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1D Example: Audio
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Sampled representations

« How to store and compute with continuous functions?
« Common scheme for representation: samples

— write down the function’s values at many points
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Reconstruction

« Making samples back into a continuous function
— for output (need realizable method)
— for analysis or processing (need mathematical method)

— amounts to “guessing’” what the function did in between

l Reconstruction

%
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Sampling in digital audio

» Recording: sound to analog to samples to disc

» Playback: disc to samples to analog to sound again
— how can we be sure we are filling in the gaps correctly?
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Sampling and Reconstruction

« Simple example: a sine wave
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Undersampling

 What if we “missed” things between the samples?

« Simple example: undersampling a sine wave
— unsurprising result: information is lost
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Undersampling

 What if we “missed” things between the samples?

« Simple example: undersampling a sine wave
— unsurprising result: information is lost
— surprising result: indistinguishable from lower

frequency
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Undersampling

* What if we “missed” things between the samples?

« Simple example: undersampling a sine wave
— unsurprising result: information is lost

— surprising result: indistinguishable from lower
frequency

— also was always indistinguishable from higher
frequencies

— aliasing: signals “traveling in disguise” as other
frequencies
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Aliasing in images

Disintegrating textures




What's happening?

il

Plot as image:

X = 0:.05:5; imagesc(sin((z.’\x).*xy\

Alias!
Not enough samples
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Preventing aliasing

 [ntroduce lowpass filters:

— remove high frequencies leaving only safe, low
frequencies

— choose lowest frequency in reconstruction
(disambiguate)

Iowpass filter
A/D conv.| — IlI |ll .Il Il ] L —
- L ia

Iowpass filter
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Linear filtering: key points

 Transformations on signals; e.g.:
— bass/treble controls on stereo
— blurring/sharpening operations in image editing
— smoothing/noise reduction in tracking
« Key properties
— linearity: filter(f + g) = filter(f) + filter(g)
— shift invariance: behavior invariant to shifting the input

« delaying an audio signal
» sliding an image around

« Can be modeled mathematically by convolution

© 2006 Steve
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Moving Average

 basic idea: define a new function by averaging over a

sliding window

« asimple example to start off: smoothing
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Weighted Moving Average

« Can add weights to our moving average
 Weights [...,0,1,1,1,1,1,0,...] /5
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Weighted Moving Average

* bell curve (gaussian-like) weights:
., 1,4,6,4,1, ...]




Antialiasing

 What can be done?

Sampling rate > 2 * max frequency in the image
1. Raise sampling rate by oversampling

— Sample at k times the resolution

— continuous signal: easy

— discrete signal: need to interpolate
2. Lower the max frequency by prefiltering

— Smooth the signal enough
— Works on discrete signals



Antialiasing

«  What can be done?
Sampling rate > 2 * max frequency in the image

— discrete signal: need rate of 2N samples/sec.

2. Lower the max freque i.e. only frequencies < N will be
— Smooth the signal enou reconstructed without aliasing.
— Works on discrete signals

3. Improve sampling quality with better sampling
— Below Nyquist frequency is best case!

— Stratified sampling (jittering) T
— Importance sampling -.::“-::H
— Relies on domain knowledge T”FF'J

jittered,
9 samples per pixel



Good sampling:
«Sample often or,
«Sample wisely

Bad sampling:
«see aliasing in action!




This image is too big to
fit on the screen. How
can we reduce it?

How to generate a half-
sized version?

Image half-sizing S8

l
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Throw away every other row and

column to create a 1/2 size image
- called image sub-sampling

Image ub-sampling

Slide by Steve Seitz



Image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?

Slide by Steve Seitz



Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample

 Filter size should double for each %% size reduction. Why?
Slide by Steve Seitz



Subsampling with Gaussian Pre-filtering

Gaussian 1/2 G 1/4
Solution: filter the image, then subsample

* Filter size should double for each % size reduction. Why?
« How can we speed this up?




Compare with Just Subsampling

1/4 (2x zoom) 1/8 (4x zoom)



Last Point About Reconstruction
* If we replace box-filter’s weights:

(....,0,1,1,1,1,1,0,...] /'5)
with a triangle, width = 2 x period, then what?
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Bilinear interpolation

« Sampling at f(X,y):
(i, +1) (i+1,j+1)

(z,y)

a,Ib

(2,7) (14 1,7)

flr,y) = (1 —-a)(1-0b) f]
+a(l —-b)  fli+1,4]

+ab £l

+(1—-a)b f




» Time for aliasing Clock-face problem?
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Photos + implementation by Rob Orr



Image == Heightfield
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How does one normally blend?

HR(i) Hr(i)

= HWEIGHT _
I

Position 1

GV12/3072 35
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F(i) = HI(i — i) FI(}) + Hr(i — i) Fr@@)

Fig. 1. A pair of images may be represented as a pair of surfaces above the (x, y) plane. The problem
of image splining is to join these surfaces with a smooth seam, with as little distortion of each surface
as possible.



Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2% images (assuming N=2¥)

level k(= 1 pixcl@\

lewel k-1 IIIIIIL/

\h

level k-2

q
L7
/ _:

level 0 (= onginal image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
« In computer graphics, a mip map [Williams, 1983]
 Aprecursor to wavelet transform

First introduced for compression purposes



A row in the
_big images is
a hair on the
. zebra’s nose;
5 in smaller
3’/ imgges_, a
, stripe; in the
smallest, the
animal’s nose
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Figure from David Forsyth



Laplacian Pyramid

Gaussian Pyramid

-

Remember Unsharp Mask?

“Laplacian” Pyramid (s

Created from Gaussian pyramid by subtraction



Quantization meconstructed Reconstructed

G:lii:;i:ﬂ upﬁ‘ﬁﬂ?n Laplacians Gaussians
% G / °
<

+
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{origisal Image) [reconstructed Image)

Fig. 10. A summary of the steps in Laplacian pyranud coding and decoding. First, the onginal image g, (lower left) 1s used to generate
Gaussian pyramd levels g,. g,. ... through repeated local averaging. Levels of the Laplacian pyranud L,. L,, ... are then computed as
the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramud code C.
C.. C,. .... Fmally. a reconstructed image », 15 generated by summing levels of the code pyramd.



Fun with Image Pyramids: Blending

A Multiresolution Spline With Application to Image Mosaics
Burt & Adelson '83




Photos + implementation by Rob Orr



—

Photos + implementation by Rob Orr
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Photos + implementation by Rob Orr
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Step and Ramp Edges

j . D ooy e 350
- 200
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Step and Ramp Edges

GV12/3072
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What looks like an edge?

» Boundaries between regions in images:
« Material change
 Occlusion boundary
 Crease boundaries
 Shadow boundaries

« Sharp changes of gray level: Texture
 (Motion boundaries)

GV12/3072
Image Processing.
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Motion Boundaries

GV12/3072
Image Processing.
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Applications

« Segmentation
» Stereo matching

* Theory underlies many more sophisticated

Image processing algorithms

GV12/3072
Image Processing.
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Humans Disagree...

A Database of Human Segmented Natural Images and its Application to
Evaluating Segmentation Algorithms and Measuring Ecological Statistics
Martin Fowlkes Tal Malik, ICCV01

fhBES
i
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Edge Detection

A wide range of techniques.

* Three steps to perform

 Noise reduction
« Edge enhancement
« Edge localization

 For today’s purposes: output a binary image with
edge pixels marked

GV12/3072
Image Processing.
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Simple Edge Detector

 Minimal noise reduction
e Crude localization

« Compute image gradients

gx(X,¥)=T(x+Ly)-T(x=1y)
gy (X, y)=T(X,y+1)-1(x,y-1)

GV12/3072
Image Processing.
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Simple: Gradient Kernels

e Prewitt kernels

-1 0 1
-1 0 1

-1 0 1

el kernels
-1 0 1]

-2 0 2

-1 0 1

GV12/3072
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Image Gradients (Sobel)

GV12/3072
Image Processing.




Simple: Gradient Vector

e Gradient vector

956 Y) | [ (kex )X y)
g(X,y) = =

_gy(X1 y)_ _(ky * f )(X1 y)_

 Gradient magnitude and direction are:

o|=€2+92 "

0 = tanl(&J
Jx

GV12/3072
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Simple: Edge Map

T=0.75

GV12/3072 59
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One more pair of kernels

« Robert’s Cross Operator:

0 1

-1 0

1

GV12/3072
Image Processing.
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Canny Edge Detector

« Combine noise reduction and edge
enhancement.

» Two-step edge localization

« Non-maximal suppression
 Hysteresis thresholding

GV12/3072
Image Processing.
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Canny: Smoothing and Edge

Enhancement
1. Smooth with a Gaussian kernel and
differentiate

2. Equivalently, convolve with derivative of
Gaussian

 EXxploits separability of Gaussian kernel for
convolution

« Balances localization and noise sensitivity

GV12/3072 62
Image Processing.



Canny: Derivative of Gaussian

GV12/3072
Image Processing.




Canny: Non-maximal suppression

 For each pixel

« If the two pixels normal to edge direction have
lower gradient magnitude
— Keep the gradient magnitude

« Otherwise
— Set the gradient magnitude to zero

GV12/3072 64
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Canny: Non-max output

|

HI Mrw, T b e

A i_l\ _JJ[ f=
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Canny: Hysteresis Tresholding

 Threshold with high and low thresholds.
* Initialize edge map from high threshold.

* lteratively add pixels in low threshold map
with 8-neighbors already in the edge map.

 Repeat until convergence.

GV12/3072 66
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Marr-Hildreth Edge Detector

k=LoG(3,1);

tc=convZ(im, k) ; [

e Convolve with second derivative
operator
« Laplacian of Gaussian
o> b z
« k(x, ) =V°G(x, y):(axz+aysz(X,Y) agy
* Find zero crossings i o
» Sensitive to noise.

GV12/3072
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LoG vs DoG

 Laplacian sometimes approximated by
difference of two Gaussian filters:

k=L0G (9, 3) ; ’ k= GausKern (9,3)-GausKern (9,4.8);

surf (x,vy, -k): surf (x,y,-k);
GV12/3072 69
Image Processing.



Model Fitting

Locate edges by fitting a surface.

Create a model edge, eg step edge with

parameters:
* Orientation
* Position
* Intensities either side of the edge

Find least-squares fit in each small window.
Accept If fit Is above a threshold.

GV12/3072 70
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Hough Transform

Finds the most likely lines in an
Image. y 1
At every edge pixel, compute the
local equation of the edge line:

XC0S@+ ysind = p
Store a histogram of the line

parameters #and p.

The fullest histogram bins are the
dominant image lines.

GV12/3072 71
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Hough Transform

R, (X)
theta=0:179; "
[R, Xp]:radOn(ed, = 50
theta) ; e
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Thresholded

Ry (X)
F 960
-150
- -50
RT=R.* (R>40) ;
- —40
-50
X 0 30
50
i 20
100
10

150

0 20 40 60 80 100 120 140 160
0 (degrees)



Inverted and

Su penmposed lines=iradon (RT,

theta) ;




Generalization

The general Hough transform works with
any parametric shape.

E.g., circles: (x— x0)2 +(y-— yo)2 =r?
Make a 3D histogram of x,, y,and r.

Threshold and back project in the same
way.

GV12/3072
Image Processing.
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Pros and Cons

 First-derivative approach

« Fast, simple to implement and understand.
« Noise sensitive, misses corners, lots of thresholds to select.

 Second-derivative approach

 Few thresholds to choose, fast.
 Very sensitive to noise.

» Model fitting

e Slow.
e Less sensitive to noise.

GV12/3072
Image Processing.
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Performance

« How can we evaluate edge-detector
performance?
 Probability of false edges
* Probability of missing edges
 Error in edge angle
« Mean squared distance from true edge

GV12/3072
Image Processing.
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Summary

Resize by re-sampling (must pre-filter!!)
Image pyramids applications

Edge detection
« Simple
« Canny

Hough Transform

GV12/3072
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(Reminder slides from last week)

GV12/3072
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Image Sharpening: Example 1
I'= 1 +aV?l =1 +a(K*I)

[

-1 -1 -1
-1 3 -1
-1 -1 -1

Figure from NASA, obtained on
I 82


http://www.imageprocessingplace.com/

Image Sharpening: Example 1
I'= 1 +aV°l =1 +a(K*I)

Intensity range = [0, 254]




Image Sharpening: Example 1




Image Sharpening: Example 2
I'=1T+a(l -K*1) <"Unsharp Mask™

Figure from NASA, obtained on
I 85


http://www.imageprocessingplace.com/

Image Sharpening: Example 2
|'=21 — K* | <" Unsharp Mask"







Unsharp Mask
(from Example 2)

['=




I'=I + Laplacian
(from Example 1




