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Abstract

While semantic image/video annotation has received considerable attention in re-
cent years, relatively little work has been done on semantic audio annotation and
retrieval. This paper is the first attempt to formulate a rigorous machine learning
framework to model the semantics of sound. We combine a supervised multi-
class näıve Bayes model, which has shown good performance on image annota-
tion, with advanced audio feature extraction techniques. The parameters for this
model can be estimated efficiently using themixture hierarchiesalgorithm. We
consider two heterogeneous audio and text data sets; sound effects with captions,
and music with associated reviews. We quantitatively show that this first proposed
framework can bothannotatea novel audio track with semantically meaningful
words andretrieverelevant audio tracks given a text-based query.

1 Introduction

Sound carries rich information from which we derive semantic understanding and we naturally use
language to describe what we hear and what we might want to hear. This paper presents an initial
computer auditionsystem that derives similar notions of semantics from sound. Specifically,
our goal is to create a system that can bothannotateaudio content with semantically meaningful
language andretrieverelevant sounds requested by human users. We view the problems of sound
annotation and retrieval as a supervised learning problem in which each heterogeneous piece of data
is represented by both audio and text. We learn a joint probabilistic model of audio music features
and semantic tokens (referred to as ’words’) from the data. Using the model, we can infer likely
words given a novel sound, and we can rank a set of unannotated sounds given a text-based query.

Our proposed solution uses a supervised multi-class naı̈ve Bayes approach. This model was recently
used by [1] for image annotation and was proposed as an alternative to the numerous unsupervised
models that have been developed over the last five years [2, 3, 4, 5]. The supervised approach
directly represents each word as a class rather than introducing latent variables to encode a set of
states defining a joint distribution over the audio content and all the words in the vocabulary. The
supervised approach is appealing since it has been shown to achieve good annotation and retrieval
results[1], it is conceptually straight-forward, and can be computationally efficient with respect to
both parameter estimation and inference.

In our implementation, efficient estimation is achieved using a hierarchical approach that involves
first modeling the audio content of each track with a Gaussian mixture model (GMM) and then
combining sets of these track-level distributions using themixture hierarchiesalgorithm [6]. This
algorithm is an extension of the standard expectation maximization (EM) algorithm for learning



a GMM. The mixture hierarchies GMM parameter estimation technique and two alternatives are
described in Section 4.

2 Related work

While the idea of developing a system to model the semantics of images and videos has received
recent attention [1, 3, 4, 5, 7], literature on modeling the semantics of audio data is relatively lim-
ited. Slaney’s Semantic Audio Retrieval system [8, 9], and extensions proposed by Buchanan [10],
represent one tread of research on sound effects retrieval. Their approach involves creating separate
hierarchical models in the acoustic and text space, and then creating links between the two spaces
for either retrieval or annotation. Cano and Koppenberger propose a similar approach based on
nearest neighbor classification [11]. The drawback of these non-parametric approaches is that infer-
ence requires calculating the similarity between a query and every training example. We propose a
parametric approach that requires one calculation per semantic concept. In practice, the number of
semantic concepts is orders of magnitude smaller than the number of potential training data points,
leading to a more scalable solution.

Previous work modeling the semantics of audio data has focused almost exclusively on sound effects.
One exception is the work of Whitman and Ellis modeling a heterogeneous data set of music and
words [12]. Their work focuses on finding terms that are most predictive for audio content, using
binary classifiers, to prune review sentences and create unbiased album reviews.

More generally, there has been substantial work on acoustic signal processing and content-based
information retrieval (specifically involving the retrieval of text, music, images, and videos). The
music information retrieval community has produced many useful audio feature extraction tech-
niques for modeling music (for example, see [13, 14, 15]). This community has focused on music
classification (by genre, instrumentation, emotion) andquery-by-exampleretrieval systems. Query-
by-example retrieves sounds from a database based on similarity between audio-based queries such
as songs [16] or audible noises (e.g. query-by-humming [17]). We propose a system that can both
annotate and retrieve music based on semantic keywords;query-by-text.

3 Semantic audio annotation and retrieval

This section formalizes the related problems of semantic audio annotation and retrieval as a super-
vised multi-class näıve Bayes approach where each word in our vocabulary represents a class. We
learn class-conditional distributions for each class using only the training songs that have been pos-
itively label with the associated word. The alternative one-versus-all approach is infeasible since
our data sets areweakly labeled: the absence of a word from an annotation does not necessarily
mean that the track could not be correctly labeled with that word. For example, a song reviewer
might fail to mention the word ‘drum’ even though drums are featured in the song. Using a multi-
class framework, we focus on learning just the positive-class model from only the positively labeled
data.

3.1 Problem formulation

Consider a vocabularyV consisting of|V| unique words. Each wordwi ∈ V may be a unigram, such
as ‘happy’ or ‘blues’, or a bigram, such as ‘electric;guitar’ or ‘creaky;door’. The goal in annotation
is to find a setW = {w1, ..., wA} of A semantically meaningful words that describe a query song
sq. Retrieval involves rank ordering a set of audio tracks (i.e. songs)S = {s1, ..., sR} given a query
Wq. It will be convenient to represent each annotationW as a binary vectory = (y1, ..., yM ) where
yi = 1 if wi ∈ W, and0 otherwise. We represent an audio tracks as a setX = {x1, ...,xT}
of T real-valued feature vectors, where each vectorxt represents features extracted from a short
segment of the audio content andT depends on the length of the song. Our data setD is a collection
of track-annotation pairsD = {(X1,y1), ..., (XD,yD)}.

3.2 Multi-class näıve Bayes model

Annotation can be thought of as a multi-class classification problem in which each wordwi ∈ V
represents a class. Our approach involves modeling a class-conditional distributionP (x|i), i ∈



{1, ..., |V|} for each wordwi ∈ V. Given a query song represented byX = {x1, ...,xT}, the Bayes
decision rule for selecting the individual word with the minimum probability of error is given by:

i∗ = arg max
i

P (i|Xq) = arg max
i

P (Xq|i)P (i)
P (Xq)

,

whereP (i) is the prior probability that wordwi will appear in an annotation. If we assume thatxa

andxb (∀a, b ≤ T, a 6= b) are conditionally independent given wordwi, then

i∗ = arg max
i

[
T∏

t=1

P (xt|i)] · P (i). (1)

We assume a uniform prior (i.e.P (i) = 1/M for all i = 1, ..,M ) because theT factors in the prod-
uct will dominate the word prior. Taking the logarithm, we arrive at our finalannotationequation:

i∗ = arg max
i

T∑
t=1

log P (xt|i), (2)

While the näıve Bayes assumption introduced in (1) is unrealistic, attempting to model the interac-
tion between feature vectors may be infeasible due to computational complexity and data sparsity.
Computing (2) for each word creates an ordering for all words in the vocabulary. During annotation,
we select the words that individually maximize this equation.

For retrieval, we want to rank all songs in a test set based on their conditional probability given a
single-word querywq. We find empirically that using the posteriorP (X|q) always returns the same
ranking under every trained word model since some songs are much more likely than others. The
first reason for this is that longer songs (with more features) have lower log likelihoods resulting
from the sum of additional log probability terms. It has been argued that the underestimation of the
log likelihood is due to the poor conditional independence assumption (see Equation 1) between the
audio feature vectors [18]. The standard solution is to calculate theaveragelog posterior for each
track (whereT is proportional to the length of the song):

X ∗ = arg max
X

1
T

T∑
t=1

log P (xt|q).

The second, more subtle, problem with using the posterior emerges as a result of the multiple in-
stance learning method our weakly labeled data set requires. The class conditional density functions
P (x|q) for most features take on values very similar to the track prior density functionP (x). This
creates atrack biasin which tracks that have high likelihood under the prior distribution will have
high likelihood under most of the class conditional distributions. We normalize for this track bias,
P (X ), and use thelikelihoodP (q|X ) instead of the posterior forretrieval:

X ∗ = arg max
X

P (q|X ) = arg max
X

P (X|q)P (q)
P (X )

= arg max
X

[
∏T

t=1 P (xt|q)] · P (q)∑|V|
i=1[

∏T
t=1 P (xt|i)] · P (i)

= arg max
X

∑T
t=1 log P (xt|q)∑|V|

i=1

∑T
t=1 log P (xt|i)

,

whereM is the size of the vocabulary. Again, we assume a uniform word prior and take logarithmic
transform for computational simplicity. By normalizing with the song bias, we effectively allow
each song to place more weight on the words that have highestrelative posterior. We then rank
songs by the weight that each song in the database places on the query word. Note that the factor
1/T introduced in Equation 3 to account for the song length cancels out in our Equation 3.

4 Parameter Estimation

For each wordwi, we learn the parameters of the class conditional density,P (x|i), using the audio
features from all songs which havewi in their associated annotations. That is, the training setTi for
wordwi consists of only thepositiveexamples:

Ti = {Xd : [yd]i = 1}. (3)



Figure 1: (a) Direct, (b) naive averaging, and (c) mixture hierarchies parameter estimation. Solid ar-
rows indicate that the distribution parameters are learned using standard EM. Dashed arrows indicate
that the distribution is learned using mixture hierarchies EM.

The output of parameter estimation is a set ofM word-leveldistributionsP (x|i) for i = 1, ...,M ,
where we represent each distribution as aR-component mixture of Gaussian distribution parameter-
ized by{πr, µr,Σr} for r = 1, ..., R. The word-level distribution for wordwi is given by:

P (x|i) =
R∑

r=1

πrN (x|µr,Σr),

whereN (·|µ,Σ) is a multivariate Gaussian distribution with meanµ and covariance matrixΣ. In
this work, we consider only diagonal covariance matrices since using full covariance matrices can
cause models to overfit the training data while scalar covariances do not provide adequate general-
ization. The resulting set ofM models each haveO(R ·D) parameters, whereD is the dimension
of feature vectorx.

We consider three parameter estimation techniques for learning a supervised multi-class naı̈ve Bayes
model: direct estimation, naı̈ve averaging, and mixture hierarchies [1]. The techniques are similar
in that, for each wordwi ∈ V, they use the Expectation-Maximization (EM) algorithm for fitting
a GMM to training data. They differ in how they break down the problem of parameter estimation
into subproblems and then merge these results to produce a final density estimate.

4.1 Direct estimation

Direct estimation trains a model for each wordwi using the superset of feature vectors for all the
songs that have wordwi in the associated human annotation:

⋃
Xd, ∀d such thatXd ∈ Ti. Using

this training set, we directly learn the word-level mixture of Gaussian distribution using the EM
algorithm (see Figure 1a). The drawback of using this method is that computational complexity
increases with training set size. We find that, in practice, we are unable to estimate parameters using
this method in a reasonable amount of time since there are on the order of 100,000s of training
vectors for each word-level distribution.

⋃
Xd. We can subsample our training data but this is not

optimal since we not utilizing all of the available training data.

4.2 Naive averaging

Instead of directly estimating a word-level distribution forwi, we can first learntrack-leveldistrib-
utions: P (x|i, j), j ∈ 1, ..., |Ti| where the variablej indicates an audio track. We use EM to train
a song-level distribution from the feature vectors extracted from that song. We then create a word-
level distribution by averaging the track-level distributions of each track annotated withwi. Naive
averaginggives equal weight to each track-level distribution, resulting in the following distribution:

PX|Y(x|i) =
1
|Ti|

|Ti|∑
j=1

K∑
k=1

π
(j)
k N (x|µ(j)

k ,Σ(j)
k )

whereK is the number of mixture components in each track-level distribution (see Figure 1b).

Training a model for each track in the training set and summing them is relatively efficient, however,
the drawback of this estimation technique is that the size of word-level models grows with the size of
the training database since there will be|Ti| ·K components for wordwi. In practice, we may have
to evaluate thousands of multivariate Gaussian distributions for each of the feature vectorsxt ∈ Xq,



whereXq represents a novel query track. Note thatXq may contain on the order of 10,000 feature
vectors depending on the audio representation.

4.3 Mixtures hierarchies estimation

The benefit of direct estimation is that it produces a parametric distribution with a fixed number
of parameters. However, in practice, parameter estimation is infeasible without subsampling the
training data. Näıve averaging estimation can efficiently produce a parametric distribution, but it
is computationally expensive to evaluate this distribution since the number of parameters increases
with the size of the training data set. Mixture hierarchy estimation is an alternative which is efficient
and produces a parametric distribution with a fixed number of parameters [6].

Consider the set of|Ti| track-level distributions (each withK mixture components) that are learned
during näıve estimation. We can estimate a word-level distribution withR components using the
mixture hierarchies algorithm. This algorithm is an extension of the EM algorithm where

E-step: Compute the responsibilities of each of the parent components to a child component

hr
(j),k =

[
N (µ(j)

k |µr,Σr)e−
1
2 trace{(Σr)−1Σ

(j)
k

}
]π

(j)
k

N

πr∑
l

[
N (µ(j)

k |µl,Σl)e−
1
2 trace{(Σl)−1Σ

(j)
k

}
]π

(j)
k

N

πl

,

whereN is a user defined parameter. (In practice, we setN = K so thatE[π(j)
k N ] = 1.)

M-step: Update the parameters of the parent distribution

πnew
r =

∑
(j),k hr

(j),k

|Ti| ·K
, µnew

r =
∑
(j),k

wr
(j),kµ

(j)
k ,where wr

(j),k =
hr

(j),kπ
(j)
k∑

(j),k hr
(j),kπ

(j)
k

,

Σnew
r =

∑
(j),k

wr
(j),k

[
Σ(j)

k + (µ(j)
k − µt)(µ

(j)
k − µt)T

]
.

From a generative perspective, the track-level distribution is generated by samplingmixture com-
ponentsfrom the word-level distribution. (See Figure 1c.) The observed audio features are then
samples from the track-level distribution. Note that the number of parameters for the word-level
distribution is the same as the number of parameter resulting from direct estimation yet we learn this
model using all of the training data without subsampling. We have essentially replaced one compu-
tationally expensive (and often impossible) run of the standard EM algorithm with|Ti| computation-
ally inexpensive runs and one run of the mixture hierarchies EM. In practice, mixture hierarchies
EM requires about the same computation time of one run of standard EM.

5 Model evaluation

In this section, we quantitatively evaluate our supervised multi-class naı̈ve Bayes model for audio
annotation and retrieval. Our music data set consists of 2,131 song-review pairs where the reviews
have been composed by expert music critics at AMG Allmusic [19]. The songs are taken from the
our private music collections. The sound effects data set consists of 1364 track-caption pairs from
the BBC Sound Effects. It is hard to compare our results to previous, related research [8, 11] since
the existing results are mainly qualitative and relate to individual tracks or focus on a small subsets
of sound effects (e.g., animal vocalizations or isolated musical instruments). To date there has been
very little work on semantic music annotation [12] and virtually none focused on semantic music
modeling for text-based retrieval.

The mixture hierarchies algorithm is evaluated using 10-fold cross validation. As training models
using direct estimation and running inference on models trained using naive averaging is computa-
tionally more intensive, we present results for just one fold. We evaluate our system against three
baselines models: random sample, prior stochastic, and prior deterministic. For each song,random
samplepicks words at random (without replacement) from our vocabulary to annotate a song.Prior-
stochasticsamples words (without replacement) from a multinomial distribution parameterized by



the word prior distribution,P (i) for i = 1...|V|, estimated using the observed word counts of the
training set.Prior-deterministicranks words according to the word prior,P (i), and always select
the same words for every annotation.

5.1 Representing text and audio data

We represent each text document (i.e., song review or sound effects caption) as abag of words: a
set of wordsW that are found in both the review and our vocabularyV. In the context of music,
our musical vocabulary consists of 317 musically informative words that we hand picked from a
list of common words found in a corpus of song reviews. “Musically informative” means that the
wordmaydescribe something about the audio content. We do not include common stop words (‘the’,
‘into’, ‘a’), vague words (‘meaningful’, ‘across’), or general words (‘song’, ‘genre’). In addition, we
preprocess the text with a custom stemming algorithm that alters suffixes so that some words, such
as ‘guitar’ and ‘guitars’, become the same word, while others, such as ‘blue’ and ‘blues’, remain
unaffected. Our sound effects corpus consists of the captions associated with BBC Sound Effects
library. We select the 349 words each of which appear 5 or more times in this corpus.

Similarly, sounds are represented as abag-of-feature-vectors: we extract an unordered set of feature
vectors for each segment of audio data. The length of the segment and feature extraction technique
depends on the class of audio. For music, we compute dynamic Mel-frequency cepstral coefficients
(dMFCCs) each half-overlapping, medium-time (∼743 msec) segment of music audio[14]. This
results in about 800 52-dimensional feature vectors for a five minute song. For sound effects, we
compute delta cepstrum feature vectors for each half-overlapping short-time (∼12 msec) segment
[10]. We extract about 5000 39-dimensional feature vectors from each 30 seconds of audio content.

We have also explored using principal component analysis (PCA) to reduce the dimension of the
audio feature vectors. We find that in practice PCA increases performance for music but decreases
performance for sound effects. The improvement in performance is most likely due to the fact
DMFCC features are correlated with one another.

5.2 Annotation

Using Equation 2, we annotate all test set songs with 10 words and all test set sound effects tracks
with 4 words where each ground-truth annotation contains, on average, 19 and 4 words from our
vocabulary respectively. Annotation performance is measured using meanper-wordprecision and
recall. For each wordw, |wH | is the number of tracks that have wordw in the original “human”
annotated document.|wA| is the number of tracks that a model “automatically” annotates with word
w. |wC | is the number of “correct” words that have been used both in the document and by the
model. Per-word recall is defined as|wC |/|wH | and per-word precision as|wC |/|wA|.
Mean per-word recall and precision is the average of these ratios over all the words in our vocabulary.
It should be noted that these metrics range between 0.0 and 1.0, but one may be upper bounded by
a value less than 1.0 if either the number of words that appear in the corpus is greater or lesser than
the number of words that are output by our system. For example, our system outputs2150 words for
the 215 test songs for a corpus that contains4116 words, thus mean recall will be upper-bounded by
a value less than one. The exact upper bound will depend on the relative word frequencies of each
word in the vocabulary. For example, mean per-word recall for the music data set is bound by0.84
if we perfectly predict the most infrequent words.

Precision is undefined for words that the model never uses. Therefore, we actually compute
smoothedprecision by placing a small non-negative weightε/|V| on each word that the model did
not use to annotate a test song (ε = 0.0001). The weight of a word that is used by the model is cor-
rected to1− (ε/10) so that the total weight distributed across any one test song is 10. The smoothed
estimate for words that are not used by a model is approximately the word prior,PY . If we do not
smooth and define precision≡ 0 for words where|wA| = 0, the precision of the deterministic prior
(which always chooses the same 10 words) is reduced from 0.060 to 0.010 while mean precisions
for all other models remain roughly unaffected. It may seem more straightforward to useper-song
precision and recall, rather than the per-word metrics describe above. However, per-song metrics
can lead to artificially good results if a system predicts a few common words well and predicts the
many rare words poorly. Our goal is to find a system that is good at predicting all words in the
vocabulary.



Table 1: Audio annotation and retrieval results: mAP = mean average precision, mAROC = mean
area under the ROC curve, Cover = number of unique words used by a model. Values represent
means and standard error using 10-fold cross validation. Values without an associated standard
deviation represent the result of just one fold (due to computational constraints).

Model Annotation Retrieval
Recall Precision Cover mAP mAROC

Music - |V| = 317, A=10
Random Sample 0.029 (0.002) 0.059 (0.002) 316 (1)0.082 (0.001) 0.496 (0.002)
Prior (Stochastic) 0.032 (0.001) 0.061 (0.002) 297 (1)0.084 (0.001) 0.502 (0.002)
Prior (Deterministic) 0.032 (0.000) 0.061 (0.001) 10 (0) 0.081 (0.001) 0.496 (0.004)

DMFCC features, 12 PCA dimensions
Direct (R=32) 0.081 0.106 290 0.121 0.600
NaiveAvg (K = 8) 0.072 0.119 290 0.109 0.610
MixHier (K = 8, R = 32) 0.077 (0.003) 0.095 (0.003) 263 (2)0.117 (0.003) 0.598 (0.003)

Sound effects- |V| = 349, A=4
Random Sample 0.014 (0.002) 0.012 (0.001) 269 (3)0.052 (0.002) 0.509 (0.003)
Prior (Stochastic) 0.013 (0.001) 0.011 (0.001) 229 (2)0.049 (0.001) 0.505 (0.005)
Prior (Deterministic) 0.018 (0.002) 0.010 (0.000) 4 (0) 0.052 (0.002) 0.502 (0.005)

Delta cepstrum features
Direct (R = 12) 0.166 0.150 207 0.152 0.761
NaiveAvg (K = 8) 0.243 0.220 208 0.201 0.793
MixHier (K = 8, R = 12) 0.189 (0.011) 0.125 (0.012) 194 (1)0.187 (0.013) 0.759 (0.007)

In Table 1, we see that the models trained using mixture hierarchy estimation significantly outper-
form the three baselines for both the music and sound effects data sets. We see that for music, models
trained using the three parameter estimation techniques are comparable, but for sound effects, naive
averaging results in superior performance.

5.3 Retrieval

For each wordwq, we rank the test songs inS according to (3) and calculate the mean average
precision (mAP) [3] and the mean area under the receiver operating characteristic (ROC) curve
(mAROC). Average precision is found by moving down our ranked list of test songs and averaging
the precisions at every point where we correctly identify a new song. A receiver operating char-
acteristic (ROC) curve is a plot of true positive rate as a function of the false positive rate as we
move down our ranked list of songs. The area under the ROC (AROC) is found by integrating the
ROC curve and is upper bounded by 1.0. Random guessing produces an AROC of 0.5. Columns 4
and 5 of Table 1 show mAP and mAROC found by averaging each metric over all the words in our
vocabulary.

Similar to the annotation results, we see that (in Table 1) our model significantly outperforms the
baseline models. Again, note that naive averaging estimation produces the best sound effects model
and may be preferred over mixture hierarchies estimation when the number of track-level models is
small.

5.4 Discussion of results

While our models significantly outperform the random baselines, the best audio annotation results,
especially our music results, leave room for improvement. State-of-the-art content-based image
annotation systems [1] report mean per-word recall and precision scores of about 0.25 which is
comparable to our best sound effects results. However, the relative objectivity of the tasks in the two
domains as well as the vocabulary, the quality of annotations, the features, and the amount of data
differ greatly between our audio annotation system and existing image annotation systems. This
makes any direct comparisons somewhat misleading.

For music, it should be noted that our “ground truth” human reviews representnoisyversions of
ideal annotations. A music reviewer creating a document to describe a song does not make explicit
decisions about whether specific words that we include in our vocabulary are relevant or not. Thus,
relevant words are often omitted (weak labeling) and erroneous words can be found in our feature
representation of the reviews (e.g., “this song does not rock”). In an informal evaluation of our
“ground truth”, we asked six individuals to evaluate 20 songs each. For each song, we presented the



individual with five words from the ground truth annotation, and asked him or her to say whether
each word was relevant or not. We found that on average about two of the five words were relevant
(e.g., precision = 0.38). This suggest that we are learning word models based on with many irrelevant
songs.

6 Conclusion

The goal for this work is to formulate a framework for semantic audio annotation and retrieval. Our
initial approach was based on a recently proposed image annotation model. We can imagine adapt-
ing other models such as the correspondence latent Dirichlet allocation model [2] or the multiple
Bernoulli relevance model [3] for modeling audio data. Future work will also involve incorporating
alternative audio representations. We used existing audio feature extraction techniques and model
these features using GMMs. One drawback of using GMMs is that they ignore the temporal nature
of extracted audio feature vectors. Exploring alternative audio representations and modeling the
temporal aspects our audio (with hidden Markov models) may lead to better performance.

Another goal was to use existing annotations rather than to manually annotate each audio track. This
approach allows us to rapidly incorporate new training data without spending time and energy on
creating labels. However, our initial approach for deriving semantic labels for music (e.g., repre-
senting a review as a bags-of-words) produced unreliable annotations. This may be remedied by
collecting a data set that is specifically designed for the task of music annotation and retrieval.
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