
A Visibility Field for Ray Tracing

Jesper Mortensen1 Pankaj Khanna1 Insu Yu1 Mel Slater1,2

1Department of Computer Science, University College London, London, UK
2ICREA-Universitat Politècnica de Catalunya, Department de LSI, Barcelona, Spain

j.mortensen | p.khanna | i.yu | m.slater @cs.ucl.ac.uk

Abstract

This paper presents a type of visibility data structure for
accelerated ray tracing. The visibility field is constructed by
choosing a regular point subdivision over a hemisphere to
obtain a set of directions. Corresponding to each direction
there is then a rectangular grid of parallel beams, with each
beam referencing a set of identifiers corresponding to ob-
jects that intersect it. Objects lying along a beam are sorted
using a 1D BSP along the beam direction. The beam corre-
sponding to any ray can be looked up in small constant time
and the set of objects corresponding to the beam can then
be searched for intersection with the ray using an optimised
traversal strategy. This approach trades off rendering speed
for memory usage and pre-processing time. The data struc-
ture is also very suitable for hemisphere integration tasks
due to its spherical nature and results for one such task -
Ambient Occlusion - are also presented. Results for sev-
eral scenes with various rendering methods are presented
and compare favourably with a well established approach,
the single-ray Coherent Ray Tracing approach of Wald and
Slusallek et al.

1. Introduction

There have been significant advances towards real-time
ray tracing in recent years, through the exploitation of algo-
rithms that are tailor made to perform well on today’s graph-
ics hardware [28, 6, 39, 29]. Every ray tracing algorithm has
to deal with the problem of ray-object traversal – that is, to
find for any ray the nearest surface that it intersects, and
this problem has received a great deal of attention since the
introduction of ray tracing into computer graphics [2, 42].
All successful methods rely on a data structure that when
traversed by a ray, delivers a set of objects, the candidate
set, or the potentially visible set, that the ray may intersect.
In this paper we present a modification of this standard ap-
proach. We exploit a 4-dimensional data structure, which is
similar to a light field that instead of storing radiance stores

object identifiers. The data structure is a special instance
of a ‘virtual light field’ (VLF) [34], that we call VLF-RT
in this paper. A ray is used as an array look-up index into
the VLF-RT data structure, and immediately delivers a set
of candidate objects for ray-object intersection testing. That
set of objects, a tiny fraction of the original number in the
scene, may be traversed linearly or by any other method.

We discuss the background literature and state-of-the art
in Section 2. The VLF-RT data structure for ray tracing
is presented in Section 3. In Section 4 we motivate and
describe the use of a uniform depth partition for the fi-
nal traversal of the potentially visible set (PVS) returned
from the ray lookup into the VLF-RT. Implementation de-
tails are given in Section 5. Results in the form of com-
parisons between Coherent Ray Tracing (CRT)[37, 36] and
the VLF-RT method are presented in Section 6. Section 7
presents application to Ambient Occlusion and conclusions
in Section 8, including a discussion of how dynamic scene
changes are very simple in this method. In this paper we
concentrate only on ’classical’ ray tracing as described by
Whitted [42]. For compatibility with CRT all our examples
are limited to polygons, and in our main results, triangles.
However, the method is not bound to polygonal objects.

2. Background

Ray tracing was the first type of global illumination algo-
rithm introduced into computer graphics [42]. It very sim-
ply and elegantly supports shadows, specular reflection and
transmission, and also solves the problem of visibility. It
does not correctly handle light paths that involve diffuse or
glossy reflections, and these will not be considered in this
paper. The overall benefits of ray tracing have been dis-
cussed many times, for example [13] for a general overview
and standard algorithms, and [37] for potential benefits as
compared to the standard graphics pipeline. In the original
paper Whitted pointed out that the vast amount of the time
to produce a ray traced image is taken up by ray-object in-
tersection calculations. Many techniques have been devel-
oped to try to reduce this time. These can be classified into

object-space subdivision and ray-space subdivision meth-
ods. The former constructs a scene space subdivision, such
that each cell in the subdivision references a relatively small
set of objects, and ray traversal through this subdivision is
relatively simple and fast. For any given ray the vast ma-
jority of objects are therefore never tested for intersection -
only those that are picked up by the ray traversal scheme are
considered as candidates for intersection. Examples of this
method include bounding extent hierarchies [22, 14], direct
space subdivision methods - such as uniform space subdivi-
sion [11, 1, 8], oc-trees [12], and BSP trees [21, 20, 35]. It
was argued in [35] that of these the BSP subdivision scheme
results in the fastest ray traversal, with logarithmic time in
the number of polygons. Ray classification schemes on the
other hand exploit coherence amongst rays. One example of
this was the light buffer [16] which efficiently computed in-
tersections for ’shadow feeler’ rays. However, a general ray
classification approach that applied to the entire ray trac-
ing process was provided by [3]. Rays were represented
as points in 5D space and a 32-tree of ray space was lazily
built as each successive ray was encountered (in fact six 32-
trees each representing one of the six faces of a bounding
box around the scene). Each cell of a 32-tree represents a
set of similar rays, and corresponding to each cell is a can-
didate set of objects. Every object in the candidate set is
such that at least one of the rays in the cell intersects it.
In other words a cell of the 32-tree corresponds to a beam
in 3D space that intersects a set of objects - the candidate
set for the cell. The size of the tree depends on the maxi-
mum permitted size of the candidate object set. Now given
any new ray, it is filtered down the tree, its candidate set
identified, and intersections carried out with these. The ray
classification scheme can also be enhanced by employing
an adaptive subdivision method [32]. Another variation on
this approach is presented in [25] which removes one of the
dimensions of ray space by using ray coherence. As many
rays can lie on the same line, duplication of rays is reduced
by classifying lines instead of rays. These variations use a
binary search tree to find intersections with a list of candi-
date objects. The VLF-RT algorithm presented in this paper
may be thought of as a much more efficient representation
of this same idea - since in this case similar rays are also
grouped together and each such group of rays has a candi-
date object set. However, the data structure is much sim-
pler than the 32-tree, and ray-candidate set retrieval is look-
up rather than a tree traversal. Within each of these two
broad categories there have been many proposals for further
and substantial improvement in ray-object traversal speed.
For example, building on the idea of a BSP representation
Havran [19, 18] introduced rope trees to further accelerate
ray-BSP tree traversal, and in [30] the cost of BSP traversal
is reduced by computing BSP tree entry points for collec-
tions of rays. In addition caching schemes have been intro-

duced to reuse elements of a solution across several views,
exploiting a kind of ray-view coherence [41, 40].

With the introduction of programmable graphics hard-
ware replacing the fixed function pipeline and the rapid
growth of performance of graphics hardware a number of
attempts have been made to map ray tracing to graphics
processing units (GPUs) [29, 6]. Raw ray-triangle inter-
section on the GPU have been shown to outperform CPU
implementations. Nevertheless, kd-tree space subdivision
data structures map poorly to streaming architectures and
necessitates the use of uniform grids; a suboptimal accel-
eration structure. Attempts have been made to map kd-tree
data structures to the GPU [10], but so far CPU ray tracing
algorithms perform better than GPU counterparts.

Advances in processor power and network bandwidth
have supported a massive speed up in ray tracing so that
today it is possible to attain interactive speed for millions
of polygons on clusters of consumer PCs [39]. This re-
search has relied on space subdivision schemes for fast ray-
intersection solutions, in particular BSP trees, together with
precise organisation of the overall algorithm to fit the needs
of the hardware, and parallel implementation over PC clus-
ters [38, 4]. The evidence to date suggests that one scheme
in particular; coherent ray tracing (CRT) [37] is the fastest
implementation of ray tracing. This uses a BSP tree space
subdivision. The implementation is organised so that most
memory accesses fall within the first two processor caches,
which itself results in a speed-up by half an order of mag-
nitude as reported in the original paper. Moreover, packets
of 4 rays are SIMD traced in parallel. We have also im-
plemented the single ray CRT scheme, and it is with the
results of this that we compare our new approach in Sec-
tions 6 and 7.

3. Visibility Field for Ray Tracing

In the following sections we discuss the data structure,
its construction and how to perform ray queries against it.

3.1. Data Structure

The virtual light field data structure was originally in-
spired by the light field [27, 15] and the type of representa-
tion used is similar to that in [5] and also to a data structure
used for visibility culling in [7]. Whereas light fields typ-
ically only store radiance at the first intersection of a ray
with an object, Layered Depth Images [31] maintain radi-
ance information about each of the surfaces that rays inter-
sect rather than just the first surface, and in that sense the
data structure is also similar to LDI. A general VLF data
structure for a view independent global illumination solu-
tion has been previously used where radiance information

was stored [34]. However, in VLF-RT we never store ra-
diance, only object (in fact polygon) identifiers. The VLF-
RT thus uses a modification of the VLF data structure as
originally introduced but oriented towards ray tracing, and
therefore the solution is view-dependent. It also requires an
order of magnitude less memory.

We now describe VLF-RT. A scene can be enclosed, for
example, by a regular cuboid. Suppose this is a cuboid
bound by (−1,−1,−1) to (1, 1, 1). Consider the lower face
(z = −1) bounded by (−1,−1,−1) and (1, 1,−1). This is
subdivided into n × n square tiles. Each tile is the base of
a beam parallel to the z-axis that extends infinitely (though
only the finite part that intersects the scene is of interest).
This set of n × n parallel beams along the z-axis is called
the canonical parallel subfield (PSF). If l points with spher-
ical coordinates ωi = (θi, φi) are chosen on the unit hemi-
sphere, then PSFs are defined as rotations of the canonical
PSF by rotating the (0, 0, 1) direction into the correspond-
ing spherical point. The rotation can be achieved in any
manner that is consistent throughout. Consider any beam in
the canonical PSF. This will intersect a number of surfaces
in the scene. The tile corresponding to that beam stores this
set of surface identifiers. The process of finding all the in-
tersections of surfaces with the tiles of the canonical PSF
is straightforward. If we consider the special case that all
surfaces are polygons, then this is similar to polygon raster-
isation and can be implemented very efficiently as it is ef-
fectively only to a resolution of n×n. Given any other PSF,
corresponding to direction ωi the entire scene can be rotated
such that ωi is transformed to lie along (0, 0, 1) - the z-axis.
Rasterisation is then done in the canonical space. It is criti-
cal to choose a parameterisation over the hemisphere so that
no searching is required in order to find the closest PSF di-
rection to any arbitrary direction - since such ray lookup is
a critical operation during ray tracing. The method for plac-
ing points on the hemisphere uses a recursive subdivision
of a regular tetrahedron, which partitions the hemisphere
into triangles. Fast constant time lookup is attained for any
arbitrary point on the hemisphere in order to find the clos-
est stored point to any given point on the hemisphere by
a method described in [33]. The (finite) set of given PSF
directions is denoted Ωl and ωi ∈ Ωl refers to a particu-
lar direction. The tiling coordinate system is referenced by
(s, t), where s, t = 0, 1, . . . , n − 1. Hence a tile is refer-
enced as (ωi, s, t). The set of identifiers associated with a
tile is denoted by S(ωi, s, t).

3.2. Constructing the Data Structure

The application of this data structure to ray tracing is
very straightforward. First the data structure as discussed
above is constructed. For each PSFωi

the scene is trans-
formed to the canonical space, and each polygon is ortho-

graphically projected to the base of the PSF, and the tiles
that it covers computed. This can be achieved by travers-
ing each polygon edge through the tiling to compute the
tiles of all the polygon edges, and then filling in the non-
edge tiles that lie inside the polygon. It is important that
the edge-tiling traversal algorithm allow for an 8-connected
path, rather than follow a traditional DDA-style algorithm.
The difference is shown in Figure 1. Such algorithms are
discussed with reference to a 3D context in [9] but are easily
adapted to 2D. When a tile (s, t) is found to be covered by
a polygon, its polygon identifier is written into S(ωi, s, t).
By the end of this process for all PSFs the data structure is
complete.

Figure 1. Finding the tiles corresponding to
a polygon edge - the correct ones are the
shaded tiles, a DDA algorithm would produce
only the marked tiles.

3.3. Ray-Object Intersections

Now suppose that all polygon identifiers for all tiles in
all PSFs have been computed, and that we require the can-
didate set of objects for a ray with direction ω and origin
(x, y, z). Find the direction in Ωl that is closest to ω and
suppose that this is ωj . There will be a rotation matrix Mj

pre-calculated and stored with PSFωj
that rotates direction

ωj into (0, 0, 1). Then (x, y, z) × Mj = (xq, yq, zq) will
be the point in the canonical space of PSFωj

that corre-
sponds to (x, y, z) in world space. In particular the projec-
tion (xq, yq,−1) will belong to a particular tile. The set of
identifiers in that tile forms a potentially visible set for that
ray.

The situation is in fact slightly more complicated. Fig-
ure 2 shows a 2D analogue of a condition where a ray would
project to more than one tile. In the case of RayA if we only
project the origin of the ray to the base of the PSF it would
pick up tile 4. However, clearly the appropriate candidate
set would be the union of those of tiles 2, 3 and 4. Therefore
two points on each ray should be projected - the origin, and
an end-point. In the case of shadow feeler rays the end-point
is given by the light source position. In the case of primary
or secondary rays the point on the ray that intersects with
the boundary of the scene (represented by the circle in Fig-
ure 2) may be used. If the projections of these two points

PS
F

RayB

RayA

R
ayC

Tiles
1 2 3 4 5

Figure 2. The rays overlap more than one tile.

are not in the same tile then the appropriate set of candidate
objects is the union of all tiles that the ray traverses. For
a large enough number of PSFs (l), the direction of the ray
will be more closely represented and both end-points of the
ray will project to the same tile.

4. Ray-Tile Traversal

Once a PSF and tile have been identified for a ray the set
of polygons referenced must be searched to find the nearest
ray-polygon intersection (if any). This is a critical opera-
tion. For a sufficient large number of polygons the approach
presented thus far suffers considerably and it is faster to in-
stead use a CRT-type BSP tree to traverse the entire set of
polygons for every ray compared to a linear search of the
polygons within the tiles. The reason is due to the logarith-
mic performance of the BSP tree and the linear performance
in the average number of polygons per tile of the VLF-RT
approach. On the other hand the VLF-RT approach does
have the advantage that without any ray traversal, and sim-
ply with a lookup it is possible to reduce the search space
to a very small fraction of its total size. In order to re-
duce the linear dependence of the timing on the mean num-
ber of polygons per tile the depth complexity along the tile
(along the PSF direction) is reduced by binning the tile’s
polygons into a 1D BSP partition. Splitting planes are or-
thogonal to the beam direction and selected using a simple
median split. This BSP partition along the tile can be effi-
ciently represented by a standard 1D array. Polygons that
straddle multiple BSP leaves are assigned to each of those
leaves. During intersection testing, tile-BSP traversal in-
volves recursive splitting of the ray segment corresponding
to the tile across the BSP’s partitioning planes and visiting
nodes/leaves from near to far along the ray. This near-to-
far traversal permits early termination when an intersection
is found. Performance of this process is further enhanced
by using a stack rather than explicit recursion code. Per-

formance of the algorithm with the inclusion of tile-BSPs is
significantly faster than using the single BSP partition of the
CRT scheme. The logarithmic search time of the tile’s BSP

P
S

F

Tiles
1 2 3 4 5

Figure 3. Ray/Tile intersection with linear
traversal of the 1D tile BSP-trees. The marked
BSP leaves are traversed from near to far
along the ray.

can be further reduced and recursion avoided completely by
traversing the BSP leaves linearly. The nearest and farthest
BSP leaves can be determined directly from the parametric
t-intersection values of the ray with the tile’s boundaries.
Given the 1D array representation of the BSP, once start
and end leaves are determined, the intervening leaves can
be visited near to far in a simple linear traversal. This is
possible as the leaves are already correctly aligned in the
required order along the ray’s direction. Early termination
of the process is again possible due to near to far traversal.
Figure 3 shows linear intersection of tile-BSP leaves during
ray-traversal of several tiles - only polygons lying in grey
leaves are tested for intersection.

5. Implementation Issues

Linear traversal of the tile-BSP is very efficient as the
traversal can be realised by a very simple implementation
that requires no searching working order to compute the
correct order in which to visit the BSP leaves. Entry and
exit parametric t-values at tile-boundaries are computed in-
crementally as the traversal crosses into a new tile. While
constructing the tile-BSP, polygons are clipped to the tile’s
boundary before comparing the polygon’s depth range with
the splitting planes - this prevents unnecessary excesses in
the assigned polygon lists. When intersecting a given ray,
the nearest PSF is used and the ray is projected onto this
PSF using a line rasterisation algorithm similar to the one
used in tile rasterisation during initialisation (see Figure 1).
Also, the ray is truncated to its intersections with the scene’s

boundary. The intersected tile list (e.g. tiles 2 to 4 in Fig-
ure 2) is traversed in front to back order and the ray segment
for each tile is limited by the intersection of the ray with
that tile’s boundary. Within a tile, the ray segment is inter-
sected using linear traversal of the tile’s BSP. Note that the
directional discrepancy between rays and PSF direction has
been exaggerated in Figures 2 and 3 to illustrate the issues
more clearly; in practice only a small number of tiles are
intersected depending on tile resolution (n) and the number
of PSFs (l). The ideal situation is when the ray direction
matches the PSF direction very closely - only one tile need
be considered in that case (RayC). There are obviously no
tile crossings in this case and a simple linear traversal of the
tile-BSP for the entire ray-segment is all that is required.

5.1. Coherent Ray Tracing Implementation

The single ray CRT approach implemented follows [37].
It uses the spatial median for BSP splitting planes, and the
optimised triangle layout described in [36]. The BSP traver-
sal’s recursion is rolled out using an explicit stack, and the
intersection kernel is directly inlined using a macro. All
other framework code such as ray creation, shading, etc. is
shared between the two implementations.

6. Results

We compared performance of VLF-RT with the CRT im-
plementation described above. For each method we used
parameters that were fastest for that method. In the case of
the BSP tree for CRT, a parameterisation must be chosen
- specifically the maximum depth of the tree, and the ideal
maximum number of polygons allowed per leaf-node (sub-
ject to the maximum depth). In order to determine these
parameters we ran a series of pre-test experiments with the
scenes described in following sections, in order to deter-
mine the best combination of depth and leaf size - these
were then used in the comparative performance tests. Sim-
ilarly, the ideal depth of the tile-BSP was determined for
VLF-RT using the same strategy. We could also vary the
number of PSFs and tile resolutions - already knowing that
higher resolution would result in better performance. All
timings were obtained on a 2.8Ghz Pentium 4 with 2GB of
system memory.

6.1. Performance Comparison

We are interested in ray-traversal speed as the number
of polygons increases. For this purpose we use an artifi-
cial scene with uniformly distributed random triangles (Fig-
ure 4). Figure 5 shows the frame time, averaged over a few
frames for increasing numbers of triangles viewed from a

Figure 4. Images of the random scenes. The
9K(left) and 16K(right) scenes are viewed
from two of the viewpoints used to determine
performance.

short camera path through the scene. Again, results for sev-
eral parameters were obtained and the results from the best
parameterisation presented.

Figure 5. Average time to render a 512×512
image of scenes with increasing numbers of
uniformly distributed random triangles.

6.2. Walkthrough

In the previous section we discussed performance for
scalability of the VLF-RT for a scene composed of random
polygons. We now consider a walkthrough of a more re-
alistic ’Classroom’ scene (Figure 7). The scene consists
of 51,208 polygons and 4 point light-sources. Two shad-
ing methods were used: a simple OpenGL like method that
casts only primary rays and shades points based on local
diffuse texture and distance/direction to the light sources;
and Whitted-type shading that uses secondary reflection and
shadow rays. Comparative frame render times for a walk-
through of the classroom scene along a fixed camera path
comprising 420 frames for the CRT and VLF-RT meth-
ods are shown in Figure 6. These results are for opti-
mum parameters for the CRT (BSP depth 23) and VLF-RT
(128×128 tiling, tile-BSP depth 5) - the number of PSFs

Figure 6. Frame render times for the Class-
room scene.

was however kept fixed at 513. Image size rendered per
frame was 256×256.

Figure 7. The classroom scene with Whitted
and OpenGL-like shading.

7. Application to Ambient Occlusion

When illuminating a scene/image the computation of dif-
fuse inter-reflection is often very expensive. Typically only
a few iterations of diffuse transfer are computed – possibly
leaving some fragments of the scene completely dark. To
counter this an ambient term (usually a constant) is added
to the shading computation to account for later iterations
of diffuse transfer – this constant ambient term can how-
ever make the results appear artificial. Ambient Occlusion
[26] is a method used to make images look more physically
plausible. Instead of using a constant ambient term, the vis-
ibility at a point is sampled and the point is shaded based
on the number of samples not immediately occluded. Illu-
mination is usually from a skylight or sky-dome over the

object and results in shading that simulates soft shadows.
Ambient Occlusion at a point can be computed by casting
shadow rays into the scene to integrate visibility over the
hemisphere around the normal at that point. Directions se-
lected for this integration are uniformly sampled over the
hemisphere to avoid bias and a large number of rays are
cast to reduce noise. The VLF-RT data structure has several

Figure 8. Ray traced images with Ambient Oc-
clusion shading.

advantages in the computation of Ambient Occlusion at a
point. As mentioned, the directions selected for the rays
cast from a point have to be uniformly sampled over the
hemisphere over that point. These directions could equally
be selected from the set of PSF directions as these repre-
sent a uniform distribution of directions. When a shadow
ray is cast into the scene from a point and lies along a PSF
direction, both endpoints of that ray fall on the same tile
(see Figure 2, RayC). In this case, the ray would not cross
any tile boundaries and would simply need to traverse the
associated tile BSP leaves from near-to-far. This is a very
simple process as the data structure is optimal for a traversal
of this nature. Image render times for various scenes (Fig-
ure 8) were obtained using optimum parameters for BSP-

Scene CRT VLF-RT Relative Speedup
Cow 38.01 secs 15.15 secs 2.51x
(5.8K polys) (BSP depth 16) (tBSP depth 3)
Scorpion 32.19 secs 17.88 secs 1.80x
(10K polys) (BSP depth 19) (tBSP depth 3)
Bugatti 43.54 secs 21.63 secs 2.01x
(11K polys) (BSP depth 17) (tBSP depth 4)
Church 25.50 secs 14.07 secs 1.81x
(16K polys) (BSP depth 19) (tBSP depth 4)
Tugboat 44.36 secs 30.65 secs 1.45x
(34K polys) (BSP depth 23) (tBSP depth 4)

Table 1. Comparative performance for Ambient Occlusion shading.

tree depth in CRT and tile-BSP depth in the VLF-RT. The
number of PSF directions and tile resolution per PSF were
however kept fixed at 513 and 128×128 respectively. Table
1 shows the time taken to render Ambient Occlusion shaded
images of several scenes for both methods.

A total of 513 rays were cast into the scene from each
surface point to integrate visibility over the hemisphere. An
image size of 256×256 was rendered for each scene. These
results show a significant advantage for the VLF-RT method
for Ambient Occlusion type shading that requires integra-
tion of visibility over the hemisphere. For the Church scene
the CRT traces ∼1.3 Mrays/sec whereas the VLF-RT traces
∼2.4 Mrays/sec.

8. Conclusions

In this paper we have introduced a new ray-traversal
method, and illustrated its application in classical ray trac-
ing and applications of ray tracing to efficient ambient oc-
clusion shading. The method relies on a very fast lookup
to obtain a candidate set of polygons for any ray, and then
these polygons may be traversed by a BSP tree with parti-
tioning along only one axis. The results suggest that this
method performs better than the single ray CRT method
with a spatial median BSP tree for a variety of scenes.

Obviously the CRT implementation used is far from op-
timal. Performance can be significantly increased by using
a different splitting plane heuristic [17] and ray bundling
[37], and it would be interesting to see how the approach
presented here fares if these optimisations were introduced
to both algorithms; this is an area of ongoing research.

In this paper we have only discussed walkthrough appli-
cations. However, real-time ray tracing also demands the
possibility of dynamic changes to objects. This is easily
achievable with the VLF-RT method [24, 23]. When an
object is transformed it must be first deleted from the data
structure, then its geometry transformed and inserted back
into the data structure. Once these operations have been car-

ried out the ray tracing can be used to render the next frame
as usual. In order to delete an object from the VLF-RT data
structure, all PSFs are visited, and the object rasterised into
the tiling coordinate system as usual, except that in this case
the identifiers of the object are removed rather than added.
Then the polygon’s geometry is transformed, and reinserted
into both the tiling and BSP structures.

Acknowledgements

This research was funded by EPSRC GR/R13685/01.
Thanks to Ingo Wald and Carsten Benthin for helpful sug-
gestions on real time ray tracing.

References

[1] J. Amanatides. Ray tracing with cones. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Com-
puter graphics and interactive techniques, pages 129–135,
1984.

[2] A. Appel. Some techniques for shading machine renderings
of solids. AFIPS 1968 Spring Joint Computer Conference,
32:37–45, 1968.

[3] J. Arvo and D. Kirk. Fast ray tracing by ray classification.
In SIGGRAPH ’87: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques,
volume 21, pages 55–64, July 1987.

[4] C. Benthin, I. Wald, and P. Slusallek. A scalable approach to
interactive global illumination. Computer Graphics Forum
(Proc.of Eurographics), 22(3):621–630, 2003.

[5] E. Camahort, A. Lerios, and D. Fussell. Uniformly sam-
pled light fields. In Rendering Techniques ’98 (Proceedings
of Eurographics Rendering Workshop ’98), pages 117–130,
1998.

[6] N. A. Carr, J. D. Hall, and J. C. Hart. The ray en-
gine. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 37–46, 2002.

[7] Y. Chrysanthou, D. Cohen-Or, and D. Lischinki. Fast ap-
proximate quantitative visibility for complex scenes. In Pro-

ceedings of Computer Graphics International ’98 (CGI ’98),
pages 220–227, 1998.

[8] J. G. Cleary and G. Wyvill. Analysis of an algorithm for
fast ray tracing using uniform space subdivision. The Visual
Computer, 4(2):65–83, 1988.

[9] D. Cohen and A. Kaufman. Scan conversion algorithms for
linear and quadratic objects. In A. Kaufman, editor, Vol-
ume Visualization, pages 280–300. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1990.

[10] T. Foley and J. Sugerman. KD-tree acceleration structures
for a GPU raytracer. In HWWS ’05: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 15–22, 2005.

[11] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated
ray-tracing system. IEEE Computer Graphics & Applica-
tions, 6(4):16–26, Apr. 1986.

[12] A. S. Glassner. Space subdivision for fast ray tracing. IEEE
Computer Graphics & Applications, 4(10):15–22, 1984.

[13] A. S. Glassner. An Introduction to Ray tracing. Academic
Press, San Diego, CA, USA, Jan. 1989.

[14] J. Goldsmith and J. K. Salmon. Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics &
Applications, 7(5):14–20, May 1987.

[15] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. In SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive
techniques, pages 43–54, 1996.

[16] E. A. Haines and D. P. Greenberg. The light buffer: A
shadow-testing accelerator. IEEE Computer Graphics & Ap-
plications, 6(9):6–16, 1986.

[17] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis,
Czech Technical University in Prague, Prague, Apr. 2001.

[18] V. Havran, J. Bittner, and J. Žára. Ray tracing with rope
trees. In Proceedings of 13th Spring Conference on Com-
puter Graphics, pages 130–139, 1998.

[19] V. Havran, T. Kopal, J. Bittner, and J. Žára. Fast robust
bsp traversal algorithm for ray tracing. Journal of Graphics
Tools, 2(4):15–23, 1997.

[20] F. W. Jansen. Data structures for ray tracing. In Proceed-
ings of a workshop (Eurographics Seminars on Data struc-
tures for raster graphics), pages 57–73. Springer-Verlag,
Inc., NY, USA, 1986.

[21] M. R. Kaplan. Space-tracing: A constant time ray tracer. In
SIGGRAPH ’85 State of the Art in Image Synthesis seminar
notes, volume 19, pages 149–158, July 1985.

[22] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes.
In SIGGRAPH ’86: Proceedings of the 13th annual con-
ference on Computer graphics and interactive techniques,
volume 20, pages 269–278, NY, USA, 1986.

[23] P. Khanna, J. Mortensen, I. Yu, and M. Slater. Fast ray trac-
ing of scenes with unstructured motion. Technical report,
University College London, 2004.

[24] P. Khanna, J. Mortensen, I. Yu, and M. Slater. A visibility
field for dynamic ray tracing. Technical report, University
College London, 2004.

[25] B. Kwon, D. S. Kim, K.-Y. Chwa, and S. Y. Shin. Memory-
efficient ray classification for visibility operations. IEEE
Transactions on Visualization and Computer Graphics,
4(3):193–201, July 1998.

[26] H. Landis. Production-ready global illumination. In SIG-
GRAPH 2002 Course Notes, 2002.

[27] M. Levoy and P. Hanrahan. Light field rendering. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 31–42,
1996.

[28] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Ren-
dering complex scenes with memory-coherent ray tracing.
In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques,
pages 101–108, Aug. 1997.

[29] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray
tracing on programmable graphics hardware. ACM Trans-
actions on Graphics, 21(3):703–712, July 2002.

[30] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level
ray tracing algorithm. ACM Transactions on Graphics,
24(3):1176–1185, 2005.

[31] J. Shade, S. Gortler, L. wei He, and R. Szeliski. Layered
depth images. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive
techniques, pages 231–242, 1998.

[32] G. Simiakakis and A. M. Day. Five-dimensional adap-
tive subdivision for ray tracing. Computer Graphics Forum
(Proc.of Eurographics), 13(2):133–140, 1994.

[33] M. Slater. Constant time queries on uniformly distributed
points on a hemisphere. Journal of Graphics Tools, 7(1):33–
44, 2002.

[34] M. Slater, J. Mortensen, P. Khanna, and I. Yu. A virtual
light field approach to global illumination. In Proceedings of
Computer Graphics International (CGI 2004), pages 102–
109. IEEE Computer Society Press, June 16-19 2004.

[35] K. Sung and P. Shirley. Ray tracing with the bsp tree. In
D. Kirk, editor, Graphics Gems III, volume IBM version,
pages 271–274. Morgan Kaufmann Publishers, 1992.

[36] I. Wald. Realtime Ray Tracing and Interactive Global Illu-
mination. PhD thesis, Saarland University, 2004.

[37] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Inter-
active rendering with coherent ray tracing. In Computer
Graphics Forum (Proceedings of EUROGRAPHICS 2001),
volume 20, pages 153–164, 2001.

[38] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek.
Interactive global illumination using fast ray tracing. In
Rendering Techniques 2002 (Proceedings of the 13th Euro-
graphics workshop on Rendering), 2002.

[39] I. Wald, T. J. Purcell, J. Schmittler, C. Benthin, and
P. Slusallek. Realtime ray tracing and its use for interac-
tive global illumination. Eurographics 2003 STAR Report,
22(3), 2003.

[40] B. Walter, G. Drettakis, and S. Parker. Interactive rendering
using the render cache. In Rendering techniques ’99 (Pro-
ceedings of the 10th Eurographics Workshop on Rendering),
volume 10, pages 235–246, Jun 1999.

[41] G. Ward and M. Simmons. The holodeck ray cache: an inter-
active rendering system for global illumination in nondiffuse
environments. ACM Transactions on Graphics, 18(4):361–
368, 1999.

[42] T. Whitted. An improved illumination model for shaded dis-
play. Communications of the ACM, 23(6):343–349, 1980.

