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Abstract

Global illumination as described by the radiance and po-
tential equations is essentially a sampling problem. This
sampling has two elements: ‘where’ to sample and ‘how’
to sample. In this paper we propose an alternative method
to non-parametrically simplify the problem of ‘where’ in
the general case. We present a solid angle based uniform
sampling scheme with an efficient conservative cull of solid
angles not affecting the transfer of radiance between two
surfaces. This construction also provides a geometric area
bounds within which a surface can receive energy from an-
other along directions contained in the solid angle. The
technique can be used to illuminate a scene from a gen-
eral emitter, including incident light fields. The method has
several applications and advantages, with results showing
good sampling efficiency and speed.

1. Introduction

The illumination of a point depends on many factors.
The spatial and directional distribution of light across the
environment, visibility, geometric and material properties
of surfaces influence its illumination as described by the ra-
diance [14] and potential [21] equations. Finding a solution
to this transport problem requires efficient sampling and re-
construction of radiance.

Parametric methods of importance sampling use a priori
knowledge of the surfaces, materials and emission charac-
teristics of a scene to efficiently place samples for faster
convergence and low variance. Such approaches are how-
ever not always feasible – especially, when the domain does
not easily lend itself to a parametric definition (for exam-
ple, physically measured BRDFs or light fields). In such
situations, one resorts to sampling schemes that amongst
other approaches, attempt to progressively build a paramet-
ric model of the domain. In this paper, we consider uniform
sampling without any parametric knowledge of the domain.
Such blind sampling schemes are usually characterised by

long process times and high variance. We suggest an al-
ternative approach that performs a uniform sampling of di-
rections over a planar surface. With a stratification of di-
rections into solid angles, we are able to efficiently con-
duct a conservative cull of non-contributing solid angles for
significant speed-up and performance approaching that of
alternative parametric methods. This process not only pro-
vides a set of potentially contributing solid angles, but for
each solid angle also provides a geometric bounds within
which to sample the ‘source’ surface with directions con-
tained in the solid angle. We can thus benefit from visibility
coherence in sampling radiance in an area. In this paper
we have applied this approach to illumination computation
from idealised emitters and incident light fields, however it
has several applications beyond those presented here.

The remainder of this paper is organised as follows. In
Section 2, we briefly touch upon some previous work re-
lated to our method. Next, in Section 3, we discuss the mo-
tivation and foundations for our approach, with additional
discussions in Section 4. Implementation issues are high-
lighted in Section 5, and a simple implementation presented
and analysed in Section 6. Finally, we present our conclu-
sions and future directions of research in Section 7.

2 Previous work

Global illumination is a key component of realistic im-
age synthesis; the aim being to compute all incident light at
a point – not only directly from light-sources, but also by
inter-reflection via other surfaces in the scene. Adequately
sampling this incident radiance can be very computation-
ally expensive, and simplifications are often necessary to
contain this complexity. Ray-tracing [31] and radiosity [9]
place limitations on the range of scene materials thereby
simplifying sampling requirements. While several exten-
sions have been suggested to extend these methods by the
addition of a wider range of materials, they all have associ-
ated sampling costs. Amongst other methods, path-tracing
[14] and photon-mapping [13] present more complete solu-
tions to global illumination, allowing the representation and



sampling of a wide range of materials.
A popular and efficient approach to solving this sampling

problem is by resorting to Monte Carlo techniques. A cat-
egorisation of these techniques can be made on the distinc-
tion of ‘blind’ versus ‘informed’ approaches. The former
including methods of stratified and adaptive sampling by
sample rejection. The main disadvantage of such methods is
the significant computation needed to achieve convergence
and low variance. These fall within the category of vari-
ance reduction techniques termed importance sampling; the
goal of which is to direct sampling to regions of ‘high in-
terest’. ‘Informed’ sampling techniques use a priori knowl-
edge of the sampling domain to reduce the estimator’s vari-
ance. The most common approach to importance-sampling
uses a probability distribution function (PDF) that closely
approximates the domain to target sampling for low vari-
ance [3,22]. This however also necessitates the computation
of the inverse of its cumulative density function (CDF) (for
example [2, 17]) – which may not always be possible. Mul-
tiple importance sampling techniques [28] offer enhanced
sampling performance by considering a combination of sev-
eral estimators. Metropolis light transport [29] presents an
alternate, robust approach to sampling general scenes with
very good results. Importance re-sampling techniques re-
quire a PDF of the domain though they do not demand the
invertibility of its CDF [18, 26]. We refer the reader to [8]
for in-depth coverage of the subject. Our approach is an al-
ternative to many of these methods; allowing stratified uni-
form sampling by sample rejection within a directional and
spatial bounds by efficient, conservative solid angle culling.

A further sampling issue is related to whether the global
illumination solution emulates a continuous (such as [9, 13,
14]), or discrete [5, 24, 25] sampling of the environment.
While methods employing a discretised ray-space offer sev-
eral advantages, they can be prone to under-sampling and
aliasing. We believe that several such approaches can ben-
efit from a directional discretisation into solid angles rather
than into discrete ray-sets.

As a scheme to represent globally illuminated scenes,
the Light Field [19] and Lumigraph [10] provide an image-
based representation of radiance exiting a real or synthetic
scene. Subsequent to construction, the scene can be viewed
from a large set of view-points by simple ray-queries in a
4D data-set. Similarly, an incident light field [11, 20, 27]
represents incident illumination on a scene captured from
the real world or computed from a synthetic one – an ap-
proach initially suggested in [12]. While [11] used a lumi-
graph, both [20] and [27] employ a sphere-plane parameter-
isation [6] to encode complex incident illumination and sub-
sequently illuminate a synthetic scene or relight a light field.
Our technique allows the use of similar sphere-plane inci-
dent light fields to efficiently illuminate a synthetic scene.
Image-based lighting can also be performed efficiently via

the use of environment maps [1, 4], though we do not ini-
tially consider these methods due to their approximate rep-
resentation of the flow of light.

3 Determining a bounds for sampling

Consider the local flow of potential [21] from a surface S
along directions in a solid angle ω. This potential is defined
over a subset of the visible environment of S corresponding
to directions in ω. The 5-dimensional domain {x, y, z, θ, φ}
possibly in receipt of this potential is described by the con-
volution S ⊗ ω. To find the actual regions in receipt of this
potential, we need to resolve visibility from S along ω.

Both these steps – constructing a practical realisation of
the convolution S ⊗ ω, and sampling for visibility within it
are complex, compute-intensive tasks. Rather than compute
S ⊗ ω in 5-dimensions, we approximate it in 3-dimensions
{x, y, z}. The solution of visibility in S ⊗ ω can also be
avoided initially by considering the approximated S ⊗ ω as
a bounds for ‘possible potential’. This 3-dimensional vol-
ume is considered against a single surface R, reducing it to a
2-dimensional area on it that receives can ‘possibly’ receive
potential from S along ω. We obtain this area from a pro-
jected minkowski sum as described in the following section.
Given this bounds, we solve for visibility and sample radi-
ance from S to the specified area of R along directions in
ω. By considering a discretisation of the hemisphere over R
into a set of solid angles {ωi} we can thus gather radiance
from S, discarding non-contributing solid-angles. In this
sampling, S can have an arbitrary radiance representation
such as any BRDF or incident light-field representation. A
simple sampling scheme using this approach is discussed in
section 6.

3.1 The Projected Minkowski Sum

In general, the minkowski sum [7] of convex sets A and
B is a convex set defined as:

A⊕B = {a + b : a ∈ A, b ∈ B} (1)

Minkowski sums also have the following properties [7]:

A⊕B = B⊕A , A⊕(B∪C) = (A⊕B)∪(A⊕C) (2)

With a polygonal source of potential S, and solid an-
gle ω defined as a spherical triangle, we construct their
minkowski sum S ⊕ ω. The vertices of spherical triangle
ω lie on the unit sphere in {θ, φ}, but if we consider the
canonical sphere centred at the origin, also have positions
in world-coordinates {x, y, z}. Though we have described
ω as a spherical triangle, we approximate it here by a pla-
nar triangular polygon Bω that shares its vertices. The error
in this approximation is proportional to the length of the



‘spherical edges’ of ω. With large solid angles, it may be
necessary to construct Bω with additional vertices for a bet-
ter approximation. For small solid angles however, the error
is negligible and can be ignored – we find this as the case for
a subdivision of the hemisphere into 64 or more ‘uniform’
solid angles.

We initiate the construction of the minkowski sum in the
{u, v, n} coordinate system. This space is a simple rotation
from the canonical {x, y, z} space such that the y-axis is
rotated into the n-axis lying along direction Θω – the cen-
troid direction in ω. Let this rotation be defined by matrix
MΘω

. Also, as we have assumed ω ≈ Bω, Bω can also
be transformed into {u, v, n} coordinates by rotation MΘω

.
Let these rotated polygons be termed S′ and B′

ω.
We now ignore (but do not discard) the n-coordinate of

polygons S′ and B′
ω, and consider their polygon-edges on

the uv plane. If these edges are collectively sorted by in-
creasing slope, with the terminating vertex of each edge
stored successively, we obtain a polygon equivalent to the
minkowski sum S′⊕B′

ω on the uv-plane (see figure 1). For
each vertex, we also store a flag to indicate if it originated
from S′ or B′

ω. Finally, we rotate S′⊕B′
ω back into (x, y, z)

coordinates by M−1
Θω

to obtain S ⊕Bω.

Bω

S

S   Bω
S

Sorted edges:

u

v

Figure 1. S′, B′
ω and their minkowski sum.

Given polygons S and S ⊕ Bω we can now construct
S ⊕ ω which is essentially a volume in {x, y, z} coordi-
nates. We iterate through the vertices of S ⊕ Bω till we
have found a vertex that originally belonged to S and an-
other that belonged to Bω – let the most recent of these ver-
tices encountered be referred to as vS and vω respectively.
The boundaries of volume S ⊕ ω can then be constructed
by the ray with origin at vS and direction along (vS + vω).
Additional boundaries of the volume are found by updat-
ing vS or vω as each subsequent vertex is encountered in
S ⊕Bω. The total number of such boundary rays is equiva-
lent to the number of vertices of S and Bω. The rays create
a pyramidical volume enclosed at its apex by S. Only re-
gions of the scene within the volume S ⊕ ω can possibly
receive potential from S along directions in ω.

To further simplify computation, we consider a single
surface R, and explore the possible transfer of energy be-
tween surfaces S and R along directions in ω. We intersect
the bounding rays of S ⊕ ω with the plane of R. This gives

us a 2-dimensional region on R, representing the only por-
tion of its surface that can possibly receive energy directly
from S along directions in ω. We refer to this region as the
Projected Minkowski Sum of S on R through ω and denote
it by (S ⊕ ω)R (see figure 2). Given its simple geometric
construction, (S ⊕ ω)R can be computed quite efficiently.
Depending on scene geometry, many regions (S ⊕ ω)R are
not valid – either as a result of not allowing a valid clipped
Bω (see section 5), or by computing regions that do not
overlap R. All these solid angles need not be sampled.

S

R (S  ω)R

ω

Figure 2. The Projected Minkowski Sum of S on R
through solid angle ω.

Rather than limiting S to being a convex polygon, we can
also consider more complex geometry. Consider the earlier
defined (u, v, n) coordinate system. In transformation ma-
trix MΘω

, we also add a translation such that the n-axis is
through the centre of S and the whole of S lies just above
the uv-plane. We project the geometry of S orthographi-
cally along the n-axis onto this uv-plane. An impostor of
S, S̃ would then be constructed as the planar convex hull
of this projected geometry. Using S̃ in place of S, we can
obtain a conservative approximation to (S⊕ω)R. A similar
impostor could also be constructed and used for R.

4 Hierarchical evaluation and sampling

We have considered a solid angle to be defined by a
spherical triangle. A related problem then is of how to par-
tition the canonical sphere into spherical triangles such that
all triangles are of a uniform area and shape. This is a non-
trivial problem for a partition comprising more than a small
number of triangles. We instead consider a partitioning
scheme which though non-uniform has a useful property of
affording very fast, constant-time query for an arbitrary di-
rection, returning the solid angle it lies in. This method un-
like [23] does not require any additional lookup. The non-
uniformity can be addressed during sampling by drawing
additional samples or applying appropriate weights. This



scheme is presented in Appendix A, although any similar
method could be considered.

Rather than have a fixed solid angle discretisation, it is
possible to construct a hierarchy of solid angle partitions
so that adaptive schemes may be considered. For example,
with the suggested discretisation scheme (Appendix A), we
can decompose a solid angle into any number of child solid
angles by an appropriate choice of n (for a total of 8n2 solid
angles). Starting with n = 1, we divide each solid angle
into four child- solid angles by doubling n for each succes-
sive division. With n = 1, 2, 4, 8, 16 . . . we obtain a parti-
tion of the sphere into 8, 32, 128, 512, 2048 . . . solid angles,
with a solid angle at level l partitioned into four solid an-
gles at level l + 1. While a direction Θ can be queried at
any discretisation in constant time, we can also maintain a
quad-tree data structure to explicitly store and process this
hierarchical solid angle subdivision.

If we consider a subdivision of solid angle ω into a set of
non-overlapping sub solid angles {ωi}, we have from (2):

S ⊕ ω = S ⊕ (
⋃

ωi) =
⋃

(S ⊕ ωi) (3)

Further, considering the intercept of convex regions S ⊕ ω
and

⋃
(S ⊕ ωi) on the plane of surface R, we have:

(S ⊕ ω)R =
⋃

(S ⊕ ωi)R where {ωi} covers ω (4)

This is illustrated in figure 3, showing the projected
minkowski sum for a solid angle ω and its four sub- solid
angles ωi. Equation (4) allows for elegant adaptive sam-

R

ω

S

Figure 3. Projected Minkowski sums of S on
R through ω and its four sub- solid angles.

pling schemes. Radiance could be sampled initially from a
large solid angle, and if further refinement is deemed nec-
essary, its sub- solid angles can be sampled in turn. This
not only enforces stratified sampling, but also saves com-
putation as the projected minkowski sums for the sub- solid
angles define smaller regions on R for possible transfer. In

(a) ‘beams’ - lit by an incident
light field; 2 light bounces (42
polygons – 107,984 radiance ele-
ments)

(b) ‘classroom’ - 4 diffuse emit-
ters; locally illuminated (3024
polygons – 1,564,342 radiance el-
ements)

Figure 4. Test scenes used for comparison.

this approach, if the original samples were chosen equally
distributed amongst the solid angle’s four child- solid an-
gles, they can be reused later without causing bias.

5 Implementation issues

When computing the projected minkowski sum, care
needs to be taken if the solid angle ω is partially back-facing
either S or R. Clipping ω’s polygonal approximation Bω

against the planes of S and R such that we only consider a
valid solid angle for the transfer solves this issue. A further
problem arises when projecting the minkowski sum onto R
in cases where the boundary rays of S⊕ω are parallel to R’s
plane. Deviating the ray into the plane by an infinitesimal
amount removes this singularity.

If a valid projected minkowski sum can be computed –
that is, if a valid transfer of potential possibly exists between
S and R via ω, we determine the region on R we need to
sample from. We do this in two-steps – first with an axis-
aligned bounding box overlap check, and if necessary a test
against the polygonal boundary of (S ⊕ ω)R. It should also
be noted that a significant portion of the algorithms allow
for very efficient SIMD implementation – we are however
yet to aggressively pursue this.

6 Radiance sampling results

We now consider our method in two scenarios – illu-
minating a synthetic scene with an incident light field, and
comparing its performance for an idealised emitter against
parametric importance sampling with a PDF.

Similar to [20], we test our scene with a synthetically
generated 4D incident light field, though we could easily
substitute this for a real one captured using existing methods
[20, 27]. For our tests, we consider two scenes, a ‘beams’
scene comprising of five diagonal beams in a ‘Cornell-type’



room, and a ‘classroom’ scene with more complex geome-
try and four light sources (see figure 4). We use a light
field parameterisation of Li(θ, φ, x, y), with incident radi-
ance stored at each 4-tuple. In our incident light fields, we
consider discrete θ and φ similar to that used for the cen-
troids of our hemispherical partition scheme (see Appendix
A). When querying irradiance along a ray, we determine
the solid angle the ray’s direction lies in and its 3-connected
neighbours and query an interpolated radiance from the cor-
responding (x, y) points. Using an incident light field cap-
tured from the ‘real’ world would call for a pre-process
stage of depth-correction [10] to re-project the incident light
field onto the scene geometry used as its imposter – this is
similar to the method applied in [27]. All propagation times
were gathered on an Intel Core2 2.66Ghz processor in Win-
dows XP with the single-threaded application given ‘high’
scheduling priority.

We gather radiance values on radiance-maps applied
to all surfaces of the scene in a breadth-first computa-
tion. Radiance-maps comprised a total of 107,984 radiance
cells for the ‘beams’ scene and 1,564,342 radiance cells
for the ‘classroom’ scene. The method uses a fixed non-
hierarchical spherical discretisation into solid angles {ωi}
to sample each emitter (S) in turn. Each ωi is considered
and (S ⊕ ωi)R computed. Uniformly distributed directions
within −ωi are generated with low-discrepancy Halton se-
quences [15] and sampled from the region of R demarcated
by (S⊕ωi)R. Rays that do not subsequently intersect S (as
(S⊕ωi)R is conservative) are discarded. Similar to [30], we
use SSE 4-ray bundles – both with and without a BSP tree
for the ‘classroom’ and ‘beams’ scenes respectively. The
decision not to use a BSP tree for the latter was due to its
low polygon count causing the BSP tree to form a bottle-
neck. Figure 5 shows the results obtained on illuminating
the scenes with synthetic incident light fields. The time
needed to locally illuminate the scenes from the incident
light fields was near constant (at 36.85 seconds and 51.83
minutes for figures 5(a) and 5(b)), irrespective of the resolu-
tion of light-field used. This was mainly due to the coherent
memory access and area based sampling of our method.

We consider a more intelligent scheme that first con-
siders the radiance from the light field for a given (θ, φ)
and disables radiance transfer for the corresponding sets of
solid angles if the radiance is near-zero. We get significant
improvement in speed depending on the complexity of the
light field radiance (20.39 seconds and 10.01 minutes for
figures 5(a) and 5(b) respectively), with identical results.
As part of ongoing research, we are considered storing the
sphere-plane parameterised light field in a hierarchical rep-
resentation that can be sampled adaptively.

We now compare our method against a PDF based
importance-sampling scheme and naı̈ve uniform sampling
of diffuse emitters. This scenario is perhaps the simplest for

(a) Incident light field with a ‘ra-
dial’ emittance – 20.39 seconds

(b) 4 incident light fields, each en-
coding a spotlight – 10.01 minutes

Figure 5. Illumination from incident light
fields (4096 solid angles, ×4 rays samples)

importance-sampling with a very easy to sample and com-
pute PDF – and the worst case for our method. However,
we are interested in seeing how our technique fares as a
general sampling strategy against importance-sampling and
naı̈ve, uniform sampling. This naı̈ve scheme selects uni-
formly distributed directions in a spherical triangulation of
the hemisphere above a point as per [16]. For each radi-
ance cell on R, rays are cast to find and intersect emitters,
with appropriate radiance added if the ray is unoccluded to
any emitter. As expected, this approach is very compute-
intensive and is considered mainly as a ‘sanity-check’.

Next, we consider PDF based importance-sampling of
emitter(s) S from R. Uniformly distributed points within
a stratification of S are sampled from uniformly distributed
points in radiance cells on R. These uniform samples are
drawn from four Halton sequences [15]. Stratification of S
produced only minor sampling improvement, though com-
putation time saved when using a BSP-tree for visibility
acceleration was significant (due to ray-bundle coherence
[30]). In the ‘classroom’ scene, each of the light sources
was sampled in turn to keep the comparison like-for-like.

(a) ‘beams’ (b) ‘classroom’ floor

Figure 6. ‘True’ results with diffuse emitters.

Finally, as before, a brute-force (non-adaptive) imple-



(a) 4096 solid angles ×4 rays
(36.85 seconds, SNR 84.2dB)

(b) 4096 solid angles ×8 rays
(70.80 seconds, SNR 88.6dB)

(c) 8x8 stratification ×8 rays
(29.95 seconds, SNR 93.8dB)

(d) 8x8 stratification ×16 rays
(60.02 seconds, SNR 98.3dB)

Figure 7. ‘beams’ error (×104) – top-row our
method, bottom-row importance-sampling.

mentation of projected minkowski sums is considered. This
method again uses a fixed spherical discretisation into solid
angles, evaluating and sampling all solid angles sequen-
tially as necessary. Results are compared against a ‘true’
converged solution (figure 6). Sampling parameters for the
schemes were selected such that results were suitably close
to the ‘true’ solutions to allow meaningful comparison, all
other parameters were unchanged. Results obtained were
subtracted from those of the ‘true’ solution as raw float
RGB images, with the error scaled ×104 for display to lie
in a 0 . . . 65◦ ‘temperature’ range (coloured navy-blue to
brown) in Matlab. These error images and their signal-to-
noise ratios are presented in figure 7.

Details of propagation time for different settings of im-
portance sampling and our approach are listed in figure 7.
As expected with PDF based importance sampling, sur-
faces unoccluded from the light sources converge faster, and
have negligible variance and bias with the importance sam-
pling scheme. However, partially occluded regions would
continue to have error which may be considered as under-
sampling or bias. Our method has quite different results;
there is under-sampling noise on all surfaces. This is how-
ever quite low for the given computation time for a blind
sampling scheme (note the scale of ×104 applied for dis-
play purposes to the error in figure 7). Visually, albeit sub-
jective, we could not differentiate between the four original
images corresponding to figure 7. Both the schemes em-

(a) 1024 solid angles ×8 rays
(25.96 minutes, SNR 49.5dB)

(b) 4096 solid angles ×4 rays
(49.58 minutes, SNR 53.6dB)

(c) 8x8 stratification ×8 rays
(32.89 minutes, SNR 54.2dB)

(d) 8x8 stratification×12 rays
(45.89 minutes, SNR 55.9dB)

Figure 8. ‘classroom’ floor error (×104) –
top-row our method, bottom-row importance-
sampling.

ploy rejection-sampling – PDF based importance sampling
rejecting rays occluded to S, while our approach also re-
jected rays within ω that did not terminate on S (again, as
(S⊕ωi)R is conservative). The naı̈ve scheme for error close
to that of figure 7(a) took approximately 115× the compu-
tation time of our approach.

Given the results from the ‘beams’ scene, while gath-
ering radiance for the whole of the ‘classroom’ scene, we
decided to concentrate only on the floor of the ‘classroom’
(see figures 4(b) and 6(b)) as it presents significant varia-
tion in emitter occlusion. The propagation time from the
four emitters, along with error and SNR of the floor are
detailed in figure 8. We once again note a similar distri-
bution of noise for both approaches as we had encountered
in the ‘beams’ scene. For similar propagation times, our
scheme had more overall under-sampling noise whereas this
was concentrated in the penumbras with importance sam-
pling. Naı̈ve sampling equivalent to that of figure 8(b) took
1341 minutes – roughly 27× the computation time of our
method. We believe our approach works well for a gen-
eral, non-parametric approach – with noise though slightly
higher than that for PDF based importance sampling, being
distributed equally throughout the radiance map rather than
being concentrated within penumbras.



7 Conclusions

In this paper we have presented an alternative to para-
metric methods to sample a general surface. The primary
aim of our research was to reconsider the flow of radiance
and potential between surfaces in a novel manner, combin-
ing the processes of ‘shoot’ and ‘gather’ to develop alterna-
tive sampling strategies. As illustrated by the results in this
paper, our method performs strongly in sampling radiance
from incident light fields and also for diffuse emitters – al-
beit with increased variance. Whereas other sampling tech-
niques may out-perform our method in specific instances,
we believe our approach has advantage in the general case.
Further, we do not claim our approach is applicable in all
scenarios – especially since many existing methods follow
a per-point depth-first particle tracing. It is possible to re-
consider some of these with our approach, and we believe
our method has significant potential in these techniques.

The technique can be extended to sample a large set of
materials, BRDFs and image-based representations for a
full global-illumination solution. As mentioned in Section
4, we are extending the approach to adaptive sampling and
alternative sampling strategies. These are being addressed
as part of ongoing research and current results from that
work show significant promise. Our approach also offers
possibilities in other areas of computer graphics such as
from-region visibility culling and ambient-occlusion shad-
ing – we are investigating several of these.
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[8] P. Dutré;, H. W. Jensen, J. Arvo, K. Bala, P. Bekaert,
S. Marschner, and M. Pharr. State of the art in monte carlo
global illumination. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Course Notes, New York, NY, USA, 2004. ACM Press.

[9] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Bat-
taile. Modeling the interaction of light between diffuse sur-
faces. In SIGGRAPH ’84: Proceedings of the 11th an-
nual conference on Computer graphics and interactive tech-
niques, pages 213–222, New York, NY, USA, 1984. ACM
Press.

[10] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. In SIGGRAPH ’96: Proceedings of the 23rd
annual conference on Computer graphics and interactive
techniques, pages 43–54, New York, NY, USA, 1996. ACM
Press.

[11] W. Heidrich, J. Kautz, P. Slusallek, and H.-P. Seidel. Canned
lightsources. In Rendering Techniques, pages 293–300,
1998.

[12] W. Heidrich, H. P. A. Lensch, M. Cohen, and H.-P. Sei-
del. Light field techniques for reflections and refractions.
In Rendering Techniques ’99: Proceedings of the 10th Eu-
rographics Workshop on Rendering (EGRW-99), pages 187–
196, Granada, Spain, 1999. Springer.

[13] H. W. Jensen. Global illumination using photon maps. In
Proceedings of the eurographics workshop on Rendering
techniques ’96, pages 21–30, London, UK, 1996. Springer-
Verlag.

[14] J. T. Kajiya. The rendering equation. In SIGGRAPH ’86:
Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, pages 143–150, New
York, NY, USA, 1986. ACM Press.

[15] A. Keller. The fast calculation of form factors using low
discrepancy sequences. In Proceedings of the Spring Con-
ference on Computer Graphics (SCCG ’96), pages 195–204,
Bratislava, Slovakia, 1996. Comenius University Press.

[16] D. Kirk and J. Arvo. Unbiased sampling techniques for
image synthesis. In SIGGRAPH ’91: Proceedings of the
18th annual conference on Computer graphics and interac-
tive techniques, pages 153–156, New York, NY, USA, 1991.
ACM Press.

[17] E. P. Lafortune and Y. D. Willems. Using the modified
phong BRDF for physically based rendering. Technical re-
port, Katholieke Universiteit Leuven, Department of Com-
puter Science, K.U.Leuven, 1994.

[18] E. P. Lafortune and Y. D. Willems. Reducing the Number of
Shadow Rays in Bidirectional Path Tracing. In V. Skala, edi-
tor, Proceedings of the Winter School of Computer Graphics
and CAD Systems ’95, pages 384–392, Plzen, Czech Repub-
lic, 1995. University of West Bohemia.



[19] M. Levoy and P. Hanrahan. Light field rendering. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 31–42,
New York, NY, USA, 1996. ACM Press.

[20] V. Masselus, P. Peers, P. Dutré, and Y. D. Willems. Relight-
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Appendix A Partitioning the sphere

Consider the positive octant of the canonical unit sphere.
In this octant, the sphere lies entirely above the x+y+z = 1
plane. The equilateral triangle with vertices v0 = (1, 0, 0),
v1 = (0, 1, 0) and v2 = (0, 0, 1) touches the sphere and lies
on this plane (see figure A). We divide each of its edges
(−−→v0v1,

−−→v0v2,
−−→v1v2) into n equal units. Consider edge −−→v1v2;

we connect subdivisions on the other two edges (−−→v0v1 and
−−→v0v2) forming line segments parallel to −−→v1v2. If we repeat

this process for the remaining two edges, we get a tessel-
lation of the original triangle into n2 triangles. Projecting
vertices of this triangulation onto the surface of the sphere
(by normalisation), we get a partition of the positive octant
of the sphere. Each spherical triangle then represents a solid
angle ω, with its centroid being its associated (central) di-
rection Θω. Individual triangles in the triangulation are as-
signed unique identifiers in the order depicted in figure A.
To query an arbitrary direction Θ in a grid of n × n solid
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(a) Solid angle order (n = 4) (b) Projection to sphere (n = 8)

Figure A. Discretisation of the sphere into
solid angles.

angles in the positive octant, we find pΘ, the intersect of the
unit vector along Θ on plane x + y + z = 1. We then find
the intervals of −−→v0v1 and −−→v1v2 that pΘ lies in. This is simply
identifying which of the n x, z intervals pΘ lies in. pΘ is
then limited to a parallelogram defined by these intercepts
– this is the region we would have been obtained if paral-
lel divisions of the original triangle were only constructed
along−−→v1v2 and−−→v0v1. Isolating which triangle pΘ belongs to
requires testing if it lies above or below the diagonal of this
parallelogram. Θ is thus associated to ξΘ, a unique solid
angle identifier – see (Pseudocode A) below.

pΘ = intersect of Θ on x + y + z=1 (Pseudocode A)
x=n pΘx

, z = n pΘz
//scale from [0, 1] to [0, n]

xi =bxc, zi =bzc //get floor() of x, z intercepts
ξΘ =zi(2 n−zi)+2xi //parallelogram cell x, z

diag=(x−xi)(z−zi) //parallelogram diagonal offset
if (diag>1) ξΘ++ // increment if above diagonal

The discretisation of the positive octant is mirrored
across to the other octants. This produces 8n2 solid angles
over the sphere – the centroid of each solid angle is stored
as its representative direction. By appropriately mapping
an arbitrary direction Θ to the positive octant along with a
suitable offset for ξΘ, we use the above lookup to determine
which solid angle it lies in within constant time without any
additional lookup.


