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1 Introduction 
 
Ray tracing dynamically changing scenes with unstructured 
motion for animated objects has long been a problem for ray-
traversal acceleration schemes. When polygons are transformed 
independently of one another, the cost of updating traditional 
spatial data-structures can be quite high [2001]. We propose a ray 
traversal scheme that is well suited to scenes with dynamically 
changing objects during ray tracing. A similar data structure for 
propagation and walkthrough only rendering of globally 
illuminated scenes was introduced for global illumination in 
[2004]. Here we concentrate on an application and modification of 
that data structure for the task of ray tracing scenes composed of 
static and dynamic objects. The major computation for handling 
arbitrary transformations of dynamic objects reduces to low 
resolution 2D polygon rasterisation. *

Figure 1. Frames from the animated museum walkthrough. 
 
2 Data Structure and Algorithm 
 
Find the smallest bounding cuboid that encloses the scene, and 
divide the bottom face (parallel to the xy plane) into n×n 2D 
square tiles. Each tile can be considered as one end of a 3D beam 
parallel to the z-axis that intersects a number of polygons. The 
tiling can be represented as a 2D array, where each array element 
stores a list of identifiers of polygons intersected by the beam. 
This tiling is very easy and fast to compute – since the scene can 
be orthographically projected onto the cuboid base, and a 2D 
scan-line algorithm for each polygon will identify the tiles in 
which it falls. The whole set of beams is called a ‘parallel 
subfield’ (PSF) and ultimately represents the set of all possible 
rays in the beam direction, parallel to the z-axis, and is called the 
‘canonical’ PSF. 
 
We can consider several PSFs passing through the scene in l
different directions. The tiling can be computed for any direction 
by rotating it so that it is coincident with the canonical direction, 
and then carrying out the polygon fill scan-line algorithm as 
described above. A set of directions is chosen by a recursive 
subdivision of a regular tetrahedron. To summarize the data 
structure: we have l distributed directions; associated with each 
direction is a 2D array of tiles with each tile containing a list of 
polygon identifiers. This list corresponds to the set of polygons 
that are intersected by the beam in the given direction. These 
polygon identifiers in the tile are further sorted into a low 
resolution one-dimensional BSP tree. 

The fundamental operation in ray tracing is to find the object with 
the nearest intersection along a ray. Given any arbitrary ray 
through the scene we look up the closest PSF direction and project 
the ray end-points onto the base of the corresponding PSF to find 
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which tiles it intersects – typically both end-points are in one tile. 
In the case that a ray spans multiple tiles, these are traversed in a 
near to far order. These look-up operations immediately identify a 
very small proportion of the original scene polygons as candidates 
for intersection. These can then be searched in logarithmic time. 

3 Dynamic Object Changes 
 
Polygon identifiers corresponding to the static objects in the scene 
are written into the tiles as described above. For movable objects, 
polygon identifiers are also written into the tiles (flagged as 
dynamic). Following each update to the dynamic objects, a 2D 
rasterisation at tile-resolution in all directions is performed and 
polygon identifiers are stored in lists on the overlapping tiles. In 
each tile there is a variable V which determines if the dynamic 
tiles are valid for the current frame. There is also a global 
identifier GV which is incremented each time the dynamic scene 
is transformed, automatically invalidating all currently inserted 
tiles (without having to visit them). Each time the dynamic scene 
is transformed, it is rendered into the tiles, with the current 
identifier V=GV. During this rendering memory corresponding to 
V_GV can be reclaimed. During ray tracing, ray-intersection 
requests are created. Each ray-intersection is first carried out with 
the static polygons in logarithmic search time, and then with the 
dynamic polygons with a linear search, and the closest 
intersection is found. The polygons to be tested for intersection 
are limited to those in the relevant tiles as described earlier.  
 
Figure 1 shows frames from the museum7 scene walkthrough 
[2001] which has 10,284 static and 16,384 dynamic triangles. The 
accompanying video shows the dynamic part undergoing 
animation with dynamic triangles moving independently of each 
other. Our method rendered the 300 frame animation in 
comparable time on a dual Xeon 2.8Ghz workstation. Currently 
the main bottleneck in performance is the cost of intersecting the 
linear list of dynamic polygons in a tile. If these polygons were 
inserted into a coarse 1D-BSP tree performance would be 
significantly improved. 
 
The work presented herein is at a very preliminary stage and 
demonstrates how accelerated ray tracing of dynamic scenes can 
be broken down to low resolution rasterisation and matrix 
operations. Implemented on a GPU we expect to increase 
performance by at least an order of magnitude. 
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