Filtering Applications & Edge Detection

GV12/3072 Image Processing.

Outline

- Sampling & Reconstruction Revisited
 - Anti-Aliasing
- Edges
- Edge detection
- Simple edge detector
- Canny edge detector
- Performance analysis
- Hough Transform

1D Example: Audio

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points

Sampling

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again

– how can we be sure we are filling in the gaps correctly?

© 2006 Steve Marschner • 6

Sampling and Reconstruction

• Simple example: a sine wave

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave – unsurprising result: information is lost

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave •
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - *aliasing*: signals "traveling in disguise" as other frequencies

Aliasing in images

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

^{© 2006} Steve Marschner • 15

Linear filtering: key points

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by *convolution*

Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

Weighted Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5

Weighted Moving Average

• bell curve (gaussian-like) weights:

[..., 1, 4, 6, 4, 1, ...]

Antialiasing

• What can be done?

Sampling rate > $2 * \max$ frequency in the image

- 1. Raise sampling rate by *oversampling*
 - Sample at k times the resolution
 - continuous signal: easy
 - discrete signal: need to interpolate
- 2. Lower the max frequency by *prefiltering*
 - Smooth the signal enough
 - Works on discrete signals

Antialiasing

What can be done?

Sampling rate $> 2 * \max$ frequency in the image

- Raise sampling rate by oversampling 1.

 - continuous signal easy
- 2. Lower the max freque
 - Smooth the signal enou reconstructed without aliasing.
 - Works on discrete signals
- Improve sampling quality with better sampling 3.
 - Below Nyquist frequency is best case!
 - Stratified sampling (jittering)
 - Importance sampling
 - Relies on domain knowledge

11ttered 9 samples per pixel

Sample at knimes the re N := Nyquist Frequency, in cycles/sec for a system with a fixed sampling

i.e. only frequencies < N will be

discrete signal: need to rate of 2N samples/sec.

Good sampling:Sample often or,Sample wisely

Bad sampling: •see aliasing in action!

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

Image sub-sampling

1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

1/2 1/4 (2x zoom) Aliasing! What do we do?

Slide by Steve Seitz

Gaussian (lowpass) pre-filtering

G 1/8

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian Pre-filtering

Gaussian 1/2

G 1/4

G 1/8

Solution: filter the image, *then* subsample

- Filter size should double for each ¹/₂ size reduction. Why?
- How can we speed this up?

Compare with Just Subsampling

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Last Point About Reconstruction

• If we replace box-filter's weights:

([..., 0, 1, 1, 1, 1, 1, 0, ...] / 5)

with a triangle, width = $2 \times period$, then what?

Bilinear interpolation

• Sampling at *f*(*x*,*y*):

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

• Time for aliasing Clock-face problem?

GV12/3072 Image Processing.

Photos + implementation by Rob Orr

Image == Heightfield

How does one normally blend?

Position i

 $F(i) = Hl(i - \hat{i}) Fl(i) + Hr(i - \hat{i}) Fr(i)$

Fig. 1. A pair of images may be represented as a pair of surfaces above the (x, y) plane. The problem of image splining is to join these surfaces with a smooth seam, with as little distortion of each surface as possible.

Image Pyramids

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*

First introduced for compression purposes

512 256 128 64 32 16 8

A row in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Figure from David Forsyth
Laplacian Pyramid

Gaussian Pyramid

"Laplacian" Pyramid (subband mages)

• Created from Gaussian pyramid by subtraction

Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding. First, the original image g_0 (lower left) is used to generate Gaussian pyramid levels g_1, g_2, \ldots through repeated local averaging. Levels of the Laplacian pyramid L_0, L_1, \ldots are then computed as the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C_0 , C_1, C_2, \ldots Finally, a reconstructed image r_0 is generated by summing levels of the code pyramid.

Fun with Image Pyramids: Blending

A Multiresolution Spline With Application to Image Mosaics Burt & Adelson '83

Photos + implementation by Rob Orr

Photos + implementation by Rob Orr

Photos + implementation by Rob Orr

GV12/3072 Image Processing.

Step and Ramp Edges

Step and Ramp Edges

What looks like an edge?

- Boundaries between regions in images:
 - Material change
 - Occlusion boundary
 - Crease boundaries
 - Shadow boundaries

- Sharp changes of gray level: Texture
- (Motion boundaries)

Motion Boundaries

Real Edges

Real Edges

GV12/3072 Image Processing.

Applications

- Segmentation
- Stereo matching

• Theory underlies many more sophisticated image processing algorithms

Humans Disagree...

A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics Martin Fowlkes Tal Malik, ICCV01

53

Edge Detection

- A wide range of techniques.
- Three steps to perform
 - Noise reduction
 - Edge enhancement
 - Edge localization
- For today's purposes: output a binary image with edge pixels marked

Simple Edge Detector

- Minimal noise reduction
- Crude localization

• Compute image gradients

$$g_x(x, y) = f(x+1, y) - f(x-1, y)$$
$$g_y(x, y) = f(x, y+1) - f(x, y-1)$$

Simple: Gradient Kernels

• Prewitt kernels

$$k = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$k_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

• Sobel kernels $k_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{k_{y}} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}_{6}^{6}$

Image Processing.

Image Gradients (Sobel)

GV12/3072 Image Processing.

Simple: Gradient Vector

• Gradient vector

$$\mathbf{g}(x, y) = \begin{bmatrix} g_x(x, y) \\ g_y(x, y) \end{bmatrix} = \begin{bmatrix} (k_x * f)(x, y) \\ (k_y * f)(x, y) \end{bmatrix}$$

• Gradient magnitude and direction are:

$$|\mathbf{g}| = \mathbf{f}_x^2 + g_y^2 \mathbf{y}_z^{N2}$$
$$\theta = \tan^{-1} \left(\frac{g_y}{g_x}\right)$$

Simple: Edge Map

GV12/3072 Image Processing. T=0.25

T=0.75

One more pair of kernels

• Robert's Cross Operator:

$$k_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad k_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Canny Edge Detector

• Combine noise reduction and edge enhancement.

- Two-step edge localization
 - Non-maximal suppression
 - Hysteresis thresholding

Canny: Smoothing and Edge Enhancement

- 1. Smooth with a Gaussian kernel and differentiate
- 2. Equivalently, convolve with derivative of Gaussian
- Exploits separability of Gaussian kernel for convolution
- Balances localization and noise sensitivity

Canny: Derivative of Gaussian

 $\sigma=5$

Canny: Non-maximal suppression

- For each pixel
 - If the two pixels normal to edge direction have lower gradient magnitude
 - Keep the gradient magnitude
 - Otherwise
 - Set the gradient magnitude to zero

Canny: Non-max output

σ=1

GV12/3072 Image Processing.

Canny: Hysteresis Tresholding

- Threshold with high and low thresholds.
- Initialize edge map from high threshold.
- Iteratively add pixels in low threshold map with 8-neighbors already in the edge map.
- Repeat until convergence.

Marr-Hildreth Edge Detector

k = LoG(3, 1);

tc=conv2(im, k);

- Convolve with second derivative operator
 - Laplacian of Gaussian

$$k(x, y) = \nabla^2 G(x, y) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) G(x, y)$$

- Find zero crossings
- Sensitive to noise.

GV12/3072 Image Processing.

LoG vs DoG

• Laplacian sometimes approximated by difference of two Gaussian filters:

surf(x, y, -k);

k= GausKern(9,3)-GausKern(9,4.8);

Model Fitting

- Locate edges by fitting a surface.
- Create a model edge, eg step edge with parameters:
 - Orientation
 - Position
 - Intensities either side of the edge
- Find least-squares fit in each small window.
- Accept if fit is above a threshold.

Hough Transform

- Finds the most likely lines in an image.
- At every edge pixel, compute the local equation of the edge line: $x\cos\theta + y\sin\theta = \rho$
- Store a histogram of the line parameters θ and ρ .
- The fullest histogram bins are the dominant image lines.

Example

ed=edge(im);

Hough Transform

 $\mathsf{R}_{\theta}(\mathsf{X}')$

Thresholded

Inverted and Superimposed

lines=iradon(RT, theta);

Generalization

- The general Hough transform works with any parametric shape.
- E.g., circles: $(x x_0)^2 + (y y_0)^2 = r^2$
- Make a 3D histogram of x_0 , y_0 and r.
- Threshold and back project in the same way.

Pros and Cons

- First-derivative approach
 - Fast, simple to implement and understand.
 - Noise sensitive, misses corners, lots of thresholds to select.
- Second-derivative approach
 - Few thresholds to choose, fast.
 - Very sensitive to noise.
- Model fitting
 - Slow.
 - Less sensitive to noise.

Performance

- How can we evaluate edge-detector performance?
 - Probability of false edges
 - Probability of missing edges
 - Error in edge angle
 - Mean squared distance from true edge

Summary

- Resize by re-sampling (must pre-filter!!)
- Image pyramids applications
- Edge detection
 - Simple
 - Canny
- Hough Transform

GV12/3072 Image Processing.

(Reminder slides from last week)

-1	-1	-1
-1	8	-1
-1	-1	-1

Figure from NASA, obtained on DIP

Intensity range = [-251, 283]

$I' = I + \alpha (I - K * I) \Leftarrow$ "Unsharp Mask"

Figure from NASA, obtained on DIP

$I' = 2I - K * I \Leftarrow$ "Unsharp Mask"

