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Abstract 
 

This paper describes an algorithm that provides 
real-time walkthrough for globally illuminated scenes 
comprising of ideal diffuse and specular polygonal 
surfaces. A type of light field data structure is used for 
propagating radiance outward from light emitters 
through the scene and accounts for all L(S|D)* light 
paths. The light field employed is constructed by 
choosing a regular point subdivision over a 
hemisphere, to give a set of directions, and then 
corresponding to each direction creating a rectangular 
grid of parallel rays. Each rectangular grid of rays, 
called a ‘parallel subfield’ is further subdivided into 
rectangular tiles, such that each tile references a 
sequence of 2D “images” containing colour values 
corresponding to the outgoing radiances of surfaces 
intersected by the rays belonging to that tile. 
Following propagation, this structure is used for final 
image rendering. Propagation times are currently very 
long and the memory requirements high. This 
algorithm, however, offers a global illumination 
solution for real-time walkthrough even on a single 
processor. 
 
1. Introduction 

 
The main contribution of this paper is a (partial) 

solution to the global illumination problem that 
supports real-time walkthrough. The solution is partial 
in the sense that only ideal specular and diffuse 
surfaces are supported. Nevertheless any kind of 
L(S|D)* light path [1] can be simulated (including 
caustics). The method exploits the idea of light fields 
[2] (or lumigraphs [3]), though the particular type of 

light field representation used is similar to that in [4] 
and also similar to a data structure used for visibility 
culling in [5]. It exploits the idea of Layered Depth 
Images [6] where each ray in the light field maintains 
radiance information about each of the surfaces that it 
intersects rather than just the first surface. In this way a 
projected image can be reconstructed from any 
viewpoint and direction in the scene. 

For illumination propagation an approach is used 
that is similar to the ‘ray bundle’ method for stochastic 
global illumination as introduced in [12]. Light is 
propagated through bundles of parallel rays in 
successive iterations. However, here the approach is 
deterministic, and the ray bundles are fixed sets of rays 
with their origins in 2D square tile grids. Standard 
polygon rasterisation is used to compute ray-polygon 
intersections rather than a Painters’ Algorithm.  

The ideas presented in this paper may also be 
thought of as a combination of light field and 
illumination network [7]. Both employ a fixed ray 
based data structure that is a discretisation of the 
distribution of radiance. The illumination network 
maintains ‘links’ from object to object, where two 
objects are linked if there is an unoccluded ray that 
joins them, and the link is a pointer from one object 
connecting to the other along such a ray. Objects are 
subdivided into patches, and the illumination network 
determines the radiance of the patches. It is finally the 
objects which are rendered. The virtual light field 
(VLF) approach described here does not need to render 
objects at all (though it can do so with some 
advantages). Rather the objects illuminate the rays, and 
the rendering is based on the rays. The present paper 
embodies the first practical realization of the ideas first 
presented in [8]. 
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In the next Section we discuss further background 
information locating the new approach relative to other 
approaches to global illumination that attempt to 
achieve real-time walkthrough. In Section 3 the main 
data structure is presented, and the propagation of light 
through the data structure is discussed in Section 4. 
Implementation details are discussed in Section 5, with 
results including images, timing, and memory 
requirements in Section 6. Further work and 
conclusions are given in Section 7. 
 
2. Background  

 
Radiosity was the first algorithm that made possible 

real-time walkthrough with realistic illumination but for 
scenes with only diffusely reflecting surfaces [13][14]. 
This requires a relatively extensive view independent 
iterative propagation phase that eventually produces 
radiosity values at the vertices of surface patches. Then 
standard hardware rasterisation including smooth 
shading interpolation can be used for a real-time 
walkthrough rendering [15]. Real-time rendering is 
problematic once glossy and specular surfaces are 
included, owing to the view dependent nature of the 
required global illumination solution in this case. 
Radiosity was extended to non-diffuse environments, 
for example as in [16][17], though not all light paths 
could be simulated and walkthrough was unattainable. 
Combining progressive refinement radiosity with a 
Monte Carlo and light tracing phase was an early 
attempt at a relatively fast, but not interactive time, 
global illumination solution including diffuse and 
glossy surfaces [19]. Hierarchical radiosity [18]  
greatly speeded up the radiosity propagation phase, and 
was extended to include glossy reflection [20]. 
Hierarchical radiosity is a fundamental approach that 
has been extended to include a line-space hierarchy to 
support rapid computation of a new solution when the 
scene changes [26], including glossy illumination 
[27][28]. 

There are several different classes of algorithm that 
attempt to provide interactive time rendering for 
globally illuminated scenes. Caching schemes rely on 
reusing elements of a global illumination solution 
across several views [21][22][23][24][25]. Precompute 
algorithms compute a global illumination solution and 
then approximate this in some way for rapid rendering. 
For example [29][30] compute virtual point light 
sources that produce direct illumination approximating 
the global solution. As another example, in [31] photon 
tracing [32] is used to compute a global illumination 
solution, and then splatting is used at rendering time 
together with viewing direction and surface properties 

to rapidly display an approximate global illumination 
solution. In [33] hierarchical clustering is extended by 
partitioning the models into areas where global 
illumination is well approximated based on a set of 
basis functions for the irradiance over the patches, and 
then interactive time rendering is achieved for 
moderately glossy surfaces. 

The exponential growth in processor speed, and 
advances in graphics hardware have supported a 
massive speed up in ray tracing [34] and path tracing 
[35], to the point where interactive speed for millions 
of polygons on clusters of consumer PCs has become 
possible [36]. This work has exploited space 
subdivision schemes for fast ray-intersection solutions, 
careful organization of the overall algorithm to fit the 
needs of the hardware, together with exploitation of 
graphics card processing, and parallel implementation 
across PC clusters [37][38]. An excellent summary and 
overview can be found in [39].  

The ‘virtual light field’ approach has similarities to 
many other approaches: it is like photon mapping [32] 
since it propagates light from the emitters, but it is a 
deterministic rather than Monte Carlo solution, 
employing a fixed set of rays instead of a randomly 
generated set. In photon mapping a final density 
estimation phase is needed to compute the radiance 
from the irradiance stored at the surfaces, and also a 
final ray trace for accurate specular reflection. 
Although a final rendering time ray trace can be 
employed for the virtual light field, it is not inherently 
necessary, and no final density estimation is needed. It 
relies on a pre-computed global illumination solution 
stored in a massive data structure, and then uses 
lookups into the data structure for determining radiance 
to be assigned to primary rays in the rendering phase. 
Although in the current implementation the propagation 
phase is very long, and the memory requirement is 
huge, the payoff is that final rendering is very fast. 
There is no ray-object intersection searching in any 
phase of the propagation, everything is carried out by 
rasterisation or by direct lookup. The lookup is 
typically into a very small list of surface identifiers, and 
the only ‘search’ required is to find a matching element 
in the list.  

This approach therefore sacrifices propagation time 
and memory to the goal of very fast final rendering. 
 
3. Virtual Light Field Data Structure  
 

The ray space discretisation followed in this 
research is similar to that in [4] where a uniformly 
chosen vector at the center of a sphere defines a 
direction, that direction is treated as the normal to a 
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plane through the center of the sphere, and then a 
uniform set of points chosen on the plane intersected by 
the sphere determines a set of parallel directions. In our 
case the scene is enclosed by a regular cuboid bound 
from (-1,-1,-1) to (1,1,1). For example, consider the 
lower face of this bounding cuboid with corner vertices 
at (-1,-1,-1) and (1,1,-1). This face is discretised 
into N N× pixels. The pixel position (i,j) corresponds 
to the point: 

( , 0, ..., 1)
(2 1) (2 1)

1, 1, 1 i j N
i j
N N

= −
+ +

− − −  
 

 (1) 

 
Consider this as the origin of a ray that is parallel to 

the z-axis, i.e., parallel to the vector (0,0,1). This set of 
N N× rays is called the canonical parallel subfield 
(PSF), with (0,0,1) as its direction. If l points with 
spherical coordinates ( , )i i iω θ φ= are chosen on the 
positive hemisphere then l PSFs are defined as 
rotations of the canonical PSF by rotating the direction 
into the corresponding point. 

Once again, consider a ray (i,j) in the canonical 
PSF. This will intersect a number of surfaces in the 
scene. If we parameterise the ray in the form 

0( ) ( 0)r t r vt t= + ≥ where v is the direction vector of 
the ray (0,0,1), and 0r is the ray origin, then the 
intersection points can be characterized as an array of 
monotonically increasing parametric values  

1, 2,[ ..., ]kt t t . At each of these intersection points 
additional information can be stored: the surface 
identifier at that intersection, and eventually the 
outgoing radiance from the surface at that point. This is 
possible, and the first implementation [8] followed this 
approach. However, no use would be made of the very 
great coherence between neighbouring rays, and the 
memory costs would be substantial. Instead, the pixel 
space of the PSF is subdivided into tiles, each of 
resolution m×m, where 1 m N≤ ≤ and N is a multiple 
of m. Each tile maintains a sequence of surface 
identifiers that are intersected by any ray within the tile. 
Corresponding to each surface identifier there is a 
visibility map for the surface and a 2D image that will 
eventually hold the outgoing radiances corresponding 
to each point that has a non-zero visibility entry. In 
principle the visibility map is an m×m bitmap, with 
entries 1 corresponding to where the surface is within 
the tile, and 0 elsewhere. In practice this is 
implemented as an Edge Table, such that for each row 
(j=0,1,…,m-1) within the tile the boundaries 

[ , ],[ , ],...1 2 3 4i a a a a= are stored, where the a’s are 
successive pairs of coordinates such that the surface 
exists within these bounds. These ideas are illustrated 

in . The left hand rectangle shows the canonical PSF 
partitioned into ray origin pixels, and into tiles, with 
the tile blown up in the middle showing a polygon 
intersecting it. The Edge Table that is used to 
efficiently code the visibility map is shown on the right. 

 

Figure 1. A PSF, Tile, Polygon and associated 
Visibility Map represented as an Edge Table 

The process of finding all the intersections of 
surfaces with the rays and tiles of the canonical PSF is 
straightforward. If we consider the special case that all 
surfaces are planar polygons, then this is equivalent to 
polygon rasterisation, except that a layered depth image 
is computed. It is trivial to compute the set of polygon 
fragments belonging to each tile, and also trivial to 
construct the Edge Tables – with minor modifications 
to the standard polygon rasterisation algorithm (e.g., 
[9]). If the polygons are also convex then an Edge 
Table entry has either 0 or 2 entries per row.  

So far we have only discussed the canonical PSF. 
Given any other PSF corresponding to direction iω , the 
scene can be rotated such that iω is mapped to 
direction (0,0,1) and then the rasterisation carried out 
in the canonical space. 

The 2D image map that belongs to each surface 
intersected in a tile is called a radiance map. This 
(after light propagation) will contain the radiance 
values corresponding to each non-zero entry in the 
visibility map for the surface. (Note that the t-
intersection values are not stored, since these can be 
rapidly recomputed as needed). Now suppose that all 
the radiances for all tiles in all PSFs have somehow 
been computed and the outgoing radiance in direction 
ω at a particular point ( , , )x y z on surface P is 
required. We first find the direction amongst iω
(i=0,1,…,l-1) that is closest to ω - suppose that this is 

jω . There will be a rotation matrix jM that rotates 

jω into the canonical direction (0,0,1). Then 

( , , ) ( , , )j q q qx y z x y z=M will be the point in the 

canonical PSF space that corresponds to ( , , )x y z in 
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scene space. In particular the projection ( , , 1)q qx y −

will be closest to some pixel ( ),i j which belongs to a 
particular tile. If we traverse the identifiers in that tile 
until we find P, then we can look up the required 
radiance value in the radiance map belonging to P in 
that tile. Of course, this will only be an approximation 
to the true value given the discretisation employed. For 
acceptable accuracy either both n and l must be quite 
large, or interpolation methods must be employed to 
improve the approximation.  

It is critical to choose a parameterisation over the 
hemisphere that requires no searching to find closest 
rays – since such ray lookup is a critical operation 
during both propagation and eventual rendering. The 
method used is a triangle based subdivision of the 
hemisphere, with constant time lookup for any arbitrary 
point on the hemisphere in order to find the closest 
stored point. This is described in [10]. 

In the next section we discuss how this data 
structure is employed in the energy propagation. 
 
4. Propagation 
 
4.1 Overview  
 
Notation 

The (finite) set of given PSF directions is denoted 
lΩ and lω ∈Ω refers to a particular direction. The 

tiling coordinate system is referenced by ( , )s t
, 0,1,..., 1s t n= − where /n N m= . Hence a tile is 

referenced as ( , , )s tω . The coordinate system within a 
tile is referenced by ( , )u v , , 0,1,..., 1u v m= − . Hence 
( , , , , )s t u vω refers to the ray that is in direction ω and 
with origin at coordinates given by equation (1) where 
( , ) ( , )i j sm u tm v= + + . We sometimes use the 
abbreviation ( , , , , )s t u vω≡r .

Data Structures 
For each PSF, each tile contains a set of surface 

identifiers, corresponding to the surfaces that are 
intersected by any ray within the tile. Associated with 
each surface fragment in the tile there are in fact two 
radiance maps: called the Total Radiance Map and 
Unshot Radiance Map. In general L is a radiance 
function – its domain depends on context. UL refers to 
unshot radiance, TL refers to total or accumulated 
radiance. ( , , , , , )L s t u v Pω is the radiance for ray 
( , , , , )s t u vω from surface P in the direction that is on 
the same side of P as its outward normal. Obviously 

this is radiance for P in tile ( , , )s tω in position ( , )u v
within the tile. ( , , , )L s t Pω is a radiance map for P in 
the tile ( , , )s tω . The individual elements of this 
radiance map are ( , , , , , )L s t u v Pω as ( , )u v vary over 
the appropriate domain. 

In addition each surface P in the scene has two 
associated texture maps CP (Current) and NP (Next)
to store radiance values due to diffuse reflection. Any 
ray ( , , , , )s t u vω that passes through a texel of such a 
texture map picks up a radiance value 

( , , , , , )CL s t u v Pω , which corresponds to the amount of 
accumulated radiance that is to be distributed diffusely 
from the area corresponding to the texel. New radiance 
due to diffuse reflection that is generated within the 
current propagation cycle (from diffuse or specular 
senders) is stored in the Next Texture Map NP and 
will be distributed in the next cycle. For one kind of 
rendering technique it is also useful to compute a Total 
Texture Map TP which stores the radiance 
accumulated on diffuse surface P over all propagation 
iterations. 

 
Exchange Buffer 

Any two surfaces belonging to a tile may exchange 
energy along a ray, depending on whether or not they 
can ‘see’ each other (i.e., whether or not there is an 
occluder between them). When treating surface P
within a tile as a receiver of energy, the visibility map, 

( , , , )V s t Pω , for P provides information about where 
P is located within the tile. ( , , , , , ) 1V s t u v Pω = if and 
only if when polygon P is rasterised on PSFω , the 
pixel ( , )u v within tile ( , , )s tω is set, otherwise the 
value is 0.  We will use the notation 
( , ) ( , , , )u v V P s tω∈ to mean that ( , , , , , ) 1V s t u v Pω = .

For each set position ( , )u v within the visibility map 
for P there will be at most one other surface in the tile 
that is visible along the ray corresponding to the PSF. 
The exchange buffer is a 2D array of identifiers of the 
surfaces that are visible to P within the visibility map 
of P . It is constructed on the fly as surface P is 
processed for incoming energy, and deleted after use. 

( , , , )X s t Pω is the exchange buffer for polygon P in 
the tile ( , , )s tω . ( , , , , , )X s t u v Pω Q= if and only if the 
ray ( , , , , )s t u vω intersects both P and Q , their outward 
normals point towards each other, and there is no 
intervening polygon in the ray segment joining P and 
Q . It is obvious that ( , , , , , )X s t u v P Qω = if and only 
if ( , , , , , )X s t u v Q Pω = .
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In this discussion directions are always interpreted 
to correspond to the front-facing normals of the 
surfaces involved. So ray r is considered in one 
direction from Q to P and in the opposite direction 
from P to Q.

The Propagation Cycles 
The propagation cycles run through each PSF, each 

tile within each PSF, and each surface within each tile. 
In propagation cycle 0 the Current Texture Maps of the 
light sources are loaded up with their given energy 
(their Next Texture Maps are never needed - assuming 
that lights do not additionally reflect energy, but only 
emit it). For now we assume that light sources are 
isotropic and diffuse, and so the light source Current 
Texture Maps are always 1 1× arrays. The following 
pseudo code illustrates how each propagation cycle 
unfolds. 

 
for each lω∈Ω /*1*/ 

for each , 0,..., 1s t n= − /*2*/ 
for each surface ( , , )P s tω∈ /*3*/ 

' lω ∈Ω approx specular reflection direction; 
 X = exchange buffer for P ;

for each ( , ) ( , , , )u v V P s tω∈ /*4*/ 
( , , , , )s t u vω=r ;

( , )Q X P= r ; /*5*/ 

( , )C
dL L Q∝ r ; /*6*/ 

( , );s UL L Q= r /*7*/ 

d sL L L= + ; /*8*/ 

( , ) ;TL Q L+ =r /*9*/ 

( , ) ;NL P L+ =r /*10*/ 
' ( ', ', ', ', ')s t u vω=r spec. reflected ray; 

 ( ', )UL P Lρ+ =r ; /*11*/ 
end 

 end 
 end 
end 
current texture maps = next texture maps; 
next texture maps = 0; 
unshot radiances = 0; 
 

The pseudo code is explained as follows, referring 
to the comment numbers at the end of the lines: 

 
(1) The iteration cycle is over each PSF. 
(2) Within each PSF each non-empty tile is visited. 
(3) Within each tile each surface (P) is visited and 
treated as a potential receiver of energy. Note that with 
respect to the surface and the ray direction, if the 
surface is a polygon then all specular reflection 
directions are the same for this PSF and tile. 

(4) For the current surface (P) all rays in the visibility 
map are considered, and  
(5) The surface (Q, if any) that sends energy to P along 
this ray is extracted from the exchange buffer. 
(6) An appropriate fraction of the energy is extracted 
from the texels on the Current Texture Map of Q that 
are intersected by the current ray. The fraction of 
energy extracted and sent to P ensures a balance of 
energy in the scene. This represents the diffuse 
interreflection from Q to P.
(7) The Unshot Radiance Map for Q along the current 
PSF is looked up at the ray position and the radiance 
there is determined. 
(8) These two are summed to give the total radiance 
from Q along this ray that will strike P.
(9) This total radiance is accumulated into the Total 
Radiance Map for Q at the position corresponding to 
the ray. 
(10) The texel corresponding to the ray for the next 
diffuse radiance map for P is also updated with this 
radiance as irradiance that must be distributed in the 
next propagation cycle. 
(11) The ray corresponding to the specific specular 
direction of reflection from P is computed, and the 
nearest PSF direction and ray to this is found. This is 
used to identify the cell in the next unshot radiance 
map for P along this reflection direction, and the 
radiance value in that cell is updated by the appropriate 
fraction of incoming radiance.  

At the end of each iteration cycle, the current texture 
maps are set to the next texture maps, and the latter are 
reset to zero. In addition the directional unshot 
radiance maps are reset to zero.  
 
4.2 Diffuse Surface as Sender 
 

The above outlines the overall propagation process, 
we now consider some of its elements in more detail. 
As discussed earlier, the flow of radiance to a receiving 
face (P) is performed by identifying all surfaces (Q)
that send radiance to it along a single PSF tile at a time. 
If the sender is diffuse, the transfer to the receiver takes 
place in either one of two methods depending on the 
material properties of the receiver. 

 
Diffuse to Diffuse transfer 

When the receiver and sender are both diffuse, 
energy transfer takes place through a temporary 
radiance tile (a 2D array of radiances) aligned with the 
current PSF tile being propagated (Figure 2). This 
temporary radiance tile is used as an accumulator for 
radiance propagating towards the diffuse receiver 
within that PSF tile. The mapping of the texture maps 
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on the sender (QC) and receiver (PN) to the temporary 
radiance tile is a many-to-one mapping. The transfer of 
energy is transformed from a discrete representation 
(on the sender in QC) into a continuous one from which 
it is then correctly re-sampled to another discrete 
representation (on the receiver in PN).  

This transfer of radiance to a diffuse receiver is 
performed in two parts: the temporary radiance tile first 
accumulates radiance from all senders (both diffuse and 
specular) and the loaded radiance tile is then mapped 
onto the Next Texture Map of the receiver P.
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Figure 2. Diffuse to diffuse transfer along a 
single PSF tile via the temporary radiance tile. 

 
Discrete cells on a sender Q are mapped onto a 

receiver using polygon clipping so that contributions 
from a single shooting cell can be correctly distributed 
amongst the receiver cells. The ratio of intersected 
(visible) to total area of the sender cell determines the 
amount of radiance attributed to the receiver cell. For 
all senders in the tile, radiance is accumulated onto the 
temporary radiance tile by projecting the cell of the 
sender’s current diffuse map (QC) in the PSF direction 
and clipping the boundary of that cell against those of 
the cells on the temporary radiance tile. Once this 
accumulation of radiance from all senders onto the 
temporary radiance tile is complete, the temporary 
radiance tile is mapped onto the next diffuse map on 
the receiver (PN) using a similar projection and 
clipping process. Clipping is the most expensive 
process during propagation; accounting for up to 80-
85% of overall compute time. However, this 
‘continuous’ clipping algorithm is a required step for 
proper mapping of energy without aliasing. Less 
compute-intensive (discrete sampling) methods were 
attempted but caused significant aliasing and proved to 
be too inaccurate. The temporary radiance tile, apart 
from being mapped to the next diffuse map on the 
receiver (PN), is also added to the total radiance map of 
the sender for the PSF tile being propagated 

( , , , )TL s t Qω .

P
SF

k

PSF
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PSF
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PSF
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PSF
i

Shooting Cell

Polygon A

Polygon B

 
Figure 3. Angular spread of PSF surface hits 
with distance r.

The mapping of radiance between a diffuse sender 
and a diffuse receiver using the above two-step project 
and clip process correctly accounts for the terms on the 
numerator in the integral of the standard form-factor 
equation in Equation Error! Reference source not 
found.:

2

cos cos1

i j

i j i j
ij ij

i A A

dA dA
F H

A r
φ φ

π
= ∫ ∫  (2) 

The inverse scaling of irradiance by π during the 
propagation process is explained in Section 4.4, 
Equation (3). Also, the integral is performed explicitly 
by iteratively propagating along all PSF directions. The 
presence of the 2r term in the denominator is however 
not explicitly present, but is accounted for by the very 
nature of discretisation of the VLF and the propagation 
process (see Figure 3). This 2r term accounts for the 
angular spread of diffuse energy over a distance r. In 
the VLF, the spread of energy deposited over a surface 
is inherently coupled with the distance of the sender to 
the receiver – the VLF method being equivalent to 

21 r in the limit. 
 
Diffuse to Specular transfer 

The fundamental principle in diffuse to specular 
transfer along a PSF direction ω is that energy from a 
diffuse sender Q towards a specular receiver P is 
reflected towards a PSF direction 'ω by P . If this 
transfer is performed by a forward mapping from the 
diffuse sender into the reflected direction, under-
sampling artefacts are created on the Unshot Radiance 
Map ( ', ', ', )UL s t Pω . This is due to the many to one 

mapping from the sender’s unshot diffuse map CQ into 
the cells of ( ', ', ', )UL s t Pω . We thus employ a 
backwards mapping from the reflected direction onto 
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P to ensure that every cell ' ( ', ', ', ', ')s t u vω=r on the 
Unshot Radiance Map ( ', )UL Pr receives energy from 
the sender Q . Energy from the sender is thus added to 
the unshot radiance map in the reflected direction as 
illustrated in Figure 4.  

Reflected PSF direction ’

QC

(Diffuse Sender)
P (Specular Receiver)

Figure 4. Diffuse to specular transfer along a 
PSF using backward mapping. 
 

This transfer is performed in two stages. The four 
corners of tile ( , )s t in PSF direction ω are projected 
onto the reflected PSF direction 'ω to find the 
bounding box of the tile ( , )s t on ( ', ', ', )UL s t Pω .
Cells outside regions of ( ', ', ', )UL s t Pω can then be 
disregarded. The cells inside the boundary potentially 
receive energy from the sender Q . In the next stage, 
each candidate cell is projected back onto the PSF ω .
If the projected cell is visible from ( ', ', ', )UL s t Pω as 
indicated by the visibility exchange buffer then energy 
is extracted from the current texture map of the sender 

CQ .
Due to discretisation of directions in the VLF, the 

specularly reflected ray will probably not correspond in 
direction to any of the actual PSF directions. Instead 
the three nearest rays, corresponding to three PSFs are 
found, and barycentric weights computed to interpolate 
the actual direction from these three. Energy from the 
diffuse sender is then transferred along each of these 
directions appropriately weighted by these barycentric 
coefficients. 
 
4.3 Specular Surface as Sender 
 
Specular to Specular transfer 

Specular to specular energy transfer is very similar 
to the case of diffuse to specular transfer, following the 
same principle. When a ray ( ', ', ', ', ')s t u vω from the 
reflected direction is mapped backwards through P

onto the specular sender Q , energy from the unshot 
radiance map ( , , , )UL s t Qω is obtained (rather than 

from CQ as in the case of diffuse-specular transfer).  
 
Specular to Diffuse transfer 

In specular to diffuse transfer, energy in the specular 
sender’s Unshot Radiance Map ( , , , , , )UL s t u v Qω
(which was gathered in the previous propagation cycle) 
is pushed into the next diffuse map on receiver NP .
This has the effect of creating caustics on the diffuse 
surface.  

When cells on the specular sender Q are visible 
from the diffuse receiver P the unshot radiance from 
the sender ( , , , )UL s t Qω is accumulated into the 
temporary radiance tile. This transfer is a simple one-
to-one mapping since ( , , , )UL s t Qω and the temporary 
radiance tile are at the same resolution along the PSF 
direction.  As mentioned earlier, the temporary 
radiance tile is used to gather energy sent by all senders 
(specular and diffuse) to the receiver P . The transfer 
of energy from the temporary radiance tile onto the 
receiver’s next diffuse map NP and the total radiance 
map of the sender ( ), ,TQ s tω is by the same 
mechanism described earlier for diffuse to diffuse 
transfer (Section 4.1). 
 
4.4 Energy balance 
 

In this section we show that light transport in the 
VLF is carried out correctly as a radiative transfer – 
that it obeys the requirement that light energy is 
conserved in a closed system (the 1st law of 
thermodynamics). During propagation irradiance is 
stored on diffuse surfaces in texture maps. Also, 
radiance leaving a face in a particular direction is 
stored in the light field tiles in directional radiance 
maps aligned to the tiles of the corresponding PSF 
direction. Thus (during propagation) energy in this 
system consists of a manifold of directional and non-
directional elements. In its current state, the VLF 
supports only specular and diffuse surfaces and the 
modes of transport that can occur under this constraint 
are[2]: D→D, D→S, S→D and S→S. However, since 
the propagation in the VLF is based on radiance flow 
between radiance maps this can be broken down to the 
following steps, sequences of which map to the modes 
of transport above: texture map → radiance map, 
radiance map → texture map and radiance map →
radiance map.
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Diffuse texture map to radiance map transport 
The radiant exitance M stored at texel ( , )q qu v of a 

diffuse texture map CQ needs to be uniformly 
distributed over the hemisphere above the texel. 
Normally in radiant transfer the hemisphere is divided 
into a disjoint set of solid angles corresponding to a set 
of chosen directions, each of which receive a fraction 
of M. In the discretised light field this is (implicitly) 
achieved by projecting the texel into each PSF.  

For any PSF ω the texel ( , )q qu v projects to a cell 
( , , , , )s t u vω . This cell corresponds to a ray leaving Q. 
Due to the underlying discretisation, a ray represents a 
beam of constant radiance, and given the many-one 
mapping from texel to PSF space, the texel will 
normally fall within the beam of a single ray. However, 
as shown in Figure 5 in the worst case the texel might 
overlap the beams of several rays (such as texel X in 
the figure). In such cases clipping will ensure that the 
correct radiance fraction will be distributed to each ray. 
Therefore, without loss of generality we can assume for 
this discussion that a diffuse texel maps to a single ray.  
 

Figure 5. Projection of a radiance map onto a 
texture map.  

 
The ray leaving Q will be carrying radiance 
( , , , , , )UL s t u v Qω , and will additionally receive a 

fraction of M contained in the texel. This fraction is 
determined by the area of the projection of the texel 
divided by the sum of the areas formed by projecting 
the texel onto all PSFs. Therefore, the radiance carried 
along the ray is 

( ) ( ) ( )
( )

1

0

, , ,
, , , , , , ,

, , ,

q q
q q l

i q q
i

U
A Q u v

L s t u v Q M Q u v

A Q u v

ω
ω

ω
−

=

+ ×

∑
(3) 

where ( , , , )q qA Q u vω is the area of the projection of 

texel ( , )q qu v on face Q into PSFω , and 

( , , )q qM Q u v is the radiant exitance of face Q at texel 

( , )q qu v . The ratio on the right hand side of the 

equation essentially estimates the solid angle needed to 
compute the radiance traveling in that particular 
direction. 

Due to the uniform nature of the light field the area 
computation can be implemented efficiently by 
precomputing a single value for the given light field 
discretisation that is the sum of the projected area of a 
unit diffuse texel into all PSFs. This ‘total projected 
unit area’ multiplied by the area of a given texel yields 
the denominator of the division in (3). 

This transport essentially ‘loads up’ the radiance 
maps for a (diffuse) face with the radiant exitance of 
that face, whether it is emission for an emitter or 
reflected irradiance for a non-emitter. 
 
Radiance map to diffuse texture map transport 

When energy is sent from a radiance map 
( , , , )UL s t Qω to a texture map NP it is stored at some 

texel ( , )p pu v . This texel will by the end of each 

propagation cycle have summed the irradiance due to 
incident radiances ( , , , )UL s t Qω over the hemisphere 
at the texel. 

 In a closed scene take the set of rays (in fact, 
beams) induced by the VLF discretisation emanating 
from a face Q then  each of those beams will intersect 
another face P (and thus a set of texels on P ). Clearly 
the overall area of the intersected texels projected into 
the PSF corresponding to the beam that intersected it 
will equal the denominator in the division in (3), which 
means that the ‘outgoing’ projected area equals the 
‘incoming’ projected area overall (see Figure 6).  

 

Figure 6. "Outgoing" projected area (dashed 
grey) equals "incoming" projected area for 3 
enclosing polygons (grey, black and dashed 
black) in a simple VLF with only two PSFs 



9

The texture map → radiance map step followed by a 
radiance map → texture map step for all PSFs fully 
describes for a given face the diffuse to diffuse 
transport mode. 
 
Radiance map to radiance map transport 

This mode of transport represents specular 
reflection and does not involve diffuse texture maps. 
Given a PSF iω sending radiance towards a specular 
reflector, iω is reflected about the surface normal of 
the specular surface to yield the reflected direction 'iω
- this direction is looked up among the PSFs in the light 
field yielding a PSF jω . Because the direction is 

mirrored the projection of the surface into PSFs iω and 

jω will induce a 1-1 mapping over which the radiance 
stored at the rays is transferred. Only ideal specular 
materials are supported. Let the specular reflection 
coefficient be Sρ then the reflected radiance will be 

( , , , , , )L s t u v Qsρ ω  (where [0,1]sρ ∈ ) and the absorbed 
radiance ( )1 s Lρ− , so there is no loss or gain of 
radiance due to such a reflection. In practise however 

'i jω ω≠ and further steps are taken in transferring of 
specular radiance as explained earlier – energy balance 
is still maintained by using appropriate weighting in 
that transfer. 

This step completes the modes of transport by 
including specular reflections. A reflection step 
followed by a radiance map to texture map transfer 
describes the specular→diffuse transport mode, and a 
texture map to radiance map step followed by specular 
reflection describes the diffuse→specular transport 
mode. Finally and obviously, the specular→specular 
transport mode is represented by two specular 
reflection steps. 
 
4.5 Deferred Propagation 
 

As mentioned earlier, the project and clip stage 
required in transferring radiance is the most compute-
intensive stage. A progressive propagation stage can be 
introduced that prevents a surface from being an 
emitter of radiance for a particular iteration if it does 
not meet certain requirements. At the start of a 
propagation iteration, the total unshot radiance in the 
system is known. We also know the average reflectance 
per unit area of the scene expressed below: 

( )i i
i

S
i

i

A

A

ρ
ρ =

∑
∑

(4) 

where the summation is over all surfaces in the scene 
and iA and iρ are the area and reflectance of surface 
i respectively. The product of the unshot radiance in 
the current iteration with this constant provides an 
estimate of the unshot radiance at the start of the next 
iteration. Based on this estimate, a per-surface unshot 
radiance threshold is determined and Next and Current 
diffuse texture maps are swapped only if the unshot 
radiance at the surface is above this threshold. If the 
radiance maps are not swapped, the surface is marked 
as deferred and is not selected as an emitter till it 
exceeds the unshot radiance threshold in a later 
iteration. The surface will however continue to act as 
an accumulator of radiance. The scaling used in 
determining the radiance cut-off threshold for a surface 
is chosen conservatively. Deferred propagation can 
also be disabled for the last few iterations to ensure that 
all surfaces emit their unshot radiance a certain 
minimum number of times. 
 
5. Implementation Issues 
 

Though the Virtual Light Field allows for correct 
propagation of illumination in the scene in the limit 
(with a large N and l), the discrete representation 
necessitates several forms of filtering to reduce aliasing 
and better model the propagation. The problem arises 
from the fact that the low sampling density (both in the 
number of directions used, and radiance maps on 
surfaces) leads to considerable aliasing both in the 
propagation and walkthrough stages. A simple solution 
would be to increase the sampling rates – this however 
is not practical due to memory and computational 
limitations. An alternative approach is to 
extract/estimate additional information (using spatial 
and directional data) at suitable stages and use the 
results in the given low-sampled representation. 

The selection of PSF directions in the VLF is based 
on the recursive subdivision of a regular tetrahedron 
[10]. The subdivision so obtained is not ideally uniform 
for the VLF – for the VLF, an ideal subdivision of the 
hemisphere for directions requires each direction’s 
solid-angle to be the same; also, the ‘shape’ of each 
solid angle should be similar. Neither of these 
requirements is met by the current subdivision scheme, 
with as much as a 60% variance in solid-angle. The 
resulting partition also has unequal ray density (due to 
varying solid-angle shape) in different parts of the 
hemisphere. There appears to be no solution in the 
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literature that provides an alternative subdivision 
scheme that solves these problems while allowing a 
constant-time lookup. The problem of varying solid-
angles leads to unequal radiance being propagated in 
different directions over a diffuse surface. To 
counteract this, the radiance sent along a direction is 
normalised by a weight based on its corresponding 
solid-angle. 

Another consequence of discretising the directions 
is the creation of ‘holes’ during propagation (see Figure 
3). Due to discretisation each direction actually 
represents a beam (containing the set of rays that lie 
closest to that discretised ray). The problem occurs 
because individual beams rather than being conical 
(and widening with distance r) are taken to be 
cylindrical1. This problem cannot be solved when 
energy is propagated towards a specular surface, as 
these are represented by directional radiance maps 
which only exist for the given set of PSF directions. 
However, in the case of energy propagated towards 
diffuse surfaces we can use the surface’s diffuse texture 
map to fill in the holes. For diffuse surfaces texture 
maps are used to propagate radiance whereas 
directional radiance maps only keep track of total 
energy propagated in a particular direction. For diffuse 
receivers, additional directions (beyond those used for 
‘actual’ PSFs) are simulated by perturbing the VLF 
using a stratified sampling of solid angles. Dimensions 
of the average solid angle (for the discretised set of 
PSF directions) are computed at start-up, and a number 
of stratified samples are randomly selected within this 
solid angle for each propagation iteration. At each 
perturbation, the entire scene is rotated such that the 
canonical PSF (aligned with the z-axis) is oriented 
along the new sampled direction. Once a perturbation 
angle has been selected, the propagation is repeated; 
ensuring that the sum of radiance propagated into the 
scene over the perturbations is equivalent to the total 
unshot radiance for that propagation iteration. 

The additional directions of propagation in the VLF 
introduced by the perturbation and the radiance they 
carry are filtered by the geometric information of the 
scene in the visibility exchange buffers. Perturbation is 
not required for all cycles of the propagation process; 
the number of iterations to perturb is scene dependent 
and perturbing the initial few is generally adequate. 
The number of perturbations required per propagation 
iteration depends on the level of discretisation used for 
the VLF and the nature of the scene. When 
enumerating senders for a receiver during a perturbed 
 
1 The choice of cylindrical beams over conical ones is due to both 
computational complexity and also due to the fact that unequal solid 
angle ‘shapes’ lead to complex shaped conical beams. 

transfer, visibility lists in the tiles are no longer valid 
and senders for a receiver in the tile are recomputed 
from the visibility exchange buffer. All senders then 
push radiance into the temporary radiance tile which is 
subsequently mapped to the receiver’s next diffuse map 
(PN). During a perturbed transfer, the sender’s 
directional total radiance maps (LT) are not updated as 
the perturbed transfer is in a direction other than that of 
any actual PSF (directional total radiance maps are 
updated only during perturbation 0 involving the ‘true’ 
PSF direction). Thus, the result of perturbation is 
brought into effect only in the next iteration when the 
jittered (and filtered) unshot diffuse texture maps (QC)
are propagated into the scene. 

Following perturbation, Gaussian filtering is 
required on the next diffuse texture maps to remove the 
high frequencies that were introduced – this is normally 
performed with a small σ and filter size to minimise 
blurring of caustic and shadow boundaries. This action 
is performed just before the current and next diffuse 
maps are swapped at the end of an iteration. 

During propagation, energy transfer between a 
sender and receiver within a tile is dictated by the 
information in the visibility exchange buffer. This 
buffer is computed using OpenGL false-colour 
rendered images on a per-receiver, per-PSF basis. The 
problem with this approach is that though it is much 
faster than its alternatives, it introduces error and 
aliasing at polygon boundaries. The solution to this is 
to use super-sampled visibility exchange buffers to 
examine and compute the transfer of radiance. This 
allows for more detailed and accurate project and clip 
operations. Though this increases the computation 
required, it is acceptable as it is more expensive only at 
polygon boundaries and rectifies radiance propagation 
along edges.  

Unlike the perturbation method for diffuse surfaces, 
we are unable to increase the number of directions of 
propagation and representation for specular surfaces 
without actually increasing the number of PSFs being 
used. In the case of diffuse receivers, geometric 
information about spatial position and orientation was 
an adequate filter for a perturbed transfer of radiance; 
while the (view-independent) diffuse texture maps 
allowed for correct representation of received radiance. 
Specular surfaces being view-dependent are not open 
to a similar scheme as their radiance transfer is not 
adequately described by just spatial position and 
orientation. Once the propagation is completed we can 
however re-sample the directional radiance maps on 
specular surfaces using backwards ray-tracing, 
following *S D paths only.  
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This backwards ray-tracing is performed by following 
real ray paths (not only paths dictated by PSF 
directions) and thus allows for a more accurate 
representation during walkthrough in the same data 
structures. We can thus obtain directional radiance 
maps which are geometrically more accurate and free 
of any propagation ‘holes’. More specifically suppose 
P is a specular surface, and consider ( , , , )TL s t Pω the 
radiance map for P for a particular tile. Each 
( , ) ( , , , )u v V s t Pω∈ is a ray that leaves P carrying 
radiance as computed from the propagation. Now find 
the specularly reflected direction 'ω emanating from 
P, and trace this ray back until it hits another surface. If 
this is specular then the same is repeated recursively 
until a diffuse surface is reached.  

Backwards ray-traced re-sampling of the total 
radiance maps is performed at the end of the 
propagation iterations, prior to the final rendering and 
is performed only once.  
 
6. Rendering  

 
For the final rendering of the light field we have 

used a variety of methods that allow for different speed 
for quality improvements. Each is now described. 

 
6.1 Rendering from the rays 
 

An image can be rendered from the Total Radiance 
Maps stored in the tiles. First a false colour OpenGL 
rendering is carried out to identify the nearest surfaces 
intersected by the primary rays. For any primary ray r
we can then lookup the identifier of the nearest 
intersected face P along the ray, and also compute the 
intersection point ( , , )x y z . Given the triangular 
subdivision of the hemisphere the ray direction of r
will intersect exactly one such hemispherical triangle 
with vertices iω , jω and kω corresponding to three 
PSFs. We can now retrieve the radiances in these 
directions from face P. For each ( ), ,h i j k∈ rotate the 
intersection point into canonical PSF coordinates 
( ) ( ), , , ,h h h hx y z x y z=M . The projection ( , , 1)h hx y −

on the corresponding PSF hω maps to a pixel 
( , ) ( , )h h h hp q s m u t m v= + + . We find the face P in the 
tile list of ( , , )h h hs tω and the radiance is interpolated 
from the 8-neighbourhood around ( , )p q following the 
same approach as in [7]. This is carried out for each of 
the three PSFs yielding three radiance values. Then 
spherical interpolation weights [40] of r in relation to 

the three PSF directions are then used to interpolate 
these radiances. 

 

(a) Light field (1.1 fps)      (b) Diffuse textures (9.8 fps) 
 

(c) Ray tracing (0.2 fps)    (d) RT ray tracing (20.2 fps) 
 
Figure 7. The results of different rendering 
methods. Propagated with N = 128, m =16 and 
l =2049. Propagation time 36.64 hours, 908MB 
memory. 

 
With this approach, direction and radiance lookups 

are almost constant time, the only searching being 
locating the tile for a face, which is logarithmic in the 
average number of surfaces intersected by a tile. An 
example is shown in Figure 7(a). 

 
6.2 Texture mapping for diffuse faces 
 

False colour rendering can be wholly avoided for 
those parts of the image that represent diffuse surfaces. 
In order to do this we render all diffuse surfaces P
textured with their Total texture map PT, and for the 
specular surfaces the approach in Sections 6.1 or 6.3 
can be applied. In practice this can be done by first 
rendering the textured diffuse faces, followed by a pass 
that generates a viewport sized texture, containing the 
colours of the specular radiances in pixels that strike 
specular surfaces and colours with an alpha value of 
zero set in all other pixels. Then this texture is applied 
to the viewport and the alpha test makes sure that the 
diffuse surfaces are visible in the appropriate places 
(Figure 7(b)).  
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6.3 Backwards ray tracing for specular faces 
 

Usually the PSF directional resolution is too low to 
provide adequate geometric sampling. In these cases 
the image exhibits ghosting or blurring of specular 
reflections. However, in the case of ideal specular 
surfaces, ray tracing can be used to resolve this. For 
each ray through a pixel on the image plane which 
strikes a specular surface, trace its unique reflected ray 
into the scene recursively until it strikes a diffuse 
surface P and using bilinear interpolation pick up a 
value from its Total Texture Map TP . Applying this to 
all specularly reflected rays to the eye yields correct 
geometrical sampling and thus produces visually 
pleasing reflections (Figure 7(c)). 

The downside of this approach is that it is 
computationally intensive for scenes with many large 
specular reflectors, due to the fact that many rays must 
be intersected with the scene. The hardware accelerated 
OpenGL false colour rendering can only be applied to 
primary rays (ES), so generally this cannot be done in 
real-time. However, advances in ray tracing are 
approaching a level where this may become possible 
[36], especially given that in our approach only ES*D 
rays need be computed, and no shadow rays, nor 
sampling of area light sources or sampling of diffuse 
BRDFs are required. An approach similar to [36] has 
been implemented allowing for real-time walk-through 
of the VLF (see Figure 7(d)). 

Of course a progressive refinement approach can be 
used, for example, that uses 6.1 or 6.2 while the camera 
is moving, but when it is stationary a backwards ray 
tracing pass can be completed as described here. This 
is best implemented on a dual processor machine so 
that both the faster, lower detailed image and the 
slower, more detailed image can be computed 
simultaneously. 
 
7.  Results 
 
7.1 Performance 
 

In order to determine the scalability of the 
algorithm, both in terms of memory requirements and 
computation time, a number of scenes were propagated 
under various conditions. Scalability data was gathered 
varying the number of PSF directions in a VLF, PSF 
size, and the number of polygons in a scene. All scenes 
were propagated on dual Xeon 1.7Ghz workstations 
though only one processor was used as the propagation 
is not yet multi-threaded.  

We look at the effect of three parameters: number of 
PSF directions, the resolution of the PSFs and tiles, and 

the number of polygons, on propagation time and on 
memory.  

Although the scenes we use have few polygons, the 
same scenes rendered with radiosity would render 
many tens of thousands of patches in order to obtain 
the same level of accuracy. 

 
PSF Directions 

The higher the number of directions the greater 
accuracy particularly in specular surfaces, and the less 
need there will be for perturbations in order to 
overcome the problem of holes. On the other hand 
more directions require more memory and longer 
propagation times. For this analysis the scene used is 
shown in Figure 7 and 11. For generating the data, the 
PSF resolution used was N=64 and m=8. This setup 
was used for l = 9, 33, 129, 513, 2049, and 8193. The 
number of propagation cycles was 4. 

The relationship between propagation time and the 
number of directions is almost exactly linear. For 
example, with 129 directions the time is 8.5 minutes, 
for 513 directions it is 34 minutes and for 8193 
directions, 489 minutes. There is also a linear 
relationship between the number of directions and 
memory. The three corresponding memory figures are 
11MB, 45MB and 733MB respectively. 
 
Numbers of Polygons 

Figure 8 shows the scene used for testing the impact 
of the number of polygons on memory and propagation 
time. The scene has one emitter, and from 224 to 1736 
polygons. The ratio of diffuse to specular surfaces is 
5:1 throughout. This scene is the worst case for this 
algorithm, because along every tile there will be a 
relatively large number of polygons stored, unlike 
‘normal’ interior scenes, which for the most part have 
surfaces that are sparsely distributed throughout the 
space. 

 

Figure 8. Complexity test scene (OpenGL) 
 

PSF and Tile Resolution 
The size of the tiles relative to the PSF resolution is 

important in determining overall speed of propagation 
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and rendering. Other things being equal, the smaller the 
tiles the fewer the number of surfaces intersected by a 
tile, so that less time is spent on the final search for an 
identifier in a tile to match a given one. However, 
decreasing the tile size will result in more memory and 
eventually in greater propagation time.  
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Figure 10 shows plots of the memory, propagation 

time, and the average number of polygons in a tile for 
various tiling resolutions (n= 1×1, 2×2, 4×4, 8×8, 
16×16, 32×32) for a 64×64 PSF size. The vertical axis 
is on a normalized 0–1 scale. Memory ranged from 
937MB for 1×1 tiling resolution (i.e., the whole of the 
PSF was the tile) to 42MB for a resolution of 32×32.  
Timing ranged from 111 minutes for 1×1 tiling to 150 
minutes for 32×32, with the lowest being 61 minutes at 
4×4. Finally, the average number of polygons per PSF 
ranged from 121±10 at 1×1 through to 1.7±2.1 at 

32×32 which was the lowest. The scene used for this 
test is shown in Figure 11. 

The propagation used 513 directions, with 64N =
and 8m = throughout.  shows that propagation time 
varies quadratically with the number of polygons, as 
would be expected. The memory grows linearly with 
the number of polygons, the minimum being 75MB and 
the maximum 458MB. 
 

Figure 11. The 'Office' test scene with 137 
polygons. The VLF used here is the same as 
that for Figure 7. 
 

7.2 Images 
 

Figure 12. A simple Cornell type scene with 6 
specular reflectors. 22 fps, N =128, m =16, l
=2049, Propagation time = 16 hours 
 

Figure 12 shows a Cornell type room, which has a 
large specular mirror and a specular tetrahedron. The 
scene is simple enough to show that correct radiance is 
produced.  
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In order to demonstrate production of caustics via 
( )|L D S SD+ paths, we compare a test scene from [41] 

with the same scene rendered by the light field using 
the backwards ray tracing approach described in 6.3. 
This is shown in Figure 13. A further illustration of 
caustics is shown in Figure 14. This exhibits some 
aliasing on the ground plane resulting from the choice 
of a very small Gaussian kernel for filtering 
perturbations. Ideally different filtering steps should be 
carried out for detailed areas such as caustics and 
shadow boundaries and other diffuse areas. 

 

(a) VLF render      (b) Original render 
Figure 13. From Smits and Jensen [41]. The 
light field image has properties 27 fps, N= 256, 
m= 16, l= 2049, Propagation time= 33.53 hours 
 

Figure 14. Ring Caustics. This has 50 
polygons. 26 fps, N= 256, m= 16, l= 2049, 
Propagation time= 25.45 hours. 

 
8. Conclusions 

 
A different approach to the problem of global 

illumination has been introduced. The goal has been to 
achieve real-time walkthrough for globally illuminated 
scenes, relying mainly on fast lookups at the final 
rendering stage. This has been achieved by using a 
light field for energy propagation. Figure 7(a) and 7(d) 
suggests that a final backwards ray tracing approach is 
faster than rendering from the light field itself. 
However, the ray tracing approach has complexity 
logarithmic in the number of polygons, whereas the 

VLF is logarithmic in the average depth complexity of 
the scene (relative to the tile size). 

The biggest drawbacks to the approach in its current 
version are the large propagation times and memory 
requirements. On the other hand, a scene needs only to 
be propagated once, and gigabytes of memory even on 
laptops is becoming common. Moreover, the Unshot 
Radiance Maps can be deleted after propagation. 

The method is offered as an additional paradigm in 
the range of solutions for rapid walkthrough with 
global illumination. In the implementation discussed in 
this paper, we have deliberately sacrificed memory and 
propagation time for interaction. However, there are 
clear advances that can be made in both. First, instead 
of using perturbation to remove holes we will use an 
estimation method based on a wavelet representation of 
the distribution of energy on a surface. This same 
representation applied to the radiance maps will help 
with compression. The vast amount of time in 
propagation is caused by clipping. However, we will 
parallelize clipping by using streaming SIMD. Finally, 
the method is being extended to treat glossy surfaces. 

 

Figure 15. A study with ceiling and lamp 
emitters. The two images were produced by 
the progressive render method. 
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