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Abstract 
 

This paper describes an algorithm that provides 
real-time walkthrough for globally illuminated scenes 
that contain mixtures of ideal diffuse and specular 
surfaces. A type of light field data structure is used for 
propagating radiance outward from light emitters 
through the scene, accounting for any kind of L(S|D)* 
light path. The light field employed is constructed by 
choosing a regular point subdivision over a 
hemisphere, to give a set of directions, and then 
corresponding to each direction there is a rectangular 
grid of parallel rays. Each rectangular grid of rays is 
further subdivided into rectangular tiles, such that 
each tile references a sequence of 2D images 
containing colour values corresponding to the 
outgoing radiances of surfaces intersected by the rays 
in that tile. This structure is then used for final image 
rendering. Propagation times can be very long and the 
memory requirements very high. This algorithm, 
however, offers a global illumination solution for real-
time walkthrough even on a single processor. 
 
1. Introduction 

 
The main contribution of this paper is to offer a 

partial solution to the problem of real-time walkthrough 
for global illumination. The solution is partial in the 
sense that only ideal specular and diffuse surfaces are 
supported. Nevertheless any kind of L(S|D)* light path 
[1] can be simulated. The method exploits the idea of 
light fields [2] (or lumigraphs [3]), though the 
particular type of light field representation used is 
similar to that in [4] and also similar to a data structure 
used for visibility culling in [5]. It exploits Layered 
Depth Images [6] where each ray in the light field 
maintains radiance information about each of the 
surfaces that it intersects rather than just the first 
surface. In this way a projected image can be 
reconstructed from any viewpoint and direction. 

In the next Section we discuss further background 
information. In Section 3 the main data structure is 
presented, and the propagation of light through the data 
structure is discussed in Section 4. Implementation 
details and rendering are discussed in Sections 5 and 6, 
with results including images, timing, and memory 
requirements are presented in Section 7. Conclusions 
are given in Section 8. 
 
2. Background 

 
Radiosity was the first algorithm that supported real-

time walkthrough with global illumination but only for 
scenes with diffusely reflecting surfaces [11]. With the 
addition of glossy and specular surfaces real-time 
walkthrough becomes problematic, owing to the view 
dependent nature of the required global illumination 
solution in this case.  There are, however, several 
different classes of algorithm that attempt to provide 
interactive time rendering for globally illuminated 
scenes. Caching schemes rely on reusing elements of a 
global illumination solution across several views 
[13][14][15]. Precompute algorithms compute a global 
illumination solution and then approximate this in some 
way for rapid rendering. For example [16][17] compute 
virtual point light sources that produce direct 
illumination approximating the global solution. In [19] 
hierarchical clustering [12] is extended by partitioning 
the models into areas where global illumination is well 
approximated based on a set of basis functions for the 
irradiance over the patches, and then interactive time 
rendering is achieved for moderately glossy surfaces. 

The exponential growth in processor speed, and 
advances in graphics hardware have supported a 
massive speed up in ray tracing [20] and path tracing 
[21], to the point where interactive speed for millions 
of polygons on clusters of consumer PCs has become 
possible [22]. Such research has exploited space 
subdivision schemes for fast ray-intersection solutions, 
careful organization of the overall algorithm to fit the 
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needs of the hardware, together with exploitation of 
graphics card processing, and parallel implementation 
across PC clusters [23]. 

The ‘virtual light field’ approach has similarities to 
many other approaches. For example, it is like photon 
mapping [18] since it propagates light from the 
emitters, and it is superficially similar to the ‘ray 
bundle’ method for stochastic global illumination [10] 
since light is propagated through bundles of parallel 
rays in successive iterations. It may also be thought of 
as a combination of light field and illumination network 
[7]. However, it is a deterministic rather than Monte 
Carlo solution, employing a fixed set of rays for 
propagation. It relies on this pre-computed global 
illumination solution stored in a massive data structure, 
and then uses lookups into the data structure for 
determining radiance to be assigned to primary rays in 
the rendering phase. There is no significant ray-object 
intersection searching in any phase of the propagation 
or rendering, everything is carried out by rasterisation 
or by direct lookup. The lookup is typically into a very 
small list of surface identifiers, and the only ‘search’ 
required is to find a matching element in the list. This 
approach therefore sacrifices propagation time and 
memory to the goal of fast final rendering. 
 
3. VLF Data Structure Overview 
 

A scene (or part of a larger scene) can be well 
enclosed,  by a regular cuboid, for example, bounded 
by (-1,-1,-1) to (1,1,1). Consider the lower face (at z=1) 
(-1, -1, -1) to (1,1,-1). This is discretised into a regular 
grid of N N× ‘cells’, (i,j), (i,j = 0,1,…,N-1) each of 
which is the origin of a ray that is parallel to the z-axis. 
The set of all N N× rays is called the canonical 
parallel subfield (PSF), and k = (0,0,1) is its direction. 
If l points with spherical coordinates ( , )i i iω θ φ= are 
chosen on the unit hemisphere over the z=0 plane then 
l PSFs are defined as rotations of the canonical PSF. 
The rotation can be achieved in any manner that is 
consistent throughout (for example, first rotate by iθ
about the y-axis to transform k to the zx plane and then 
by iφ about z, to bring it into iω ). 

Consider any ray (i,j) in the canonical PSF. This 
will intersect a number of surfaces in the scene. If we 
parameterise the ray in the form 0( ) ( 0)r t r kt t= + ≥ ,
and 0r is the ray origin, then the intersection points can 
be characterized as an array of non-decreasing 
parametric values 1, 2,[ ..., ].kt t t With each one of these 
intersection points additional information could be 
stored: the identifier of the surface at that intersection, 

and eventually the outgoing radiance from the surface 
at that intersection point. Although this method is 
possible, no use would have been made of the great 
coherence between neighbouring rays, and the memory 
costs would be substantial. Instead, the cell space is 
subdivided into tiles, each of resolution m m× , where 
1 m N≤ ≤ and /N m is integral. Each tile maintains a 
sequence of surface identifiers that are intersected by 
any ray which has its origin within the tile.  

The process of finding all the intersections of 
surfaces with the rays and tiles of the canonical PSF 
can be achieved by a simple and fast rasterisation 
algorithm in the case when the surfaces are all 
polygons, except that a layered depth image is 
computed. Given any other PSF, corresponding to 
direction iω the scene can be rotated such that iω is 
transformed to the (0,0,1) direction and then the 
rasterisation carried out in the canonical space. 

It is essential to choose a parameterisation over the 
hemisphere that does not require searching in order to 
find closest rays – since such ray lookup is a critical 
operation during both propagation and eventual 
rendering. The method employed uses a recursive 
subdivision of a regular tetrahedron, which partitions 
the hemisphere into triangles. However, fast constant 
time lookup is attained for any arbitrary point on the 
hemisphere in order to find the closest stored point. 
This is described in [8]. In the next section we discuss 
this data structure in more detail and how it is 
employed in energy propagation. 
 
4. Propagation 
 
4.1 Overview  
 
Notation 

The (finite) set of given PSF directions is denoted 
lΩ and lω ∈Ω refers to a particular direction. The 

tiling coordinate system is referenced by 
( , ),s t , 0,1,..., 1s t n= − where /n N m= . Hence a tile 
is referenced as ( , , )s tω . The coordinate system of 
cells within a tile is referenced by ( , )u v ,

, 0,1,..., 1u v m= − . Hence ( , , , , )w s t u v refers to the 
ray that is in direction ω and with origin 
corresponding to the cell ( , )sm u tm v+ + . We will 
sometimes use the abbreviation ( , , , , )s t u vω≡r .

Data Structures 
For each PSF, each tile contains a set of surface 

identifiers, corresponding to the surfaces that are 



intersected by any ray within the tile. Associated with 
each surface fragment are two 2D radiance arrays that 
we refer to as radiance maps. These are referred to as 
the Total Radiance Map and Unshot Radiance Map. In 
general L is a radiance function – its domain depends 
on context. UL refers to unshot radiance, TL refers to 
total or accumulated radiance. ( , , , , , )L s t u v Pω is the 
radiance for ray ( , , , , )s t u vω from surface P in the 
direction that is on the same side of P as its outward 
normal. Obviously this is radiance for P in tile ( , , )s tω
in position ( , )u v within the tile. ( , , , )L s t Pω is a 
radiance map for P in the tile ( , , )s tω . The individual 
elements of this radiance map are ( , , , , , )L s t u v Pω as 
( , )u v vary over the coordinates of the tile.  

The radiance maps clearly represent directional 
energy. In addition each diffuse surface P has two 
associated texture maps CP (Current) and NP (Next)
to store radiance values due to diffuse reflection. Any 
ray ( , , , , )s t u vω that passes through a texel of such a 
texture map picks up a radiance value 

( , , , , , )CL s t u v Pω , corresponding to the amount of 
accumulated radiance that is to be distributed diffusely 
from the area corresponding to the texel. New radiance 
due to diffuse reflection that is generated within the 
current propagation cycle is stored in the Next Texture 
Map NP and will be distributed in the next cycle. For 
one kind of rendering technique it is also useful to 
compute a Total Texture Map TP which stores the 
radiance accumulated over all propagation cycles for 
diffuse reflection  

 
Visibility Map and Exchange Buffer 

When treating surface P within a tile as a receiver 
of energy, the visibility map, ( , , , )V s t Pω , for P
provides information about where P is located within 
the tile. ( , , , , , ) 1V s t u v Pω = only when polygon P is 
rasterised on the cell ( , )u v within tile ( , , )s tω for 
PSFω , otherwise this value is 0.  We will use the 
notation ( , ) ( , , , )u v V P s tω∈ to mean that 

( , , , , , ) 1V s t u v Pω = .
For each set position ( , )u v within the visibility map 

for P there will be at most one other surface in the tile 
that is visible along the ray corresponding to the PSF. 
The exchange buffer is a 2D array of identifiers of the 
surfaces that are visible to P within the visibility map 
of P . It is constructed on the fly as surface P is 
processed for incoming energy, and deleted after use. 

( , , , )X s t Pω is the exchange buffer for polygon P in 

the tile ( , , )s tω . ( , , , , , )X s t u v Pω Q= if and only if the 
ray ( , , , , )s t u vω intersects both P and Q , their 
outward normals point towards each other, and there is 
no intervening polygon in the ray segment joining P
and Q . Clearly ( , , , , , )X s t u v P Qω = if and only if 

( , , , , , )X s t u v Q Pω = .
In this discussion directions are always interpreted 

to correspond to the front-facing normals of the 
surfaces involved. So ray r is considered in one 
direction from Q to P and in the opposite direction 
from P to Q.

The Propagation Cycles 
The propagation cycles run through each PSF, each 

tile within each PSF, and each surface within each tile. 
In propagation cycle 0 the Current Texture Maps of the 
light sources are loaded up with their given energy 
(their Next Texture Maps are never needed - assuming 
that lights do not additionally reflect energy, but only 
emit it). We assume that light sources are isotropic and 
are diffuse, and so the light source Current Texture 
Maps are always 1 1× arrays. The following pseudo 
code illustrates how each propagation cycle unfolds. 

 
for each lω∈Ω { /*1*/ 

for each , 0,..., 1s t n= − { /*2*/ 
for each surface ( , , )P s tω∈ { /*3*/ 

' lω ∈Ω approx specular reflection direction; 
 X = exchange buffer for P ;

for each ( , ) ( , , , )u v V P s tω∈ { /*4*/ 
( , , , , )s t u vω=r ;

( , )Q X P= r ; /*5*/ 

( , )C
dL L Q∝ r ; /*6*/ 

( , );s UL L Q= r /*7*/ 

d sL L L= + ; /*8*/ 

( , ) ;TL Q L+ =r /*9*/ 

( , ) ;NL P L+ =r /*10*/ 
' ( ', ', ', ', ')s t u vω=r spec. reflected ray; 

 ( ', )UL P Lρ+ =r ; /*11*/ 
} } } }

current texture maps = next texture maps; 
next texture maps = 0; 
unshot radiances = 0; 
 
Note that in (6) an appropriate fraction of the energy is 
extracted from the texels on the Current Texture Map 
of Q that are intersected by the current ray. The 
fraction of energy extracted and sent to P ensures a 
proper balance of energy in the scene. In (11) the ray 
corresponding to the specific specular direction of 
reflection from P is computed, and the nearest PSF 
direction and ray to this is found. This is used to 



identify the cell in the Unshot Radiance Map for P
along this reflection direction, and the radiance value in 
that cell is updated by the appropriate fraction of 
incoming radiance.  
 
4.2 Diffuse Surface as Receiver 

 
The above outlines the overall propagation process; 

we now consider some of its elements in more detail. 
As discussed earlier, the flow of radiance to a receiving 
face (P) is performed by identifying all surfaces (Q)
that send radiance to it along a single PSF tile at a time.  

When the receiver and sender are both diffuse, 
energy transfer takes place through a temporary 
radiance tile (a 2D array of radiances) aligned with the 
current PSF tile being propagated (Figure 1). This 
temporary radiance tile is used as an accumulator for 
radiance propagating towards the diffuse receiver 
within that PSF tile. The mapping of the texture maps 
on the sender (QC) and receiver (PN) to the temporary 
radiance tile is a many-to-one mapping. This transfer of 
energy is transformed from a discrete representation 
(on the sender in QC) into a continuous one from which 
it is then correctly re-sampled to another discrete 
representation (on the receiver in PN).  

Figure 1. Diffuse to diffuse transfer along a tile. 
 
Discrete cells on a sender are mapped onto a 

receiver using polygon clipping so that contributions 
from a single shooting cell can be correctly distributed 
amongst the receiver cells. The ratio of intersected to 
total (visible) area of the sender cell determines the 
amount of radiance attributed to the receiver cell. For 
all senders in the tile, radiance is accumulated onto the 
temporary radiance tile by projecting the cells of the 
sender’s Current Texture Map (QC) in the PSF 
direction and clipping against the cells on the 
temporary radiance tile.  

In specular to diffuse transfer, energy in the specular 
sender’s Unshot Radiance Map ( , , , )UL s t Qω is pushed 
into the Next Texture Map on the receiver (PN) via the 
temporary radiance tile and shows up as caustics. This 
transfer is a simple visibility-based one-to-one mapping 

since ( , , , )UL s t Qω and the temporary radiance tile 
have the same resolution along the PSF direction. 

Once the accumulation of radiance from all senders 
onto the temporary radiance tile is complete, the 
temporary radiance tile is mapped onto the Next 
Texture Map on the receiver (PN) using a similar 
projection and clipping process. Clipping is the most 
expensive process during propagation; accounting for 
up to 80-85% of overall compute time. However, this 
‘continuous’ clipping algorithm is a required step for 
proper mapping of energy without aliasing which is 
introduced by other less compute intensive methods. 
The temporary radiance tile is also added to the Total 
Radiance Map of the sender for the PSF tile being 
propagated ( ( , , , , , )TL s t u v Qω ). 
 
4.3 Specular Surface as Receiver 

 
The fundamental principle in diffuse to specular 

transfer along a PSF direction ω is that energy from a 
diffuse sender Q sent to a specular receiver P is 
reflected towards a PSF direction 'ω by P. To avoid 
artifacts due to the many to one mapping from the 
sender’s Current Texture Map on to the specular 
receiver’s radiance map, the transfer is performed by a 
backwards lookup from P onto Q. This lookup of QC

on the sender from ( ', ', ', , , )UL s t u v Pω ′ ′ on the 
receiver is shown below in Figure 2.  

Candidate receiving cells of the receiver’s unshot 
radiance map in PSF 'ω are determined by the 
bounding box of the four projected corners of tile ( , )s t
in PSFω . Each candidate cell ( ( ', ', ', , , )UL s t u v Pω ′ ′ )
in PSF 'ω is projected backwards into PSFω , allowing 
a transfer of radiance from QC as determined by the 
exchange buffer ( , , , )X s t Pω .

Figure 2. Diffuse to specular transfer along a PSF 
using backward mapping. 
 

The specularly reflected ray will probably not 
correspond in direction to any of the actual PSF 
directions. Instead, the three nearest rays corresponding 
to three PSFs are found along with barycentric weights 
to interpolate the actual direction from them. The 



energy of the diffuse sender is then transferred along 
each of these directions weighted by the barycentric 
coefficients. 

Specular to specular energy transfer is very similar 
to the case of diffuse to specular transfer. The transfer 
of energy is via a backwards lookup from 

( ', ', ', , , )UL s t u v Pω ′ ′ of the sender’s unshot radiance 
map ( , , , , , )UL s t u v Qω (rather than from QC as in the 
above case).  
 
5. Implementation Issues 
 

A major consequence of the discretisation of 
directions is that ‘holes’ in propagation are created 
(Figure 3). This problem cannot be solved when energy 
is propagated towards specular surfaces, since these are 
represented by directional radiance maps which only 
exist for the set of actual PSF directions. However, in 
the case of energy propagated towards diffuse surfaces 
(from all senders) we can use the surface texture maps 
to fill in the holes. 

Figure 3. Angular spread of surface hits with 
distance. 

For diffuse receivers, additional directions (beyond 
those used for ‘actual’ PSFs) are simulated by 
perturbing the VLF by a stratified sampling of the 
canonical PSF’s solid angle. At each perturbation, the 
entire scene is rotated such that the canonical PSF 
(aligned with the z-axis) is oriented along the new 
sampled direction. Once a perturbation angle has been 
selected, the propagation is repeated ensuring that the 
sum of radiance propagated into the scene over the 
perturbations is equivalent to the total unshot radiance 
for that propagation iteration. Perturbation is not 
required for all cycles of the propagation process, 
perturbing the initial few is generally adequate. The 
number of perturbations required per propagation 
iteration depends on the number of PSF directions in 
the VLF and the nature of the scene.  

When enumerating senders for a receiver during a 
perturbation, visibility maps in the tiles are no longer 
valid and senders for a receiver in the tile are 
recomputed from the exchange buffer ( , , , )X s t Pω . All 
senders push radiance into the temporary radiance tile 
which is subsequently mapped to the receiver’s Next 
Texture Map (PN). During a perturbed transfer, the 
sender’s directional Total Radiance Maps (LT) are not 
updated as the perturbed transfer is in a direction other 
than that of any actual PSF (Total Radiance Maps are 
updated only during perturbation 0 which involves the 
true PSF direction). Thus, the result of perturbation is 
brought into effect only in the next iteration when the 
perturbed (and filtered) Current Texture Maps (QC) are 
propagated into the scene. 

Following perturbation, Gaussian filtering is 
required on the Next Texture Maps to remove the high 
frequencies that were introduced. This is performed 
with a suitably small σ and filter size to minimise 
blurring of caustic and shadow boundaries. 

 During propagation, energy transfer between a 
sender and receiver within a tile is dictated by the 
information in the exchange buffer ( , , , )X s t Pω . This 
buffer is computed using OpenGL false-colour 
rendered images on a per-receiver, per-PSF basis and 
introduces rasterisation error and aliasing at polygon 
boundaries. This is solved by super-sampling the 
visibility exchange which allows for more detailed and 
accurate project and clip operations. The computational 
overhead of this process only occurs at polygon 
boundaries where it rectifies radiance propagation.  

Unlike the perturbation method for diffuse surfaces, 
the number of directions of propagation and 
representation for specular surfaces cannot be 
increased without actually increasing the number of 
PSFs used. Once the propagation is completed we can 
however re-sample directional radiance maps on 
specular surfaces using backwards ray tracing, 
following S*D paths only. This backwards ray tracing is 
performed by following true ray paths (not only paths 
dictated by fixed PSF directions) and thereby allows 
for a more accurate representation in the same data 
structures. We can thus obtain directional radiance 
maps which are geometrically more accurate and free 
of any ‘holes’. Backwards ray traced re-sampling of the 
Total Radiance Maps is performed at the end of all the 
propagation iterations, prior to the final rendering and 
is performed only once.  
 
6. Rendering Methods 
 

Images can be rendered directly from the Total 
Radiance Maps stored in the tiles. First a false colour 



rendering is carried out to identify the nearest surfaces 
intersected by the primary rays. For any primary ray 
r this yields the identifier P of the intersected face 
along the ray, from which the intersection point 
( , , )x y z can be computed. The ray direction of r will 
intersect exactly one hemispherical triangle with 
vertices ,k lω ω and mω corresponding to three PSFs. 
For each ( ), ,h k l m∈ map the intersection point into 

canonical PSF coordinates ( ), ,h h hx y z . Now the 
projection ( , , 1)h hx y − on the corresponding PSF hω
maps to a cell ( , ) ( , )h h h hi j s m u t m v= + + . We find the 
face P in the tile list of ( , , )h h hs tω and the radiance is 
bilinearly interpolated from the 8-neighbourhood 
around ( , )i j [7]. Finally spherical interpolation weights 
of r in relation to the three PSF directions are used to 
interpolate the three radiances. With this approach, 
direction and radiance lookups are almost constant 
time, the only searching being locating the face within 
a tile, which is logarithmic in the average number of 
surfaces intersected by a tile. An example is shown in 
Figure 4(a) rendered on a single 2.8Ghz Xeon. 
 

(a) Light field (1.1 fps)   (b) RT ray tracing (20fps) 

(c) The Office scene (d) ES*D paths 
Figure 4. Rendering methods (N=128, m=16 and 
l=2049, propagation time=36 hrs, size=908MB) 

 
In cases where PSF directional resolution is too low 

the image will exhibit ghosting effects on specular 
reflections. However, backwards ray tracing can be 
used to render ideal specular pixels [20]. The downside 
of this approach is that it is computationally intensive 
for scenes with many large specular reflectors. 
However, advances in ray tracing are approaching a 

level where this may become possible [22], especially 
given that only ES*D rays must be computed, and no 
shadow rays, nor sampling of area light sources are 
required. Also those parts of the image showing diffuse 
surfaces directly are rendered using OpenGL and 
texture mapping with the view independent Total 
Texture Map PT. An approach similar to [25] has been 
implemented allowing faster walk-through of the VLF 
(see Figure 4(b) rendered on two 2.8Ghz Xeon CPUs). 

7.  Results 
 
7.1 Performance 
 

In order to determine the scalability of the 
algorithm, both in terms of memory requirements and 
computation time, a number of scenes were propagated 
under various conditions. Scalability data was gathered 
varying the number of PSF directions in a VLF, PSF 
size, and the number of polygons in a scene. All scenes 
in this section were propagated on a 1.7Ghz Xeon 
workstation. Although the scenes we use have few 
polygons, the same scenes rendered with radiosity 
would render many tens of thousands of patches in 
order to obtain the same level of accuracy. 

An artificial scene consisting of axis aligned non-
intersecting boxes uniformly distributed in a cubical 
space was used for testing the impact of the number of 
polygons on memory and propagation time. The scene 
had one emitter, and the number of polygons ranged 
from 224 through to 1736. The ratio of diffuse to 
specular surfaces was 5 to 1 throughout. This scene is 
the worst case for this algorithm, because along every 
tile there will be a relatively large number of polygons 
stored, unlike ‘normal’ interior scenes, which for the 
most part have surfaces that are sparsely distributed 
throughout the space. The propagation used 513 
directions, with 64N = and 8m = throughout. 

The results showed that propagation time varied 
quadratically with the number of polygons, as would be 
expected. The memory grows linearly with the number 
of polygons, the minimum being 75MB and the 
maximum 458MB. 

The higher the number of directions the greater 
accuracy particularly in specular surfaces and the less 
need there will be for perturbations in order to 
overcome the problem of holes. On the other hand 
more directions require more memory and longer 
propagation times. For this and subsequent analyses the 
scene used is shown in Figure 4. For generating the 
data, the PSF resolution was N=64, m = 8, with l = 9, 
33, 129, 513, 2049, and 8193. The number of 
propagation cycles was 4.  



Figure 5. Normalised memory, propagation time, 
and average polygons per tile, for varying tile sizes. 

 
The relationship between propagation time and the 

number of directions is almost exactly linear. For 
example, with 129 directions the time is 8.5 minutes, 
for 513 directions it is 34 minutes and for 8193 
directions, 489 minutes. There is also a linear 
relationship between the number of directions and 
memory. The three corresponding memory figures are 
11MB, 45MB and 733MB respectively. 

The size of the tiles relative to the PSF resolution is 
important in determining overall speed of propagation 
and rendering. Other things being equal, the smaller the 
tiles the fewer the number of surfaces intersected by a 
tile, so that less time is spent on the final search for an 
identifier in a tile to match a given one. However, 
decreasing the tile size will result in more memory and 
eventually in greater propagation time. Figure 5 shows 
plots of the memory, propagation time, and the average 
number of polygons in a tile for various tiling 
resolutions (n) (1×1, 2×2, 4×4, 8×8, 16×16, 32×32) for 
a 64×64 PSF size. The vertical axis is on a normalized 
0–1 scale. Memory ranged from 937MB for 1×1 tiling 
resolution (i.e., the whole of the PSF was the tile) to 
42MB for a resolution of 32×32.  Timing ranged from 
111 minutes for 1×1 to 150 minutes for 32×32, with the 
lowest being 61 minutes at 4×4. Finally, the average 
number of polygons per PSF ranged from 121±10 at 
1×1 through to 1.7±2.1 at 32×32 which was the lowest.  
 
7.2 Images 
 

Figure 4 illustrates a scene that has several 
specularly reflecting surfaces together with diffuse 
surfaces. The scene is simple enough to show that 
correct radiance is produced.  

In order to demonstrate production of caustics, we 
rendered a test scene from [24] using the light field 

with the backwards ray tracing approach. This is shown 
in Figure 6(a) and compares well with the original test 
image. A further illustration of caustics is shown in 
Figure 6 (b).  
 

(a) Smits and Jensen [24]  (b) Ring Caustic 
Figure 6. (a) FPS =27, N =128, m = 16, l =2049, 
Propagation time =33.53 hours. (b) Ring Caustic. 50 
polygons. FPS =26, N =256, m =16, l =2049, 
Propagation time =25.45 hours. 
 
8. Conclusions 

 
A different approach to the problem of global 

illumination has been introduced. The goal has been to 
achieve real-time walkthrough for globally illuminated 
scenes, relying mainly on fast lookups at the final 
rendering stage. This has been achieved by using a 
light field for energy propagation. Figure 4 (a) and (b) 
suggests that a final backwards ray tracing approach is 
faster than rendering from the light field itself. 
However, the ray tracing approach has complexity 
logarithmic in the number of polygons, whereas the 
VLF is logarithmic in the average number of surfaces 
in a tile. 

The biggest drawbacks to the approach in its current 
version are the large propagation times and memory 
requirements. On the other hand, a scene needs only to 
be propagated once, and gigabytes of memory on 
desktop PCs is becoming common. Moreover, the 
Unshot Radiance Maps can be deleted after 
propagation. 

In the implementation discussed in this paper, we 
have deliberately sacrificed memory and propagation 
time for interaction. However, there are clear advances 
that can be made in both through density estimation, 
and compression. The vast amount of time in 
propagation is caused by clipping. However, we will 
parallelize clipping by using streaming SIMD. Finally, 
the method is being extended to treat glossy surfaces. 
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