at start-up, and a number
of stratified samples are randomly selected within this
solid angle for each propagation iteration. At each
perturbation, the entire scene is rotated such that the
canonical PSF (aligned with the z-axis) is oriented
along the new sampled direction. Once a perturbation
angle has been selected, the propagation is repeated;
ensuring that the sum of radiance propagated into the
scene over the perturbations is equivalent to the total
unshot radiance for that propagation iteration.

The additional directions of propagation in the VLF
introduced by the perturbation and the radiance they
carry are filtered by the geometric information of the
scene in the visibility exchange buffers. Perturbation is
not required for all cycles of the propagation process;
the number of iterations to perturb is scene dependent
and perturbing the initial few is generally adequate.
The number of perturbations required per propagation
iteration depends on the level of discretisation used for
the VLF and the nature of the scene. When
enumerating senders for a receiver during a perturbed

1 The choice of cylindrical beams over conical ones is due to both
computational complexity and also due to the fact that unequal solid
angle ‘shapes’ lead to complex shaped conical beams.

transfer, visibility lists in the tiles are no longer valid
and senders for a receiver in the tile are recomputed
from the visibility exchange buffer. All senders then
push radiance into the temporary radiance tile which is
subsequently mapped to the receiver’s next diffuse map
(PN). During a perturbed transfer, the sender’s
directional total radiance maps (LT) are not updated as
the perturbed transfer is in a direction other than that of
any actual PSF (directional total radiance maps are
updated only during perturbation 0 involving the ‘true’
PSF direction). Thus, the result of perturbation is
brought into effect only in the next iteration when the
jittered (and filtered) unshot diffuse texture maps (QC)
are propagated into the scene.

Following perturbation, Gaussian filtering is
required on the next diffuse texture maps to remove the
high frequencies that were introduced – this is normally
performed with a small σ and filter size to minimise
blurring of caustic and shadow boundaries. This action
is performed just before the current and next diffuse
maps are swapped at the end of an iteration.

During propagation, energy transfer between a
sender and receiver within a tile is dictated by the
information in the visibility exchange buffer. This
buffer is computed using OpenGL false-colour
rendered images on a per-receiver, per-PSF basis. The
problem with this approach is that though it is much
faster than its alternatives, it introduces error and
aliasing at polygon boundaries. The solution to this is
to use super-sampled visibility exchange buffers to
examine and compute the transfer of radiance. This
allows for more detailed and accurate project and clip
operations. Though this increases the computation
required, it is acceptable as it is more expensive only at
polygon boundaries and rectifies radiance propagation
along edges.

Unlike the perturbation method for diffuse surfaces,
we are unable to increase the number of directions of
propagation and representation for specular surfaces
without actually increasing the number of PSFs being
used. In the case of diffuse receivers, geometric
information about spatial position and orientation was
an adequate filter for a perturbed transfer of radiance;
while the (view-independent) diffuse texture maps
allowed for correct representation of received radiance.
Specular surfaces being view-dependent are not open
to a similar scheme as their radiance transfer is not
adequately described by just spatial position and
orientation. Once the propagation is completed we can
however re-sample the directional radiance maps on
specular surfaces using backwards ray-tracing,
following *S D paths only.

11

This backwards ray-tracing is performed by following
real ray paths (not only paths dictated by PSF
directions) and thus allows for a more accurate
representation during walkthrough in the same data
structures. We can thus obtain directional radiance
maps which are geometrically more accurate and free
of any propagation ‘holes’. More specifically suppose
P is a specular surface, and consider (, , ,)TL s t Pω the
radiance map for P for a particular tile. Each
(,) (, , ,)u v V s t Pω∈ is a ray that leaves P carrying
radiance as computed from the propagation. Now find
the specularly reflected direction 'ω emanating from
P, and trace this ray back until it hits another surface. If
this is specular then the same is repeated recursively
until a diffuse surface is reached.

Backwards ray-traced re-sampling of the total
radiance maps is performed at the end of the
propagation iterations, prior to the final rendering and
is performed only once.

6. Rendering

For the final rendering of the light field we have

used a variety of methods that allow for different speed
for quality improvements. Each is now described.

6.1 Rendering from the rays

An image can be rendered from the Total Radiance
Maps stored in the tiles. First a false colour OpenGL
rendering is carried out to identify the nearest surfaces
intersected by the primary rays. For any primary ray r
we can then lookup the identifier of the nearest
intersected face P along the ray, and also compute the
intersection point (, ,)x y z . Given the triangular
subdivision of the hemisphere the ray direction of r
will intersect exactly one such hemispherical triangle
with vertices iω , jω and kω corresponding to three
PSFs. We can now retrieve the radiances in these
directions from face P. For each (), ,h i j k∈ rotate the
intersection point into canonical PSF coordinates
() (), , , ,h h h hx y z x y z=M . The projection (, , 1)h hx y −

on the corresponding PSF hω maps to a pixel
(,) (,)h h h hp q s m u t m v= + + . We find the face P in the
tile list of (, ,)h h hs tω and the radiance is interpolated
from the 8-neighbourhood around (,)p q following the
same approach as in [7]. This is carried out for each of
the three PSFs yielding three radiance values. Then
spherical interpolation weights [40] of r in relation to

the three PSF directions are then used to interpolate
these radiances.

(a) Light field (1.1 fps) (b) Diffuse textures (9.8 fps)

(c) Ray tracing (0.2 fps) (d) RT ray tracing (20.2 fps)

Figure 7. The results of different rendering
methods. Propagated with N = 128, m =16 and
l =2049. Propagation time 36.64 hours, 908MB
memory.

With this approach, direction and radiance lookups

are almost constant time, the only searching being
locating the tile for a face, which is logarithmic in the
average number of surfaces intersected by a tile. An
example is shown in Figure 7(a).

6.2 Texture mapping for diffuse faces

False colour rendering can be wholly avoided for
those parts of the image that represent diffuse surfaces.
In order to do this we render all diffuse surfaces P
textured with their Total texture map PT, and for the
specular surfaces the approach in Sections 6.1 or 6.3
can be applied. In practice this can be done by first
rendering the textured diffuse faces, followed by a pass
that generates a viewport sized texture, containing the
colours of the specular radiances in pixels that strike
specular surfaces and colours with an alpha value of
zero set in all other pixels. Then this texture is applied
to the viewport and the alpha test makes sure that the
diffuse surfaces are visible in the appropriate places
(Figure 7(b)).

12

6.3 Backwards ray tracing for specular faces

Usually the PSF directional resolution is too low to
provide adequate geometric sampling. In these cases
the image exhibits ghosting or blurring of specular
reflections. However, in the case of ideal specular
surfaces, ray tracing can be used to resolve this. For
each ray through a pixel on the image plane which
strikes a specular surface, trace its unique reflected ray
into the scene recursively until it strikes a diffuse
surface P and using bilinear interpolation pick up a
value from its Total Texture Map TP . Applying this to
all specularly reflected rays to the eye yields correct
geometrical sampling and thus produces visually
pleasing reflections (Figure 7(c)).

The downside of this approach is that it is
computationally intensive for scenes with many large
specular reflectors, due to the fact that many rays must
be intersected with the scene. The hardware accelerated
OpenGL false colour rendering can only be applied to
primary rays (ES), so generally this cannot be done in
real-time. However, advances in ray tracing are
approaching a level where this may become possible
[36], especially given that in our approach only ES*D
rays need be computed, and no shadow rays, nor
sampling of area light sources or sampling of diffuse
BRDFs are required. An approach similar to [36] has
been implemented allowing for real-time walk-through
of the VLF (see Figure 7(d)).

Of course a progressive refinement approach can be
used, for example, that uses 6.1 or 6.2 while the camera
is moving, but when it is stationary a backwards ray
tracing pass can be completed as described here. This
is best implemented on a dual processor machine so
that both the faster, lower detailed image and the
slower, more detailed image can be computed
simultaneously.

7. Results

7.1 Performance

In order to determine the scalability of the
algorithm, both in terms of memory requirements and
computation time, a number of scenes were propagated
under various conditions. Scalability data was gathered
varying the number of PSF directions in a VLF, PSF
size, and the number of polygons in a scene. All scenes
were propagated on dual Xeon 1.7Ghz workstations
though only one processor was used as the propagation
is not yet multi-threaded.

We look at the effect of three parameters: number of
PSF directions, the resolution of the PSFs and tiles, and

the number of polygons, on propagation time and on
memory.

Although the scenes we use have few polygons, the
same scenes rendered with radiosity would render
many tens of thousands of patches in order to obtain
the same level of accuracy.

PSF Directions

The higher the number of directions the greater
accuracy particularly in specular surfaces, and the less
need there will be for perturbations in order to
overcome the problem of holes. On the other hand
more directions require more memory and longer
propagation times. For this analysis the scene used is
shown in Figure 7 and 11. For generating the data, the
PSF resolution used was N=64 and m=8. This setup
was used for l = 9, 33, 129, 513, 2049, and 8193. The
number of propagation cycles was 4.

The relationship between propagation time and the
number of directions is almost exactly linear. For
example, with 129 directions the time is 8.5 minutes,
for 513 directions it is 34 minutes and for 8193
directions, 489 minutes. There is also a linear
relationship between the number of directions and
memory. The three corresponding memory figures are
11MB, 45MB and 733MB respectively.

Numbers of Polygons

Figure 8 shows the scene used for testing the impact
of the number of polygons on memory and propagation
time. The scene has one emitter, and from 224 to 1736
polygons. The ratio of diffuse to specular surfaces is
5:1 throughout. This scene is the worst case for this
algorithm, because along every tile there will be a
relatively large number of polygons stored, unlike
‘normal’ interior scenes, which for the most part have
surfaces that are sparsely distributed throughout the
space.

Figure 8. Complexity test scene (OpenGL)

PSF and Tile Resolution
The size of the tiles relative to the PSF resolution is

important in determining overall speed of propagation

13

and rendering. Other things being equal, the smaller the
tiles the fewer the number of surfaces intersected by a
tile, so that less time is spent on the final search for an
identifier in a tile to match a given one. However,
decreasing the tile size will result in more memory and
eventually in greater propagation time.

0 200 400 600 800 1000 1200 1400 1600 1800
-50

0

50

100

150

200

250

300

350

400

450

Number of Polygons

P
ro

pa
ga

tio
n

Ti
m

e
fo

r4
C

yc
le

s
(m

in
s)

Figure 9. Propagation time by Number of
Polygons.

0 4 8 12 16 20 24 28 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tiling Resolution (n)

N
or

m
al

is
ed

M
em

or
y,

Ti
m

e,
A

ve
N

o.
P

ol
ys

pe
rT

ile

memory
time
average no. of polys

Figure 10. Normalised Memory, Propagation
Time, and Average No. of Polygons per Tile,
for varying Tile Sizes.

Figure 10 shows plots of the memory, propagation

time, and the average number of polygons in a tile for
various tiling resolutions (n= 1×1, 2×2, 4×4, 8×8,
16×16, 32×32) for a 64×64 PSF size. The vertical axis
is on a normalized 0–1 scale. Memory ranged from
937MB for 1×1 tiling resolution (i.e., the whole of the
PSF was the tile) to 42MB for a resolution of 32×32.
Timing ranged from 111 minutes for 1×1 tiling to 150
minutes for 32×32, with the lowest being 61 minutes at
4×4. Finally, the average number of polygons per PSF
ranged from 121±10 at 1×1 through to 1.7±2.1 at

32×32 which was the lowest. The scene used for this
test is shown in Figure 11.

The propagation used 513 directions, with 64N =
and 8m = throughout. shows that propagation time
varies quadratically with the number of polygons, as
would be expected. The memory grows linearly with
the number of polygons, the minimum being 75MB and
the maximum 458MB.

Figure 11. The 'Office' test scene with 137
polygons. The VLF used here is the same as
that for Figure 7.

7.2 Images

Figure 12. A simple Cornell type scene with 6
specular reflectors. 22 fps, N =128, m =16, l
=2049, Propagation time = 16 hours

Figure 12 shows a Cornell type room, which has a
large specular mirror and a specular tetrahedron. The
scene is simple enough to show that correct radiance is
produced.

14

In order to demonstrate production of caustics via
()|L D S SD+ paths, we compare a test scene from [41]

with the same scene rendered by the light field using
the backwards ray tracing approach described in 6.3.
This is shown in Figure 13. A further illustration of
caustics is shown in Figure 14. This exhibits some
aliasing on the ground plane resulting from the choice
of a very small Gaussian kernel for filtering
perturbations. Ideally different filtering steps should be
carried out for detailed areas such as caustics and
shadow boundaries and other diffuse areas.

(a) VLF render (b) Original render
Figure 13. From Smits and Jensen [41]. The
light field image has properties 27 fps, N= 256,
m= 16, l= 2049, Propagation time= 33.53 hours

Figure 14. Ring Caustics. This has 50
polygons. 26 fps, N= 256, m= 16, l= 2049,
Propagation time= 25.45 hours.

8. Conclusions

A different approach to the problem of global

illumination has been introduced. The goal has been to
achieve real-time walkthrough for globally illuminated
scenes, relying mainly on fast lookups at the final
rendering stage. This has been achieved by using a
light field for energy propagation. Figure 7(a) and 7(d)
suggests that a final backwards ray tracing approach is
faster than rendering from the light field itself.
However, the ray tracing approach has complexity
logarithmic in the number of polygons, whereas the

VLF is logarithmic in the average depth complexity of
the scene (relative to the tile size).

The biggest drawbacks to the approach in its current
version are the large propagation times and memory
requirements. On the other hand, a scene needs only to
be propagated once, and gigabytes of memory even on
laptops is becoming common. Moreover, the Unshot
Radiance Maps can be deleted after propagation.

The method is offered as an additional paradigm in
the range of solutions for rapid walkthrough with
global illumination. In the implementation discussed in
this paper, we have deliberately sacrificed memory and
propagation time for interaction. However, there are
clear advances that can be made in both. First, instead
of using perturbation to remove holes we will use an
estimation method based on a wavelet representation of
the distribution of energy on a surface. This same
representation applied to the radiance maps will help
with compression. The vast amount of time in
propagation is caused by clipping. However, we will
parallelize clipping by using streaming SIMD. Finally,
the method is being extended to treat glossy surfaces.

Figure 15. A study with ceiling and lamp
emitters. The two images were produced by
the progressive render method.

Acknowledgements

This research is funded by the UK EPSRC, grant
number GR/R13685/01, ‘The Virtual Light Field’. Mel
Slater is supported by an EPSRC Senior Research
Fellowship. Thanks to Ingo Wald and Carsten Benthin
for helpful suggestions on real time ray tracing.

References

[1] Heckbert, P.S. (1990) Adaptive Radiosity Textures for
Bidirectional Ray Tracing, Computer Graphics (SIGGRAPH)
24, 145-154.

[2] Levoy M, Hanrahan, P. (1996) Light Field Rendering,
Computer Graphics (SIGGRAPH), Annual Conference
Series, 31-42.

15

[3] Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M.
(1996) The Lumigraph, Computer Graphics (SIGGRAPH),
Annual Conference Series, 43-52.

[4] Camahort, E., Lerios, A., Fussell, D. (1998) Uniformly
Sampled Light Fields, Rendering Techniques 1998: 117-130.

[5] Chrysanthou, Y., Daniel Cohen-Or and Dani Lischinski
(1998) Fast Approximate Quantitative Visibility for Complex
Scenes, Computer Graphics International '98, Hannover,
Germany, June 1998, 220-227.

[6] Shade, J., Gortler, S.J., He, L. and Szeliski, R. (1998)
Layered Depth Images, Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH), 231-242.

[7] Buckalew, C. and Fussell, D. (1989) Illumination
networks: Fast realistic rendering with general reflectance
functions. Computer Graphics (SIGGRAPH) Conference
Proceeings, 23(3) 89-98..

[8] Slater, M. (2000) A Note on Virtual Light Fields,
Department of Computer Science Research Note RN/00/26/
April 5th 2000, University College London.
www.cs.ucl.ac.uk/staff/m.slater/publications.htm.

[9] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.
(1996) Computer Graphics: Principles and Practice in C (2nd
Edition), Addison-Wesley.

[10] Slater, M. (2002) Constant Time Queries on Uniformly
Distributed Points on a Hemisphere, Journal of Graphics
Tools, 7(1):33-44.

[11] Cohen, M.F., Shenchang, Ec., Wallace, J.R. and
Greenberg, D.P. (1988) A Progressive Refinement Approach
to Fast Radiosity Image Generation, Computer Graphics
(SIGGRAPH) 22(4), 75-84.

[12] Szirmay-Kalos, L. (1999) Stochastic Iteration for Non-
Diffuse Global Illumination, Computer Graphics Forum
(Eurographics ’99) 18(3) 233-244.

[13] Goral, C., Torrance, K.E., Greenberg, D. (1984)
Modeling the Interactionof Light Between Diffuse Surfaces,
Computer Graphics (SIGGRAPH), 18(3), 213-222.

[14] Cohen, M.F. and Greenberg, D.P. (1985) The Hemi-
Cube: A Radiosity Solution for Complex Environments,
Computer Graphics (SIGGRAPH)19(3), 31-40.

[15] Cohen, M.F., Shenchang, Ec., Wallace, J.R. and
Greenberg, D.P. (1988) A Progressive Refinement Approach
to Fast Radiosity Image Generation, Computer Graphics
(SIGGRAPH) 22(4), 75-84.

[16] Immel, D.S., Cohen, M.F. and Greenberg, D.P. (1986)
A radiosity method for non-diffuse environments, Computer
Graphics (SIGGRAPH) 20(4), 133-142.

[17] Wallace, J.R., Cohen, M.F., and Greenberg, D.P.
(1987) A two-pass solution to the rendering equation: A
synthesis of ray tracing and radiosity methods, Computer
Graphics (SIGGRAPH), Proceedings of the 14th annual
conference, p311-320.

[18] Hanrahan, P., Saltzman, D. and Aupperle, L. (1991) A
rapid hierarchical radiosity algorithm. Computer Graphics
(SIGGRAPH), 25(4) 197-206.

[19] Chen, S. E., Rushmeier, H. E., Miller, G. and Turner, D.
(1991) A progressive multi-pass method for global
illumination, Computer Graphics, 25(4), 165–174.

[20] Aupperle, L. and Hanrahan, P. (1993) A hierarchical
illumination algorithm for surfaces with glossy reflection,
Computer Graphics Proceedings, Annual Conference
Series, 155–162.

[21] Ward, G. and Simmons, M. (1999) The Holodeck Ray
Cache: An Interactive Rendering System for Global
Illumination in Nondiffuse Environments, ACM
Transactions on Graphics, 18(4):361-98.

[22] Walter, B., Drettakis, G. and Parker, S. (1999)
Interactive rendering using render cache, Rendering
Techniques ’99, Eurographics, (D. Lischinski and G.W.
Larson, eds.), 19–30.

[23] Simmons, M. and Séquin, C. H. (2000) Tapestry: A
dynamic mesh-based display representation for interactive
rendering, in Rendering Techniques 2000 (Proceedings of
the Eleventh Eurographics Workshop on Rendering), (eds: B.
Peroche and H. Rushmeier, 329–340.

[24] Stamminger, M., Haber, J., Schirmacher, H. and Seidel,
H.-P. (2000) Walkthroughs with corrective texturing,
Rendering Techniques 2000 (Proceedings of the Eleventh
Eurographics Workshop on Rendering), (eds: B. Peroche and
H. Rushmeier, 377–388.

[25] Tole, P., Pellacini, F., Walter, B. and Greenberg, D. P.
(2002) Interactive global illumination in dynamic scenes,
ACM Transactions on Graphics, 21(3), 537–546.

[26] Drettakis G. and Sillion, F. X. (1997) Interactive update
of global illumination using a line-space hierarchy, Computer
Graphics, 31(Annual Conference Series, SIGGRAPH), 57–
64.

[27] Stamminger, M., Scheel, A., Granier, X. , Perez-
Cazorla, F. , Drettakis, G., and Sillion, F. X. (2000) Efficient
glossy global illumination with interactive viewing,
Computer Graphics Forum, 19(1), pp. 13–25 (2000).

[28] Granier X. and Drettakis, G. (2001) Incremental
updates for rapid glossy global illumination, Computer
Graphics Forum (Eurographics 2001) 20(3).

16

[29] Walter, B., Alppay, G., Lafortune, E.P.F., Fernandez, S.
and Greenberg, D. P. (1997) Fitting virtual lights for non-
diffuse walkthroughs, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, 45–48.

[30] Keller, A. (1997) Instant Radiosity Computer Graphics
Proceedings, Annual Conference Series, SIGGRAPH 97
Conference Proceedings, Annual Conference Series, 49-56.

[31] Stürzlinger, W. and Bastos, R. (1997) Interactive
rendering of globally illuminated glossy scenes,
Eurographics Rendering Workshop 1997 (J. Dorsey and P.
Slusallek, eds.), 93–102.

[32] Jensen, H.W. (1996) Global Illumination Using Photon
Maps, Rendering Techniques ‘96, Proceedings of the 7th
Eurographics Workshop on Rendering, 21-30.

[33] Gobbetti, E., Spanò, L. and Agus, M. (2003)
Hierarchical Higher Order Face Cluster Radiosity for Global
Illumination Walkthroughs of Complex Non-Diffuse
Environments. Computer Graphics Forum, 22(3),
(Eurographics 2003, eds P. Brunet and D. Fellner)
September 2003.

[34] Whitted, T. (1980) An Improved Illumination Model for
Shaded Display, Communications of the ACM, 23(6), 343-
349.

[35] Kajiya, J.T. (1986) The Rendering Equation, Computer
Graphics (SIGGRAPH), 20(4), 143-150.

[36] Wald, I., Schmittler, J., Benthin, C., Slusallek, P.,
Purcell, T.J. (2003) Realtime Ray Tracing and its use for
Interactive Global Illumination, STAR, Eurographics 2003
22(3) P. Brunet and D. Fellner (eds.).

[37] Wald, I., Kollig, T., Benthin, C., Keller, A., Slusallek,
P., (2002) Interactive Global Illumination Using Fast Ray
Tracing, Thirteenth Eurographics Workshop on Rendering,
P. Debevec and S. Gibson (eds).

[38] Benthin, C., Wald, I., Slusallek, P. (2003) A Scalable
Approach to Interactive Global Illumination, Eurographics
2003 22(3) P. Brunet and D. Fellner (eds).

[39] Dutre, P., Bekaart, P., Bala, K. (2003) Advanced Global
Illumination, A.K. Peters, Chapter 8.

[40] Alfeld, P., Neamtu, M. and Schumaker, L.L. (1996)
Bernstein-Bézier Polynomials on Spheres and Sphere-Like
Surfaces., CAGD 13, 333--349.

[41] Smits, B. and Jensen, H.W. (2000) Global Illumination
Test Scenes; Tech. Rep. UUCS-00-013, Computer Science
Department, University of Utah, June 2000.
http://www.cs.utah.edu/~bes/papers/scenes/

