

Computational Photography and Capture: Intrinsic Images

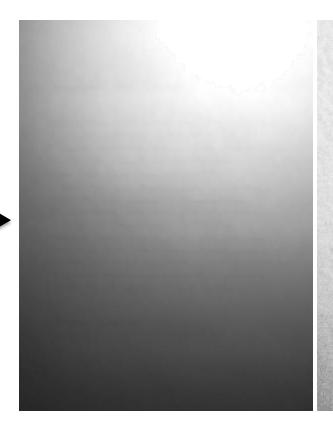
Gabriel Brostow & Tim Weyrich TAs: Clément Godard & Fabrizio Pece

Example Problem: Background Normalization

Sonnet for Lena

O dear Lena, your beauty is so vast It is hard sometimes to describe it fast. I thought the entire world I would impress If only your portrait I could compress. Alas! First when I tried to use VQ I found that your cheeks belong to only you. Your silky hair contains a thousand lines Hard to match with sums of discrete cosines. And for your lips, sensual and tactual Thirteen Crays found not the proper fractal. And while these setbacks are all quite severe I might have fixed them with hacks here or there But when filters took sparkle from your eyes I said, 'Damn all this, I'll just digitize.'

Thomas Colthurst



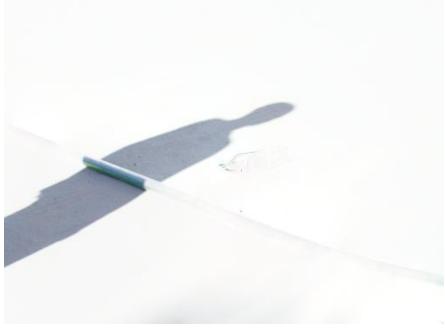
Sonnet for Lena

O dear Lena, your beauty is so vast It is hard sometimes to describe it fast. I thought the entire world I would impress If only your portrait I could compress. Alasl First when I tried to use VQ I found that your cheeks belong to only you. Your silky hair contains a thousand lines Hard to match with sums of discrete cosines. And for your lips, sensual and tactual Thirteen Crays found not the proper fractal. And while these setbacks are all quite severe I might have fixed them with hacks here or there But when filters took sparkle from your eyes I said, 'Damn all this. I'll just digitize.'

Thomas Colthurst

In a photo, what determines the color of a (Lambertian) surface?

What great things could we do if we could easily separate lighting vs. color?



An Intrinsic Image

• What effect is the lighting having, irrespective of surface materials?

• What is the surface reflectance, irrespective of lighting?

Lighting/Shading

Tappen et al. PAMI'05

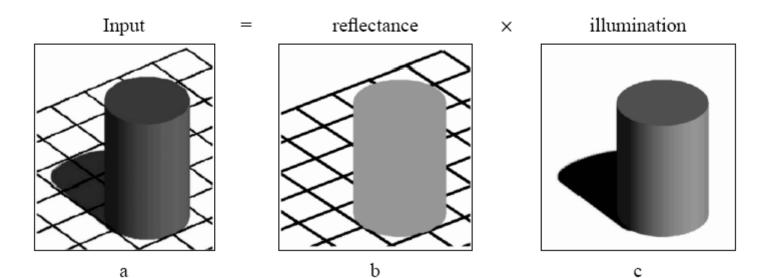
Reflectance

Original

Pursuit of Intrinsic Images (1)

- Lightness and Retinex Theory
 - Land & McCann '71
- Recovering Intrinsic Scene Characteristics From Images

– Barrow & Tenenbaum '78



Pursuit of Intrinsic Images (2)

• Painted Polyhedra - ICCV'93

• Image Sequences - ICCV'01

• Single Image - NIPS'03

• Entropy Minimization - ECCV'04

Pursuit of Intrinsic Images (2)

• Painted Polyhedra - ICCV'93 (Generative)

• Image Sequences - ICCV'01 (Discriminative)

• Single Image - NIPS'03 (Discriminative)

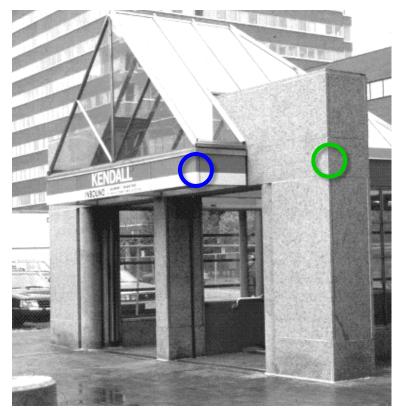
• Entropy Minimization - ECCV'04 (Generative)

User-Assisted Intrinsic Images – Siggraph Asia'09

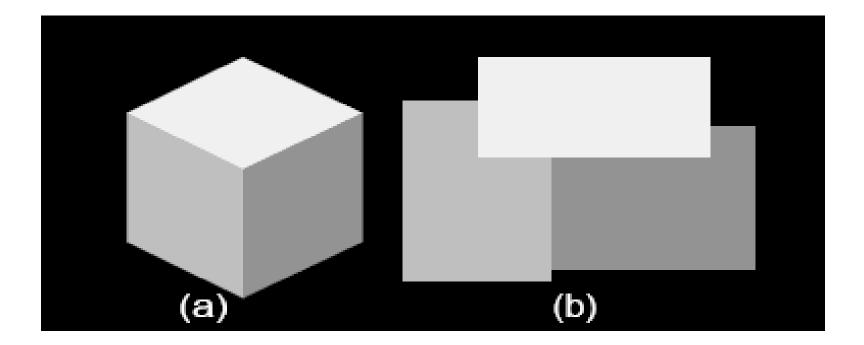
Painted Polyhedra

 Recovering Reflectance and Illumination in a World of Painted Polyhedra

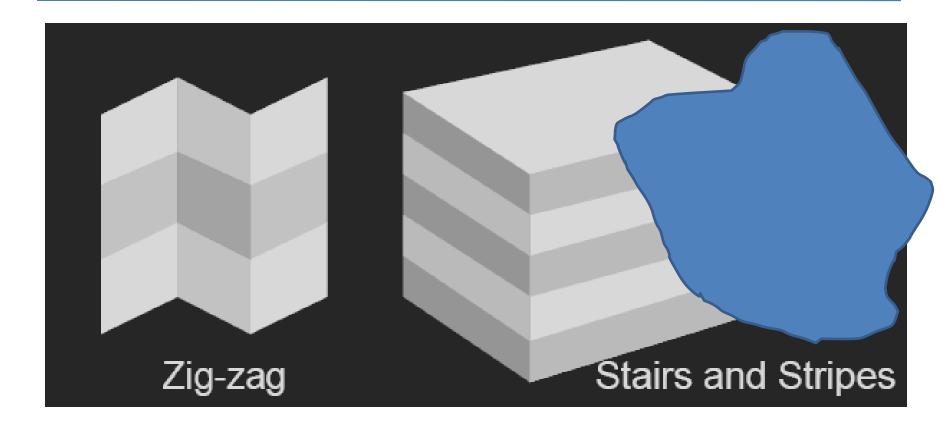
– Sinha & Adelson, ICCV'93



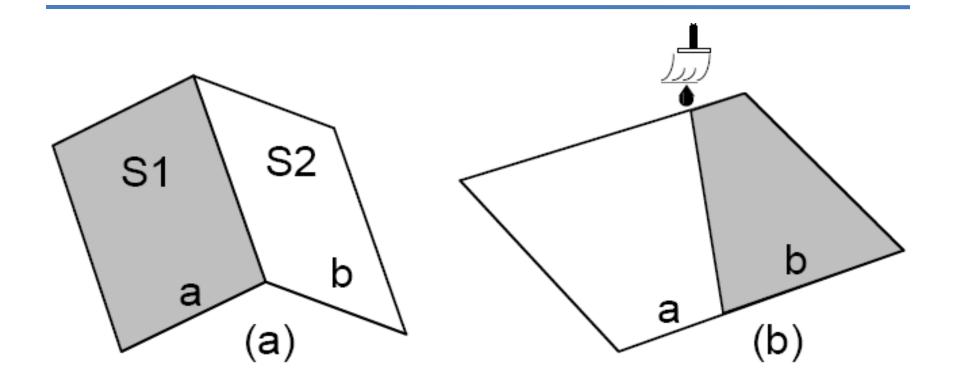
Not All Edges are Equal



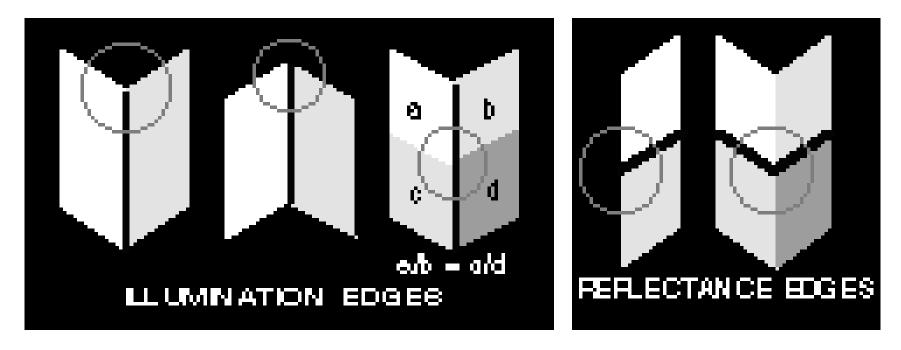
Local Edges are a Hint?



Edge Junctions are Useful

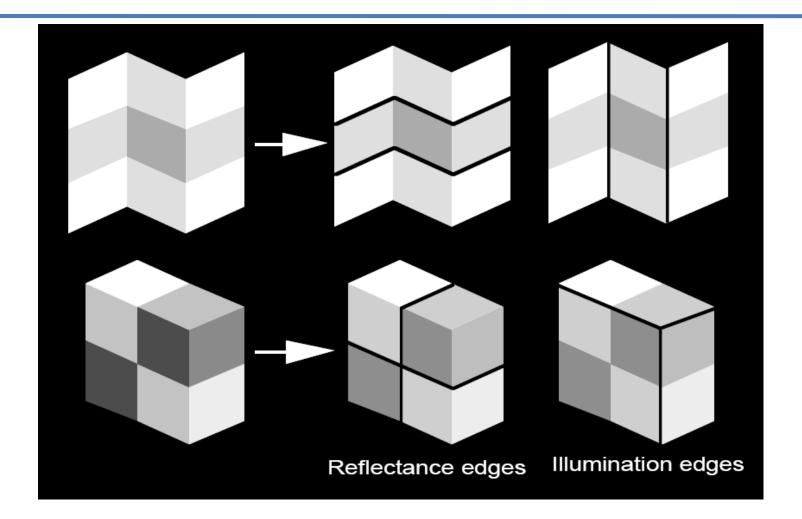


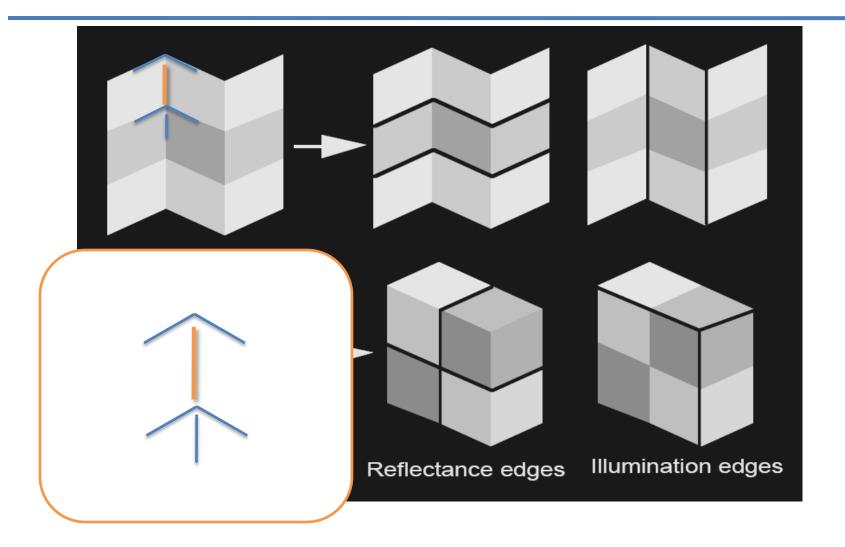
Junction Catalog

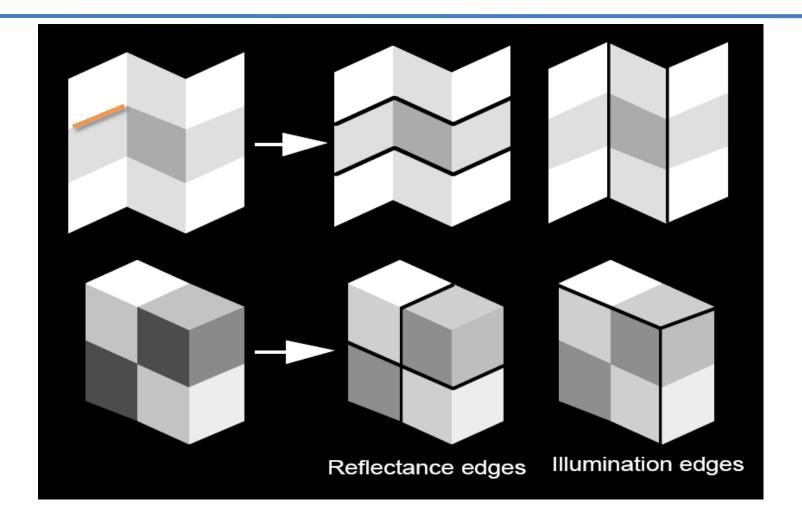


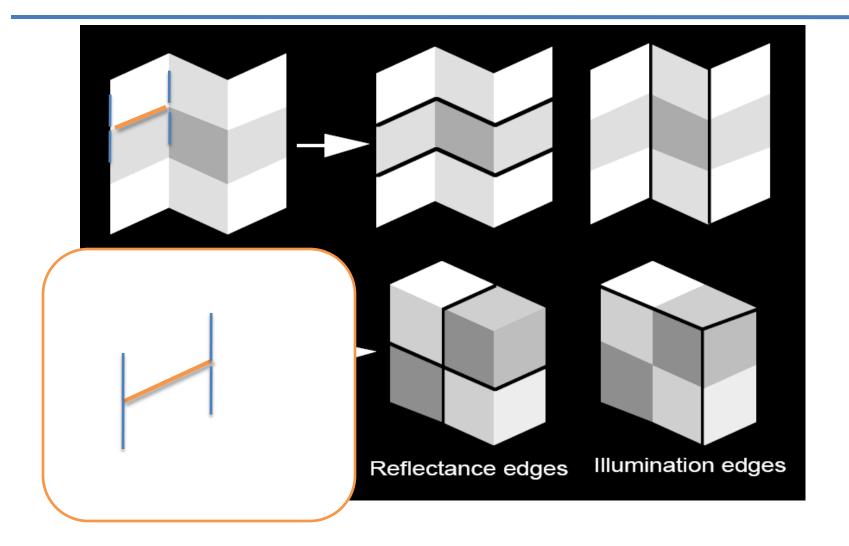
'Y', 'arrow,' and 'psi' junctions

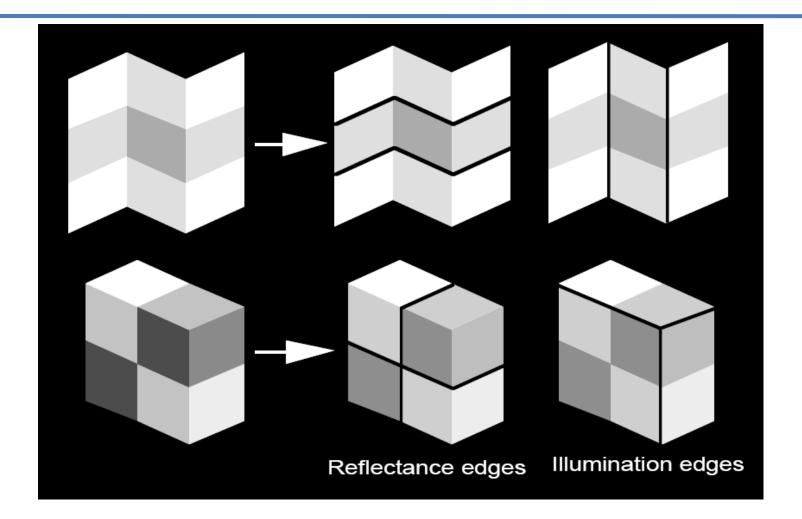
'T' junctions

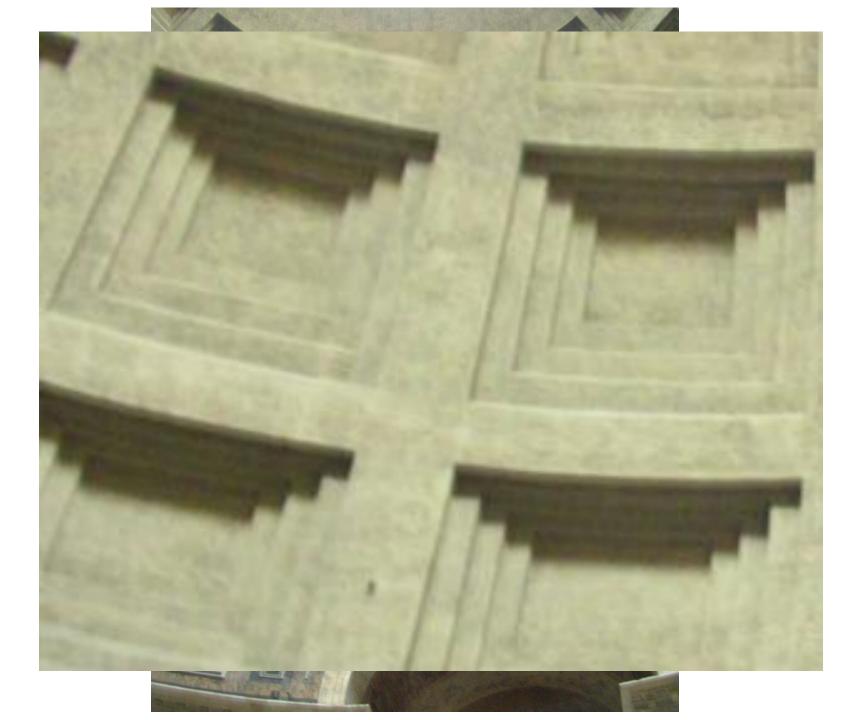


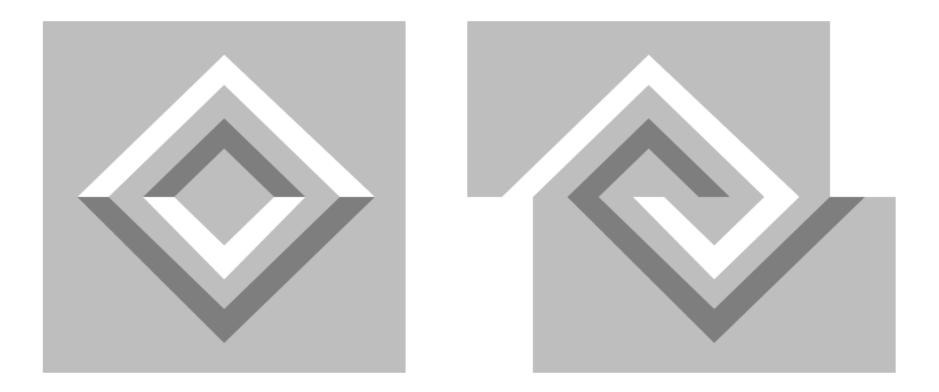




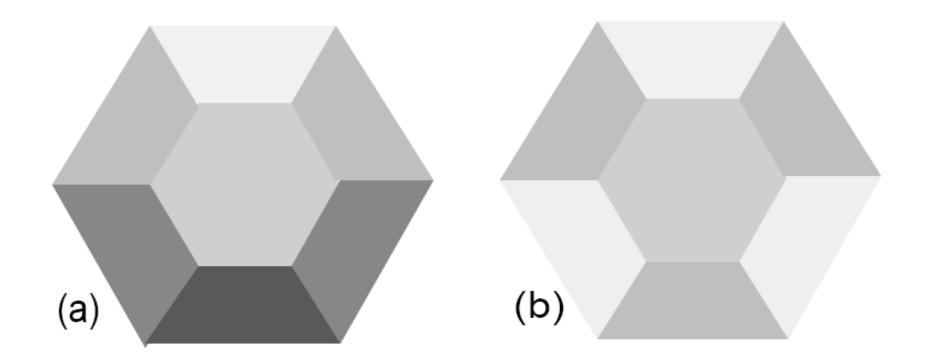




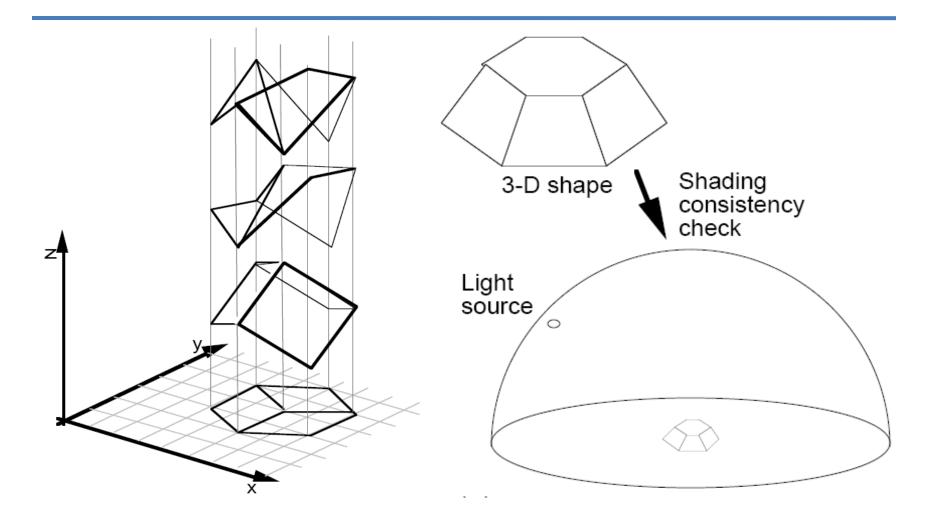




Counter-Example



Consistency Check

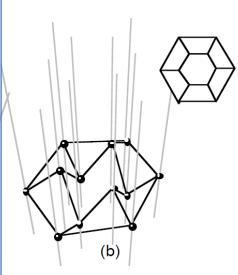


Global Measures of 'Correctness'

• Low variance of angles

• Planarity of faces

- Overall compactness



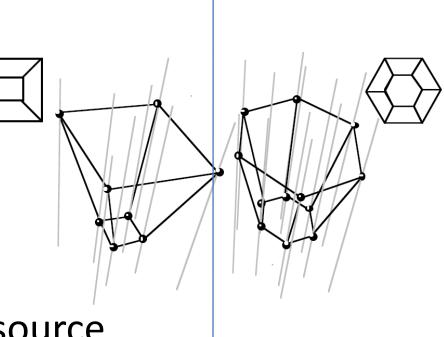
• Consistency with light source

Global Measures of 'Correctness'

• Low variance of angles

• Planarity of faces

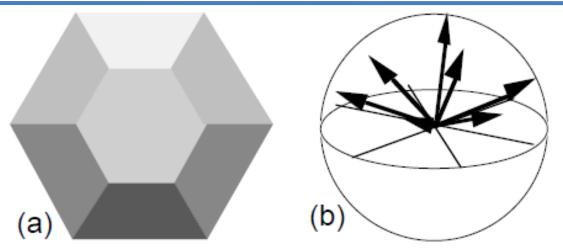
- Overall compactness
- Consistency with light source

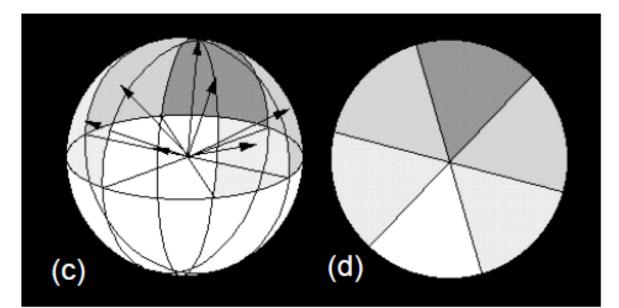


Possibility of Consistent Lighting

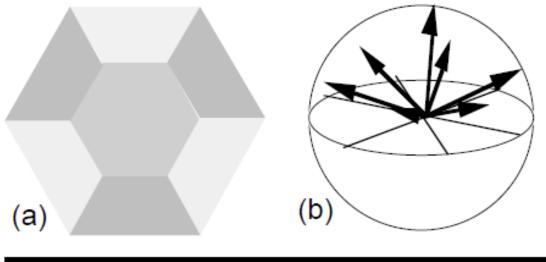


Global Analysis Confirms Local Analysis





Global Analysis Trumps Local Analysis



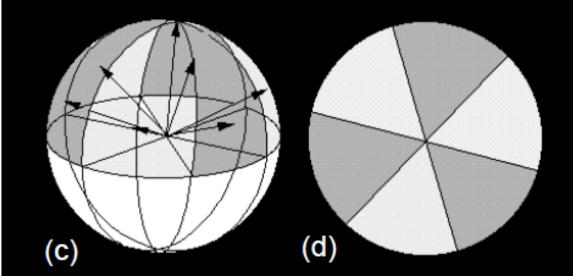


Image Sequences

- Deriving Intrinsic Images from Image Sequences

 Weiss ICCV'01
- For static objects, multiple frames



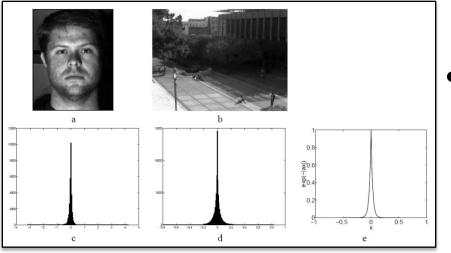
b

Problem Formulation

- Given a sequence of T images $\{I(x, y, t)\}_{t=1}^{T}$
- in which reflectance is constant over
- time and only the illumination
- changes, can we solve for a single
- reflectance image and T
- illumination images $\{L(x, y, t)\}_{t=1}^{T}$?

I(x, y) = L(x, y)R(x, y) $\{I(x, y, t)\}_{t=1}^{T} = \{L(x, y, t)\}_{t=1}^{T} R(x, y)$

Still completely ill-posed : at every pixel there are T equations and T+1 unknowns.



- Prior based on intuition:
 - derivative-like filter
 outputs of L tend to be
 sparse

$$\{I(x, y, t)\}_{t=1}^{T} = \{L(x, y, t)\}_{t=1}^{T} R(x, y)$$
(move to log-space)

$$i(x, y, t) = r(x, y) + l(x, y, t)$$

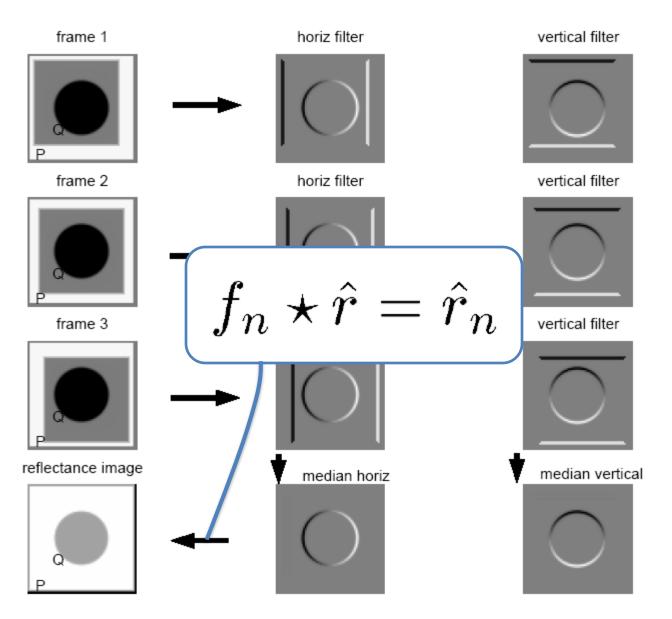
$$O_{n}(x, y, t) = i(x, y, t) * f_{n}$$

$$f_{n} = \text{ one of } N \text{ filters like}$$



Responses have Laplacian-shaped distribution

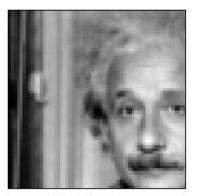
Toy Example



Example Result 1

 Einstein image is translated diagonally 4 pixels per frame

Reagan image

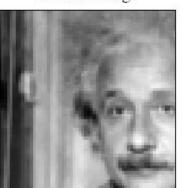


Einstein image

first frame

last frame

ML Reagan



ML Einstein

min filter

median filter

Example Result 2

 64 images with variable lighting from Yale Face Database

frame 2

frame 11

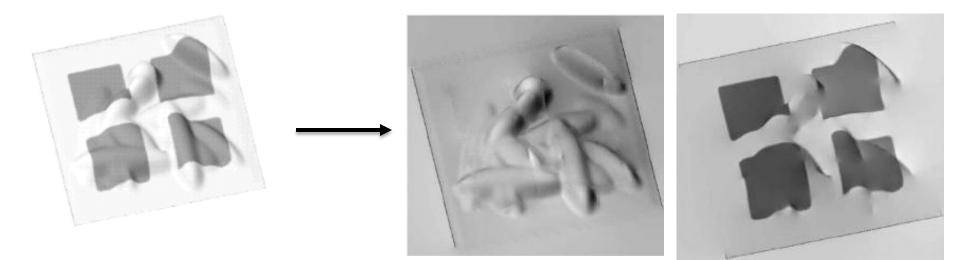
ML reflectance

ML illumination 2

ML illumination 11

Single Image

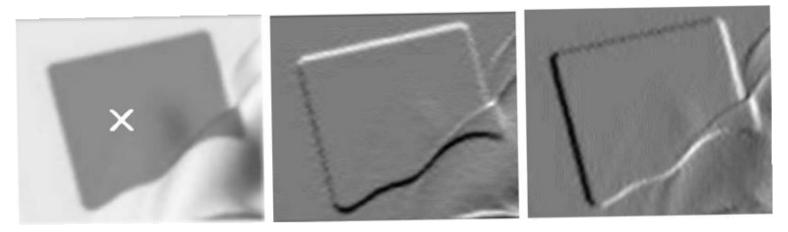
- Recovering Intrinsic Images from a Single Image
 - Tappen, Freeman, Adelson
 - NIPS'03 & PAMI'05



Assumption

- Each derivative is caused either by Shading or Reflectance
- Reduces to a binary classification problem

Image Derivative w.r.t. x and y



Classifying Derivatives

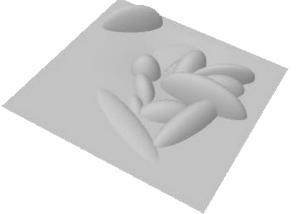
- 4 Basic phases:
 - 1. Compute image derivatives
 - 2. Classify each derivative as caused by shading or reflectance
 - 3. Invert derivatives classified as shading to find shading images
 - 4. Reflectance image is found the same way

Classification

- 1. Color information
 - changes due to shading should affect
 R,G and B proportionally

$$C_1 = \alpha \cdot C_2$$

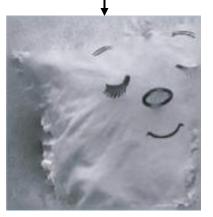
If $C_1 \neq \alpha \cdot C_2$ the changes are caused by reflectance

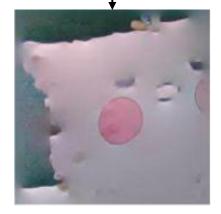


Color Information - examples

Black on white may be interpreted as intensity change.

Resulting in misclassification



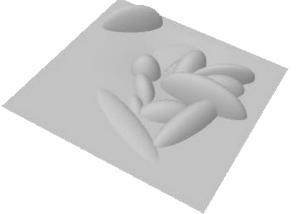


Classification

- 1. Color information
 - changes due to shading should affect
 R,G and B proportionally

$$C_1 = \alpha \cdot C_2$$

If $C_1 \neq \alpha \cdot C_2$ the changes are caused by reflectance

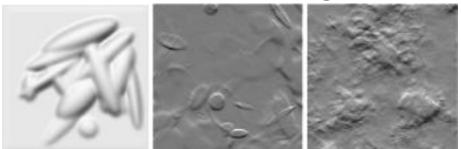


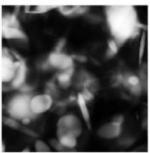
Classification

- 1. Color information
 - changes due to shading should affect
 R,G and B proportionally

$$C_1 = \alpha \cdot C_2$$

- If $C_1 \neq \alpha \cdot C_2$ the changes are caused by reflectance
- 2. Statistical regularities of surfaces

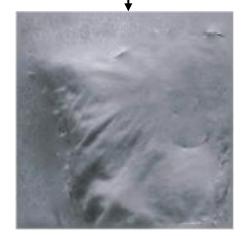




GrayScale Information - examples

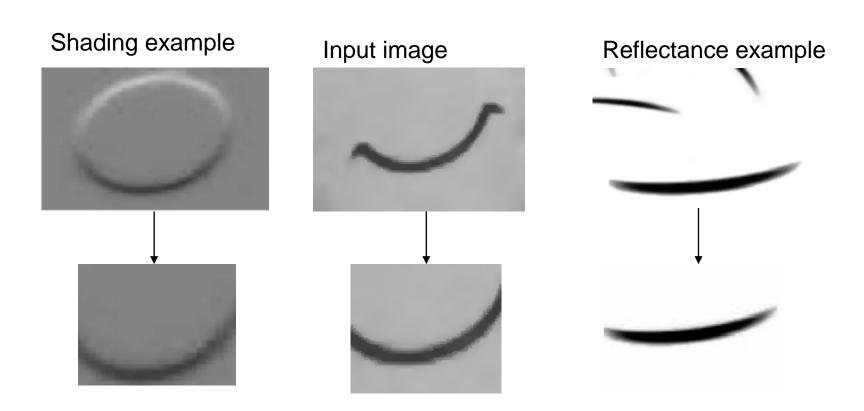
Misclassification of the cheeks – due to weak gradients

Combining Information (Assuming Statistical Indep.)



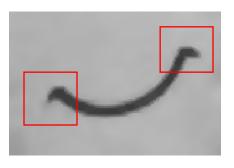
Handling Ambiguities

• Ambiguities - for example - center of the mouth



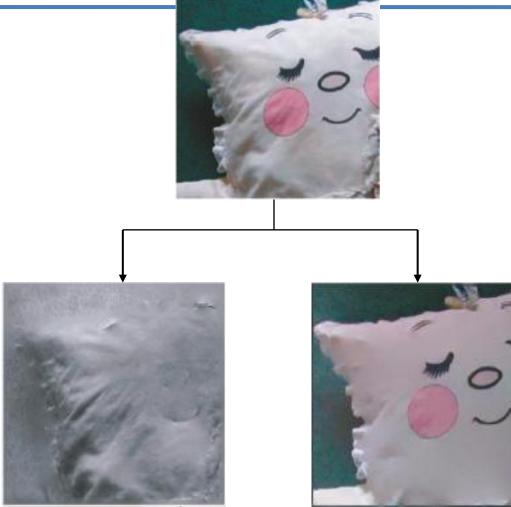
Handling Ambiguities

 Derivatives that lie on the same contour should have the same classification

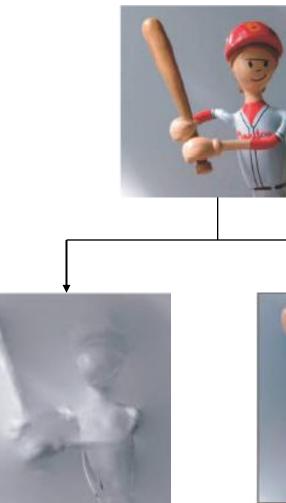


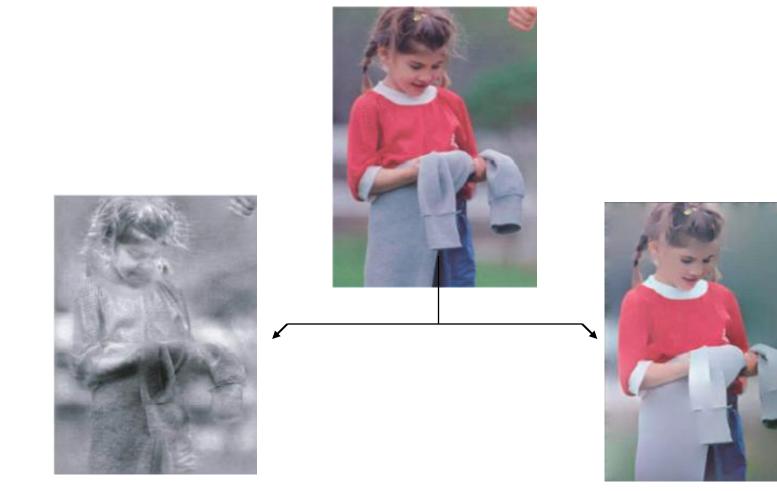
• The mouth corners are well classified as reflectance

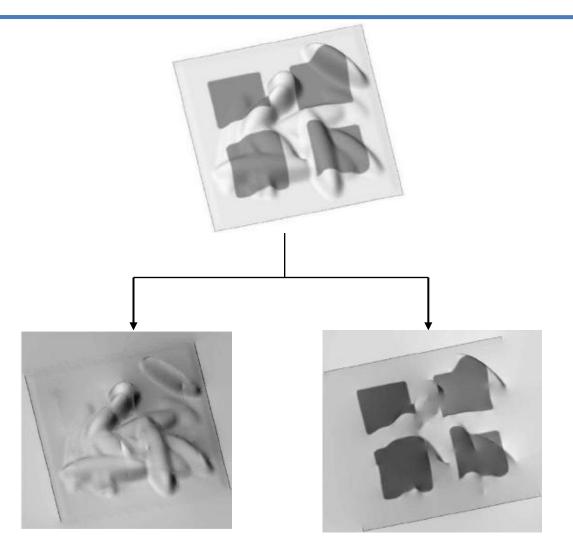
 \rightarrow Propagate evidence from conclusive areas to ambiguous ones using MRF



Unpropagated



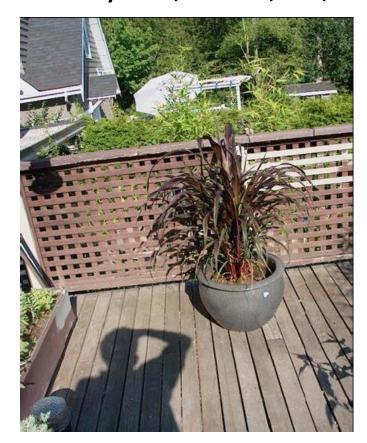




IV

Entropy Minimization

Intrinsic Images by Entropy Minimization
 – Finlayson, Drew, Lu, ECCV'04

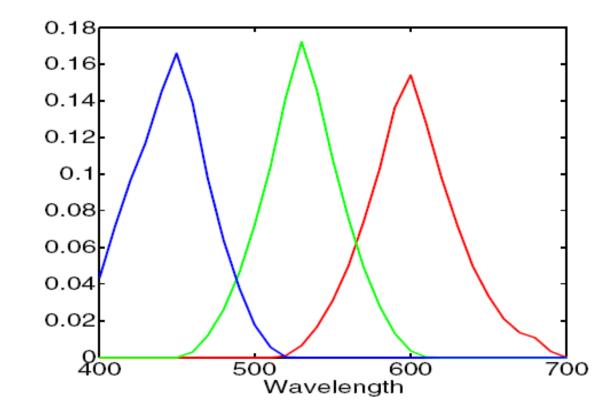


Sensor Response at a Pixel

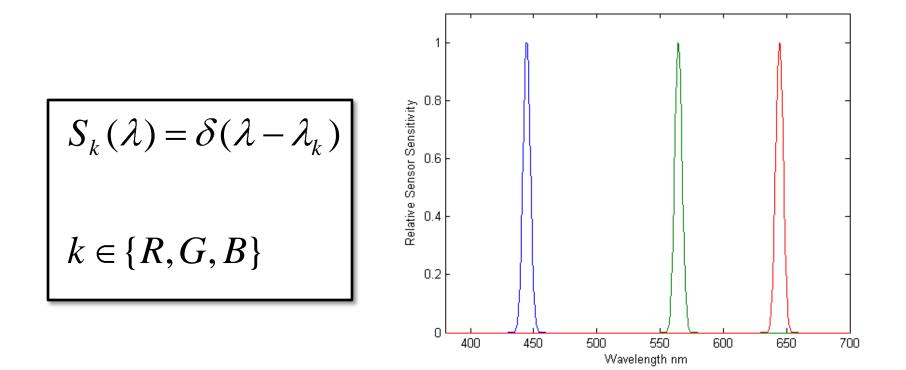
$$p_k = \int_{\lambda} R(\lambda) L(\lambda) S_k(\lambda) d\lambda$$

- **R** = Reflectance
- **L** = Illumination
- **S** = Sensor Sensitivity

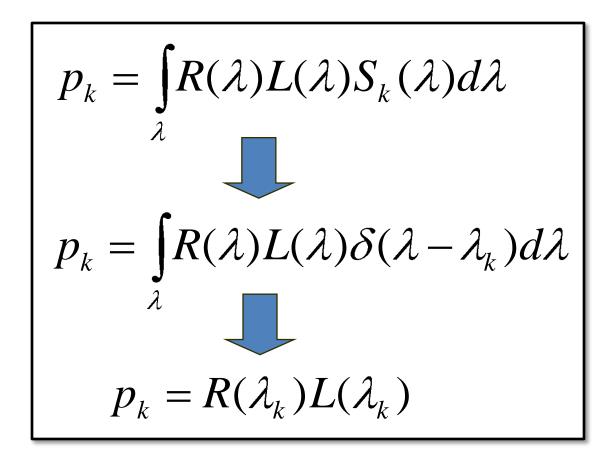
Best When Sensors are Narrow Band



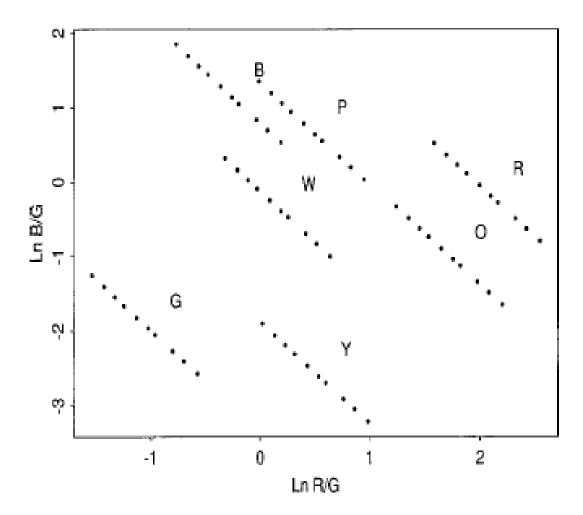
Best When Sensors are Narrow Band



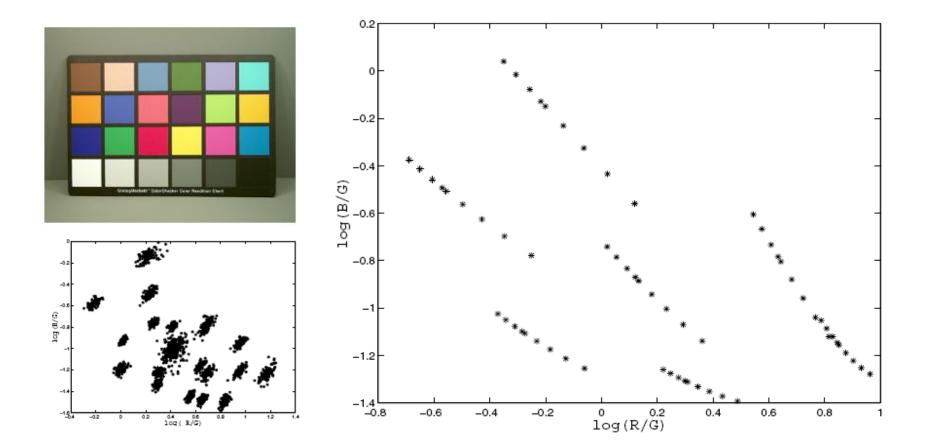
Just Reflectance & Illumination



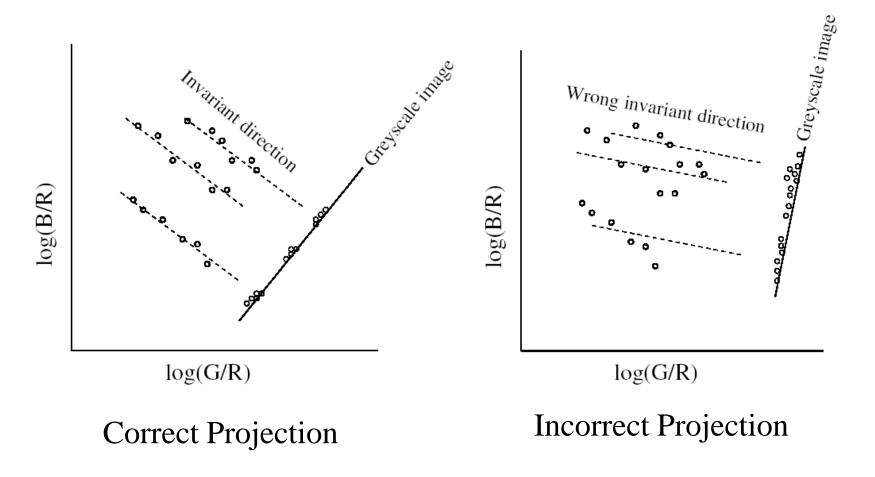
Chromaticity for 7 Surfaces for 10 Illuminants



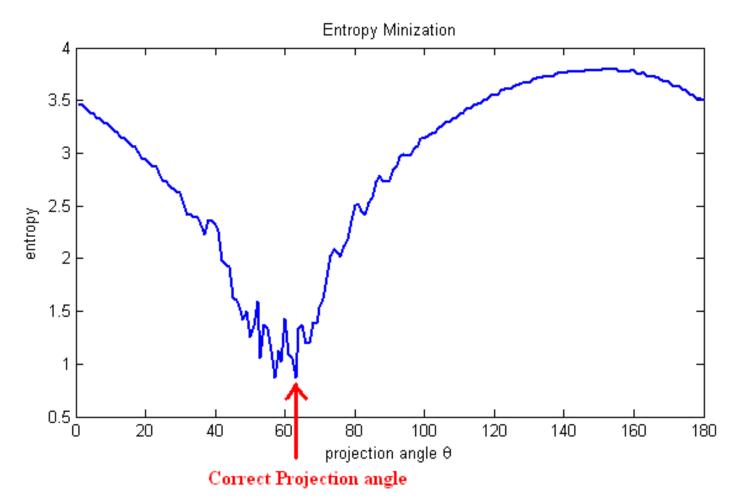
Macbeth Chart Under Changing Illumination



Entropy Minimization

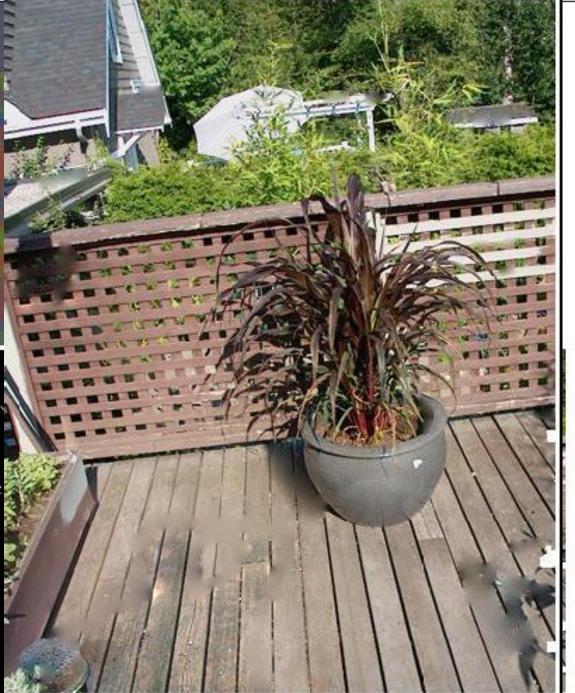


Entropy Minimization



More "spread-out" distribution would produce a larger entropy, hence *the projection direction that produces the minimum entropy is the correct projection direction*

Sweep Angle of Projection



Limitations of Shadow Removal

- Only Hard shadows can be removed
- No overlapping of object and shadow boundaries
- Planckian light sources
- Narrow band cameras are idealized

• Reconstruction methods are texture-dumb

User-Assisted Intrinsic Images

Bousseau et al. 2009

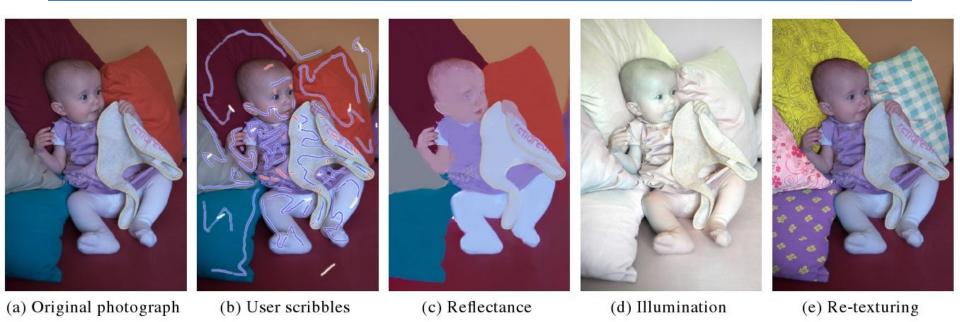


Figure 1: Our system relies on user indications, shown in (b), to extract from a single photograph its reflectance and illumination components (c-d). In (b), white scribbles indicate fully-lit pixels, blue scribbles correspond to pixels sharing a similar reflectance and red scribbles correspond to pixels sharing a similar illumination. This decomposition facilitates advanced image editing such as re-texturing (e).