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ABSTRACT

To infer three-dimensional models from two-dimensional
sketches, most of the existent research focuses on image sim-
ilarity, requiring a minimum of drawing skills, which is often
beyond regular user’s capability. This paper proposes to learn
the mapping from the user’s sketch into the three dimensional
model by considering the sketch as a set of gestures contain-
ing information that denotes the user’s own style of sketching.
The system learns from the specific user and provides a per-
sonalised inference for future sketches. A study is conducted
with four representative users of different skills to consider
the diversity on sketching styles over a set of three 3D prim-
itive figures. The implemented system is validated by three
representative users, demonstrating that the system learns the
users’ style independently of their skills.
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INTRODUCTION

Inferring a three-dimensional (3D) model from a two-
dimensional (2D) sketch is a complicated task, given that
there is no linear relation between them as the depth informa-
tion from the three-dimensional figure has been lost during
the projection to a plane.

Sketch-based modelling software is typically made with
heuristics and established rules to use it. Artists must learn
and obey such rules which may be difficult to follow without
certain level of artistic skills. Moreover, some of these solu-
tions move away from the mapping between 2D sketches and
3D models, providing tools to allow rotation and scaling of
the sketch in the three dimensions. Our problem of interest
focuses only in 2D sketches as the source, similar to those
created with pen and paper.

Considering the information expressed in a sketch, we must
take in mind that they reveal users’ conception and do not
portray reality. More over, the information expressed differs
from novel and experts users [15]. Our assumption is that
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the specific information that users include in their sketches
can be used to infer their own sketching style, denoting the
sketched 3D model including its rotation and scaling, without
considering visual similarity between the 2D sketch and the
3D rendered model.

Learning from the user’s sketching gestures instead of consid-
ering the visual similarity between the sketch and the desired
drawing is a neglected alternative, adaptive and personalised
to any artistic skill. This method does not claim to generate
better models than image similarity approaches, but suggests
instead to acknowledge the difference on users’ skills and to
consider adapting to them. In this sense, our approach is not
intended for a specific group of users (e.g. artists, designers)
but for everyone. Moreover, the aim is not to produce com-
plex models but to study on the learning of mapping between
2D sketches and 3D models.

For practical reasons, this paper limits the figures set to three
3D primitives: cuboid, cylinder and spheroid, providing the
following advantages:

o Itis expected that any user has visual experience with these
figures in a variety of rotations and scaling poses.

e These three primitives cover a big range of characteristics
from a wider set of figures by including both straight and
curved lines and faces.

e These three primitives provide both visual similarities and
differences between them. For example, cuboids and cylin-
ders share some characteristics, such as right angles and
straight lines, while spheroids and cylinders share curve
lines. In the case of cuboids and spheroids, there are dif-
ferences such as the first having right angles and straight
lines, while the second has only curved lines.

HUMAN VISUAL PERCEPTION ON 2D AND 3D

For human sight sense, the difference between two-
dimensional and three-dimensional images is given by the
depth perception, which provides us with the ability as ob-
servers to discriminate the distance of objects and identify
the three-dimensional shape of surfaces [5].

Stereo vision and movement through a scene give us a sense
of depth which during our development is confirmed by touch
sense. These experiences provide us with information which
we turn into assumptions when we are unable to perform con-
firmation such as touching or moving around in order to anal-
yse the three-dimensional environment exhaustively. This
means that human visual perception compensates its limita-
tions with experience. Something not seen before is fuzzy
and we can do nothing but infer what is the most probably re-
ality of what we see [2]. This is the case of 3D shapes that are



Figure 1: Thee-dimensional figures projecting into the same
two-dimensional image. Figure from Lipson et al [8].

Figure 2: Necker cube, representing ambiguous projection of
more than one cube pose.

hidden to sight in static images: how is the back of a figure
that we can only see from the front?

Todd studied how observers were capable of perceiving met-
ric structures in 3D shapes [13], obtaining as result constant
failures and discrepancies increased as the viewing distance
and orientation were varied. This means that even when we
have experienced a simple primitive figure such as a cuboid,
we can be confused when it is rotated, scaled and translated
to a strange pose which we are not used to. More over, even
when we see a known two-dimensional image as a projection
of a three-dimensional shape, we tend to assume the most ba-
sic possible pose of this figure. The reality is that the loss of
information during the projection, causes that multiple three-
dimensional shapes share the same two-dimensional projec-
tion [8] as shown in figure 1. However, even when our brain
tries to infer the more basic 3D model, we can be confused
when there is more than one 3D object and pose to map to
this projection, like the well known Necker Cube [Fig 2].

RELATED WORK

Sketch based interfaces provide a natural method to inter-
act between the user and the computer based in strokes per-
formed directly on a touch screen or a tablet, emulating the
process performed by pencil and paper. Popular uses of this
interface are to sketch two-dimensional drawings and three-
dimensional models, known as Sketch Based Interface Mod-
elling (SBIM). In the case of the three-dimensional mod-
elling, the more natural but challenging method is to map
from two-dimensional sketches into three-dimensional mod-
els.

There are complex tools which allow the user to explicitly
provide much information to the system to obtain the required
model, obtaining the best final results but requiring high artis-
tic skills from the user. On the other hand, there are systems

that provide a more simplistic interface to the user, expecting
less input and inferring what the most probable model being
drawn would be, sometimes obtaining fuzzy results, but be-
ing useful to a wider set of users. Frequently, these simplistic
systems either provide tools to correct the results or expect
the corrections to be made in an external tool.

Two interesting surveys [10] [3], include the use, research,
and the most representative examples on this topic.

Sketch Acquisition

The modelling process starts with the sketch acquisition, usu-
ally as a set of two-dimensional points (x,y), often including a
value as the number of point (x,y,n) to define the order on how
the sketch was drawn. This can be improved by replacing the
number of point n by the time (x,y,#) to allow velocity analy-
sis. Depending on the hardware capabilities, more advanced
approaches include touch pressure and pen angle. The ob-
tained raw data can be resampled and smoothed to overcome
data capture constrains given by the used hardware (e.g. cap-
ture rate), then fitted to remove small errors and normalised
to finally process the interpretation.

Resampling and Smoothing

Depending on the system, in case that the velocity of sketch-
ing is not required, it is recommended to resample to smooth
the sketch strokes. This action ensures that a line is formed
by equidistant points, which smooths the line. This means
some closer points are removed and other points are inserted
by interpolation to fill large gaps.

Fitting

To have a set of points representing a sketch could be consid-
ered as generic data with no much information. This set of
points is usually fitted into a set of lines, process known as
line segmentation. Depending on the needs, the segmentation
may be limited only to straight lines [18] or include arcs and
curve lines [17].

Feature Computation

Although there exist powerful feature methods based on im-
age similarity, such as patch descriptors [19], some of them
optimised for image matching and 3D reconstruction [16],
these methods are measuring how similar the user sketch is to
the final image, whether it is a reconstructed image or pulled
from a database, which at the end is actually depending on
the artistic skills of the user.

Long et al [9] tried to compare similitude between pen ges-
tures instead of the sketch visualization using numerical cal-
culated features (e.g. curviness, angles and density). How-
ever the study is limited to compare with human perception
in the visual similitude field, and limited to simple strokes
and not yet 2D geometric figures or 3D models.

A short study performed by Pastel et al [11] intended to inves-
tigate the information contained in simple gestures under the
constrain of limited computation power as in PDA devices.
They based their idea in basic information on a single slash,
comparing it to a vector, as commonly used in mathematics
fields, including in a single line both magnitude and direc-
tion. Although this idea seems correct, it is very difficult for



not high skilled users to perfectly draw a line in the desired
direction and size.

Sketch Interpretation

Interpretation of the captured sketch can be done by mapping
it to an existent model (i.e. image retrieval) or by reconstruct-
ing the model.

Image retrieval

Also known as Evocative Systems, these systems act as
search engines for 3D models, accepting sketches as input.
There are two main types: Iconic and Template retrieval sys-
tems.

The iconic systems [7], use evocative gestures, to define 3D
primitive figures. For example, three linear strokes meeting at
a point are interpreted as a box. The set of evocative gestures
needs to be learned by the user, but once done, they are easy
to use. Unfortunately the set of obtained figures is limited,
in general to a mapping of one gesture to one model in an
arbitrary pose.

Template retrieval systems [4] allow more complex figures,
used as templates stored into a database. The sketch is in-
terpreted as a set of objects and the more similar models are
pulled from database. Their principal advantage is that the re-
sulting models are complex, easily obtained, but with limited
scope based on the content of the model database.

Model reconstruction

Freehand systems [1] have possibly, the most striking mod-
elling results because they admit any kind of stroke from the
user without limitation, interpreting smooth line drawings as
3D contours. However, they have two important disadvan-
tages: the drawing skills required are very high and the use
of these applications usually requires the user to learn a com-
plicated set of gestures and commands in order to let the ap-
plication know how the user wants to interpret or manipulate
the given strokes.

3D Scaffolding and Sculpting is similar to analogue art. It
intents to obtain complex figures based on 3D modification
of initial simple 3D models, either by removing or adding
volume to the figure [12, 6].

The related work here presented either makes use of image
similarity methods, or provide tools for sketching in 3D rather
than 2D, therefore not learning the mapping of 2D sketches
to 3D models.

USER STUDY

A study has been carried out to have a sense of their different
sketching styles for the three 3D primitive figures. A group
of four representative users was selected, in a range of age
from 14 to 35 years old. Two of them had not previous artis-
tic preparation, one had amateur drawing experience and one
with academic artistic background. A Lenovo x200 tablet
with digitizer pen was used for the experiment.

Users were presented with 30 models in random order and
asked to sketch each figure at a time by using three different
markers: one for figurative lines, another for shadow lines and

one more for geometric helpers [Fig. 3]. The use of markers
for shadow and geometric helpers was optional.

,shadow line

Figurative line geometric

helper line

Figure 3: Thee line types for sketching during preliminary
study.

User Study Results
From observation over the collected data, the following im-
portant facts were identified:

e The real size of the figure is not always important but the
relative scale between each dimension is.

e It is not important how bright or dark the figures are, but
how brighter or darker the faces in a single figure are in
relation to the other faces.

e The same user may not be consistent on the use of shadows.

e The geometrical helper line was only used by one user.
Therefore, it was decided not to include it in the experi-
ment.

METHODOLOGY

Figure 4 shows the overall process of training, starting with
a displayed model, which is sketched by the user, then the
sketch is automatically segmented into lines and features are

computed to train the system.
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Figure 4: Overall training process.

Data Capture

The system is trained by asking the user to sketch the dis-
played 3D rendered model on screen, generated randomly,
choosing from the three available primitives, with aleatory
values from O to 1 (as a normalisation of 0-359 degrees) for
each of the three dimensional rotations. In the same way, the
three dimensional scaling factors were chosen from a random
value between 0.5 and 1. The models were rendered as solid
bodies with diffuse illumination to help the user realize its
volume. Figures are displayed in green colour, which differs
from the markers to sketch (blue and grey) to avoid user ten-
dency to sketch color similarity.



Data structures

Sketches, Strokes and Points. The user’s sketch is the two-
dimensional drawing representing the asked figure and is con-
formed of one or more strokes. A stroke is the set of lines
drawn without removing the pen from the screen. The stroke
can be of any size and form, it can include both straight lines
and curve lines, as well as corners and arcs. Each stroke is
composed of a set of points in the two-dimensional plane.

Line Segmentation

Due to the fact that this project is not relaying on visual sim-
ilarity, having the training data as a set of captured points
by themselves does not say much. Instead, the points are
grouped and connected as a set of lines which provide more
valuable information on the gestures describing the user’s
sketching style for each primitive and its pose. This pro-
cedure is divided in two main steps: resampling and corner
finding. The implemented segmentation algorithm is Short-
Straw (aka iStraw) [17], a simple and effective corner finder
for polylines. This algorithm is easy to implement and very
fast, which allows it to be integrated into the system in order
to provide immediate response to user sketches, permitting to
keep a fluid training session for the user.

Feature Computation

Similar to [11], this project intents to demonstrate the intrin-
sic information contained in simplistic statistical features ex-
tracted from the segmented lines. At the same time, on the
constrain of having a real time running application, the fea-
ture extraction must be kept simple to reduce computation
time. Table 1 lists the computed features for each sketch. The
first eight features are calculated from the detected lines on
strokes drawn with the figurative marker, while the features
starting with Shdw_ in their name, are computed from de-
tected lines on strokes done with the shadow marker. The
name is self explanatory for most of them: there are fea-
tures that count the number of lines, number of strokes, the
total length of the segmented lines from the sketch, the width
and height of the box bounding the sketch, the maximum,
minimum and mean length of the lines. In the case of the
shadow, there are four special computations: Shdw_North,
Shdw_South, Shdw_East and Shdw_West, which contain bi-
nary values whether there is shadow in each of the four areas
in the sketch (north, south, east and west). Once the user
has provided all the requested sketches, the features are nor-
malised to values from O to 1 considering all the training data.

Training

Although the nature of this research is to train the system for
each user, the Random Decision Forests (RDF) include pa-
rameters to be set. In the aim of identifying those that max-
imise the accuracy and sensitivity while reducing the false
positive rate, training is done over a data set of 120 sketches
captured from a single user and cross-validated by Leaving
One Out methodology to find the parameters for the Random
Forests: NTrees and R.

The training process is set in two stages. First, primitive clas-
sification is performed by a RDF, and second, rotation and
scaling regression is done by a set of six RDFs, i.e. one for

each degree of freedom: rotation on X, Y and Z, and scaling
on X, Y and Z.

For primitive classifications the NTrees parameter is set to 60,
while R is set to 0.6. For rotation and scaling regression, the
parameters are listed in table 2.

EVALUATION

To assess the results for classification, given as a discrete class
label (Cuboid, Cylinder or Spheroid), Accuracy, Sensitivity
and False Positive Rate (FPR) have been calculated. In the
case of inferring the rotation and scaling degrees describing
the pose of the 3D primitive, regression is measured by cal-
culating the mean square error (MSE).

For Primitive classification, the Accuracy, Sensitivity and
FPR obtained from the training are shown and compared in
table 3. It is notable that the results show high accuracy,
meaning that from the set of computed features, it is possi-
ble to differentiate information describing the user’s style for
each one of the primitives.

For Rotation and Scaling regression, table 4 shows the results.

Feature Vector
NumberLines
NumberStrokes
TotalLength
BoundingBoxWidth
BoundingBoxHeight
MaxLineLength
MinLineLength
MeanLineLength
Shdw_NumberLines
Shdw_NumberStrokes
Shdw_BoundingBoxWidth
Shdw_BoundingBoxHeight
Shdw_North
Shdw_South
Shdw_East
Shdw_West

Table 1: Computed features for segmented lines from the
user’s sketch.

Parameter | NTrees [ R
X Rotation 60 0.1
Y Rotation 70 0.1
7 Rotation 90 0.1
X Scaling 60 0.9
Y Scaling 90 0.3
Z Scaling 70 0.1

Table 2: Parameter setup to reduce MSE for Regression Ran-
dom Decision Forest for each pose degree.

Measurement Accuracy | Sensitivity | FPR
Primitive Classification | 0.9917 0.9687 0.0000

Table 3: Accuracy, Sensitivity and False Positive Rate (FPR)
for Primitive Classification.



(a) Example of Cuboid and (b) Example of Cylinder and

Cylinder poses that have close Spheroid poses that have close
similarity. similarity.

Figure 5: Examples of primitive confusion when seen from
frontal vies (bottom images) and different when translated,
rotated and scaled (top images).

The rotation accuracy is affected by the uncertainty implied in
the redundancy of rotation degree. For example, for a basic
cube the visual representation repeats every 90°. The accu-
racy for scaling is between 85% and 90%.

Feature Relevance

To identify what set of features is more relevant to primitive
classification, and to rotation and scaling regressions, the pro-
posed method by [14] has been followed, which consists in
generating an artificial variable constructed by randomly re-
ordering one of the features and replacing it, keeping the rest
of the features and labels in place and from there, calculate
the Accuracy, Sensitivity and FPR for classification, and in
the case of Regression, calculate the MSE and compare to
our baseline.

For primitive classification, Number of Strokes is the most
relevant feature by 39%, followed by the Total Length (sum
of lengths from the lines detected on the sketch) by 8%, and
then for both Bounding box height and width with 6%.

For rotation and scaling, the relevance for all the features is
between 6.5% and 7.5%. Although the difference on the MSE
between them is very low, we can identify the following fea-
tures as more relevant: Bounding Box Height, Total Length,
Bounding Box Width and Line Maximum Length.

Relevance of training data amount

Although training on a small number of sketches is enough
for primitive classification, in practice it is suggested to
extend the training to at least 20 poses for each primitive
because there are some special cases in which specific poses
could confuse the task of identifying the primitive [Fig. 5].
For rotation and scaling, the accuracy becomes stable after
60 training samples (20 for each primitive).

MSE | % Error | % Accuracy
X Rotation | 0.07518 | 0.27418 72.58%
Y Rotation | 0.08845 | 0.29741 70.26%
Z Rotation | 0.08073 | 0.28412 71.59%
X Scaling | 0.01209 | 0.10996 89.00%
Y Scaling | 0.00935 | 0.09669 90.33%
Z Scaling | 0.02048 | 0.14309 85.69%

Table 4: Regression results for Rotation and Scaling.
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Figure 6: Accuracy comparison for Primitive Classification
accuracy on baseline (PO) and three validation users (P1, P2,
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Figure 7: MSE comparison for Rotation Regression on base-
line (PO) and three validation users (P1, P2, P3).

VALIDATION

The system has been validated over three representative users
of different skills (two with no artistic background and one
with artistic background).

Validation Results

The accuracy results on the primitive classification task for
the three users (P1, P2 and P3) are compared against the ac-
curacy obtained for the user participating in the deep study as
baseline (PO), which are presented in figure 6. The results in
this validation test are slightly better than the obtained on the
deep study, which means these three users were more consis-
tent in the sketching style across primitives. However, as the
accuracy for all of them, including the baseline, is so high,
the difference is not of much significance.

To simplify the comparison for Rotation and Scaling between
the users, the three Rotation dimensions have been averaged
to a single quantification of MSE for Rotation. The same
has been simplified for Scaling. Figures 7 and 8 represent
the MSE comparison for Rotation and Scaling Regression
respectively, comparing the baseline user PO and the three
users (P1, P2, P3) for the Validation User Study. The results
demonstrate that the model setup is extendible for users of
different artistic skills, with similar results, and that to train
on 20 sketches for each primitive is enough for these results.

For reference, examples of captured sketches are shown in
figure 9.
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Figure 8: MSE comparison for Scaling Regression on base-
line (PO) and three validation users (P1, P2, P3).

Figure 9: Examples of sketches by four different users. At
top, sketches from the user participating in the deep study,
the three users at bottom participating in validation study.)

DISCUSSION
There are some factors to take in mind when considering the
results:

e The rotation degree range of 0-360°is redundant for 3D
primitives. For example, for a basic cube the visual repre-
sentation repeats every 90°. As this feature is not included
in this model, the accuracy is decreased given the uncer-
tainty it implies.

e Overlaying comparisons between a rendered 3D primitive
and the user’s sketch (e.g. figure 10) show that the sketches
reveal users’ conception and do not portray reality [15],
illustrating how noisy the input sketch is.

Model User sketch

Overlying

Figure 10: Overlaying comparison between the rendered
model and the user’s sketch.

e There is an intrinsic relationship between the three rota-
tional dimensions and the three scaling dimensions which
is not modelled in this project, and is relative to the above
point. For example, if a cube is scaled up in the Y di-
mension and rotated 90°over the Z dimension, it will be
visually similar to the a cube scaled up in the X dimension
without rotation.

e There is strong evidence [13] that humans don’t have accu-
rate perception of 3D metric structure.

CONCLUSIONS

This paper has confirmed that relevant information exists on
user gestures from sketching styles, even with simple features
to map 2D sketches to 3D primitive models.

For Primitive classification, the results were very high, pre-
dicting the 3D primitive almost with full accuracy. This is
attributed to the specific graphical characteristics each primi-
tive has and makes it different to the others. In the case of Ro-
tation regression, although the numerical results don’t seem
very satisfactory, they still provide a good approximation and
maintain stability in the predictions, which also demonstrates
intrinsic existence of valuable information on the user ges-
tures to denote the rotation. The results on Scaling Regres-
sion are better than those in Rotation, maintaining stability as
well.

This research has also demonstrated the following:

e Users have a tendency to keep the same sketching style to
denote each primitive and its pose, independently of their
sketching skills or academic background.

e This model captures the intrinsic style in the gestures, in-
dependently of the artistic skills of the user. Therefore, the
model setup in this project is extendible for other users ob-
taining similar results.

e To train on 20 sketches for each primitive is enough to ob-
tain good results, which takes from 10 to 30 minutes de-
pending the user’s speed.

Finally, it is important to remember that this method does
not claim to generate better models than image similarity
approaches, but suggests to acknowledge the difference on
users’ skills and to consider adapting to them.

Further Work
This research can be extended in several ways. To list only
some: increasing the 3D model complexity beyond the three



used primitives, using more advanced features (e.g.

line

joints), and multi-object sketching recognition.
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