Computational Photography and Capture: Intrinsic Images

Gabriel Brostow \& Tim Weyrich

TAs: Clément Godard \& Fabrizio Pece

Example Problem:
 Background Normalization

Sonnet for Lena

Odear Lema, your benuty is so vast It is hard sometimes to describe it fast. It thought the entire world 1 would impress If only your portrait I could compress. Aleal First when I tried to use VQ
Ifound that your cheeks belong to only you Your silky hair contains a thousand lines Hard to match with sums of discrete cosines. And for your lips, mensual and tactual Thirtern Crays found not the proper fractal. And while these sethacks are all quite sevare 1 might have fixed them with hades here of theer But when filters took sparkle from your eyms I suid, 'Dama all this. I'll just digitize:'

Sonnet for Lena

O dear Lena, your beauty is so vast It is hard sometimes to describe it fast. I thought the entire world I would impress If only your portrait I could compress. Alas! First when I tried to use VQ I found that your cheeks belong to only you. Your silky hair contains a thousand lines Hard to match with sums of discrete cosines. And for your lips, sensual and tactual Thirteen Crays found not the proper fractal. And while these setbacks are all quite severe I might have fixed them with hacks here or there But when filters took sparkle from your eyes I said, 'Damn all this. I'll just digitize.'

In a photo, what determines the color of a (Lambertian) surface?

What great things could we do if we could easily separate lighting vs. color?

An Intrinsic Image

- What effect is the lighting having, irrespective of surface materials?
- What is the surface reflectance, irrespective of lighting?

Tappen et al. PAMI'05

Original

Lighting/Shading

Reflectance

Pursuit of Intrinsic Images (1)

- Lightness and Retinex Theory
- Land \& McCann '71
- Recovering Intrinsic Scene Characteristics From Images
- Barrow \& Tenenbaum '78

Pursuit of Intrinsic Images (2)

- Painted Polyhedra - ICCV'93
- Image Sequences - ICCV'01
- Single Image - NIPS'03
- Entropy Minimization - ECCV'04

Pursuit of Intrinsic Images (2)

- Painted Polyhedra - ICCV'93 (Generative)
- Image Sequences - ICCV'01 (Discriminative)
- Single Image - NIPS'03 (Discriminative)
- Entropy Minimization - ECCV'04
(Generative)
- User-Assisted Intrinsic Images - Siggraph Asia’09

Painted Polyhedra

- Recovering Reflectance and Illumination in a World of Painted Polyhedra
- Sinha \& Adelson, ICCV’93

Not All Edges are Equal

Local Edges are a Hint?

Edge Junctions are Useful

Junction Catalog

'Y', 'arrow,' and 'psi' junctions

' T ' junctions

Examples

Examples

Examples

Examples

Examples

Examples

Counter-Example

Consistency Check

Global Measures of 'Correctness'

- Low variance of angles
- Planarity of faces
- Overall compactness

Global Measures of 'Correctness'

- Low variance of angles
- Planarity of faces
- Overall compactness
- Consistency with light source

Possibility of Consistent Lighting

Global Analysis

Confirms Local Analysis

(d)

Global Analysis

Trumps Local Analysis

(d)

II

Image Sequences

- Deriving Intrinsic Images from Image Sequences
- Weiss ICCV'01
- For static objects, multiple frames

a

b

c

Problem Formulation

Given a sequence of T images $\{I(x, y, t)\}_{t=1}^{T}$
in which reflectance is constant over
time and only the illumination
changes, can we solve for a single

$$
I(x, y)=L(x, y) R(x, y)
$$ reflectance image and T

illumination images $\{L(x, y, t)\}_{t=1}^{T}$?

$$
\{I(x, y, t)\}_{t=1}^{T}=\{L(x, y, t)\}_{t=1}^{T} R(x, y) \mid
$$

Still completely ill-posed : at every pixel there are T equations and $\mathrm{T}+1$ unknowns.

- Prior based on intuition:

- derivative-like filter outputs of L tend to be sparse

$$
\begin{aligned}
\{I(x, y, t)\}_{t=1}^{T}= & \{L(x, y, t)\}_{t=1}^{T} R(x, y) \\
& \text { (move to log-space) } \\
i(x, y, t)= & r(x, y)+l(x, y, t)
\end{aligned}
$$

$o_{n}(x, y, t)=i(x, y, t) * f_{n}$
$f_{n}=$ one of N filters like
1 -1

- Responses have Laplacian-shaped distribution

Toy Example

frame 1

frame 2

frame 3

reflectance image

horiz filter

horiz filter
保

Example Result 1

- Einstein image is translated diagonally 4 pixels per frame

Reagan image

ML Reagan

Einstein image

ML Einstein

first frame

min filter

last frame

median filter

Example Result 2

- 64 images with variable lighting from Yale Face Database

frame 2

frame 11

ML reflectance

ML illumination 2

ML illumination 11

III

Single Image

- Recovering Intrinsic Images from a Single Image
- Tappen, Freeman, Adelson
- NIPS'03 \& PAMI'05

Assumption

- Each derivative is caused either by Shading or Reflectance
- Reduces to a binary classification problem

Image Derivative w.r.t. x and y

Classifying Derivatives

- 4 Basic phases:

1. Compute image derivatives
2. Classify each derivative as caused by shading or reflectance
3. Invert derivatives classified as shading to find shading images
4. Reflectance image is found the same way

Classification

1. Color information

- changes due to shading should affect R,G and B proportionally

$$
C_{1}=\alpha \cdot C_{2}
$$

If $C_{1} \neq \alpha \cdot C_{2}$ the changes are caused by reflectance

Color Information - examples

Black on white may be interpreted as intensity change.

Resulting in misclassification

Classification

1. Color information

- changes due to shading should affect R,G and B proportionally

$$
C_{1}=\alpha \cdot C_{2}
$$

If $C_{1} \neq \alpha \cdot C_{2}$ the changes are caused by reflectance

Classification

1. Color information

- changes due to shading should affect
R, G and B proportionally

$$
C_{1}=\alpha \cdot C_{2}
$$

If $C_{1} \neq \alpha \cdot C_{2}$ the changes are caused by reflectance
2. Statistical regularities of surfaces

GrayScale Information - examples

Misclassification of the cheeks - due to weak gradients

Combining Information (Assuming Statistical Indep.)

Handling Ambiguities

- Ambiguities - for example - center of the mouth

Shading example

Input image

Reflectance example

Handling Ambiguities

- Derivatives that lie on the same contour should have the same classification

- The mouth corners are well classified as reflectance
\rightarrow Propagate evidence from conclusive areas to ambiguous ones using MRF

Final Results

Final Results

Final Results

Final Results

IV

Entropy Minimization

- Intrinsic Images by Entropy Minimization
- Finlayson, Drew, Lu, ECCV’04

Sensor Response at a Pixel

$$
p_{k}=\int_{\lambda} R(\lambda) L(\lambda) S_{k}(\lambda) d \lambda
$$

R = Reflectance
L = Illumination
S = Sensor Sensitivity

Best When Sensors are Narrow Band

Best When Sensors are Narrow Band

$$
\begin{aligned}
& S_{k}(\lambda)=\delta\left(\lambda-\lambda_{k}\right) \\
& k \in\{R, G, B\}
\end{aligned}
$$

Just Reflectance \& Illumination

$$
\begin{aligned}
& p_{k}=\int_{\lambda} R(\lambda) L(\lambda) S_{k}(\lambda) d \lambda \\
& p_{k}=\int_{\lambda} R(\lambda) L(\lambda) \delta\left(\lambda-\lambda_{k}\right) d \lambda \\
& p_{k}=R\left(\lambda_{k}\right) L\left(\lambda_{k}\right)
\end{aligned}
$$

Chromaticity for 7 Surfaces for 10 Illuminants

Macbeth Chart Under Changing Illumination

Entropy Minimization

Correct Projection

Incorrect Projection

Entropy Minimization

More "spread-out" distribution would produce a larger entropy, hence the projection direction that produces the minimum entropy is the correct projection direction

Sweep Angle of Projection

Limitations of Shadow Removal

- Only Hard shadows can be removed
- No overlapping of object and shadow boundaries
- Planckian light sources
- Narrow band cameras are idealized
- Reconstruction methods are texture-dumb

User-Assisted Intrinsic Images
 Bousseau et al. 2009

(a) Original photograph

(b) User scribbles

(c) Reflectance

(d) Illumination

(e) Re-texturing

Figure 1: Our system relies on user indications, shown in (b), to extract from a single photograph its reflectance and illumination components (c-d). In (b), white scribbles indicate fully-lit pixels, blue scribbles correspond to pixels sharing a similar reflectance and red scribbles correspond to pixels sharing a similar illumination. This decomposition facilitates advanced image editing such as re-texturing (e).

