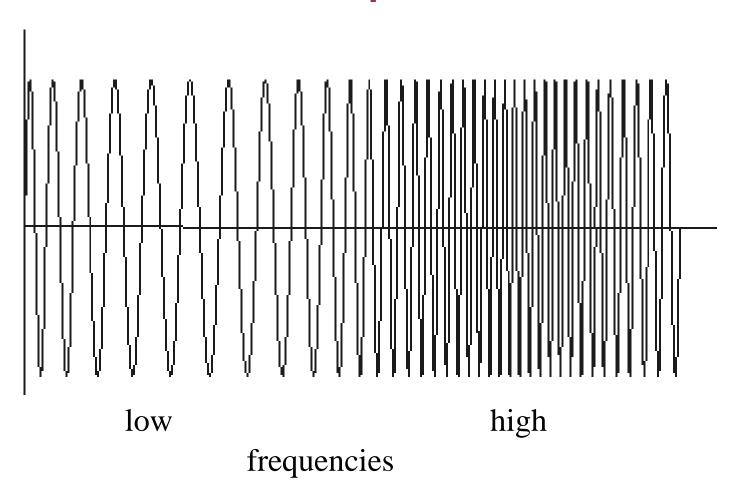
Filtering Applications & Edge Detection

Outline

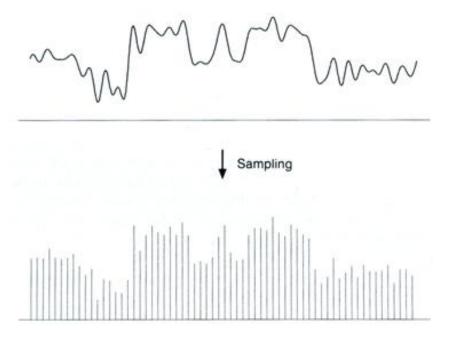
- Sampling & Reconstruction Revisited
 - Anti-Aliasing
- Edges
- Edge detection
- Simple edge detector
- Canny edge detector
- Performance analysis
- Hough Transform

1D Example: Audio



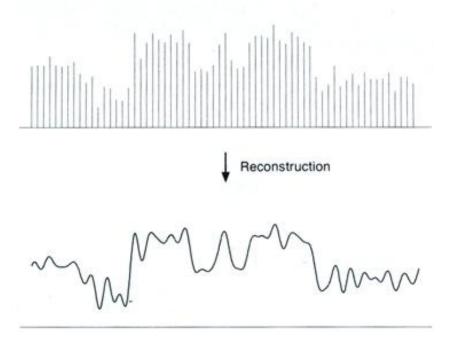
Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points



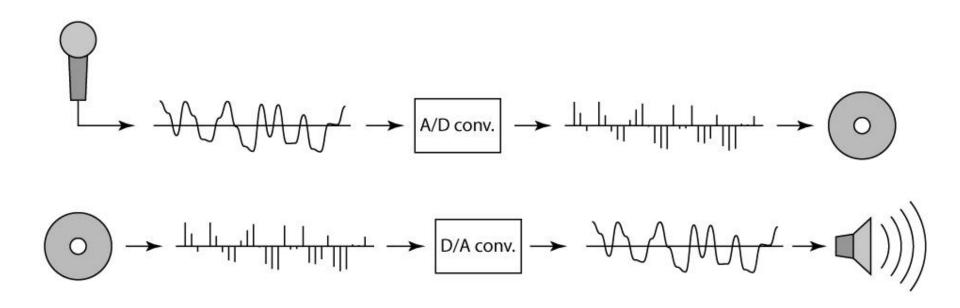
Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between



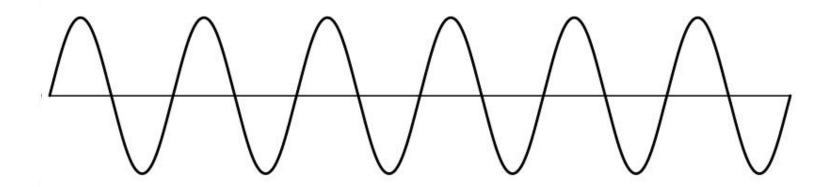
Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?



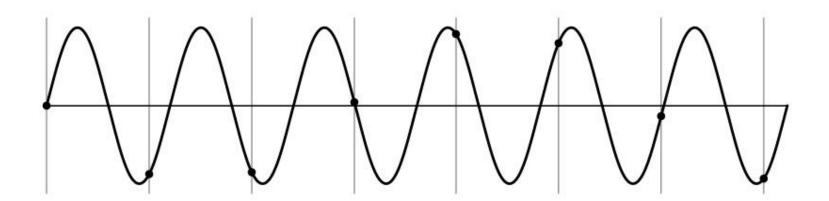
Sampling and Reconstruction

• Simple example: a sine wave



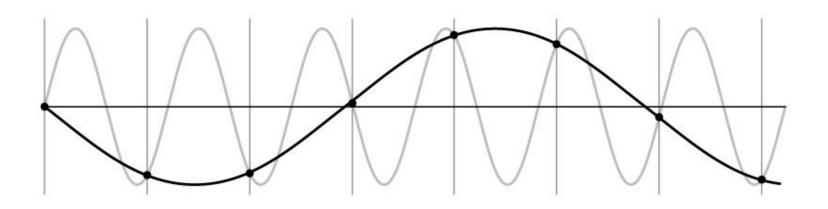
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost

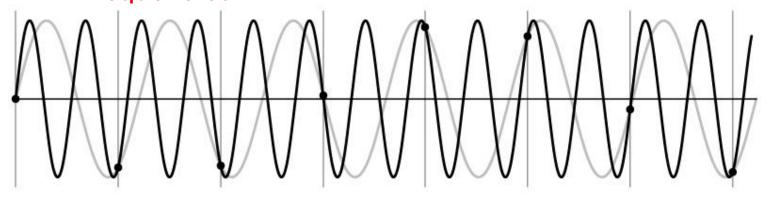


Undersampling

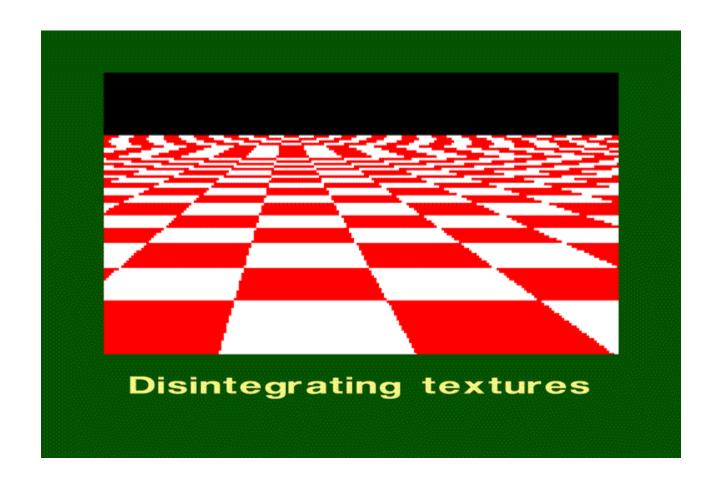
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency



- Undersampling
 What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - <u>aliasing</u>: signals "traveling in disguise" as other frequencies



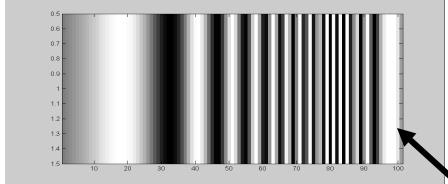
Aliasing in images



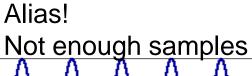
What's happening?

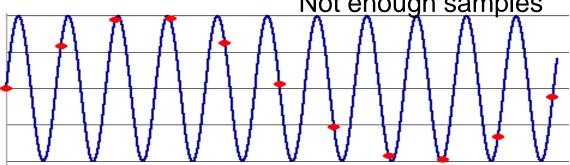


Plot as image:



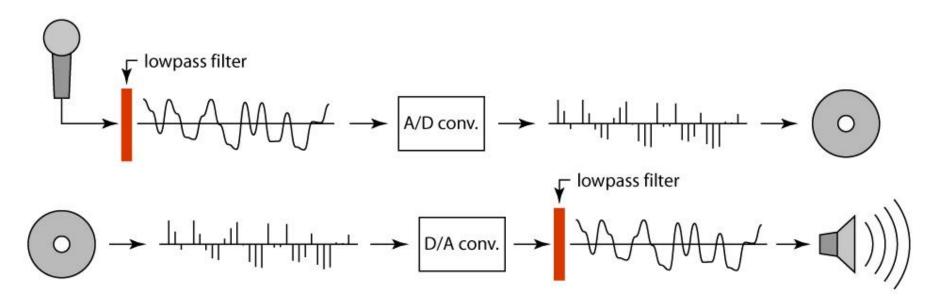
x = 0:.05:5; imagesc(sin((2.^x).*x))





Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

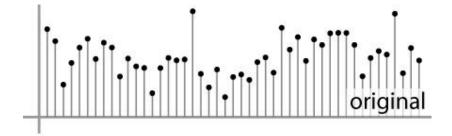


Linear filtering: key points

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

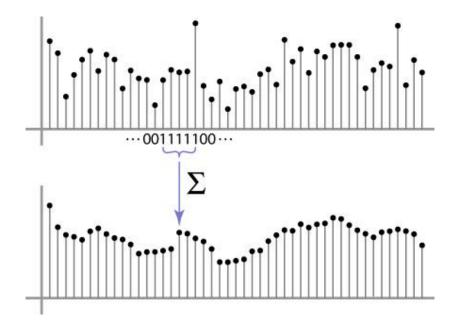
Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



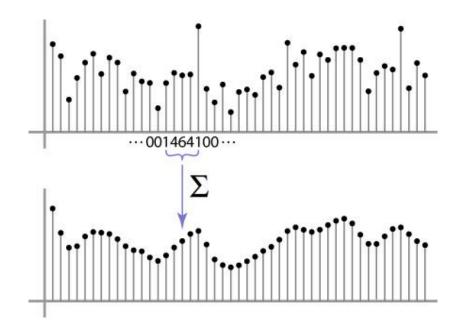
Weighted Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



Weighted Moving Average

• bell curve (gaussian-like) weights:



Antialiasing

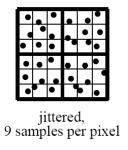
- What can be done?
 - Sampling rate > 2 * max frequency in the image
- 1. Raise sampling rate by *oversampling*
 - Sample at k times the resolution
 - continuous signal: easy
 - discrete signal: need to interpolate
- 2. Lower the max frequency by *prefiltering*
 - Smooth the signal enough
 - Works on discrete signals

Antialiasing

- What can be done?
 - Sampling rate > 2 * max frequency in the image
- Raise sampling rate by oversampling

 - continuous signal: easy
- Lower the max freque

 - Works on discrete signals
- Sample at k times the re N := Nyquist Frequency, in cycles/secfor a system with a fixed sampling discrete signal: need to rate of 2N samples/sec. i.e. only frequencies < N will be
- Smooth the signal enou reconstructed without aliasing.
- Improve sampling quality with better sampling 3.
 - Below Nyquist frequency is best case!
 - Stratified sampling (jittering)
 - Importance sampling
 - Relies on domain knowledge



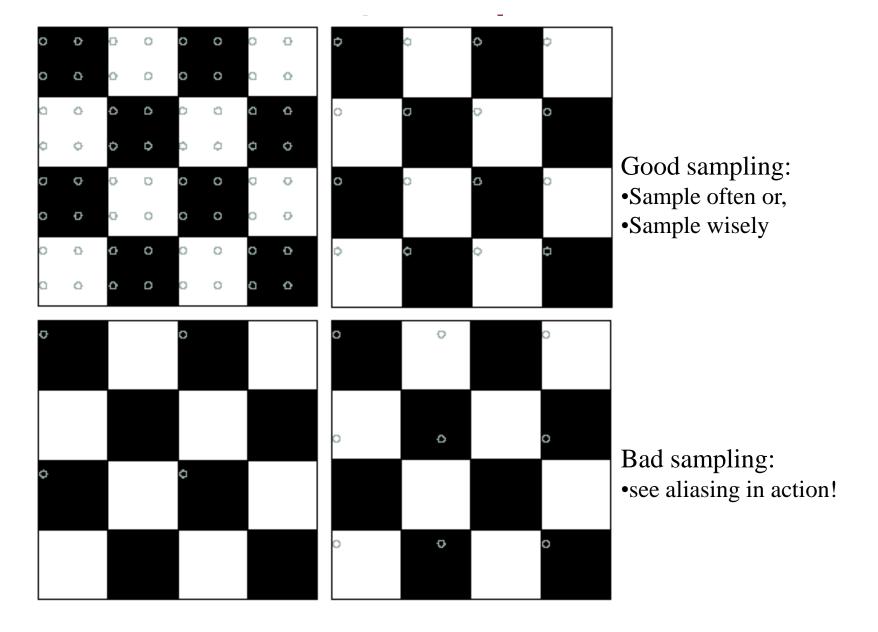


Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

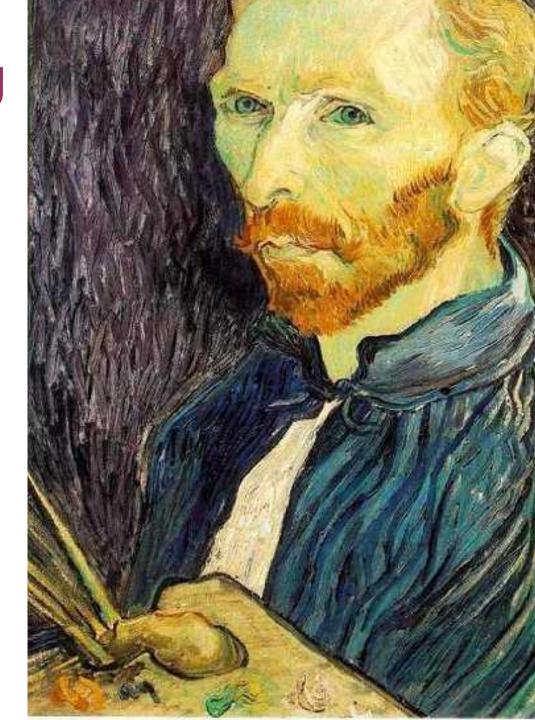
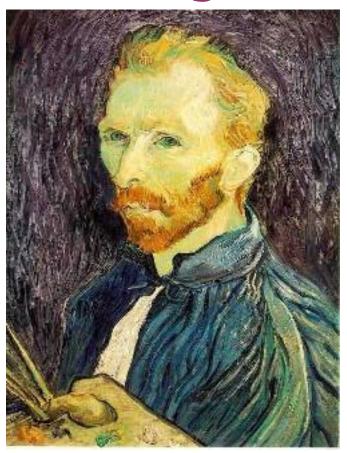


Image sub-sampling

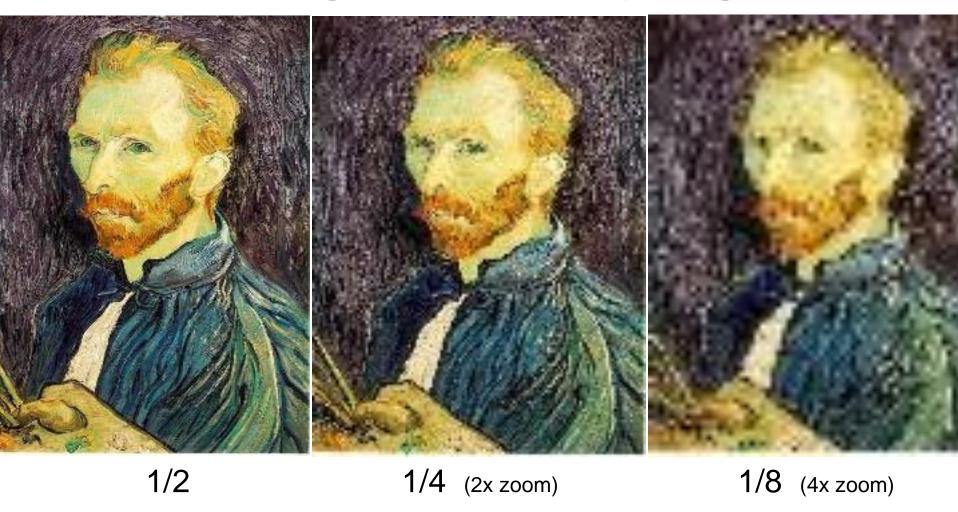


1/8

1/4

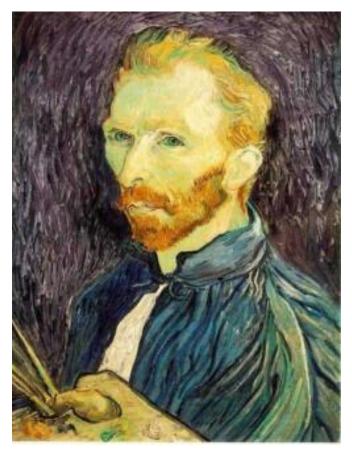
Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling



Aliasing! What do we do?

Gaussian (lowpass) pre-filtering



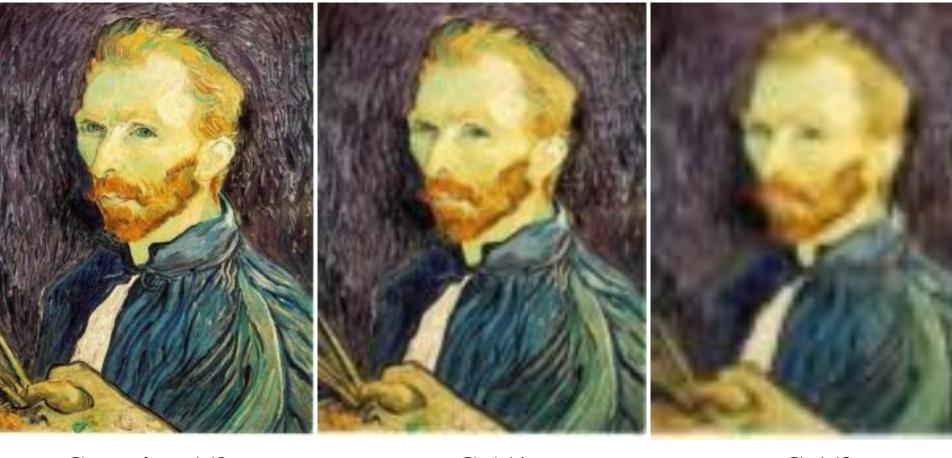
G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian Pre-filtering

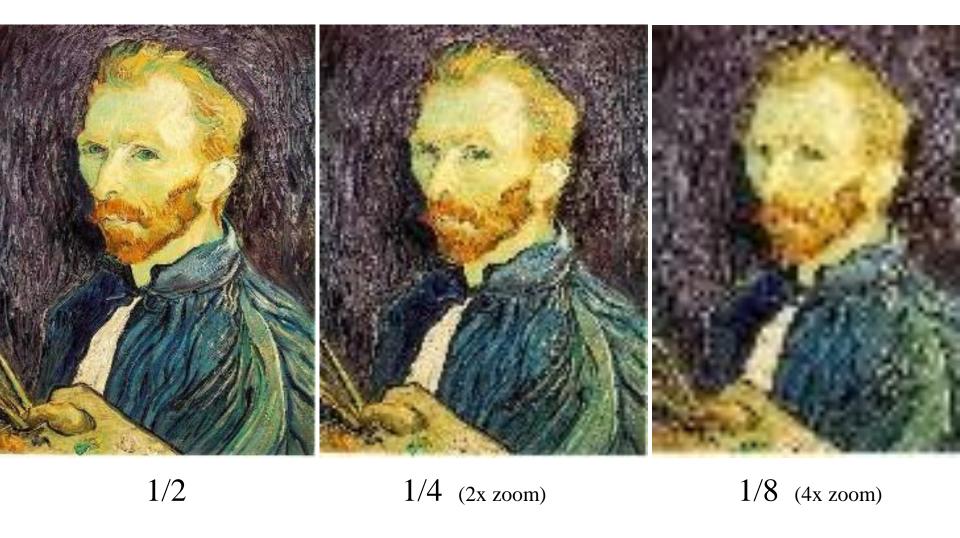


Gaussian 1/2 G 1/4 G 1/8

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

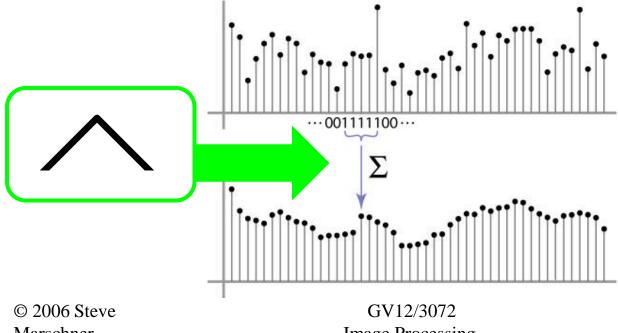
Compare with Just Subsampling



Last Point About Reconstruction

• If we replace box-filter's weights: ([..., 0, 1, 1, 1, 1, 1, 0, ...] / 5)

with a triangle, width = $2 \times \text{period}$, then what?

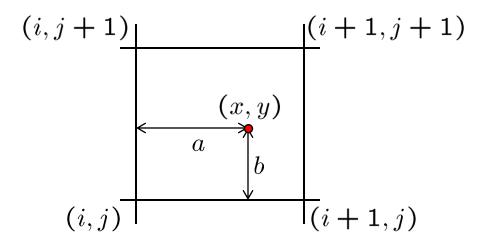


Marschner

Image Processing.

Bilinear interpolation

• Sampling at f(x,y):

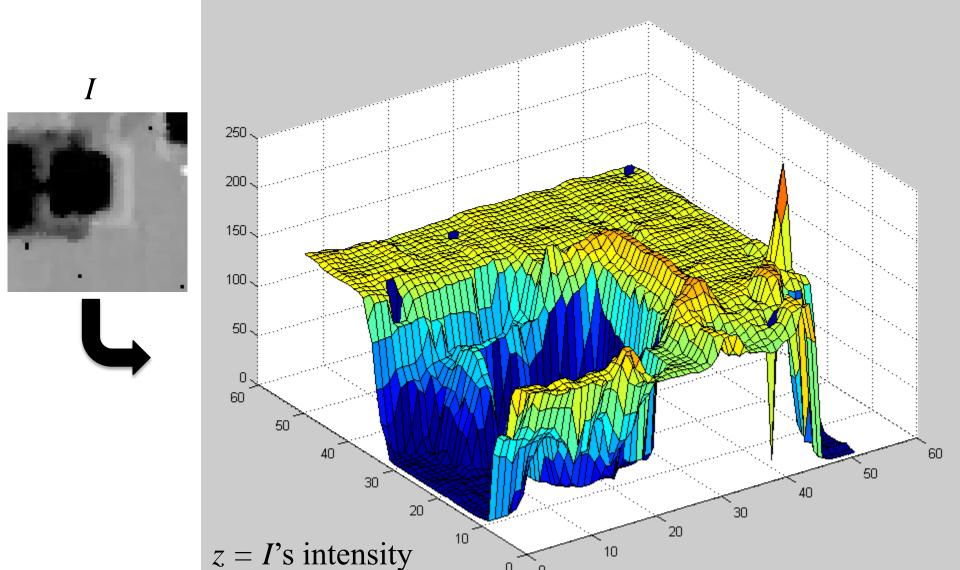


$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

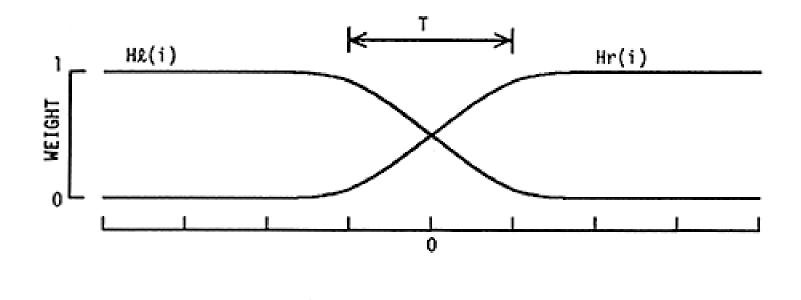
• Time for aliasing Clock-face problem?

Photos + implementation by Rob Orr

Image == Heightfield



How does one normally blend?



Position

$F(i) = Hl(i - \hat{i}) Fl(i) + Hr(i - \hat{i}) Fr(i)$

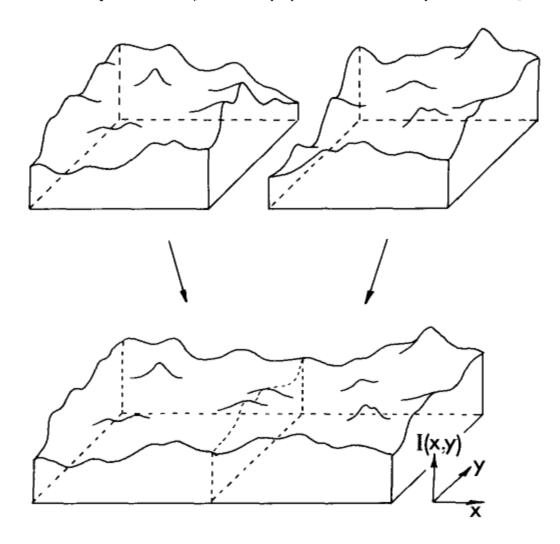
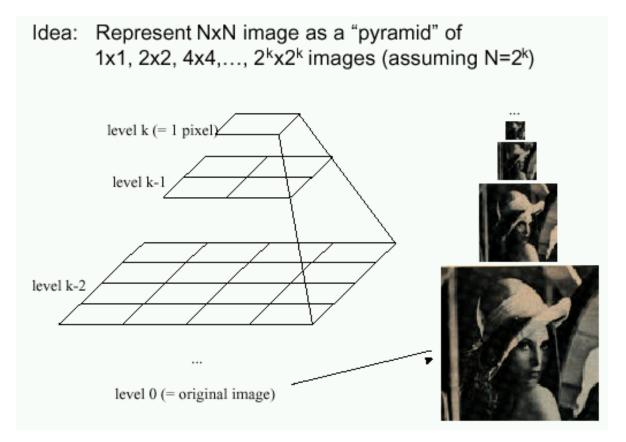


Fig. 1. A pair of images may be represented as a pair of surfaces above the (x, y) plane. The problem of image splining is to join these surfaces with a smooth seam, with as little distortion of each surface as possible.

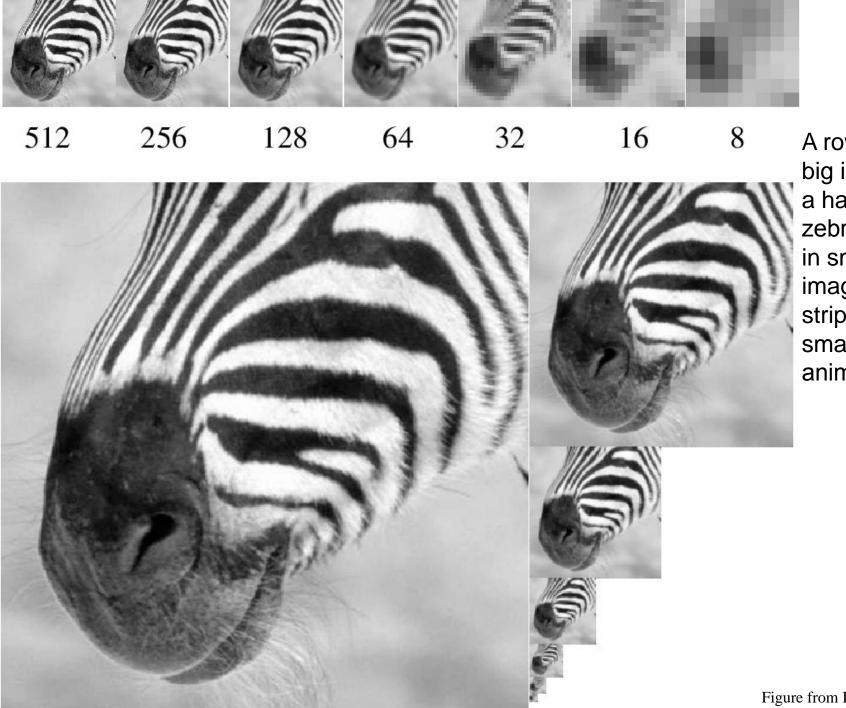
Image Pyramids



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

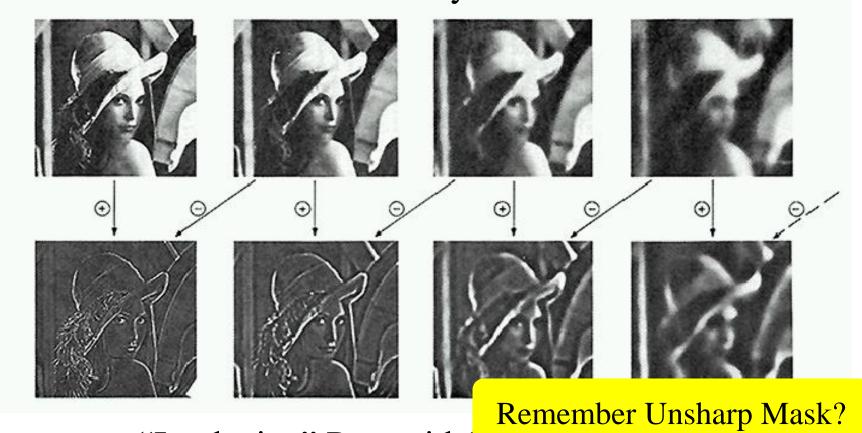
First introduced for compression purposes



A row in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Laplacian Pyramid

Gaussian Pyramid



"Laplacian" Pyramid (suovana mages)

• Created from Gaussian pyramid by subtraction

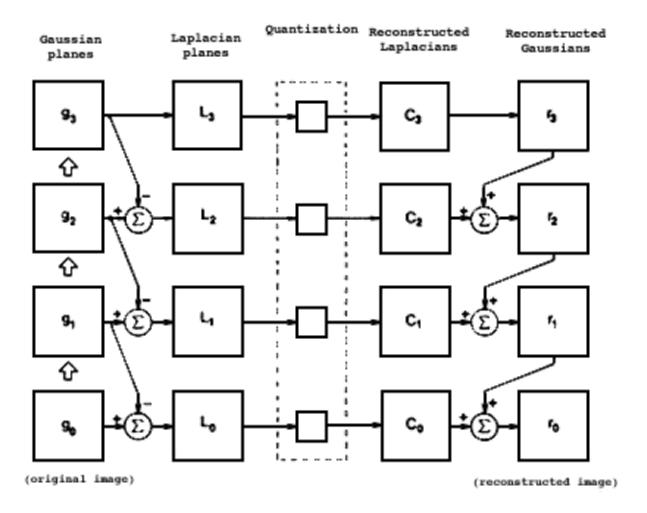
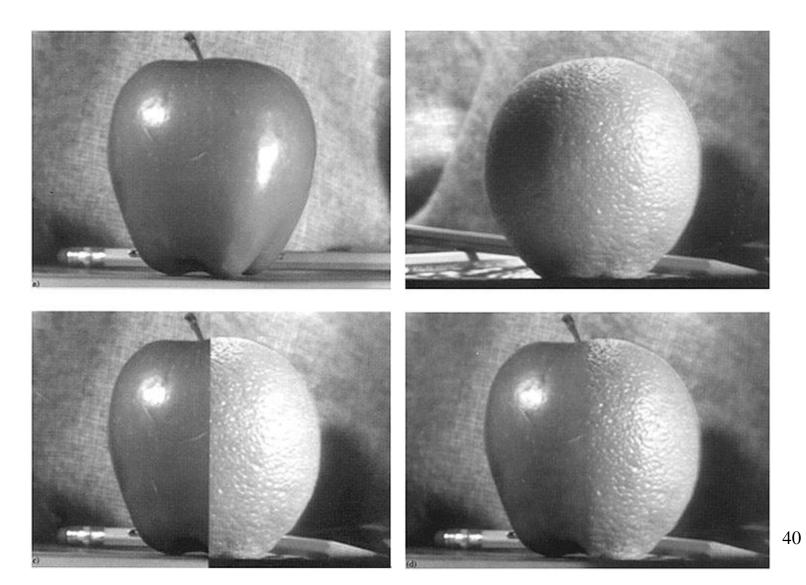


Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding. First, the original image g_0 (lower left) is used to generate Gaussian pyramid levels g_1, g_2, \ldots through repeated local averaging. Levels of the Laplacian pyramid L_0, L_1, \ldots are then computed as the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C_0 , C_1, C_2, \ldots Finally, a reconstructed image r_0 is generated by summing levels of the code pyramid.

Fun with Image Pyramids: Blending

A Multiresolution Spline With Application to Image Mosaics Burt & Adelson '83

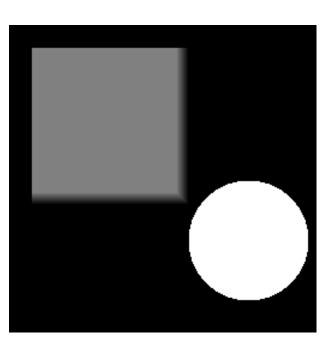


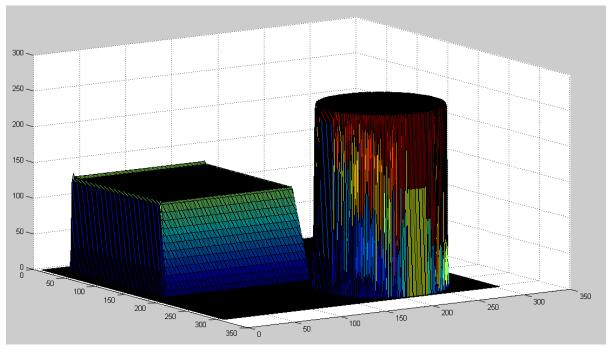
Photos + implementation by Rob Orr

Photos + implementation by Rob Orr

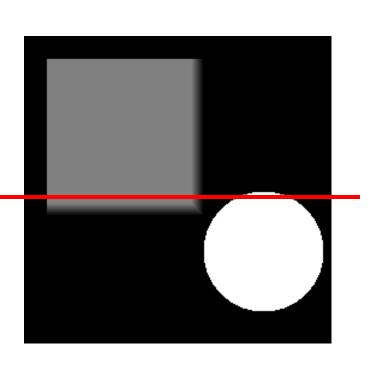
Photos + implementation by Rob Orr

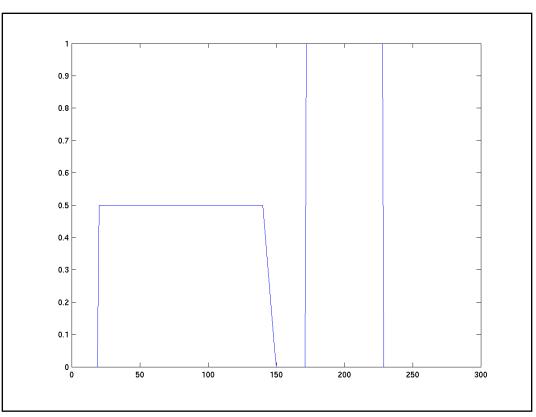
Step and Ramp Edges





Step and Ramp Edges



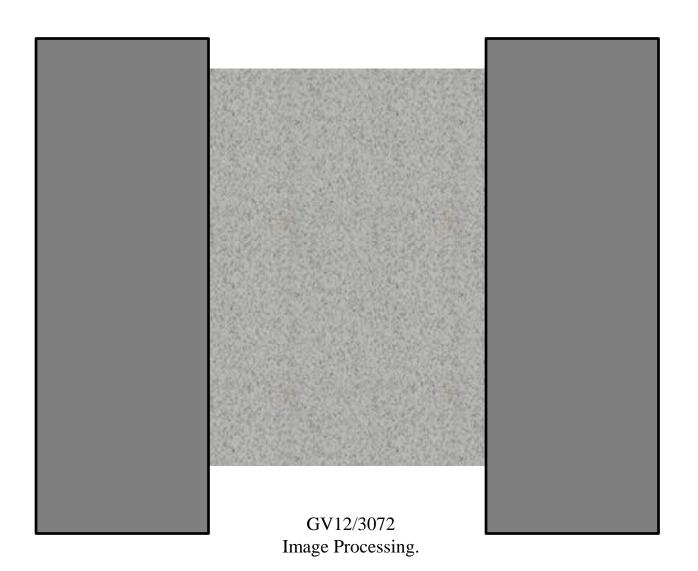


What looks like an edge?

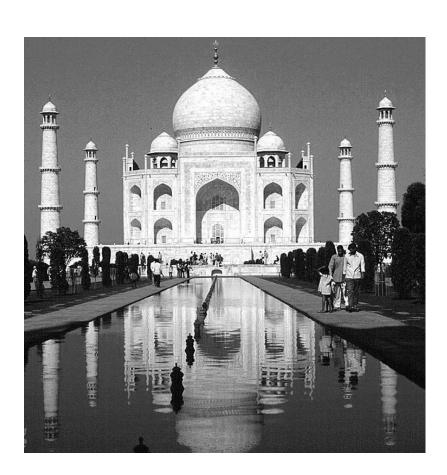
- Boundaries between regions in images:
 - Material change
 - Occlusion boundary
 - Crease boundaries
 - Shadow boundaries

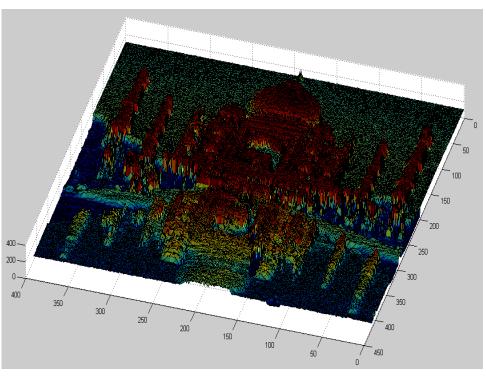
- Sharp changes of gray level: Texture
- (Motion boundaries)

Motion Boundaries

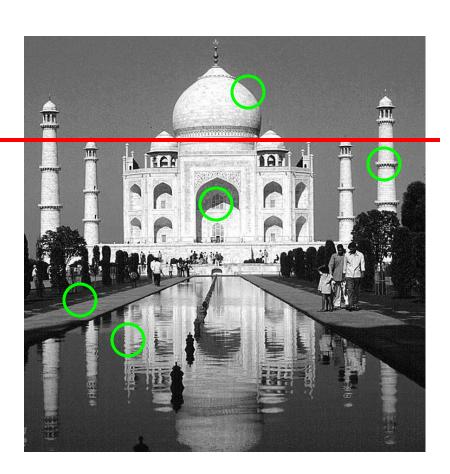


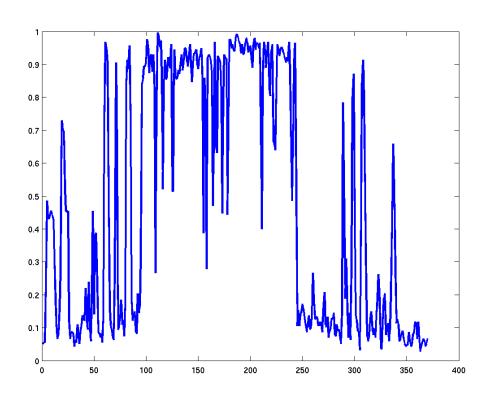
Real Edges





Real Edges





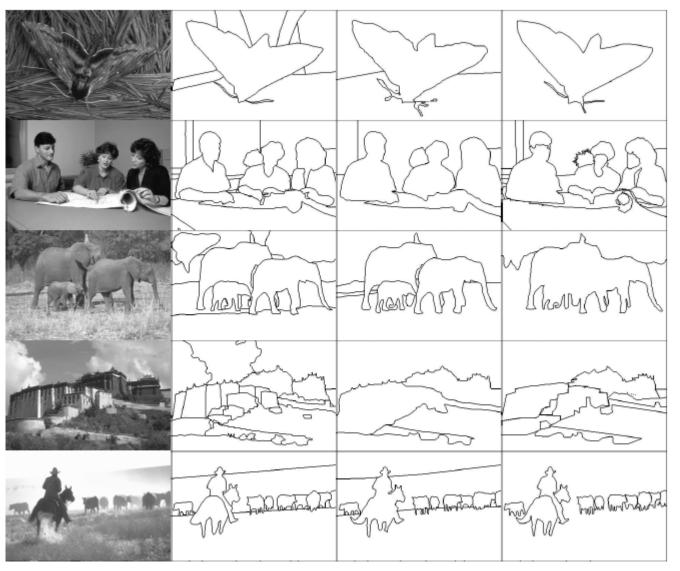
Applications

- Segmentation
- Stereo matching

 Theory underlies many more sophisticated image processing algorithms

Humans Disagree...

A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics Martin Fowlkes Tal Malik, ICCV01



Edge Detection

• A wide range of techniques.

- Three steps to perform
 - Noise reduction
 - Edge enhancement
 - Edge localization
- For today's purposes: output a binary image with edge pixels marked

Simple Edge Detector

- Minimal noise reduction
- Crude localization

Compute image gradients

$$g_x(x, y) = f(x+1, y) - f(x-1, y)$$

 $g_y(x, y) = f(x, y+1) - f(x, y-1)$

Simple: Gradient Kernels

Image Processing.

Prewitt kernels

$$k = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

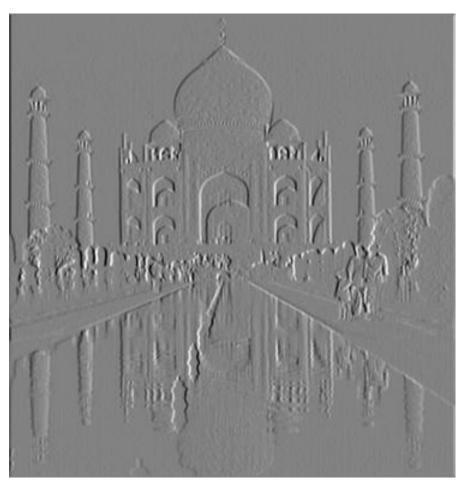
$$k_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

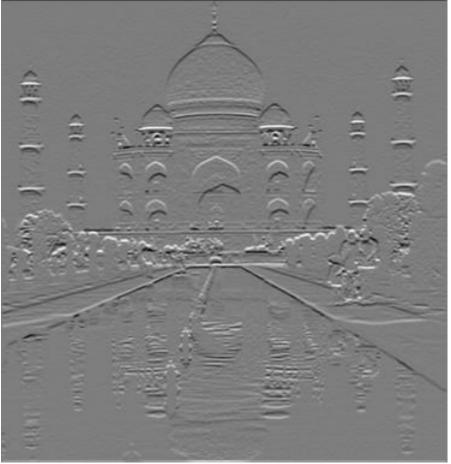
Sobel kernels

$$k_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$k_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad k_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}_{55}$$

Image Gradients (Sobel)





Simple: Gradient Vector

Gradient vector

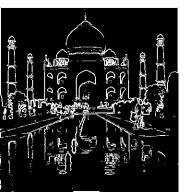
$$\mathbf{g}(x,y) = \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} (k_x * f)(x,y) \\ (k_y * f)(x,y) \end{bmatrix}$$

• Gradient magnitude and direction are:

$$|\mathbf{g}| = \mathbf{g}_{x}^{2} + g_{y}^{2}$$

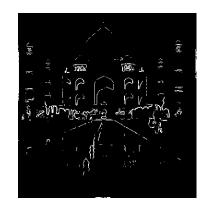
$$\theta = \tan^{-1} \left(\frac{g_{y}}{g_{x}} \right)$$

Simple: Edge Map



T=0.25

T=0.5



T=0.75

GV12/3072

Image Processing.

One more pair of kernels

Robert's Cross Operator:

$$k_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad k_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Canny Edge Detector

• Combine noise reduction and edge enhancement.

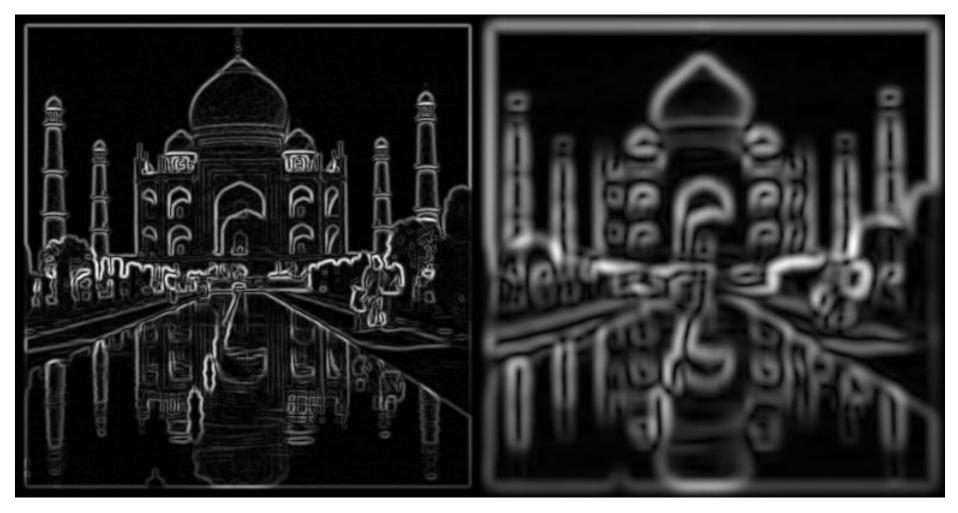
- Two-step edge localization
 - Non-maximal suppression
 - Hysteresis thresholding

Canny: Smoothing and Edge Enhancement

- 1. Smooth with a Gaussian kernel and differentiate
- 2. Equivalently, convolve with derivative of Gaussian

- Exploits separability of Gaussian kernel for convolution
- Balances localization and noise sensitivity

Canny: Derivative of Gaussian

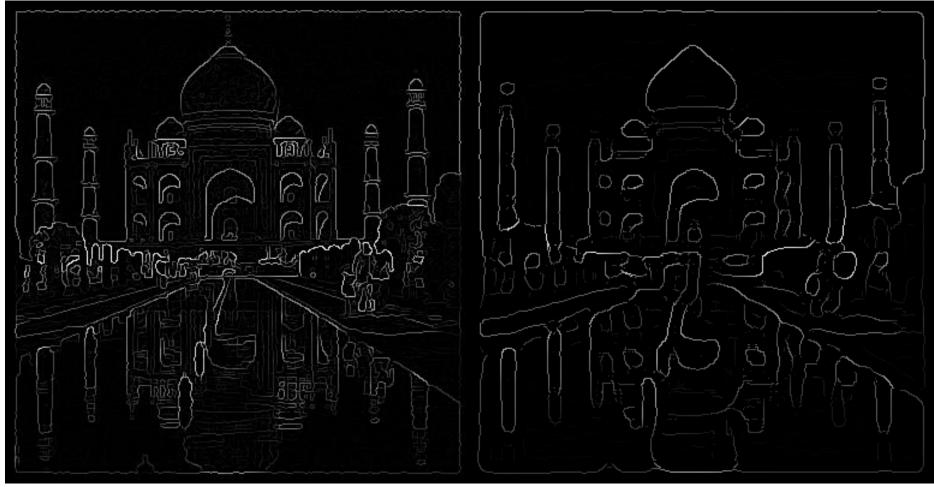


$$\sigma=1$$
 GV12/3072 $\sigma=5$ Image Processing.

Canny: Non-maximal suppression

- For each pixel
 - If the two pixels normal to edge direction have lower gradient magnitude
 - Keep the gradient magnitude
 - Otherwise
 - Set the gradient magnitude to zero

Canny: Non-max output



σ=1 GV12/3072 Image Processing.

 $\sigma=5$

64

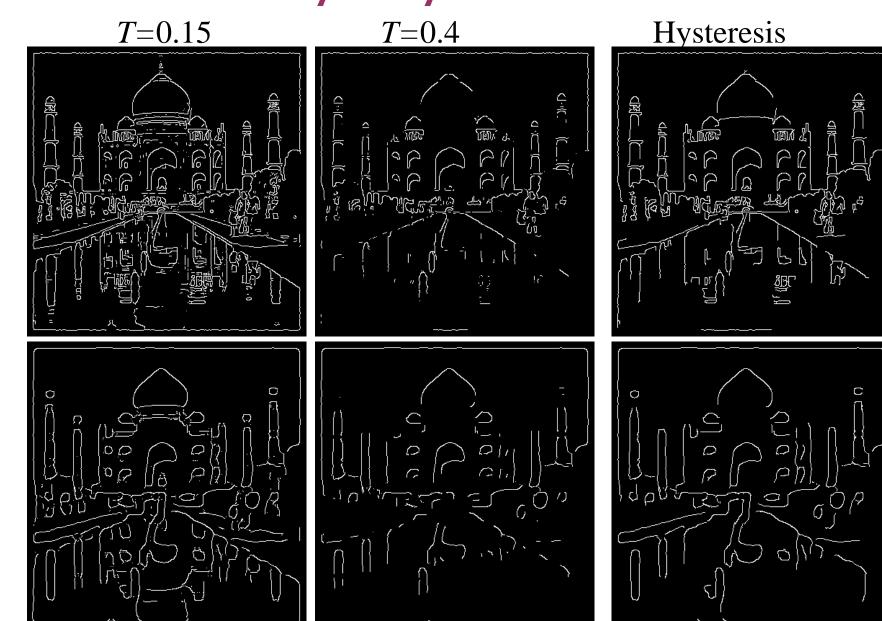
Canny: Hysteresis Tresholding

- Threshold with high and low thresholds.
- Initialize edge map from high threshold.
- Iteratively add pixels in low threshold map with 8-neighbors already in the edge map.
- Repeat until convergence.

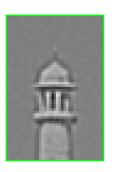
Canny: Hysteresis

 $\sigma=1$

 $\sigma=5$



Marr-Hildreth Edge Detector



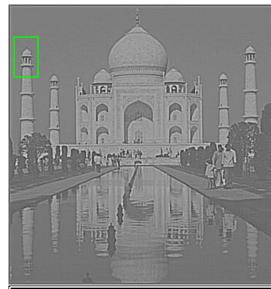
- Convolve with second derivative operator
 - Laplacian of Gaussian

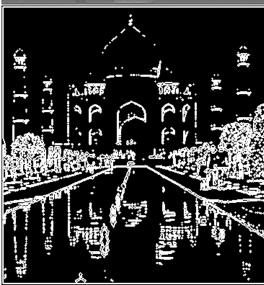
•
$$k(x, y) = \nabla^2 G(x, y) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) G(x, y)$$

• Find zero crossings

- Sensitive to noise.

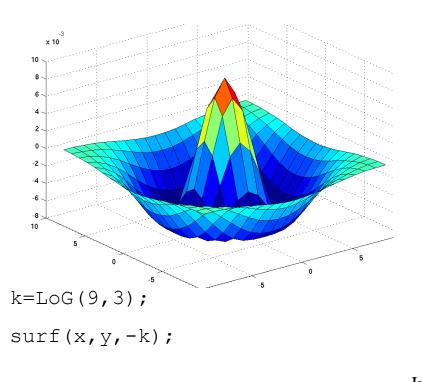
GV12/3072 Image Processing.

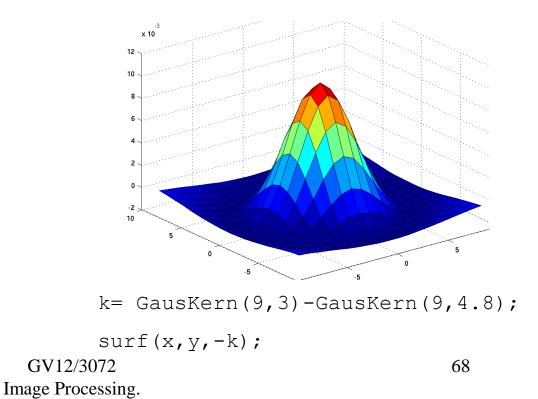




LoG vs DoG

• Laplacian sometimes approximated by difference of two Gaussian filters:





Model Fitting

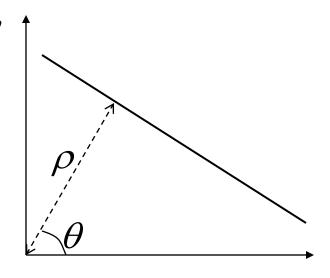
- Locate edges by fitting a surface.
- Create a model edge, eg step edge with parameters:
 - Orientation
 - Position
 - Intensities either side of the edge
- Find least-squares fit in each small window.
- Accept if fit is above a threshold.

Hough Transform

- Finds the most likely lines in an image.
- At every edge pixel, compute the local equation of the edge line:

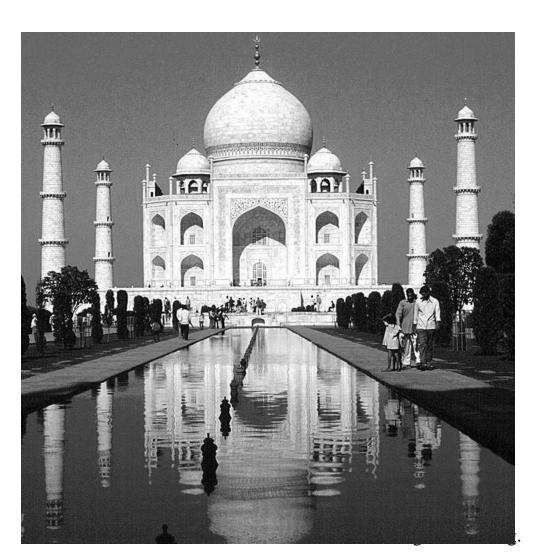
$$x\cos\theta + y\sin\theta = \rho$$

- Store a histogram of the line parameters θ and ρ .
- The fullest histogram bins are the dominant image lines.

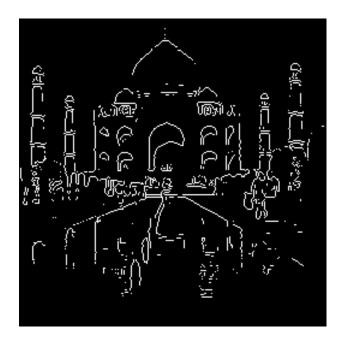


 \mathcal{X}

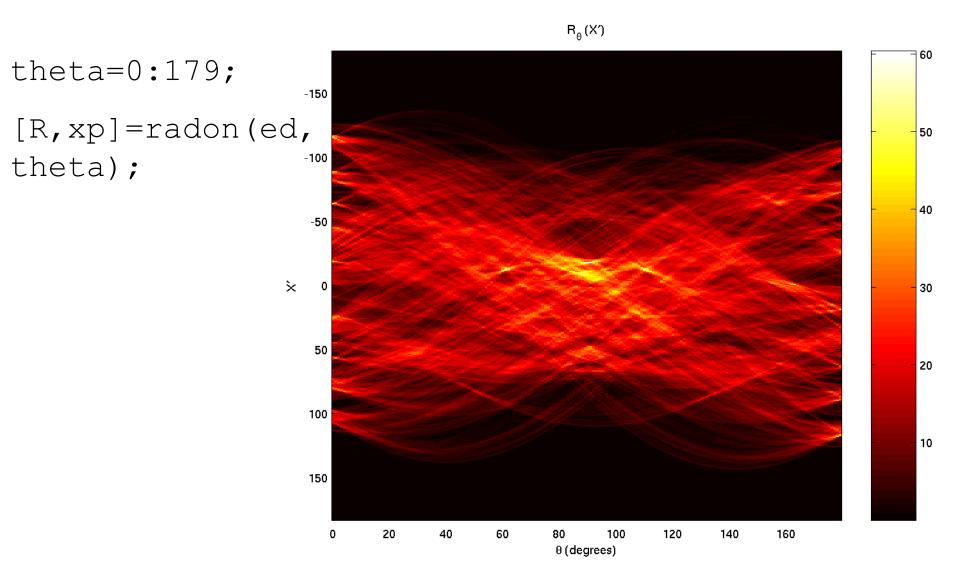
Example



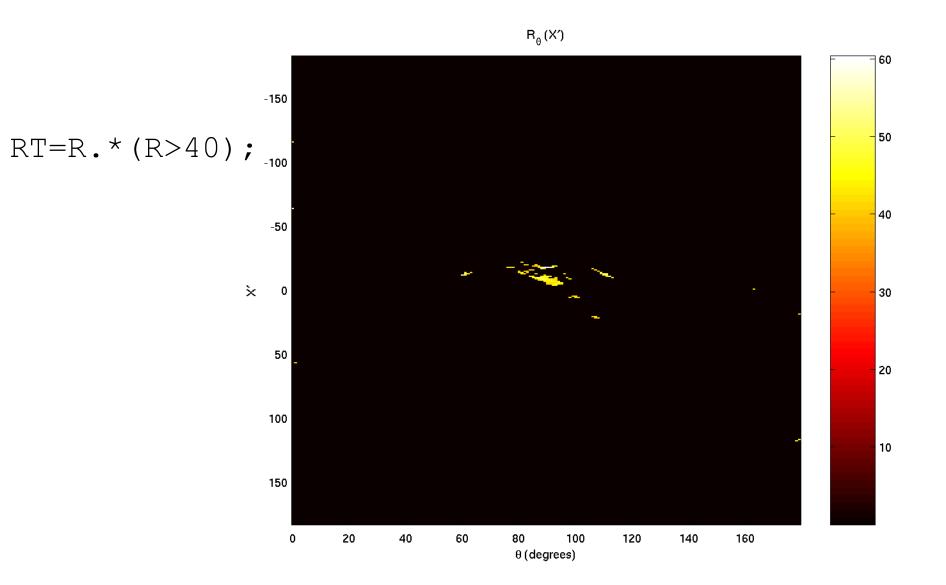
ed=edge(im);



Hough Transform

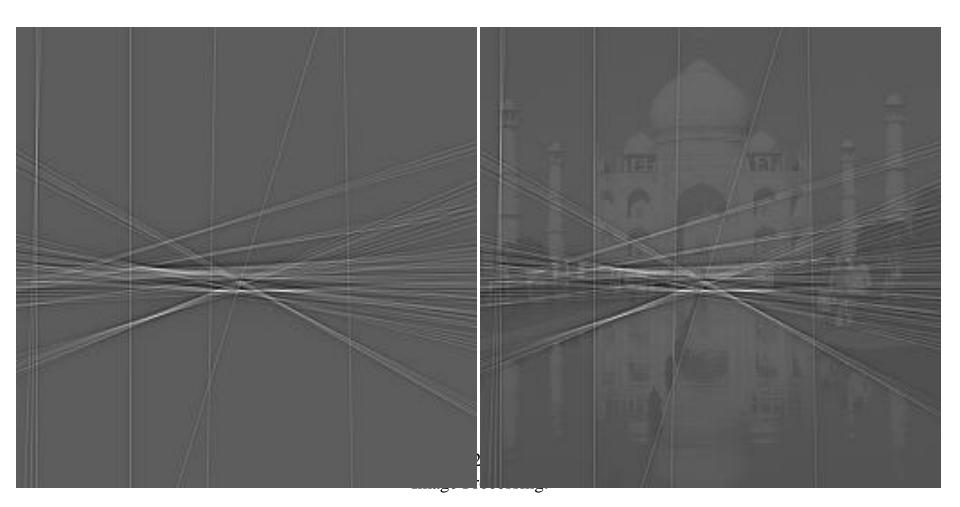


Thresholded



Inverted and Superimposed

```
lines=iradon(RT,
theta);
```



Generalization

- The general Hough transform works with any parametric shape.
- E.g., circles: $(x-x_0)^2 + (y-y_0)^2 = r^2$
- Make a 3D histogram of x_0 , y_0 and r.
- Threshold and back project in the same way.

Pros and Cons

- First-derivative approach
 - Fast, simple to implement and understand.
 - Noise sensitive, misses corners, lots of thresholds to select.
- Second-derivative approach
 - Few thresholds to choose, fast.
 - Very sensitive to noise.
- Model fitting
 - Slow.
 - Less sensitive to noise.

Performance

- How can we evaluate edge-detector performance?
 - Probability of false edges
 - Probability of missing edges
 - Error in edge angle
 - Mean squared distance from true edge

Summary

- Resize by re-sampling (must pre-filter!!)
- Image pyramids applications
- Edge detection
 - Simple
 - Canny
- Hough Transform