
A Virtual Light Field Approach to Global Illumination

Mel Slater Jesper Mortensen Pankaj Khanna Insu Yu
Department of Computer Science

University College London, Gower Street, London WC1E 6BT, UK
www.cs.ucl.ac.uk/research/vr/Projects/VLF

Abstract

This paper describes an algorithm that provides
real-time walkthrough for globally illuminated scenes
that contain mixtures of ideal diffuse and specular
surfaces. A type of light field data structure is used for
propagating radiance outward from light emitters
through the scene, accounting for any kind of L(S|D)*
light path. The light field employed is constructed by
choosing a regular point subdivision over a
hemisphere, to give a set of directions, and then
corresponding to each direction there is a rectangular
grid of parallel rays. Each rectangular grid of rays is
further subdivided into rectangular tiles, such that
each tile references a sequence of 2D images
containing colour values corresponding to the
outgoing radiances of surfaces intersected by the rays
in that tile. This structure is then used for final image
rendering. Propagation times can be very long and the
memory requirements very high. This algorithm,
however, offers a global illumination solution for real-
time walkthrough even on a single processor.

1. Introduction

The main contribution of this paper is to offer a

partial solution to the problem of real-time walkthrough
for global illumination. The solution is partial in the
sense that only ideal specular and diffuse surfaces are
supported. Nevertheless any kind of L(S|D)* light path
[1] can be simulated. The method exploits the idea of
light fields [2] (or lumigraphs [3]), though the
particular type of light field representation used is
similar to that in [4] and also similar to a data structure
used for visibility culling in [5]. It exploits Layered
Depth Images [6] where each ray in the light field
maintains radiance information about each of the
surfaces that it intersects rather than just the first
surface. In this way a projected image can be
reconstructed from any viewpoint and direction.

In the next Section we discuss further background
information. In Section 3 the main data structure is
presented, and the propagation of light through the data
structure is discussed in Section 4. Implementation
details and rendering are discussed in Sections 5 and 6,
with results including images, timing, and memory
requirements are presented in Section 7. Conclusions
are given in Section 8.

2. Background

Radiosity was the first algorithm that supported real-

time walkthrough with global illumination but only for
scenes with diffusely reflecting surfaces [11]. With the
addition of glossy and specular surfaces real-time
walkthrough becomes problematic, owing to the view
dependent nature of the required global illumination
solution in this case. There are, however, several
different classes of algorithm that attempt to provide
interactive time rendering for globally illuminated
scenes. Caching schemes rely on reusing elements of a
global illumination solution across several views
[13][14][15]. Precompute algorithms compute a global
illumination solution and then approximate this in some
way for rapid rendering. For example [16][17] compute
virtual point light sources that produce direct
illumination approximating the global solution. In [19]
hierarchical clustering [12] is extended by partitioning
the models into areas where global illumination is well
approximated based on a set of basis functions for the
irradiance over the patches, and then interactive time
rendering is achieved for moderately glossy surfaces.

The exponential growth in processor speed, and
advances in graphics hardware have supported a
massive speed up in ray tracing [20] and path tracing
[21], to the point where interactive speed for millions
of polygons on clusters of consumer PCs has become
possible [22]. Such research has exploited space
subdivision schemes for fast ray-intersection solutions,
careful organization of the overall algorithm to fit the

http://www.cs.ucl.ac.uk/research/vr/Projects/VLF

needs of the hardware, together with exploitation of
graphics card processing, and parallel implementation
across PC clusters [23].

The ‘virtual light field’ approach has similarities to
many other approaches. For example, it is like photon
mapping [18] since it propagates light from the
emitters, and it is superficially similar to the ‘ray
bundle’ method for stochastic global illumination [10]
since light is propagated through bundles of parallel
rays in successive iterations. It may also be thought of
as a combination of light field and illumination network
[7]. However, it is a deterministic rather than Monte
Carlo solution, employing a fixed set of rays for
propagation. It relies on this pre-computed global
illumination solution stored in a massive data structure,
and then uses lookups into the data structure for
determining radiance to be assigned to primary rays in
the rendering phase. There is no significant ray-object
intersection searching in any phase of the propagation
or rendering, everything is carried out by rasterisation
or by direct lookup. The lookup is typically into a very
small list of surface identifiers, and the only ‘search’
required is to find a matching element in the list. This
approach therefore sacrifices propagation time and
memory to the goal of fast final rendering.

3. VLF Data Structure Overview

A scene (or part of a larger scene) can be well
enclosed, by a regular cuboid, for example, bounded
by (-1,-1,-1) to (1,1,1). Consider the lower face (at z=1)
(-1, -1, -1) to (1,1,-1). This is discretised into a regular
grid of N N× ‘cells’, (i,j), (i,j = 0,1,…,N-1) each of
which is the origin of a ray that is parallel to the z-axis.
The set of all N N× rays is called the canonical
parallel subfield (PSF), and k = (0,0,1) is its direction.
If l points with spherical coordinates (,)i i iω θ φ= are
chosen on the unit hemisphere over the z=0 plane then
l PSFs are defined as rotations of the canonical PSF.
The rotation can be achieved in any manner that is
consistent throughout (for example, first rotate by iθ
about the y-axis to transform k to the zx plane and then
by iφ about z, to bring it into iω).

Consider any ray (i,j) in the canonical PSF. This
will intersect a number of surfaces in the scene. If we
parameterise the ray in the form 0() (0)r t r kt t= + ≥ ,
and 0r is the ray origin, then the intersection points can
be characterized as an array of non-decreasing
parametric values 1, 2,[...,].kt t t With each one of these
intersection points additional information could be
stored: the identifier of the surface at that intersection,

and eventually the outgoing radiance from the surface
at that intersection point. Although this method is
possible, no use would have been made of the great
coherence between neighbouring rays, and the memory
costs would be substantial. Instead, the cell space is
subdivided into tiles, each of resolution m m× , where
1 m N≤ ≤ and /N m is integral. Each tile maintains a
sequence of surface identifiers that are intersected by
any ray which has its origin within the tile.

The process of finding all the intersections of
surfaces with the rays and tiles of the canonical PSF
can be achieved by a simple and fast rasterisation
algorithm in the case when the surfaces are all
polygons, except that a layered depth image is
computed. Given any other PSF, corresponding to
direction iω the scene can be rotated such that iω is
transformed to the (0,0,1) direction and then the
rasterisation carried out in the canonical space.

It is essential to choose a parameterisation over the
hemisphere that does not require searching in order to
find closest rays – since such ray lookup is a critical
operation during both propagation and eventual
rendering. The method employed uses a recursive
subdivision of a regular tetrahedron, which partitions
the hemisphere into triangles. However, fast constant
time lookup is attained for any arbitrary point on the
hemisphere in order to find the closest stored point.
This is described in [8]. In the next section we discuss
this data structure in more detail and how it is
employed in energy propagation.

4. Propagation

4.1 Overview

Notation

The (finite) set of given PSF directions is denoted
lΩ and lω ∈Ω refers to a particular direction. The

tiling coordinate system is referenced by
(,),s t , 0,1,..., 1s t n= − where /n N m= . Hence a tile
is referenced as (, ,)s tω . The coordinate system of
cells within a tile is referenced by (,)u v ,

, 0,1,..., 1u v m= − . Hence (, , , ,)w s t u v refers to the
ray that is in direction ω and with origin
corresponding to the cell (,)sm u tm v+ + . We will
sometimes use the abbreviation (, , , ,)s t u vω≡r .

Data Structures
For each PSF, each tile contains a set of surface

identifiers, corresponding to the surfaces that are

intersected by any ray within the tile. Associated with
each surface fragment are two 2D radiance arrays that
we refer to as radiance maps. These are referred to as
the Total Radiance Map and Unshot Radiance Map. In
general L is a radiance function – its domain depends
on context. UL refers to unshot radiance, TL refers to
total or accumulated radiance. (, , , , ,)L s t u v Pω is the
radiance for ray (, , , ,)s t u vω from surface P in the
direction that is on the same side of P as its outward
normal. Obviously this is radiance for P in tile (, ,)s tω
in position (,)u v within the tile. (, , ,)L s t Pω is a
radiance map for P in the tile (, ,)s tω . The individual
elements of this radiance map are (, , , , ,)L s t u v Pω as
(,)u v vary over the coordinates of the tile.

The radiance maps clearly represent directional
energy. In addition each diffuse surface P has two
associated texture maps CP (Current) and NP (Next)
to store radiance values due to diffuse reflection. Any
ray (, , , ,)s t u vω that passes through a texel of such a
texture map picks up a radiance value

(, , , , ,)CL s t u v Pω , corresponding to the amount of
accumulated radiance that is to be distributed diffusely
from the area corresponding to the texel. New radiance
due to diffuse reflection that is generated within the
current propagation cycle is stored in the Next Texture
Map NP and will be distributed in the next cycle. For
one kind of rendering technique it is also useful to
compute a Total Texture Map TP which stores the
radiance accumulated over all propagation cycles for
diffuse reflection

Visibility Map and Exchange Buffer

When treating surface P within a tile as a receiver
of energy, the visibility map, (, , ,)V s t Pω , for P
provides information about where P is located within
the tile. (, , , , ,) 1V s t u v Pω = only when polygon P is
rasterised on the cell (,)u v within tile (, ,)s tω for
PSFω , otherwise this value is 0. We will use the
notation (,) (, , ,)u v V P s tω∈ to mean that

(, , , , ,) 1V s t u v Pω = .
For each set position (,)u v within the visibility map

for P there will be at most one other surface in the tile
that is visible along the ray corresponding to the PSF.
The exchange buffer is a 2D array of identifiers of the
surfaces that are visible to P within the visibility map
of P . It is constructed on the fly as surface P is
processed for incoming energy, and deleted after use.

(, , ,)X s t Pω is the exchange buffer for polygon P in

the tile (, ,)s tω . (, , , , ,)X s t u v Pω Q= if and only if the
ray (, , , ,)s t u vω intersects both P and Q , their
outward normals point towards each other, and there is
no intervening polygon in the ray segment joining P
and Q . Clearly (, , , , ,)X s t u v P Qω = if and only if

(, , , , ,)X s t u v Q Pω = .
In this discussion directions are always interpreted

to correspond to the front-facing normals of the
surfaces involved. So ray r is considered in one
direction from Q to P and in the opposite direction
from P to Q.

The Propagation Cycles
The propagation cycles run through each PSF, each

tile within each PSF, and each surface within each tile.
In propagation cycle 0 the Current Texture Maps of the
light sources are loaded up with their given energy
(their Next Texture Maps are never needed - assuming
that lights do not additionally reflect energy, but only
emit it). We assume that light sources are isotropic and
are diffuse, and so the light source Current Texture
Maps are always 1 1× arrays. The following pseudo
code illustrates how each propagation cycle unfolds.

for each lω∈Ω { /*1*/

for each , 0,..., 1s t n= − { /*2*/
for each surface (, ,)P s tω∈ { /*3*/

' lω ∈Ω approx specular reflection direction;
 X = exchange buffer for P ;

for each (,) (, , ,)u v V P s tω∈ { /*4*/
(, , , ,)s t u vω=r ;

(,)Q X P= r ; /*5*/

(,)C
dL L Q∝ r ; /*6*/

(,);s UL L Q= r /*7*/

d sL L L= + ; /*8*/

(,) ;TL Q L+ =r /*9*/

(,) ;NL P L+ =r /*10*/
' (', ', ', ', ')s t u vω=r spec. reflected ray;

 (',)UL P Lρ+ =r ; /*11*/
} } } }

current texture maps = next texture maps;
next texture maps = 0;
unshot radiances = 0;

Note that in (6) an appropriate fraction of the energy is
extracted from the texels on the Current Texture Map
of Q that are intersected by the current ray. The
fraction of energy extracted and sent to P ensures a
proper balance of energy in the scene. In (11) the ray
corresponding to the specific specular direction of
reflection from P is computed, and the nearest PSF
direction and ray to this is found. This is used to

identify the cell in the Unshot Radiance Map for P
along this reflection direction, and the radiance value in
that cell is updated by the appropriate fraction of
incoming radiance.

4.2 Diffuse Surface as Receiver

The above outlines the overall propagation process;

we now consider some of its elements in more detail.
As discussed earlier, the flow of radiance to a receiving
face (P) is performed by identifying all surfaces (Q)
that send radiance to it along a single PSF tile at a time.

When the receiver and sender are both diffuse,
energy transfer takes place through a temporary
radiance tile (a 2D array of radiances) aligned with the
current PSF tile being propagated (Figure 1). This
temporary radiance tile is used as an accumulator for
radiance propagating towards the diffuse receiver
within that PSF tile. The mapping of the texture maps
on the sender (QC) and receiver (PN) to the temporary
radiance tile is a many-to-one mapping. This transfer of
energy is transformed from a discrete representation
(on the sender in QC) into a continuous one from which
it is then correctly re-sampled to another discrete
representation (on the receiver in PN).

Figure 1. Diffuse to diffuse transfer along a tile.

Discrete cells on a sender are mapped onto a

receiver using polygon clipping so that contributions
from a single shooting cell can be correctly distributed
amongst the receiver cells. The ratio of intersected to
total (visible) area of the sender cell determines the
amount of radiance attributed to the receiver cell. For
all senders in the tile, radiance is accumulated onto the
temporary radiance tile by projecting the cells of the
sender’s Current Texture Map (QC) in the PSF
direction and clipping against the cells on the
temporary radiance tile.

In specular to diffuse transfer, energy in the specular
sender’s Unshot Radiance Map (, , ,)UL s t Qω is pushed
into the Next Texture Map on the receiver (PN) via the
temporary radiance tile and shows up as caustics. This
transfer is a simple visibility-based one-to-one mapping

since (, , ,)UL s t Qω and the temporary radiance tile
have the same resolution along the PSF direction.

Once the accumulation of radiance from all senders
onto the temporary radiance tile is complete, the
temporary radiance tile is mapped onto the Next
Texture Map on the receiver (PN) using a similar
projection and clipping process. Clipping is the most
expensive process during propagation; accounting for
up to 80-85% of overall compute time. However, this
‘continuous’ clipping algorithm is a required step for
proper mapping of energy without aliasing which is
introduced by other less compute intensive methods.
The temporary radiance tile is also added to the Total
Radiance Map of the sender for the PSF tile being
propagated ((, , , , ,)TL s t u v Qω).

4.3 Specular Surface as Receiver

The fundamental principle in diffuse to specular

transfer along a PSF direction ω is that energy from a
diffuse sender Q sent to a specular receiver P is
reflected towards a PSF direction 'ω by P. To avoid
artifacts due to the many to one mapping from the
sender’s Current Texture Map on to the specular
receiver’s radiance map, the transfer is performed by a
backwards lookup from P onto Q. This lookup of QC

on the sender from (', ', ', , ,)UL s t u v Pω ′ ′ on the
receiver is shown below in Figure 2.

Candidate receiving cells of the receiver’s unshot
radiance map in PSF 'ω are determined by the
bounding box of the four projected corners of tile (,)s t
in PSFω . Each candidate cell ((', ', ', , ,)UL s t u v Pω ′ ′)
in PSF 'ω is projected backwards into PSFω , allowing
a transfer of radiance from QC as determined by the
exchange buffer (, , ,)X s t Pω .

Figure 2. Diffuse to specular transfer along a PSF
using backward mapping.

The specularly reflected ray will probably not
correspond in direction to any of the actual PSF
directions. Instead, the three nearest rays corresponding
to three PSFs are found along with barycentric weights
to interpolate the actual direction from them. The

energy of the diffuse sender is then transferred along
each of these directions weighted by the barycentric
coefficients.

Specular to specular energy transfer is very similar
to the case of diffuse to specular transfer. The transfer
of energy is via a backwards lookup from

(', ', ', , ,)UL s t u v Pω ′ ′ of the sender’s unshot radiance
map (, , , , ,)UL s t u v Qω (rather than from QC as in the
above case).

5. Implementation Issues

A major consequence of the discretisation of
directions is that ‘holes’ in propagation are created
(Figure 3). This problem cannot be solved when energy
is propagated towards specular surfaces, since these are
represented by directional radiance maps which only
exist for the set of actual PSF directions. However, in
the case of energy propagated towards diffuse surfaces
(from all senders) we can use the surface texture maps
to fill in the holes.

Figure 3. Angular spread of surface hits with
distance.

For diffuse receivers, additional directions (beyond
those used for ‘actual’ PSFs) are simulated by
perturbing the VLF by a stratified sampling of the
canonical PSF’s solid angle. At each perturbation, the
entire scene is rotated such that the canonical PSF
(aligned with the z-axis) is oriented along the new
sampled direction. Once a perturbation angle has been
selected, the propagation is repeated ensuring that the
sum of radiance propagated into the scene over the
perturbations is equivalent to the total unshot radiance
for that propagation iteration. Perturbation is not
required for all cycles of the propagation process,
perturbing the initial few is generally adequate. The
number of perturbations required per propagation
iteration depends on the number of PSF directions in
the VLF and the nature of the scene.

When enumerating senders for a receiver during a
perturbation, visibility maps in the tiles are no longer
valid and senders for a receiver in the tile are
recomputed from the exchange buffer (, , ,)X s t Pω . All
senders push radiance into the temporary radiance tile
which is subsequently mapped to the receiver’s Next
Texture Map (PN). During a perturbed transfer, the
sender’s directional Total Radiance Maps (LT) are not
updated as the perturbed transfer is in a direction other
than that of any actual PSF (Total Radiance Maps are
updated only during perturbation 0 which involves the
true PSF direction). Thus, the result of perturbation is
brought into effect only in the next iteration when the
perturbed (and filtered) Current Texture Maps (QC) are
propagated into the scene.

Following perturbation, Gaussian filtering is
required on the Next Texture Maps to remove the high
frequencies that were introduced. This is performed
with a suitably small σ and filter size to minimise
blurring of caustic and shadow boundaries.

 During propagation, energy transfer between a
sender and receiver within a tile is dictated by the
information in the exchange buffer (, , ,)X s t Pω . This
buffer is computed using OpenGL false-colour
rendered images on a per-receiver, per-PSF basis and
introduces rasterisation error and aliasing at polygon
boundaries. This is solved by super-sampling the
visibility exchange which allows for more detailed and
accurate project and clip operations. The computational
overhead of this process only occurs at polygon
boundaries where it rectifies radiance propagation.

Unlike the perturbation method for diffuse surfaces,
the number of directions of propagation and
representation for specular surfaces cannot be
increased without actually increasing the number of
PSFs used. Once the propagation is completed we can
however re-sample directional radiance maps on
specular surfaces using backwards ray tracing,
following S*D paths only. This backwards ray tracing is
performed by following true ray paths (not only paths
dictated by fixed PSF directions) and thereby allows
for a more accurate representation in the same data
structures. We can thus obtain directional radiance
maps which are geometrically more accurate and free
of any ‘holes’. Backwards ray traced re-sampling of the
Total Radiance Maps is performed at the end of all the
propagation iterations, prior to the final rendering and
is performed only once.

6. Rendering Methods

Images can be rendered directly from the Total
Radiance Maps stored in the tiles. First a false colour

rendering is carried out to identify the nearest surfaces
intersected by the primary rays. For any primary ray
r this yields the identifier P of the intersected face
along the ray, from which the intersection point
(, ,)x y z can be computed. The ray direction of r will
intersect exactly one hemispherical triangle with
vertices ,k lω ω and mω corresponding to three PSFs.
For each (), ,h k l m∈ map the intersection point into

canonical PSF coordinates (), ,h h hx y z . Now the
projection (, , 1)h hx y − on the corresponding PSF hω
maps to a cell (,) (,)h h h hi j s m u t m v= + + . We find the
face P in the tile list of (, ,)h h hs tω and the radiance is
bilinearly interpolated from the 8-neighbourhood
around (,)i j [7]. Finally spherical interpolation weights
of r in relation to the three PSF directions are used to
interpolate the three radiances. With this approach,
direction and radiance lookups are almost constant
time, the only searching being locating the face within
a tile, which is logarithmic in the average number of
surfaces intersected by a tile. An example is shown in
Figure 4(a) rendered on a single 2.8Ghz Xeon.

(a) Light field (1.1 fps) (b) RT ray tracing (20fps)

(c) The Office scene (d) ES*D paths
Figure 4. Rendering methods (N=128, m=16 and
l=2049, propagation time=36 hrs, size=908MB)

In cases where PSF directional resolution is too low

the image will exhibit ghosting effects on specular
reflections. However, backwards ray tracing can be
used to render ideal specular pixels [20]. The downside
of this approach is that it is computationally intensive
for scenes with many large specular reflectors.
However, advances in ray tracing are approaching a

level where this may become possible [22], especially
given that only ES*D rays must be computed, and no
shadow rays, nor sampling of area light sources are
required. Also those parts of the image showing diffuse
surfaces directly are rendered using OpenGL and
texture mapping with the view independent Total
Texture Map PT. An approach similar to [25] has been
implemented allowing faster walk-through of the VLF
(see Figure 4(b) rendered on two 2.8Ghz Xeon CPUs).

7. Results

7.1 Performance

In order to determine the scalability of the
algorithm, both in terms of memory requirements and
computation time, a number of scenes were propagated
under various conditions. Scalability data was gathered
varying the number of PSF directions in a VLF, PSF
size, and the number of polygons in a scene. All scenes
in this section were propagated on a 1.7Ghz Xeon
workstation. Although the scenes we use have few
polygons, the same scenes rendered with radiosity
would render many tens of thousands of patches in
order to obtain the same level of accuracy.

An artificial scene consisting of axis aligned non-
intersecting boxes uniformly distributed in a cubical
space was used for testing the impact of the number of
polygons on memory and propagation time. The scene
had one emitter, and the number of polygons ranged
from 224 through to 1736. The ratio of diffuse to
specular surfaces was 5 to 1 throughout. This scene is
the worst case for this algorithm, because along every
tile there will be a relatively large number of polygons
stored, unlike ‘normal’ interior scenes, which for the
most part have surfaces that are sparsely distributed
throughout the space. The propagation used 513
directions, with 64N = and 8m = throughout.

The results showed that propagation time varied
quadratically with the number of polygons, as would be
expected. The memory grows linearly with the number
of polygons, the minimum being 75MB and the
maximum 458MB.

The higher the number of directions the greater
accuracy particularly in specular surfaces and the less
need there will be for perturbations in order to
overcome the problem of holes. On the other hand
more directions require more memory and longer
propagation times. For this and subsequent analyses the
scene used is shown in Figure 4. For generating the
data, the PSF resolution was N=64, m = 8, with l = 9,
33, 129, 513, 2049, and 8193. The number of
propagation cycles was 4.

Figure 5. Normalised memory, propagation time,
and average polygons per tile, for varying tile sizes.

The relationship between propagation time and the

number of directions is almost exactly linear. For
example, with 129 directions the time is 8.5 minutes,
for 513 directions it is 34 minutes and for 8193
directions, 489 minutes. There is also a linear
relationship between the number of directions and
memory. The three corresponding memory figures are
11MB, 45MB and 733MB respectively.

The size of the tiles relative to the PSF resolution is
important in determining overall speed of propagation
and rendering. Other things being equal, the smaller the
tiles the fewer the number of surfaces intersected by a
tile, so that less time is spent on the final search for an
identifier in a tile to match a given one. However,
decreasing the tile size will result in more memory and
eventually in greater propagation time. Figure 5 shows
plots of the memory, propagation time, and the average
number of polygons in a tile for various tiling
resolutions (n) (1×1, 2×2, 4×4, 8×8, 16×16, 32×32) for
a 64×64 PSF size. The vertical axis is on a normalized
0–1 scale. Memory ranged from 937MB for 1×1 tiling
resolution (i.e., the whole of the PSF was the tile) to
42MB for a resolution of 32×32. Timing ranged from
111 minutes for 1×1 to 150 minutes for 32×32, with the
lowest being 61 minutes at 4×4. Finally, the average
number of polygons per PSF ranged from 121±10 at
1×1 through to 1.7±2.1 at 32×32 which was the lowest.

7.2 Images

Figure 4 illustrates a scene that has several
specularly reflecting surfaces together with diffuse
surfaces. The scene is simple enough to show that
correct radiance is produced.

In order to demonstrate production of caustics, we
rendered a test scene from [24] using the light field

with the backwards ray tracing approach. This is shown
in Figure 6(a) and compares well with the original test
image. A further illustration of caustics is shown in
Figure 6 (b).

(a) Smits and Jensen [24] (b) Ring Caustic
Figure 6. (a) FPS =27, N =128, m = 16, l =2049,
Propagation time =33.53 hours. (b) Ring Caustic. 50
polygons. FPS =26, N =256, m =16, l =2049,
Propagation time =25.45 hours.

8. Conclusions

A different approach to the problem of global

illumination has been introduced. The goal has been to
achieve real-time walkthrough for globally illuminated
scenes, relying mainly on fast lookups at the final
rendering stage. This has been achieved by using a
light field for energy propagation. Figure 4 (a) and (b)
suggests that a final backwards ray tracing approach is
faster than rendering from the light field itself.
However, the ray tracing approach has complexity
logarithmic in the number of polygons, whereas the
VLF is logarithmic in the average number of surfaces
in a tile.

The biggest drawbacks to the approach in its current
version are the large propagation times and memory
requirements. On the other hand, a scene needs only to
be propagated once, and gigabytes of memory on
desktop PCs is becoming common. Moreover, the
Unshot Radiance Maps can be deleted after
propagation.

In the implementation discussed in this paper, we
have deliberately sacrificed memory and propagation
time for interaction. However, there are clear advances
that can be made in both through density estimation,
and compression. The vast amount of time in
propagation is caused by clipping. However, we will
parallelize clipping by using streaming SIMD. Finally,
the method is being extended to treat glossy surfaces.

Acknowledgements

This research is funded by the UK EPSRC, grant
number GR/R13685/01, ‘The Virtual Light Field’. Mel
Slater is supported by an EPSRC Senior Research
Fellowship. Thanks to Ingo Wald and Carsten Benthin
for helpful suggestions on real time ray tracing, and to
Yiorgos Chrysanthou for helpful comments on an
earlier draft.

References

[1] Heckbert, P.S. (1990) Adaptive Radiosity Textures for
Bidirectional Ray Tracing, Computer Graphics (SIGGRAPH)
24, 145-154.

[2] Levoy M, Hanrahan, P. (1996) Light Field Rendering,
Computer Graphics (SIGGRAPH), Annual Conference
Series, 31-42.

[3] Gortler, S., Grzeszczuk, R., Szeliski, R., Cohen, M.
(1996) The Lumigraph, Computer Graphics (SIGGRAPH),
Annual Conference Series, 43-52.

[4] Camahort, E., Lerios, A., Fussell, D. (1998) Uniformly
Sampled Light Fields, Rendering Techniques 1998: 117-130.

[5] Chrysanthou, Y., Daniel Cohen-Or and Dani Lischinski
(1998) Fast Approximate Quantitative Visibility for Complex
Scenes, Computer Graphics International '98, Hannover,
Germany, June 1998, 220-227.

[6] Shade, J., Gortler, S.J., He, L. and Szeliski, R. (1998)
Layered Depth Images, Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH), 231-242.

[7] Buckalew, C. and Fussell, D. (1989) Illumination
networks: Fast realistic rendering with general reflectance
functions. Computer Graphics (SIGGRAPH) Conference
Proceedings, 23(3) 89-98.

[8] Slater, M. (2002) Constant Time Queries on Uniformly
Distributed Points on a Hemisphere, Journal of Graphics
Tools, 7(1):33-44.

[9] Cohen, M.F., Shenchang, Ec., Wallace, J.R. and
Greenberg, D.P. (1988) A Progressive Refinement Approach
to Fast Radiosity Image Generation, Computer Graphics
(SIGGRAPH) 22(4), 75-84.

[10] Szirmay-Kalos, L. (1999) Stochastic Iteration for Non-
Diffuse Global Illumination, Computer Graphics Forum
(Eurographics ’99) 18(3) 233-244.

[11] Goral, C., Torrance, K.E., Greenberg, D. (1984)
Modeling the Interaction of Light Between Diffuse Surfaces,
Computer Graphics (SIGGRAPH), 18(3), 213-222.

[12] Hanrahan, P., Saltzman, D. and Aupperle, L. (1991) A
rapid hierarchical radiosity algorithm. Computer Graphics
(SIGGRAPH), 25(4) 197-206.

[13] Ward, G. and Simmons, M. (1999) The Holodeck Ray
Cache: An Interactive Rendering System for Global
Illumination in Nondiffuse Environments, ACM
Transactions on Graphics, 18(4):361-98.

[14] Walter, B., Drettakis, G. and Parker, S. (1999)
Interactive rendering using render cache, Rendering
Techniques ’99, Eurographics, (D. Lischinski and G.W.
Larson, eds.), 19–30.

[15] Tole, P., Pellacini, F., Walter, B. and Greenberg, D. P.
(2002) Interactive global illumination in dynamic scenes,
ACM Transactions on Graphics, 21(3), 537–546.

[16] Walter, B., Alppay, G., Lafortune, E.P.F., Fernandez, S.
and Greenberg, D. P. (1997) Fitting virtual lights for non-
diffuse walkthroughs, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, 45–48.

[17] Keller, A. (1997) Instant Radiosity Computer Graphics
Proceedings, Annual Conference Series, SIGGRAPH 97
Conference Proceedings, Annual Conference Series, 49-56.

[18] Jensen, H.W. (1996) Global Illumination Using Photon
Maps, Rendering Techniques ‘96, Proceedings of the 7th
Eurographics Workshop on Rendering, 21-30.

[19] Gobbetti, E., Spanò, L. and Agus, M. (2003)
Hierarchical Higher Order Face Cluster Radiosity for Global
Illumination Walkthroughs of Complex Non-Diffuse
Environments. Computer Graphics Forum, 22(3),
(Eurographics 2003, eds P. Brunet and D. Fellner)
September 2003.

[20] Whitted, T. (1980) An Improved Illumination Model for
Shaded Display, Communications of the ACM, 23(6), 343-
349.

[21] Kajiya, J.T. (1986) The Rendering Equation, Computer
Graphics (SIGGRAPH), 20(4), 143-150.

[22] Wald, I., Schmittler, J., Benthin, C., Slusallek, P.,
Purcell, T.J. (2003) Realtime Ray Tracing and its use for
Interactive Global Illumination, STAR, Eurographics 2003
22(3) P. Brunet and D. Fellner (eds.).

[23] Dutre, P., Bekaart, P., Bala, K. (2003) Advanced Global
Illumination, A.K. Peters, Chapter 8.

[24] Smits, B. and Jensen, H.W. (2000) Global Illumination
Test Scenes; Tech. Rep. UUCS-00-013, Computer Science
Department, University of Utah, June 2000.

[25] Wald, I., Slusallek, P., Benthin, C., Wagner, M., (2001)
Interactive Rendering with Coherent Ray Tracing;
Eurographics 2001 20(3) A. Chalmers and T. M. Rhyne eds.

	1. Introduction
	2. Background
	3. VLF Data Structure Overview
	4. Propagation
	4.1 Overview
	Notation
	Data Structures
	Visibility Map and Exchange Buffer
	The Propagation Cycles

	4.2 Diffuse Surface as Receiver
	4.3 Specular Surface as Receiver

	5. Implementation Issues
	6. Rendering Methods
	7. Results
	7.1 Performance
	7.2 Images

	8. Conclusions
	Acknowledgements
	References

