
A new generative model for sounds:
The Gaussian Modulation Cascade Process

Richard Turner (turner@gatsby.ucl.ac.uk)

Maneesh Sahani (maneesh@gatsby.ucl.ac.uk)

Gatsby Computational Neuroscience Unit, 09/12/2006



Motivation

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
time /s



Motivation

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
time /s



Motivation: Traditional AM

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
time /s

=

×



Motivation: Traditional AM

1 2 3 4 5 6 7 8
time /s

=

×



Motivation: Demodulate the Modulator

1 2 3 4 5 6 7 8
time /s

=

×



Motivation: Demodulation Cascade

1 2 3 4 5 6 7 8
time /s

=

×

×



AM: a candidate organising principle in the Auditory System?

• The auditory system listens attentively to Amplitude Modulation

• Examples include Comodulation Masking Release in psychophysics, and a
possible topographic mapping of AM in the IC from electrophysiology.

• Main goal: discover computational principles underpinning auditory processing.

• But armed with a generative model you can do: sound denoising, source
segregation, fill in missing data/remove artifacts etc.



What’s up with current generative models?
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• x = λu

– λ ≥ 0 a positive scalar random variable, u ∼ G(0, Q)



What’s up with current generative models?

Model
latents

learnable
sparse share power slowly varying

bubeICAbube
√

× ×
√

SC
√

× ×
√

GSM
√ √

×
√

SFA × ×
√ √

Assumption: Latents are slow.
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Assumption: Latents are sparse, slow (and share power).



Desirable features of a new generative model

1. Sparse outputs.

2. Explicit temporal dimension, smooth latent variables.

3. Hierarchical prior that captures the AM statistics of sounds at different time
scales: cascade of modulatory processes, with slowly varying processes at the
top modulating more rapidly varying signals towards the bottom.

4. Learnable; and we would like to preserve information about the uncertainty,
and possibly correlations, in our inferences.
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M = 4,K1 = 4,K2 = 2,K3 = 2,K4 = 1, D = 80



Inference and learning

• Inference and learning by EM has an intractable E-Step.

• But due to the structure of the non-linearity variational EM can be used.

• Key point: If we freeze all the latent time-series bar one, the distribution over
the unfrozen chain is Gaussian.

• Leads to a family of efficient variational approximations: p(X|Y ) ≈∏
m q(X(m)

1:T,1:Km
), where each approximating distribution is a Gaussian.



Inference and Learning: Proof of concept
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Inference and Learning: Proof of concept
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Current work and Future directions

• Apply to natural sounds (require good initialisation)

• Generalise the model to have

– non-local features: to capture sweeps
– correlations in the prior: to capture the mutual-exclusivity of voiced and

unvoiced sections of speech

• Representation: real sounds live on a hyper-plane in STFT space: can we
project our model onto this manifold?

• How do we map posteriors to spike-trains: p(spike trains |y) = f [Q(x|y)]?



Extra slides...



What’s the point in a generative model for sounds?

Theoretical Neuroscience

• Understand neural receptive fields: if a latent variable model provides
a computationally effective representation of sounds, neurons might encode
p(latent|sound)

• Psychophysics: Play sounds to subjects (possibly drawn from the forward
model), and compare their inferences with inference in the model.

Machine Learning

• Fill in missing data: e.g. to fill in an intermittent recording or remove artifacts

• Denoise sounds, Stream segregation, Compression



Outline

• Natural auditory scene statistics - Amplitude modulation is a key component

• Amplitude modulation in the auditory system - a candidate organising
principle (the auditory system is short on such things)

• Previous statistical models of natural scenes - Gaussian Scale Mixture
Models and AM

• A new model for sounds: The Gaussian Modulation Cascade Process

• On going issues...



Natural Auditory Scene statistics: Acoustic ecology

Marginal distribution

• very sparse (more so than in vision)

• WHY? Lots of soft sounds e.g. the pauses between utterances in speech sounds and rare highly

structured localised events that carry substantial parts of the stimulus energy



Statistics of Amplitude Modulation (Attias & Schreiner)

Methods: sound → filterbank → Hilbert transform → find envelope
a(t, ω) → take logs and transform to zero-mean and unit variance: â(t, ω)

Marginal statistics of â(t, ω)

p[â(t, ω)] ∝ exp[−γâ(t,ω)]

(β2+â(t,ω)2)α/2

Spectrum of â(t, ω)

|FT [â(t, ω)]| ∝ 1
(ω2

0+ω2)α/2



Results summary

• Marginal distribution

– very sparse (finite prob of arb. soft sounds):

– Independent of filter centre frequency, filter bandwidth, time resolution.

– If AM stats were uncorrelated over time and frequency, CLT would predict increasing the

filter bandwidth/time resolution would make the distribution more Gaussian.

• Spectrum of the amplitude modulations

– Independent of filter centre frequency

– Modified power law, indicating long temporal correlations (scale invariance)

– Independent of filter bandwidth (cf. Voss and Clarke 1/f)

Implication: A good generative model of sounds should capture...

1. long correlations in AM across frequency bands and time (> 100ms)

2. Each location on the cochlea sees the same AM stats



AM in the Auditory System - Highlights from lots of work

Psychophysics: Comodulation masking release

• task: detect a tone in noise.

• Alter the bandwidth of the noise and measure threshold

• Repeat but amplitude modulate the masker.



Electrophysiological data

• Type 1 AN fibres phase lock to AM (implies temporal code), as we move up the
neuraxis the tuning moves from temporal to rate.

• Evidence in IC for topographic AM tuning (Schreiner and Langer, 1988)

• Cortex: AM processing seems ∼ filter independent (modulation filter bank?)

• Jury still out but AM may be a fundamental organising principle



What’s wrong with statistical models for natural scenes?

ICA and Sparse coding

p(x) =
I∏

i=1

p(xi) (1)

p(xi) = sparse (2)

pICA(y|x) = δ(Gx− y) (3)

pSC(y|x) = Norm(Gx, σ2I) (4)

Recognition weights:
pICA(x|y) = δ(x−Ry)

Images Sounds

Problems:

1. Extracted latents are not independent: correlations in their power.

2. No explicit temporal dimension - not a true generative model for sounds
or movies



1. Empirical distribution of the latents - power correlations



Explanation

• Caption for previous figure:

– Expected joint distribution of latents was starry (top left).
– Empirically the joint is found to be elliptical - many more instances of two

latents being high than expected (top right).
– Another way of seeing this is to look at the conditionals (bottom): if one

latent has high power then near by latents also tend to have high power.

• How do we improve the model?

1. Fix the bottom level p(y|x) = δ(y −Gx)
2. Fixes recognition distribution p(x|y) = δ(x−Ry)
3. p(x) =

∫
dyp(x|y)p(y) ≈ 1

N

∑
n p(x|yn)

4. These are exactly the distributions plotted on the previous page
5. No matter what R is we get similar empirical distributions
6. So choose a new prior to match them ...



Gaussian Scale Mixtures (GSMs)

• x = λu

– λ ≥ 0 a scalar random variable
– u ∼ G(0, Q)
– λ and u are independent

• density of these semi-parametric models can be expressed as an integral:

p(x) =

Z
p(x|λ)p(λ)dλ =

Z
|2πλ

2
Q|−1/2

exp

 
−

xTQ−1x
2λ2

!
p(λ)dλ (5)

• e.g. p(λ) discrete → MOG (components 0 mean), p(λ) =Gamma → student-T.

Imagine generalising this to the temporal setting:

x(t) = λ(t)u(t) = positive envelope × carrier

Are we seeing the hall marks of AM in a non-temporal setting?



Learning a neighbourhood (Karklin and Lewicki 2003, 05, 06)

• The statistical dependencies between filters depends on their separation (in
space, scale, and orientation.)

• We’d like to learn these neighbourhoods of dependence

• Solution: Share multipliers in a linear fashion using a GSM with a generalised
log-normal over the variances.

p(zj) = Norm(0, 1) (6)

λ2
i = exp

∑
j

hijzj

 (7)

p(xi|z, B) = Norm(0, λi) (8)

p(y|G,x) = Norm(Gx, σ2I) (9)



A temporal GSMM: The proof of concept Bubbles model

p(zi,t) = sparse point process (10)

λ2
i,t = f

∑
j

hijΦ(t)⊗ zj(t)

 (11)

p(xi,t|λi,t) = Norm(0, λ2
i,t) (12)

p(yt|G,xt) = δ(Gxt − yt) (13)

• Temporal correlations between the multipliers are captured by the moving
average Φ(t)⊗ uj(t) (creates a SLOW ENVELOPE)

• ⇒ Bubbles of activity in latent space (both in space and time)

• Columns of hi,j fixed and change smoothly to induce topographic structure -
computationally useful



Learning

• Common to learn the parameters using zero-temperature EM:

q(X) = δ(X −XMAP ) ≈ p(X|Y ) (14)

• uncertainty and correlational information is lost.

1. Effects learning
2. To compare to neural data need to specify a mapping: p(spike trains |y) =

f [q(x|y)] = f(XMAP ) for this approximation.
3. BUT we believe neural populations will represent uncertainty and

correlations in latent variables.

We’d like to retain variance and correlational information, both for learning
and for comparison to biology.



Motivations for the GMCP

1. Sparse outputs.

2. Explicit temporal dimension, smooth latent variables.

3. Hierarchical prior that captures the AM statistics of sounds at different time
scales: cascade of modulatory processes, with slowly varying processes at the
top modulating more rapidly varying signals towards the bottom.

4. Learnable; and we would like to preserve information about the uncertainty, and
possibly correlations, in our inferences.



The Gaussian Modulation Cascade Process

Dynamics:

p(x(m)
k,t |x

(m)
k,t−1:t−τm

, λm
k,1:τm

, σ2
m,k) = Norm

(∑τm
t′=1 λ

(m)
k,t′ x

(m)
k,t−t′, σ

2
m,k

)
Emission Distribution:

p(yt|x(1:M)
t ,gk1:kM

, σ2
y) = Norm

(∑
k1:kM

gk1:kM

∏M
m=1 x

(m)
km,t, σ

2
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)
Time-frequency representation:

yt = filter bank outputs



e.g. M = 2,K1 = 2,K2 = 1, D = 1
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e.g. M = 4,K1 = 4,K2 = 2,K3 = 2,K4 = 1, D = 80



Comments on the model

• A GSM: latent = rectified Gaussian × Gaussian

• Emission distribution related to Grimes & Rao, Tenenbaum & Freeman (for
M=2) and Vasilescu & Terzopoulos for general M., but the temporal priors allow
us to be fully unsupervised.

• As p(xm
1:K,1:T |x

1:M 6=m
1:K,1:T ,y1:T , θ) is Gaussian, there are a family of variational EM

algorithms we can use to learn the model.



Inference and Learning: Proof of concept
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Future directions and current issues

DIRECTIONS
• correlated prior: speech is usually periodic (voiced) or unvoiced - mutually

exclusive, easier to represent sweeps.

• non-local features: make G temporal to capture sweeps

ISSUES

• Representation: real sounds live on a hyper-plane in filter-bank space - can we
project our model onto this manifold?

• Initialisation: The free energy has lots of local minima: use Slow modulations

analysis to initialise arg mingn

〈[
da(gT

ny)
dt

]2
〉

such that 〈a(gT
ny)a(gT

my)〉 = δmn

• How do we map posteriors to spike-trains: p(spike trains |y) = f [Q(x|y)]?



What’s up with current generative models?

Model p(x(1)) p(y|x(1))

ICA sparse δ(y −Gx(1))

SC sparse Norm(Gx(1), σ2
yI)

Assumption: Latent variables are sparse.



What’s up with current generative models?

Model p(x(2)) p(x(1)|x(2)) p(y|x(1))

ICA N/A sparse δ(y −Gx(1))

SC N/A sparse Norm(Gx(1), σ2
yI)

GSM Norm(0, I) Norm(0, λ2
i ) Norm(Gx(1), σ2

yI)

λ2
i = exp(hT

i x(2))

Assumption: Latents are sparse, and share power.

• x(1) = λu

– λ ≥ 0 a positive scalar random variable, u ∼ G(0, Q)



What’s up with current generative models?

Model p(x(2)) p(x(1)|x(2)) p(y|x(1))

ICA N/A sparse δ(y −Gx(1))

SC N/A sparse Norm(Gx(1), σ2
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SFA N/A Norm(γxt−1, σ
2) δ(y −Gx(1))

Assumption: Latents are slow.



What’s up with current generative models?

Model p(x(2)) p(x(1)|x(2)) p(y|x(1))

ICA N/A sparse δ(y −Gx(1))

SC N/A sparse Norm(Gx(1), σ2
yI)

GSM Norm(0, I) Norm(0, λ2
i ) Norm(Gx(1), σ2

yI)

λ2
i = exp(hT

i x(2))

SFA N/A Norm(γxt−1, σ
2) δ(y −Gx(1))

Bubbles point-process Norm(0, λ2
i,t) δ(y −Gx(1))

λ2
i,t = f(hT

i x
(2)
t ⊗ φt)

Assumption: Latents are sparse, slow (and share power).


