
Fast Ray Tracing of Scenes with Unstructured Motion

Pankaj Khanna* Jesper Mortensen Insu Yu Mel Slater
Department of Computer Science, University College London, London WC1E 6BT, UK.

1 Introduction

Ray tracing dynamically changing scenes with unstructured
motion for animated objects has long been a problem for ray-
traversal acceleration schemes. When polygons are transformed
independently of one another, the cost of updating traditional
spatial data-structures can be quite high [2001]. We propose a ray
traversal scheme that is well suited to scenes with dynamically
changing objects during ray tracing. A similar data structure for
propagation and walkthrough only rendering of globally
illuminated scenes was introduced for global illumination in
[2004]. Here we concentrate on an application and modification of
that data structure for the task of ray tracing scenes composed of
static and dynamic objects. The major computation for handling
arbitrary transformations of dynamic objects reduces to low
resolution 2D polygon rasterisation. *

Figure 1. Frames from the animated museum walkthrough.

2 Data Structure and Algorithm

Find the smallest bounding cuboid that encloses the scene, and
divide the bottom face (parallel to the xy plane) into n×n 2D
square tiles. Each tile can be considered as one end of a 3D beam
parallel to the z-axis that intersects a number of polygons. The
tiling can be represented as a 2D array, where each array element
stores a list of identifiers of polygons intersected by the beam.
This tiling is very easy and fast to compute – since the scene can
be orthographically projected onto the cuboid base, and a 2D
scan-line algorithm for each polygon will identify the tiles in
which it falls. The whole set of beams is called a ‘parallel
subfield’ (PSF) and ultimately represents the set of all possible
rays in the beam direction, parallel to the z-axis, and is called the
‘canonical’ PSF.

We can consider several PSFs passing through the scene in l
different directions. The tiling can be computed for any direction
by rotating it so that it is coincident with the canonical direction,
and then carrying out the polygon fill scan-line algorithm as
described above. A set of directions is chosen by a recursive
subdivision of a regular tetrahedron. To summarize the data
structure: we have l distributed directions; associated with each
direction is a 2D array of tiles with each tile containing a list of
polygon identifiers. This list corresponds to the set of polygons
that are intersected by the beam in the given direction. These
polygon identifiers in the tile are further sorted into a low
resolution one-dimensional BSP tree.

The fundamental operation in ray tracing is to find the object with
the nearest intersection along a ray. Given any arbitrary ray
through the scene we look up the closest PSF direction and project
the ray end-points onto the base of the corresponding PSF to find

*e-mail: [p.khanna | j.mortensen | i.yu | m.slater]@cs.ucl.ac.uk

which tiles it intersects – typically both end-points are in one tile.
In the case that a ray spans multiple tiles, these are traversed in a
near to far order. These look-up operations immediately identify a
very small proportion of the original scene polygons as candidates
for intersection. These can then be searched in logarithmic time.

3 Dynamic Object Changes

Polygon identifiers corresponding to the static objects in the scene
are written into the tiles as described above. For movable objects,
polygon identifiers are also written into the tiles (flagged as
dynamic). Following each update to the dynamic objects, a 2D
rasterisation at tile-resolution in all directions is performed and
polygon identifiers are stored in lists on the overlapping tiles. In
each tile there is a variable V which determines if the dynamic
tiles are valid for the current frame. There is also a global
identifier GV which is incremented each time the dynamic scene
is transformed, automatically invalidating all currently inserted
tiles (without having to visit them). Each time the dynamic scene
is transformed, it is rendered into the tiles, with the current
identifier V=GV. During this rendering memory corresponding to
V_GV can be reclaimed. During ray tracing, ray-intersection
requests are created. Each ray-intersection is first carried out with
the static polygons in logarithmic search time, and then with the
dynamic polygons with a linear search, and the closest
intersection is found. The polygons to be tested for intersection
are limited to those in the relevant tiles as described earlier.

Figure 1 shows frames from the museum7 scene walkthrough
[2001] which has 10,284 static and 16,384 dynamic triangles. The
accompanying video shows the dynamic part undergoing
animation with dynamic triangles moving independently of each
other. Our method rendered the 300 frame animation in
comparable time on a dual Xeon 2.8Ghz workstation. Currently
the main bottleneck in performance is the cost of intersecting the
linear list of dynamic polygons in a tile. If these polygons were
inserted into a coarse 1D-BSP tree performance would be
significantly improved.

The work presented herein is at a very preliminary stage and
demonstrates how accelerated ray tracing of dynamic scenes can
be broken down to low resolution rasterisation and matrix
operations. Implemented on a GPU we expect to increase
performance by at least an order of magnitude.

Acknowledgements

This research is funded by the UK EPSRC, grant number
GR/R13685/01. Mel Slater is supported by an EPSRC Senior
Research Fellowship.

References

[2001] LEXT, J., ASSARSSON, U., AKENINE-MOLLER, T. (2001) A

Benchmark for Animated Ray Tracing, IEEE Computer Graphics and
Applications, pp. 22-31, March/April 2001.

[2004] SLATER, M., MORTENSEN, J., KHANNA, P., YU, I. (2004) A

Virtual Light Field Approach to Global Illumination, Proceedings of
Computer Graphics International, Greece, June 12-19, 2004.

	1 Introduction
	2 Data Structure and Algorithm
	3 Dynamic Object Changes
	Acknowledgements
	References

