
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)
M. Alexa and E. Do (Editors)

Modeling 2.5D Plants from Ink Paintings

Cristina Amati and Gabriel J. Brostow

University College London, UK
http://visual.cs.ucl.ac.uk/pubs/sumi-e

Abstract
Chinese ink painting, known as sumi-e, is a traditional art form based on careful placement of expressive brush
strokes. To extend such brush strokes from their paper form, we propose a system that can digitize and transform
such paintings into 2.5D sprites, while preserving the artist’s unique style. We apply our paintstroke-extraction
technique to plants, the most traditional subject of sumi-e, and one where CG modeling is fairly hard, but pro-
cedural or simulated animation techniques can subsequently be brought to bear. Instead of forcing artists to use
pressure-sensitive digital tablets, we address the problem of how to non-invasively decompose a real painting of
a plant into semantically meaningful components, like leaves and petals. Webcam filming of the artist at work
provides valuable cues. This part of our system needs no human interaction and no prior training, and achieves
its goal solely by analyzing the video timeline to find even intersecting brush strokes. Afterwards, it constructs a
model of the plant and textures it with the extracted brush strokes, inpainting when necessary.

1. Introduction

We want to create useful digital models directly from hand
painted art, using a system that is non-invasive and largely
automatic. Because the breadth of traditional art techniques
would make our task intractable, we have chosen to focus on
a particular art-form and a restricted painting subject. Sumi-
e is a very delicate and expressive form of art developed by
Chinese monks in the seventh century. Traditional sumi-e
themes are mainly nature themes. We have focused our at-
tention on paintings of plants due to their physical structure.

Many drawing and photomanipulation platforms offer
brushes that mimic the sumi-e style. Adobe Photoshop in-
cludes a sumi-e filter and brushes that create a wide, wet
brush stroke “with a Far Eastern flavor” [BF03]. Neverthe-
less, the authenticity and complexity of the hand painted art
could currently not be recreated digitally. An artist uses big
brushes and a variation of pressure and ink concentration
which can not be reproduced by using graphics input tablets.
[KKK03] present an outstanding system that renders sumi-e
representations of 3D models. Also, many approaches exist
for simulating calligraphic brush strokes [SXSC02] or other
painterly styles [GCS02].

Our system can help us benefit from the experience of
the masters directly, by detecting and extracting their brush
strokes, and then reconstructing them in a 2.5D environment.

This is done using a video recording of the artist at work,
and it requires no additional training or manual annotations.
Through several innovations, we empower sumi-e artists to
create models and animations with almost no added effort or
computer skills.

(a) bamboo (b) iris (c) orchid

Figure 1: Examples of traditional sumi-e plant paintings (Copy-
right owned by the authors).

Our prototype expands on known segmentation tech-
niques to extract components of the artwork’s ink. This is
hard because of user-occlusions and overlap within the art-
work due to the unpredictability of the artist’s movements.
Video analysis of the artwork’s progression reveals the or-
der in which components were painted, and a single high-
resolution digital scan of the finished painting captures the
brush stroke details. Further on, leveraging the planar nature

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SBM/SBM10/041-048

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

of most plant components, we construct a billboard model
and texture it with the extracted brush strokes. Obtaining the
footage of the artist painting does not require a special stu-
dio setup. A simple webcam with a resolution of 640× 480
is enough to yield good quality results. One of the major
requirements of our project is to not hinder the creative pro-
cess of the artist in any way. To our knowledge, this is the
first attempt to convert actual ink brush strokes into digital
form, though certainly previous efforts have explored fitting
of brush stroke priors to paintings [XXK∗06].

Our main contributions are sub-algorithms to i) Segment
a painting using the recorded video of its creation, ii) Ex-
tract key elements and their hierarchy from the video frames,
without imposing constraints on the artist such as asking
them to take their hand out of the scene after painting each
element or limiting the drawing pace, and iii) Reconstruct
the painted plants using a plugin in a 3D environment, using
a shape constraint model which mimics real plants and can
be applied to most sumi-e traditional plant themes.

2. Related Work

A very eloquent work on synthetically creating brush strokes
similar to the ones used in calligraphic lettering and paint-
ings is presented by [SXSC02]. Their solution models a
brush stroke as an interval spline with constraints between
knots. They produce a vectorized output that is resistant
to scaling. Also, their model is able to capture variation in
thickness across a single stroke. Brush stroke modeling has
also been implemented by [HL94]. We concentrate on ex-
tracting the features from the painting itself without relying
on synthetic methods.

The research we have found to be most similar to our own
is that of [XXK∗06]. Their major contribution is the auto-
matic recovery of vectorized brush strokes from the final
painting. To achieve this, they segment the image and then
fit primitive brush strokes on the individual segments using
a stroke database created by an experienced sumi-e painter.
As an application of their system, they create an interface for
brush stroke based animation of the paintings with spectac-
ular results. Just like in our case, they present a solution for
separating overlapping strokes. Although our goals are sim-
ilar, the major difference is in the execution. We require no
additional database, and non-invasively “observe” the artist
to capture the structure of their painting. Further, our seg-
mentation take a matter of seconds and is done automatically
based on processing the video of the artist at work, instead
of requiring user interaction.

Other efforts in the area of creating animations from a sin-
gle image that are not directly related to the sumi-e style have
been made by Chuang et al. in 2005. Their approach aims
at animating arbitrary scenes that respond to natural forces
by using stochastic motion-textures. The motion-texture is a
time varying 2D displacement map [CGZ∗05]. In their ap-
proach segmentation is user assisted because they take into

consideration arbitrary scenes. The current project tries to
bring an automated segmentation of the pictures by using
the recording of the drawing process. This is possible be-
cause we have chosen to narrow down the drawing style and
subject range.

Another solution for animating still pictures is proposed
by [HDK07]. Unlike Chuang et al.’s work, Hornung et al.
concentrate on animating human-like characters from pic-
tures by fitting them with a 3D skeleton and 3D motion data.
Our work differs in the approached subject, that of plants and
the fact that we do not seek to fit any data to our models but
rather define a set of constraints to mimic plant movement.
The similarity consists in the concept of upgrading from two
dimensionality in order to give a better representation of an
object.

Fei et al.’s work [FLJX08] aims at combining the aesthet-
ics and intuitiveness of 2D drawing and sketching with the
six-degree freedom provided by 3D animation. Fei et al. ad-
vanced the observation that 3D animation and storyboarding
should benefit from the user’s strong 2D drawing skills.

Modeling trees and plants from reference photographs
with limited user interaction has been successfully attempted
by [NFD07], [TZW∗07], [QTZ∗06] and [RLP07]. Al-
though we admire the complexity of the models that have
been built only from images, our goal is slightly different
in that we want to render non-photorealistic plants and we
only have one image that is a stylized representation by an
artist, therefore constructing a full 3D model would be an
underconstrained problem. The work of [OOI06] addresses
the problem of constructing 3D tree models from user input
sketches by inferring depth.

One inspiring research that is not directly related to our
own but makes use of cameras and projectors together with
traditional art is that of [FR06]: Projector-Guided Painting.
They use projections on canvas and motion tracking to help
novices create a painting step by step and we make use of
cameras for the inverse problem: breaking the painting into
elements using the creation steps. [BJS∗08] also use video
input from the user for animating paper cutouts. Although
very impressive, this paper addresses character animation
which is very different from our subject.

3. Our Algorithm for Video Based Modeling

Our algorithm works in a series of steps to combine the high
resolution spatial content of a scanned painting with the tem-
porally informative cues in video of the artist at work. To
reach the goal of a stylistically accurate 2.5D plant model,
our system can be outlined in the following steps:

1. Find correspondences and register the scan against
frames of the video,

2. Detect and segment the ink’s mask in a sliding temporal
window of video frames,

c© The Eurographics Association 2010.

42

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

3. Locate keyframes, video frames where new paint has
been added,

4. Extract individual plant components from the keyframes
and correct them,

5. Apply the low-res component models to the high-
resolution scan.

Each step is detailed in this section, and together, they enable
us to make a 2.5D model of the painted plant.

3.1. Registration

Offline registration can be applied repeatedly to the video
to align all frames, in case the canvas or camera is repeat-
edly bumped or moved. The arbitrary position of the camera
relative to the drawing surface can be modeled as a homog-
raphy because the canvas is planar. This is ideal for our case,
because we can consider at least the four corners of the pa-
per as the correspondence points, and any painted features
(matched using SIFT features [Low04] for example) would
simply help to overconstrain the solution.

To find the projective transform even of the blank can-
vas, the system must localize the paper’s corners in a video
frame. This process is carried out in using the Hough trans-
form to find the paper boundaries (dominant edges), and
intersection of these lines to find sub-pixel corner loca-
tions. Having the paper corner coordinates for a video frame,
we can now compute the projective transformation between
them and the scanned image corners [HZ00].

3.2. Frame Processing

Because we are working with monochromatic ink paintings
on white paper and the contrast that this implies, we assumed
that a first step of thresholding would help identify the ink.
A fixed threshold is not appropriate due to the changes in
lighting conditions during the painting process. We use an
adaptive threshold that is calculated for each pixel based on
its neighborhood, so

dst(x,y) =
{

maxValue if src(x,y) > T(x,y)
0 otherwise,

where T (x,y) is computed as a Gaussian weighted sum
over a blockSize×blockSize pixel neighborhood. We found
0.5×min(f ramewidth, f rameheight) to be a good block size.
The block needs to be big enough to filter out noise and shad-
ows cast on the paper.

3.2.1. Detecting the Ink

Simply thresholding does a fairly good job of separating the
paper from the other objects in the frame, however it does
not pick out only the ink from the image. Figure 2 shows ex-
amples of a thresholded frame containing a part of a painted
plant, but also a hand, the brush, two fingers and some addi-
tional shadows, that we refer to as other objects.

(a) frame1745 (b) Adaptive
threshold
result

(c) thresh 125 (d) thresh 140 (e) thresh 160

Figure 2: Adaptive vs. global thresholding. The first row shows
an original video frame and the adaptive threshold result we use. The
second row shows the result of trying different global thresholds:
125, 140, 160. The low thresholds miss out important details, like
tips of leaves, while the higher thresholds incorporate shadows into
the set of painted elements.

Our non-invasive artist observation method allows for low
resolution filming from an arbitrary camera position, un-
controlled lighting conditions, and free movement of the
artist. Since the system uses no prior training data, it is a
formidable task to recognize the other objects in the scene.
We have experimented with many methods for telling ob-
jects apart, including color analysis and skin segmentation,
but these have proven to be unstable because of the arbitrary
lighting. We did find that temporal stability was a persistent
characteristic of the ink.

The final algorithm that delivers good detection of ink out-
lines follows, where each video frame already includes its
homography-based registration to the last frame:

1. Input: current frame and last frame thresholded, cropped
and cleaned of any paper margin artifacts

2. Take logical AND between current frame and last
frame
Painted objects are stable across subsequent frames while
hands, brushes, and shadows are constantly moving (Fig-
ure 3).

3. Detect contours on current frame

4. Compute similarity measure using Hu Moments

5. Accumulate matching contours
There may be more than one contour that we need to pre-
serve. Particularity in sumi-e, a bent or turning leaf can
be represented as two discontinuous segments. Accumu-
lating contours is done based on contour matching of the
two subimages described earlier, using the first 7 Hu mo-

c© The Eurographics Association 2010.

43

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

(a) Current
frame

&

(b) Last frame

=

(c) Logical &
result

Figure 3: Because there can be more objects (hands, brush, strong
shadows, etc.) in the currently processed video frame than just the
painted object, we take a logical-& between the current frame and
the last frame, to detect which frame components are stable.

(a) (b) (c)

Figure 4: Contour detection. From left to right: the current frame,
detected contours on the current frame shown in colored bound-
ing boxes, and contours detected on the AND operation with the
last frame. The purpose is to identify separate objects in the current
frame, to establish which of them is stable.

ments. Given the contours C1 and C2, the similarity mea-
sure is computed with the formula:

S(C1,C2) =
7

∑
i=1

|mC1
i −mC2

i |
|mC1

i |
(1)

where mCk
i = sign(hCk

i) · log(hCk
i),k ∈ 1,2 and hCk

i is the
ith Hu moment of the contour k. We then threshold the
value of S with T = 0.1, S = 0 being perfect similarity.
Figure 5 shows the chosen contours and the final output
of this algorithm.

Figure 5: The contours belonging to the painted plant shown with
red bounding boxes are accumulated for the final output of the ink
detection algorithm. The left image shows the automatically chosen
contours and the one on the right shows the algorithm output.

6. Output: an element containing the detected ink, if any.

3.3. Finding Keyframes

The task in this part of the algorithm is to identify keyframes.
A keyframe contains a newly completed component of the

painted plant without the hand, brush, or any other object. As
in Figure 6, it is possible for non-ink to be in the keyframe,
provided it is not directly connected to the element we want
to segment.

Usually one or two brush strokes are sufficient to create
one part of a plant such as a leaf, petal, branch, etc. This is
why the logical components of the object derive naturally
from the painting process which we record. This enables us
to look through the timeline of the video and retrieve the
frames containing those completed objects.

Figure 6: First row: 3 automatically detected keyframes- unoc-
cluded frames that contain a new finalized element of the painting
(in this example a new leaf); Second row: non-keyframes

We devised an iterative process that consists of a num-
ber of filtering stages. This helps gradually narrow down the
possible candidates. The input to this part of the algorithm
is the stack of frames processed with the method described
Section 3.2, images that contain only a white mask of the
current element on a black background.

The stages of iterative eliminating process are:

1. Suppress empty masks
As in Section 3.2 the masks for some frames are just
black images. This occurs in the beginning of the paint-
ing process where for many frames there is nothing on the
canvas (Figure 7a and 7f) or when the hand or the brush
is directly connected to the painted elements, making it
thus difficult to recognize the contour.

2. Suppress masks that have a lower pixel count than the
previous ones
It is logical that as we advance in the video timeline we
should have more pixels added to the drawing. This is re-
flected in the extracted masks as well. The fact that one
mask has fewer pixels than the previous one tells us that it
was partially occluded, therefore it should be suppressed.
In Figure 7, 7c is suppressed because its mask 7h has a
lower pixel count than the previous mask 7g. This hap-
pened because the hand with the brush in 7c is connected
to the painted object and therefore the contour was not
properly detected.

3. Detect progression and suppress intermediate masks
When the progress of painting one image element is vis-
ible, the system so far considers each intermediate state
as a separate keyframe. This leads to unwanted results

c© The Eurographics Association 2010.

44

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

(a) frame 90 (b) frame 905 (c) frame 1330 (d) frame 1660 (e) frame 2985

(f) mask 90 (g) mask 905 (h) mask 1330 (i) mask 1660 (j) mask 2985

Figure 7: First row: original video frames; Second row: corresponding masks of the ink outline. It can be seen that many frames have missing
or incomplete ink outlines. Only 7e can be considered a keyframe because its mask 7j corresponds exactly to the ink outline.

in the final stage. Using a proximity measure, we detect
this case and suppress all but the final completed element
mask.

4. Suppress similar masks
If after the previous steps there still are frames masks that
are highly similar, we shall choose only one of them as
the keyframe. This situation might occur when the hand
is only hovering over the painting without drawing any-
thing, and then uncovers the same painted elements as
before in a later frame.

3.4. Element Extraction from Keyframes

In this step, we focus on extracting the individual painted
plant elements or components from the keyframes. Valid
components would be: leaves, petals, stems, etc. Some-
times, turning leaves can be painted using two brush strokes.
Knowing the way sumi-e is made, these two brush strokes
are completed subsequently, giving us a hint in the timeline
that they should be treated as one.

Some elements naturally occlude others. The first element
to be painted can be retrieved in its entirety. Retrieving each
further component is based on image-differencing. Before
correction, one or more gaps appear in the newer processed
elements.

Erosion and dilation are insufficient to compensate for
gaps. The inpainting function provided by OpenCV [BK08]
accounts for minor gaps and requires a mask to localize it in
the image. If the mask does not exactly match the gap, the
inpainting fails. The OpenCV inpainting algorithm uses the
Telea method. It is not perfect, but just satisfactory for this
stage. Artifacts are somewhat hidden because overlapping
brush strokes occlude each other in the reconstruction.

(a) Element after
frame subtraction

(b) Element after
dilation and ero-
sion

(c) Element after
inpainting

Figure 8: The first image shows the element having two gaps. Re-
peated dilations and erosions can only fill smaller gaps and not com-
pletely. Inpainting using the previous elements that have caused the
gap to appear can unite the elements across larger gaps but with
some of artifacts.

3.5. Element Extraction from the Painting

The final extraction of the plant components from the orig-
inal image is based on the masks retrieved from the video
frames. The reason for this is the fact that the colors of all
elements are almost the same, which would make any color
based segmentation go wrong. On the other hand, our goal
is to extract semantically meaningful elements from a com-
pleted painting. With no prior training, semantically based
segmentation systems could also fail at this stage, because
adjacent regions are too similar with respect to the same
characteristics to tell apart. Probably, at this stage, only a
machine learning approach could make such a difference
between image elements. This would however require ad-
vanced algorithms and training which is not the subject of
this research. Furthermore, in a very cluttered image it is
almost impossible to tell individual elements apart without
having a notion of the timeline of their creation.

The method we used is fairly simple but it relies heav-
ily on the correctness of the projective transformation. The
masks from the video frames are inflated to the high resolu-

c© The Eurographics Association 2010.

45

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

tion of the scanned painting by using the projective trans-
form together with an interpolation method. Finally, the
mask is applied on top of the original image and the element
is extracted onto a new image with white background.

The problems that might arise here are numerous, how-
ever, with a good registration, the method is quite robust
on all the tested images. The key is to get the image per-
fectly aligned with the mask. This, though is also a prob-
lematic task, firstly because of the great difference in scale,
then because of the numerous operations applied to the im-
ages. Thresholding might cause minor information loss and
the interpolation stage could also bring slight modifications
to the final resulting mask. Any slight shifts could alter the
extracted element.

Another encountered problem was one specific to ink and
wash paintings: transparency. Every new stroke adds more
concentration to the color on the paper, which makes over-
lapping or over-painted regions more obvious. However, this
is the charm of this style and it will be preserved as it is in
the final result.

During this stage, a configuration script is written.

(a) Scanned
painting

+
(b) Mask from
video

=
(c)
Result

Figure 9: Extracting each element from the final painting using the
masks retrieved from the video analysis.

We now have a stack of high resolution painting elements
and a configuration file that tells their offset in the original
image. Having come this far, one can see in these final im-
ages the actual brush stroke intact with all its nuances and
texture that makes hand drawn art so unique.

3.6. Model Construction

For constructing a plant model from our segmented paint-
ing, we have to make a weighting of the possibilities with
our goals of plausibility and automation. We have chosen
the Maya Framework as a modeling environment. Amongst
things that we have tried is using textured billboards, trans-
forming the exported stack of painting elements into meshes
of triangles using Maya’s texture to geometry function and
finally an improvement to the textured billboard version.

Representing plants and trees with billboards is not itself
novel. Because of the high frame rate constraints, trees in
games are often rendered as image impostors. Billboards

(a) Scanned
painting

(b) Reconstruction in
Maya

(c) Rendered camera
view

(d) Rendered scene

Figure 10: This figure shows the reconstruction with cropped bill-
boards in Maya. The scene is built use one single command that
takes as argument the location of the folder containing the seg-
mented images and the configuration file. The last image shows the
rendered result of the reconstruction.

are also useful for large crowd simulations, and for avoid-
ing complicated geometry whenever possible. Another vari-
ation permitted by Maya is that of converting the image into
a mesh of triangles. Seemingly convenient, the mesh then
has to be cleaned up manually to gain access to the geome-
try of a segmented leaf. It is not obvious how one might do
this without human help.

Our method of reconstruction relies on information pro-
vided by the segmentation process, such as relative height,
width and offset in the original image for each image compo-
nent which will tell us where to place it in the reconstructed
model. All these have been written to a file in a normalized
form in the previous step. This permits resizing the images
after segmentation, provided the aspect ratio is preserved.
This way, if rendering times are too high because of mas-
sive textures, the images can be resized and reloaded without
having to change any of the scripts.

Furthermore, having information about the individual ele-
ments, they can be grouped together in a single object which
makes it easy to manipulate them as a whole as well as indi-
vidually. This approach has significantly improved rendering
times as well as the flexibility of manipulating the recon-
structed objects.

4. Applications

Static Scene Generation Although plants may seem a very
narrow subject, it must be noted that they are extensively
used as backgrounds in games, animations and 2D artwork.
With our painted-ink models, we can generate static scenes
by cloning painted plants. By editing our configuration files,
we can semi-automatically generate new models by adding
or removing elements from the paintings, or by combining
several extracted models (Figure 11).

Animation Another possible application for our extracted
paintbrush-ink is animation. For this application, we inte-
grate our models and with Maya because that environment
has a built in wind simulator. The built-in wind simulator’s
motion and speed parameters are keyframed for illustrative
purposes in the supplementary materials.

To animate the segmented plants, they must deform un-

c© The Eurographics Association 2010.

46

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

Figure 11: Generating a scene by replicating and editing the mod-
els of the ink paintings in Figure 9a.

der the influence of wind. This is achieved using the Maya
representation for soft bodies. Soft bodies attach a series of
particles to each vertex of the geometry. These particles then
receive the effect of wind fields, and deform the original ge-
ometry accordingly. A goal-location that defines the resting
position can be assigned to each particle. Goal weights con-
trol how far a particle can deviate from its assigned goal.

After the model has been constructed, our next challenge
is setting up constraints that can mimic those of the real
world plant. Certain plant characteristics need to be pre-
served, such as the unity of the object, the anchoring point,
and the shape. Other aspects such as rigidity, deformation,
and damping, are very difficult to estimate without prior in-
formation or training. Generally, plants can be configured
following a simple rule: stiffness decreases with the distance
from the anchoring point. As an example, we have imple-
mented this rule to demonstrate our prototype.

In our prototype, we used a cosine wave with values rang-
ing from 1 to 0 to drive stiffness. This is translated into the
Maya model as goal weights. Thus, the anchoring point has
stiffness 1, making it practically immobile. Toward the tip of
the plant, the stiffness decreases to 0, making it more suscep-
tible to the effects of wind. This approach achieves the goals
of keeping the group structure of the individual elements by
having them anchored to the root point, and of giving them
some independence to the elements. During animation, the
deformations of the elements are smooth, and inasmuch as
the wind simulator is set realistically, the plant’s motions can
mimic those of real plants.

(a) Cosine wave (b) Result of using cosine heuristic

Figure 12: We used the cosine wave with values ranging from 1 to
0 as a heuristic for plant stiffness. The plant is more rigid around the
anchoring point, and becomes more flexible near the tip.

Figure 13: Snapshots from the resulting animation.

4.1. Implementation

The implementation and testing of our system has been car-
ried out on an Intel Core 2 Duo machine with 3 GB of RAM.
The segmentation stage was implemented in C++ using the
OpenCV [BK08]. At 640×480 video, segmentation finishes
in a matter of seconds depending on the complexity of the
painted object and the number for frames in the video.

The animation stage is carried out in the Maya Frame-
work. For this purpose, we have developed a custom Maya
panel that allows the user to import plant models into a
scene, customize the scene, and add wind motion to ani-
mate the plants, by choosing from a few ready keyframed
wind scenarios that we provide. This plugin is implemented
in the MEL interpreted scripting language. Render-times for
these scenes can vary greatly with many factors. Nice light-
ing, good rendering quality, and high resolution require long
rendering times. Also the computation of dynamics for com-
plex scenes can also slow down the rendering process. For
instance, the scene in Figure 11 containing 9 objects took 10
seconds to render at a resolution of 1280×720.

5. Testing and Results

To validate our prototype, we conducted a 12-person user
study. This was necessary to confirm that the system had
made successful reconstructions of the paint-stroke ele-
ments, and that the resulting animations are visually pleas-
ing. The experiment consisted of showing the users 3
scanned paintings and 6 animations corresponding to the
plants in these paintings. The users were asked to recognize
which plant appears in each video (Table 1) and to give a
short assessment of what they liked and disliked about the
animation.

A B C
A 0.84 0.0 0.16
B 0.04 0.96 0.0
C 0.08 0.0 0.92

Table 1: Table showing recognition rates of each image. Values off
the main diagonal show what percent of the time the painting on that
row was confused with the animated model on the column.

Some notable quotes about the positive aspects were:
“looks like a painting drawn in 3D”, “I liked the fact that the
movement seemed quite realistic, with the tip of the leaves
having a much wider movement”, “simulation of leaves is

c© The Eurographics Association 2010.

47

Amati & Brostow / Modeling 2.5D Plants from Ink Paintings

good”, “most leaves provide the impression that they move
naturally”, “realistic animation”, “looks like it’s underwa-
ter”, “good wind response”, “shading effect is nice”, “over-
lapping leaves darken which implies depth”.

Quotes from the participants regarding shortcomings of
the animations were: “when the curled up leaf bends in the
wind it seems more paper-like”, “the hooked leaf seemed
a bit too rigid”, “the ends of long leaves didn’t drop down
like I would expect them to”, “a bit jagged at the top when
leaves bend forward”, “there was artifact”, “animation is not
physically correct”, “shadow doesn’t seem realistic”, “base
of plant immobile, doesn’t interact with the wind”, “the root
isn’t as dark as original picture”, “low resolution”, “some
minor clipping with the floor”.

The overall results of the user study were encouraging
and indicate that we achieved our goals. Also, this study was
valuable because we obtained independent opinions that em-
phasized some mistakes worth considering in the future.

6. Limitations and Future Work

Detection of pale gray tones is presently an issue. It is possi-
ble for greater parts of a painting to feature such faintly col-
ored elements. While adjustment of the webcam’s gain could
help with with segmentation, that would presume our system
is allowed dynamic control over the webcam. At present, we
must account for the possibility that a shadow cast on the
paper may have a stronger color than some drawn elements.

Our video analysis could also be improved by using
explicit hand detection to be more accurate in predicting
keyframes. However, getting a clear frame of a newly com-
pleted element currently has no solution. Using a setup with
two cameras positioned at different angles will help, but is
not a guaranteed solution either. One approach could be to
train the system to recognize and associate paint-brush ges-
tures with elements in the scanned painting.

7. Conclusions

We validated the hypothesis that a system could directly
model a sumi-e artist’s ink brush strokes. Further, we pro-
posed a method for extracting a plant from a painting in the
form of its semantically meaningful parts, by using the video
recording of the artist at work. We have achieved a good seg-
mentation and reconstruction of painted ink strokes by using
the video recording of the artist at work, and rendered a con-
vincing animation of the plants in the sumi-e with a new
automatic reconstruction algorithm.

References
[BF03] BAUER P., FOSTER J.: Special Edition Using Adobe Pho-

toshop 7. 2003. 1

[BJS∗08] BARNES C., JACOBS D. E., SANDERS J., GOLDMAN
D. B., RUSINKIEWICZ S., FINKELSTEIN A., AGRAWALA M.:

Video puppetry: a performative interface for cutout animation.
ACM Trans. Graph. 27, 5 (2008), 1–9. 2

[BK08] BRADSKI G., KAEHLER A.: Learning OpenCV: Com-
puter Vision with the OpenCV Library. O’Reilly, 2008. 5, 7

[CGZ∗05] CHUANG Y.-Y., GOODMAN D. B., ZHENG K. C.,
CURLESS B., SALESIN D. H., SZELSKI R.: Animating pictures
with stochastic motion textures. ACM Transactions on Graphics
24, 3 (2005), 853–860. 2

[FLJX08] FEI G., LEE W.-S., JOSLIN C., XIN Z.: 3d anima-
tion creation using space canvases for free-hand drawing. In VR-
CAI ’08: Proceedings of The 7th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and Its Applications in
Industry (2008), pp. 1–6. 2

[FR06] FLAGG M., REHG J. M.: Projector-guided painting. In
UIST ’06 (2006), ACM, pp. 235–244. 2

[GCS02] GOOCH B., COOMBE G., SHIRLEY P.: Artistic vi-
sion: painterly rendering using computer vision techniques.
In Proceedings of the 2nd international symposium on Non-
photorealistic animation and rendering (2002), pp. 83–ff. 1

[HDK07] HORNUNG A., DEKKERS E., KOBBELT L.: Character
animation from 2d pictures and 3d motion data. ACM Transac-
tions on Graphics 26, 1 (2007). 2

[HL94] HSU S. C., LEE I. H. H.: Drawing and animation using
skeletal strokes. In SIGGRAPH ’94 (1994), pp. 109–118. 2

[HZ00] HARTLEY R. I., ZISSERMAN A.: Multiple View Geom-
etry in Computer Vision. Cambridge University Press, ISBN:
0521623049, 2000. 3

[KKK03] KANG S.-J., KIM S.-J., KIM C.-H.: Hardware-
Accelerated Real-Time Rendering for 3D Sumi-e Painting.
In Proceedings of ICCSA 2003 (Montreal, Canada) (2003),
vol. 2669, pp. 599–608. 1

[Low04] LOWE D. G.: Distinctive image features from scale-
invariant keypoints. IJCV 60, 2 (2004), 91–110. 3

[NFD07] NEUBERT B., FRANKEN T., DEUSSEN O.: Approx-
imate image-based tree-modeling using particle flows. ACM
Transactions on Graphics (Proc. of SIGGRAPH 2007) 26, 3
(2007). 2

[OOI06] OKABE M., OWADA S., IGARASHI T.: Interactive de-
sign of botanical trees using freehand sketches and example-
based editing. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Courses (2006), p. 18. 2

[QTZ∗06] QUAN L., TAN P., ZENG G., YUAN L., WANG J.,
KANG S. B.: Image-based plant modeling. In ACM SIGGRAPH
2006 (2006), pp. 599–604. 2

[RLP07] RUNIONS A., LANE B., PRUSINKIEWICZ P.: Model-
ing trees with a space colonization algorithm. In Eurographics
Workshop on Natural Phenomena (2007). 2

[SXSC02] SU S. L., XU Y.-Q., SHUM H.-Y., CHEN F.: Simu-
lating artistic brushstrokes using interval splines. In Proceedings
of the 5th International Conference on Computer Graphics and
Imaging (CGIM ’02) (2002), pp. 85–90. 1, 2

[TZW∗07] TAN P., ZENG G., WANG J., KANG S. B., QUAN L.:
Image-based tree modeling. In SIGGRAPH ’07 (2007), p. 87. 2

[XXK∗06] XU S., XU Y., KANG S. B., SALESIN D. H., PAN Y.,
SHUM H.-Y.: Animating chinese paintings through stroke-based
decomposition. ACM Trans. Graph. 25, 2 (2006), 239–267. 2

c© The Eurographics Association 2010.

48

