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Abstract

Manual labeling of objects in videos is a tedious task. We
present an approachwhich automatically propagates the la-
bels from a single frame to the next ones.
We tackle the challenging problem of tracking segmented

regions by combining keypoint tracking with an advanced
multiple region matching strategy, based on inclusion simi-
larity and connected regions.
We ran experiments on a 101 frame driving video se-

quence for which we produced the corresponding hand-
labeled groundtruth. We make this valuable dataset avail-
able for the research community. We show our technique
can accommodate variations in segmentation (and correct
them), even in presence of multiple independent motions
and partial occlusion. Results show that most of the la-
beled pixels can be correctly propagated even after a hun-
dred frames. The performance of this automatic propaga-
tion mechanism over many frames can greatly reduce the
user effort in the task of video object labeling.

1. Introduction
The representation of objects in video has different appli-

cations in Medical Imaging, Content Analysis, Film Indus-
try. However, in order for objects to be identified, a human
operator has to explicitly label them. Even automatic ob-
ject recognition algorithms require the production of hand-
labeled visual data to be trained. The task of labeling ob-
jects is tedious, in particular for videos.
Different approaches have been proposed in the litera-

ture which can facilitate this task. In [8], an interactive ap-
proach is proposed to precisely extract a distinct foreground
object from its background. The user is closely involved in
the refinement of the segmentation. A related problem to
label propagation is the Colorization problem [2]. With a
few colored strokes on a grayscale video, the user speci-
fies how to colorize it in a realistic manner. However con-

verting the produced colors into a label map is not straight-
forward. Other segmentation based techniques [4][6] are
more directly addressing the problem of label propagation.
Both these systems rely on motion and color information
to propagate regions through the sequence. Comparison
of these techniques are difficult in the absence of labeled
groundtruth data.
Label propagation is a very challenging problem because

it requires to track object regionswhich lack of “visual iden-
tity” and are inherently unstable. Other local representa-
tions exist for robust tracking, such as MSER [5] or SIFT
[3], however they are sparse features and are not sufficient
to track entire regions.
We introduce a new technique which combines key-

points and regions to propagate region labels. Regions
are tracked using both tracked keypoints and flexible re-
gion similarity measures to benefit from both local repre-
sentations : robustness and density. The matching process
is specifically designed to match segmented regions whose
shapes can vary greatly. Based on this joint region and key-
point tracking, the propagation of labels comes down to a
simple vote. The accuracy of this method will be demon-
strated on a driving video sequence which contains multiple
objects with independent motions.
We also provide for download a new video dataset (this

driving video sequence) for which we manually produced
the associated labeled groundtruth.

2. Region and keypoint detection, and their as-
sociation
In this section we describe the techniques used to detect

regions and keypoints in each frame. A method to associate
keypoints and regions is also be presented.
Oversegmentation. Each frame of the sequence is seg-

mented individually. We chose the Felzenswalb and Hutten-
locher graph-based segmentation [1], which produces good
results to capture areas of similar color and texture. Given
the rather large size of our images (960 × 720 pixels) its



computational efficiency is also an advantage. Based on the
assumption that a very homogeneous region belongs to the
same object, we produce an oversegmentation of the video
frame (see figure 1). It reduces the risks of having two ob-
jects merged together, while it allows for a better approxi-
mation of the hand-labeled regions. We chose parameters
with the following values : variance of gaussian smoothing
σ = .8, granularity parameter k = 50 and minimum region
size of 50. On average this segmentation produced 1811
regions per image. As a comparison, our groundtruth hand-
labeled images have 150 hand-labeled regions on average
on the same sequence. A median filter is applied to the seg-
mented image to smooth the region boundaries, which tend
to be more regular when drawn by a human.

Figure 1. Result of the image oversegmentation.

Bi-directional keypoint detection. Since we will be us-
ing the scale of keypoints to associate them with regions
(see below), we need to obtain robust keypoints (with good
repeatability across frames) along with an estimate of their
scale. The SIFT algorithm [3] is a relevant choice to meet
these requirements. The keypoints are matched across each
pair of consecutive frames A and B. We first consider
all matches from A to B then from B to A and which
are mutual (i.e. a keypoint kA in A which matches kB

in B is kept if kB matches kA and vice versa). This bi-
directional matching technique prove to be very effective
to obtain numerous robust keypoint matches. By skipping
the rejection step based on the distance to the second clos-
est match (as suggested in [3]), we allowed for more cor-
rect keypoint matches. We also reject matches for which
the inter-keypoint distance in the image space is larger than
200 pixels. About 2000 keypoints are kept based on this bi-
directional strategy. Note that the keypoint matching pro-
duces very few false positives since frames are very similar.
The association between keypoints and regions will

be used both for tracking regions and propagating labels.

It is not an obvious task since keypoints can lie near a re-
gion boundary and using only their pixel location and see in
which region they lie could be unstable. Instead we view a
keypoint as a disc region whose radius is given by its scale
which defines its support. A keypoint is associated with a
region if at least half of its support disc intersects with the
region. For efficiency we consider the square embedded in
the disc rather than the entire disc. As we will see in section
3, only regions with at least one keypoint are candidates for
stable matches.

3. Region tracking
In this section, we describe the process of tracking the

segmented regions between consecutive frames. It is a chal-
lenging problembecause the changes in segmentation imply
that most regions can potentially match many regions. We
will first discuss the necessity for adequate descriptors and
similarity measures to compare region appearance. We will
describe the two step tracking process which first relies on
the matching of stable regions which are then used to match
the other ambiguous ones.

3.1. Appearance matching for segmented regions

Our first attempt for tracking regions involved using a
combination of state-of-the-art regions descriptors for color
(average color, color histogram), shape (compactness and
eccentricity) and texture (Gabor-based descriptor). We ob-
served that they did very well to match only very similar re-
gions, when they exist. However, between two consecutive
frames, even if they are very similar, most of the segmented
regions change noticeably in their geometry (boundaries,
area and shape). As a consequence, the global appearance
of regions can change significantly and these descriptors
will fail. In this section we present similarity measures
which can match segmented regions in a flexible and ac-
curate way.
The key idea for matching segmented regions is to mea-

sure how much they have in common rather than how sim-
ilar they are overall. A simple and efficient solution is the
Histogram Intersection similarity measure [7]. Given two
regions rA and rB and their respective color histograms hA

and hB , the Histogram IntersectionHI(rA, rB) counts how
many pixels are similar in rA and rB :

HI(rA, rB) =
n∑

i=1

min(hA(i), hB(i)) (1)

where n denotes the number of quantized colors. We use
n = 63 = 216 quantized colors in the Luv color space.
Unlike classic LP distances, the strength of the Histogram
Intersection is to completely ignore pixels which fall in dif-
ferent bins. We now detail two measures based on it which



model two different types of appearance similarity between
regions.
The first one is the normalized Histogram Intersection

[7] which we propose to use as an inclusion similaritymea-
sure between two regions rA and rB :

mI(rA, rB) = HI(rA, rB)/card(rA) (2)

Note it is not a symmetric measure. It takes values in [0; 1]
and is maximum when all pixels in rA have a similar pixel
in rB , i.e. rA ⊂ rB . We will explain in section 3.3 how
this inclusion measure is relevant to match similar regions
of different shapes obtained from different segmentations.
The second one measures an overall similarity :

mO(rA, rB) = HI(rA, rB)/max(card(rA), card(rB))
(3)

Unlike mI , mO is maximum (i.e. = 1) when both regions
have the same number of similar pixels.

3.2. Matching stable regions
We focus on the pairs of regions between the two frames

for which the matching is the most reliable by using their
associated keypoints. They reduce the error and the com-
plexity of the overall tracking process. In section 2 we ex-
plained how keypoints were associated with regions in the
same frame and matched with keypoints in the next frame.
By transitivity, we use the matched keypoints between two
frames to match their corresponding regions. Since regions
can have more than one keypoint, a region is matched to
the one which shares the most matching keypoints. This
strategy is a sufficient condition to ensure that the two re-
gions cover a common patch of the scene (up to the keypoint
matching accuracy). We also add a constraint on overall
similarity to match those regions to avoid, for instance, a
tiny region matching a much larger one. We use the overall
appearence similarity measuremO (formula 3). Therefore,
two regions are called stable regions if they have a maxi-
mum number of matching keypoints in common (which is
non-zero) and if mO(rA, rB) ≥ τO . A value of τO = 0.3
was found to be sufficient to reject unlikely matches. Both
regions are said to constitute a stable match for eachother.
We denote asMs(r) the stable matches for a region r.

3.3. Matching ambiguous regions
After matching stable regions, we are left with regions

with no keypoints in them or with keypoints which could
not be associated with regions and we refer to them as “am-
biguous regions”. Typically those regions exhibit very little
variation (such as sky, grass, road, uniform areas) and are
harder to register. They tend to be fragmented by the over-
segmentation into similar regions whose shapes vary greatly
across frames. As a consequence, they are the most chal-
lenging regions to match.

By counting the number of similar pixels in common be-
tween two regions, the inclusion similarity measure mI is
a natural solution to match similar regions obtained from
different segmentations. Let us denote as rA a region in
frame A and rB a region in the subsequent frame B. We
determine all non-stable regions in A potentially included
in a region in B and pick the closest one which we define
asMa(rA) = argmin{|| rB − rA || | mI(rA, rB) ≥ τI},
where || . || denotes the inter-region distance defined as
the euclidean distance between their centre of mass. Con-
versely for frame B, we determine non-stable regions in B
potentially included in a region inA and pick the closest one
Ma(rB) = argmin{|| rA−rB || | mI(rB, rA) ≥ τI}. We
require that rA has at least half its pixels in common with
rA, by setting τI = 0.5.
Note that ambiguous matches are asymmetric whereas

stable matches are symmetric : if rA is a stable match for
rB then rB is a stable match for rA, but if an ambiguous
region rA matches rB (which can either be a stable or an
ambiguous region), then rB is not necessarily an ambiguous
match for rA.

3.4. Consolidate multiple matches for adjacent re-
gions

So far we have looked at individual matches for both sta-
ble and ambiguous regions. Without additional contextual
information, some false matches may persist. In particu-
lar, since we previously allowed multiple regions to match
a same region (to handle changes in segmentation), we now
want to keep only the best group of connected regionswhich
match a same region.
For each region in a frameA, we consider the ambiguous

region that the region matched as well as the regions that
match it in the next frame B. This group of matching re-
gions is denoted asM . Among those regions, we only con-
sider the group of connected matching regions whose his-
togram maximizes the similarity for the region. The work-
flow is the following :

1. List matching regions in B : for each region rA,
Ma(rA) denotes its ambiguousmatch. The ambiguous
regions which match rA are denoted as M−1

a (rA) =
{rB | Ma(rB) = rA} and the stable ones as
M−1

s (rA) = {rB | Ms(rB) = rA}. So the set of po-
tential matches for rA isM = Ma(rA) ∪ M−1

a (rA) ∪
M−1

s (rA)

2. List groups of connected matching regions in B :
among regions inM we only want to consider groups
of connected regions which contain stable regions (if
any). Such a group is written as G = {r ∈ M | ⋃

r is
connected and

⋃
r ⊃ M−1

s (rA)}
3. Find best adjacent group : we define the best group



of regions as the set G∗ which maximizes the overall
appearance similarity between rA and all groups G :
G∗ = argmax{mO(rA, G)}1. Regions inM \G∗ are
released, i.e. match the “void” class.

The same workflow is then applied between the frame B
and A (simply by swapping A’s and B’s in the notations).

Frame A Frame B

Figure 2. Example of multiple region match across steps 1 to
3 for both frames. We show two segmented road regions from
two consecutive frames (left versus right figures). The top regions
were mutually matched in step 1 (applied to each frame), in spite
of their shape difference. In steps 2 and 3, many small connected
regions matched the big region in the other frame, thanks to the in-
clusion similarity measure and the adjacent region grouping strat-
egy. The bottom row shows the final optimal match between the
groups of connected regions (tiny and big ones) in both frames. In
the propagation step, both groups will be considered as two single
regions which are more coherent than the initial big ones alone.
This shows that this strategy can cope with variable regions and
even improve the final segmentation.

Figure 2 illustrates how this iterative workflow can
match two groups of adjacent road regions of different
shapes but similar appearance. By selecting the best ar-
rangement of connected regions, the two final matched
groups of connected regions produce two more coherent re-
gions and hence a better match. More generally, an impor-
tant property of our matching scheme is its ability to im-
prove the segmentation in each frame by grouping adjacent
regions and matching them to a larger one. Note that a clas-
sic region merging algorithm applied to each frame sepa-
rately could not offer the same performance, because it is
harder to assess whether two adjacent regions belong to the
same region.
These steps conclude the region matching process. The

outcome is an association between regions across two
frames in which each region matches another region and
can be matched by many regions from the other frame.
At the end of this matching process, a few regions can

be left unmatched when they did not meet the above criteria
because they are too ambiguous or because they belong to
an object which has disappeared.

1mO(rA, G) denotes the similarity between rA

and the set of regions G which is defined as∑
r∈G HI(rA, r)/max(card(rA),

∑
r∈G card(r))

4. Label propagation
So far, we have not used the label information. All

the previous steps for extracting regions and keypoints and
matching are done automatically without user interaction.
As stated earlier, we require the user to provide an input
labeled image only for the first frame of the sequence.
In this section, we explain how the labels from the input

map are associated with regions and keypoints in the first
frame, and then how labels are propagated in subsequent
frames using the tracked regions (as explained in section 3).
Let A denote a frame and B its subsequent one. Given a

labeled frameLA corresponding toA (whether it be the first
hand labeled frame or the previous estimated frame), we
want to produce the estimated labeled frame LB for B. A
labeled map consists of uniform color blobs which identify
each object with a color (e.g. red for building in figure 3).
Black color identifies the “void” label and is used to refer to
semantically ambiguous areas.
Keypoint-to-label association in A and B. For the

first frame, keypoints are associated with labels by inter-
secting their support regions in A (see section 2) with LA,
if the most frequent label appears at least on half its sup-
port region. Since the keypoint matches are robust and their
support regions are small, this association is robust. So we
produce directly the keypoint-label association for frameB
based on the corresponding matching keypoints. For the
subsequent frames, the keypoint-label association will then
be provided by the previous frame. Region-to-label asso-
ciation in A. Likewise, by intersecting the segmented map
of A with LA, each region is associated with the most fre-
quent label within its area. Region-to-label association in
B. Many regions in A (who have now a label) are likely
to match a same region rB from the previous matching pro-
cess (section 3). For each rB we consider the most frequent
label lR among the rA’s which match rB . If rB contains
keypoints which have been assigned a label then we con-
sider, lK , the most frequent of these labels within rB . Most
of the time lR and lK will coincide. If they do not and one
of them is “void” then we assign the other label to rB . If
they are different and not void, then we assign lK if more
than one keypoint has it or lR otherwise.

5. Experiments and the hand-labeled dataset
We are interested in the problem of automated driving

cars and recognizing the main objects relevant to a driver,
such as road, pedestrians, vehicles.
Dataset capture. In the absence of available video

footage for our problem, we produced our own dataset, with
a camera mounted on the passenger seat in a car. A high-
definition digital camera was used, capturing 960 × 720
pixel frames at 30fps. We filmed about 90 minutes in the
streets of our city. The results we report here were obtained



Figure 3. Original image (first frame of the sequence) and corre-
sponding hand labeled image.

Figure 4. Original image (last frame of the sequence) and corre-
sponding hand labeled image. The bicyclist is the same but most
of the scene has changed.

on a sub-sequence of 101 consecutives frames subsampled
every other frames (from 202 frames). It corresponds to 6
seconds of continuous driving. No part of the scene remains
static and various events occur involving multiple moving
objects : crossing two cars (one makes a turn), following
then overtaking bicyclists, three groups of pedestrians walk-
ing in both direction and a remote bus takes a turn. The first
and last frames are shown in figures 3 and 4 with their cor-
responding labeled frames.
Hand labeling. In order to validate our approach, we

hired people to produce manually the labeled maps for each
of the 101 frames. They painted the areas corresponding
to a predefined list of 32 objects of interest given a specific
palette of colors. They have used a program that we devel-
oped for this task which offers various automatic segmen-
tations along with floodfilling and manual painting capabil-
ities. We corrected the labeled sequence to make sure that
no object was left out and that the “labeling style” (which
does vary depending on the person) was consistent across
the sequence. By logging and timing each stroke, we were
able to estimate the hand labeling time for one frame to be
around 20-25 minutes (this duration can vary greatly de-
pending on the complexity of the scene). The first labeled
frame was used to initialize our algorithm while the follow-
ing 100 ones were used to compare our estimated labeled
maps and report the accuracy of our method. Both the orig-
inal image sequence and its corresponding hand-labeled se-
quence have been made available for download2. We be-
lieve this unique dataset can constitute a valuable testbed in

2http://www.eng.cam.ac.uk/∼jf330/CamSeq01/

the research community to validate various Computer Vi-
sion algorithms.
Implementation. Our program was written in C++ us-

ing the OpenCV3 library and run on a 2GHz dual core
PC. We used the authors’ implementation of the SIFT key-
point extraction4 and the segmentation algorithms5. The to-
tal runtime for processing the 101 frames was 82 minutes
(about 49s/frame on average) of which 23 minutes were
taken by the segmentation, keypoint extraction and region
detection and description. Region tracking and propagation
took the 59 remaining minutes, most of which are taken by
a few cases when many region groupings are inspected in
the step 3 of the region matching. The actual propagation
step, as described in section 4, takes only 0.6s per image.

6. Results
Automatic region segmentation. We observed that the

region tracking strategy (section 3.3) was able to merge sim-
ilar adjacent regions consistently bymatching them to larger
regions in consequent frames. In spite of the oversegmenta-
tion, there were still situations where some part of an object
was merged with the background if they had very similar
appearance. This type of error is inherent to any unsuper-
vised segmentation algorithm and only manual interaction
could correct this type of error.
Region tracking. Compared to an early version of our

algorithm, we noted that the addition of keypoints was cru-
cial to register the regions to the same location in the scene
and thus avoid severe propagation of labeling errors. In
the absence of any motion model, keypoints improved the
region tracking in ambiguous cases, such as moving and
repetitive pattern (e.g. as lane markings or a facade be-
hind a fence). The use of keypoint and histogram inter-
section proved to be flexible and effective to match regions
correctly in very challenging conditions : multiple moving
objects, partial occlusion and changes in segmentation.
Mismatch problems usually include two moving objects

which are connected in the image plane and for which a key-
point or a region switches from one object to another. This
type of error could not be corrected automatically. Small
objects such as sign poles were hardly tracked because of
their small size and their lack of saliency. However, some-
times a single keypoint could help tracking a non-trivial re-
gion, such as a small shop sign.
Label propagation. The overall performance of our la-

bel propagation method was measured based on the confu-
sion matrix for all object classes between the groundtruth
labeled frames and each estimated labeled frame. The re-
sults of the progagation can be viewed in the supplementary

3http://sourceforge.net/projects/opencv/
4http://www.cs.ubc.ca/∼lowe/keypoints/
5http://people.cs.uchicago.edu/∼pff/segment/



video. We measure the propagation accuracy rates for the
object classes normalized by the object size. In other words,
this rate indicates the percentage of pixels for a given class
which were correctly labeled in each frame. In figures 5 and
6, we show the evolution of propagation accuracy through
frames of the most frequent classes along with their popu-
lation per frame. The correct propagation rates vary signif-
icantly from <1% to 98% across the sequence depending
on the class. In particular, the highest rates are generally
obtained by the largest objects such as road and building
(figure 5). Cars (figure 5) and bicyclists (figure 6), although
representing only 1% and 2% in size on average, achieve
reasonably well. Those latter classes are particularly impor-
tant to detect in a driving environment. In figure 6, we can
observe the “LaneMkgsDriv” (drivable lane markings) ac-
curacy drops rapidly although they are still present in the se-
quence (bottom left figure). Unlike large continuous regions
such as building, lane markings are composed of interrupted
similar patches on the road and their track is quickly lost.
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Figure 5. Label propagation normalized accuracy per frame across
the sequence for the biggest classes and size of the classes in each
frame. Both size and accuracy measures are calculated using the
groundtruth frames. The presence of local minima in most of the
accuracy curves show that partial occlusion is handled (i.e. part of
an object is lost and then recovered).

The reported rates are normalized by their population.
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Figure 6. Same as figure 5, but for the smaller classes.

Figure 7. Overall accuracy for label propagation averaged over all
classes.

But from the human labeler point of view, the overall num-
ber of correctly classified pixels really matters, as shown in
figure 7. It drops from 98% to 53% at the last frame. Given
the difficulty of this sequence and the absence of user input
throughout the sequence, those rates are very encouraging.
The area below this curve can be viewed as the number of
pixels the user will not have to label. Given that each image
takes 20-25 minutes to label, it means a considerable time
gain.

7. Conclusion
We have presented a new flexible yet robust technique to

automate the propagation of object labels in video based on



joint keypoint and region tracking. Salient parts of objects
are correctly tracked thanks to combination of keypoints
and regions. Other difficult object parts (such as textured
regions) are efficiently registered using similarity measures
dedicated to oversegmented regions.
Tests were run on a driving video sequence and the ac-

curacy of propagation for different classes was measured
against a labeled groundtruth. The overall propagation ac-
curacy is very promising on a challenging video sequence,
which reduces greatly the task of the human labeler.
The performance can be further improved by allowing

the user to interactively correct errors in difficult cases and
imposing regularity constraints on the track to handle full
occlusion.
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